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Problem & questions
From single to many-body

• How does an atypical force, the active force, alter the dynamics of an

object (with a given form and mass distribution) immersed in a ther-

mal bath, i.e. subject to friction→ dissipation and

thermal fluctuations→ noise.

• Collective effects of an ensemble of such objects in interaction.

− Dynamic phase transitions? 3d vs. 2d?

− Active solid, liquid, gas phases?

− Collective dynamics?

Some reviews : Fletcher & Geissler 09, Vicsek 10, Menon 10, Ramaswamy 10,

Romanczuk et al 12, Cates 12, Marchetti et al. 13, de Magistris & Marenduzzo 15
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Plan

1. Active Brownian dumbbells

2. Two-dimensional equilibrium phases

Passive limit: Beyond the BKT-Halperin-Nelson-Young scenario

3. Two-dimensional collective behaviour of active systems

No mobility induced phase transition (MIP)
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Particles with shape
e.g., a diatomic molecule or a dumbbell : bacteria

Two spherical atoms with

diameter σd and mass md

Persistent force

Massless spring modelled by a finite extensible non-linear elastic (fene) force

between the atoms Ffene = −k(ri − rj)
1− r2

ij/r
2
0

Additional repulsive contribution (WCA truncated Lennard-Jones potential) to

avoid atomic/colloidal overlapping
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Langevin dynamics
a passive dumbbell made of a colloid i and a colloid j

mdr̈i(t) = −γṙi(t) + Fpoti(ri, rj) + ηi(t)

mdr̈j(t) = −γṙj(t) + Fpotj(ri, rj) + ηj(t)

with Fpot = Fwca + Ffene, and

ηi,j independent thermal noises acting on the two beads, both with Gaus-

sian statistics, zero average 〈ηai (t)〉 = 0 at all times t, and δ-correlations

〈ηai (t)ηbj(t′)〉 = 2 γkBT δijδab δ(t− t′). Friction coefficient γ

i, j bead labels, a, b = 1, . . . , d coordinate labels
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Single passive dumbbell
Elongation of the molecule

Almost rigid molecule for the parameters chosen (note the vertical scale)
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Langevin dynamics
a dumbbell under an active force

mdr̈i(t) = −γṙi(t) + Fpoti(ri, rj) + Fact + ηi(t)

mdr̈j(t) = −γṙj(t) + Fpotj(ri, rj) + Fact + ηj(t)

with Fpot = Fwca + Ffene

ηi,j independent thermal white noises acting on the two beads, and

The active force

Fact = Factn̂

along the main molecular axis
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Single active dumbbell
Sketch of position mean-square displacement : new scales

Ballistic tI Diffusive t∗ = ta/Pe2 Ballistic ta = D−1
R = γσd/(2kBT ) Diffusive

∆2(t) = 〈[r(t)− r(0)]2〉/t

tI t∗ ta t

No Pe = σdFact/(kBT ) effect on the angular motion of an isolated dumbbell
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Problem & questions
From single to many-body

• How does an atypical force, the active force, alter the dynamics of a

particle (with a given form and mass distribution) immersed in a ther-

mal bath, i.e. subject to friction→ dissipation and

thermal fluctuations→ noise

Mean-square displacements

• Collective effects of an ensemble of such objects in interaction.

− Dynamic phase transitions? 3d vs. 2d?

− Active solid, liquid, gas phases?

− Collective dynamics?
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Interacting active dumbbells
Many-body interacting system

Two spherical atoms with diameter σd and mass md

Massless spring modelled by a finite extensible non-linear elastic (fene) force

between the beads i and j in the same dumbbell, Ffene = −k(ri − rj)
1− r2

ij/r
2
0

,

with an additional repulsive contribution (WCA) to avoid colloidal overlapping.

Polar active force along the main molecular axis Fact = Fact n̂

Purely repulsive WCA interaction between colloids in different molecules.

Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces,−γṙi, and independent noises, ηi, on the beads.
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Active dumbbells
Collective effects at intermediate φ

φ = 0.4, Pe = 40, T = 0.05
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Bacteria colony
Phase segregation

A. Bright-field microscopy image of a motile bacteria-polymer mixture

B. Snapshot of simulation of active dumbbells with parameters chosen to be

similar to the experiments shown in A.
Schwarz-Linek et al 12
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Active dumbbells in 2d
OLD phase diagram - motility induced phase transition
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Mechanism for aggregation: note the head-tail alignment in the cluster.
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Active dumbbells in 2d
OLD phase diagram - to be revised

Focus on the homogeneous phase. Start from the analysis of the passive limit
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Plan

1. Active matter

2. Active Brownian dumbbells

3. Two-dimensional equilibrium phases

Passive limit: Beyond the BKT-Halperin-Nelson-Young scenario

4. Two-dimensional collective behaviour of active systems

No mobility induced phase transition (MIP)
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2d Freezing
BKTHNY vs. a new scenario by Bernard & Krauth

BKTHNY BK

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT (unbinding of dislocations) BKT

Hexatic phase SR pos & QLR orient SR pos & QLR orient

transition BKT (unbinding of disclinations) 1st order

Liquid SR pos & orient SR pos & orient

Basically, the phases are the same, but the low-lying transition is dif-

ferent, allowing for coexistence of the liquid and hexatic phases
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Plan

1. Active matter

2. Active Brownian dumbbells

3. Two-dimensional equilibrium phases

Passive limit: Beyond the BKT-Halperin-Nelson-Young scenario

4. Two-dimensional collective behaviour of active systems

No mobility induced phase transition (MIP)
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Results & questions
• Brand new Bernard & Krauth two step transition scenario

Liquid (1st order) Hexatic (BKTHNY) Solid

confirmed for hard and soft passive disks

• Passive molecules?

• Active disks and molecules?

• Mobility induced phase transition for purely repulsive interactions vs.

an extension of the Bernard & Krauth passive system scenario

to the active dumbbell problem

LFC, di Gregorio, Gonnella & Suma 16
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Phase diagram
Active dumbbells

T = 0.05
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Coexistence region
& lines of constant proportion
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Passive dumbbell system
Phase diagram (low T , as a function of packing fraction)

φCP

φRCP

φ

solid

hexatic

co-existence Really?

liquid
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Passive dumbbell system
Phase diagram

φ

Local maps of

1st column

Local hexatic |ψ6i|
2nd column

Local density φi
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Passive dumbbell system
Phase diagram

φ

Same color =

same orientation

Then |ψ6i|
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Passive dumbbell system
Phase diagram

φ

Spatial correlation bet-

ween regions of high

density and regions of

large absolute value of

the local hexatic order

parameter
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Passive dumbbell system
Local density & local hexatic parameter

φ = 0.734 φ = 0.74 φ = 0.75
(co-existence) (co-existence) (upper limit of co-existence)
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Active dumbbell system
OLD phase diagram & new result

Connection between the two extremes !
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Dynamics
|ψ6i| at φ = 0.74 and Pe = 10 (co-existence)
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Phase diagram
Conclusions

T = 0.05

28



Discussion
Some things to do

• Confirm this picture for active hard and soft disks.

• Understand how to define a meaningful pressure.

• Investigate the dynamics taking into account the heterogeneity of the

co-existence region.

− Revisit the tracer motion under inhomogeneous conditions.

− Revisit the effective temperature measurements.
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Interaction potential
Lennard-Jones vs WCA

Fpot = Fwca + Ffene, V = Vwca + Vfene and hard repulsive Vwca

Vwca(ri, rj) =

 VLJ(rij)− VLJ(rc) r < rc

0 r > rc

VLJ(rij) = 4ε

[(
σ

rij

)2n

−
(
σ

rij

)n]
rc = 21/n σ = σd

LJ potential has repulsive

and attractive branches

WCA is purely repulsive

ε and σd are the energy and length scales
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Passive molecular systems
Solid, liquid and gas equilibrium phases

Lennard-Jones model system for Argon (more later)

Kataoka & Yamada, J. Comp. Chem. Jpn. 11, 81 (2012)

Typical (simple) density-temperature (φ, T ) phase diagram
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Freezing transition
Solid 7→ Liquid: Different routes in 3d and 2d

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

32



Crystals vs. solids
3d vs. 2d

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.

The position fluctuations are bounded.

• A solid is a material with non-vanishing shear modulus.

• 2d solids exist and have a weaker ordering than 3d crystals.

− They are oriented crystals with quasi-long-range positional order.

− Critical phase with algebraic relaxation of position correlations.

− Phase transition à la Kosterlitz-Thouless (Nobel Prize 2016).
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Equilibrium phases of 2d matter
Historical development

• Peierls (1934) & Mermin-Wagner (1966-68) results.

No positional long-range order in 2d at finite T

∆2(r) = 〈[u(r)− u(0)]2〉 ' kBT ln r in d = 2

• Berenzinskii-Kosterlitz-Thouless-Halperin-Nelson-Young scenario

Dislocations and disclinations

• 2d passive systems made of hard or soft disks in interaction

Numerical simulations

• Brand new Bernard & Krauth two step transition scenario

Liquid to hexatic BKT transition preempted by a 1st order transition
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Freezing
Disks in two dimensions

(Many) Figure(s) from E. Bernard, PhD Thesis, UPMC

Low density liquid Which phase? Crystalline triangular lattice

Note that in the crystal each disk has six neighbours

φRCP ≈ 0.82 (random close packing) φCP ≈ 0.91 (close packing)
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Positional order
Disks, Voronoi cells & dislocations

A free dislocation (7-5) A bound pair of dislocations (twice 7-5)

In the crystal the centers of the disks form a triangular lattice (six neighbours)

The blue disks have seven neighbours and the red ones have five.

On the left image: the effect of the defect spreads over the full system.
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Orientational order
Hexatic order

Associating arrows (directions) to disks
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Orientational order
Hexatic order parameter

The local hexatic variable

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

with N i
nn the number of nearest (Voronoi) neighbours of bead i and

θij the angle between the segment that connects i with its neighbour j

and the x axis.

For beads placed on the vertices of a triangular lattice, each bead has

six nearest-neighbours, j = 1, . . . , 6, the angles are θij = 2πj/6 and

ψ6i = 1 for all i.

measures orientational order
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Orientational order
Disks, arrows and disclinations

The orientation winds by±2π around the blue (seven) and red (five) defects.

Very similar to the vortices in the 2d XY O(2) magnetic model.

BKTNHY scenario: the unbinding of vortices drives another BKT-like transition.
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Correlation functions
Sketches (green seven & red five neighbours)

Figure from Gasser, J. Phys. : Cond. Matt. 21, 203101 (2009)

Solid Hexatic Liquid

Dislocations & disclinations bound Dislocations free Disclinations free
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Correlation functions
Positional

long r: GT (r) =


r−η solid quasi long range order

e−r/ξ hexatic disorder

e−r/ξ isotropic disorder

41



Correlation functions
Hexatic

long r: G6(r) =


ct solid long range order

r−η6 hexatic short range order

e−r/ξ6 isotropic disorder
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Berezinskii-Kosterlitz-Thouless
Lack of universality of the transition in XY models

The RG proof yields, actually, an upper limit for the stability of the quasi

long-range ordered phase.

A first order phase transition at a lower T can preempt the BKT one.

It does for sufficiently steep potentials:

“First order phase transition in an XY model with nn interactions”

Domany, Schick & Swendsen, Phys, Rev. Lett. 52, 1535 (1984)
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Passive dumbbell system
Hexatic correlation function

 0.01

 0.1

 1

 1  10  100

g
6
(r

)

r/σ

φ = 0.70
0.72
0.73

0.734
0.74
0.75
0.76
0.82
0.88  0.01

 0.1

 20  40  60  80  100  120  140

Solid

Hexatic

Liquid

44



Passive dumbbell system
Hexatic correlation function
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Passive dumbbell system
Local density colour map

0.76

0.75

0.73

0.74

Co-existence between dense and loose regions
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Active coarsening
at lower limit of coexistence

|ψ6i| |ψ6i| φi ψ6i
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Passive dumbbell system
Co-existence region: independence of the initial conditions

crystal

random

hexatic

t = 0 t1 t2
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Passive dumbbell system
Dynamics: Below, in and above the co-existence region

φ = 0.72

φ = 0.75

φ = 0.76
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Discussion
Two populations in co-existence region

Pe = 10, φ = 0.78 at t = 2500, 5000, 10000

The averaged hexatic modulus is computed for each particle on a radius of 10

σd around the particle itself, and a particle is considered to be inside a cluster

only if this value is greater than 0.75. Only such particles were taken into account

in the red peak on the right.

In black : all dumbbells
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Open systems
Aim

Our interest is to describe the statics and dynamics of a classical (or

quantum) system coupled to a classical (or quantum) environment.

The Hamiltonian of the ensemble is

H = Hsyst +Henv +Hint

The dynamics of all variables are given by Newton (or Heisenberg) rules, de-

pending on the variables being classical (or quantum).

The total energy is conserved,E = ct but each contribution is not, in particular,

Esyst 6= ct, and we’ll take e0 � Esyst � Eenv .
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Dynamics in equilibrium
Conditions

Take an open system coupled to an

environment

Environment

System

Interaction

Necessary :

— The bath should be in equilibrium

same origin of noise and friction.

— Deterministic force :
conservative forces only, ~F = −~∇V .

— Either the initial condition is taken from the equilibrium pdf, or the

latter should be reached after an equilibration time teq :

Peq(v, x) ∝ e−β(mv
2

2
+V )
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Microscopic scales

Image taken from Bechinger et al, Rev. Mod. Phys. 88, 045006 (2016)
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Models & Methods
From very detailed to approximate

Biological Statistical physics Non-linear dynamics

Microscopic Brownian/Run&Tumble Cellular automata

Collective Phases & transitions Bifurcations

Experiments Soft-condensed matter

Numerical MD, MC, Lattice Boltzmann Integration

Analytical Liquid/Glass theory Hydrodyn/Mechanics
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The position and velocity of an agent are ri and vi = v0v̂i with v0 = cst.

Each microscopic update is such that the individual’s direction is updated accor-

ding to the mean . . . over its neighbours

v̂i(t+ δt) = v̂j(t)|ri−rj |<r + ηi(t)

plus some noise ηi (normalisation is imposed after each step) and moves at

constant speed v0 in the new direction

ri(t+ δt) = ri(t) + v0v̂i(t+ δt) δt

“Novel Type of Phase Transition in a System of Self-Driven Particles”,

Vicsek, Czirók, Ben-Jacob, Cohen, Shochet, Phys. Rev. Lett. 75 1226 (1995)
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The particles are self-propelled due to v0

The total number of particles is conserved (no birth/death).

The velocity direction plays a similar role to the one of the spin in the Heisenberg

(or XY) ferromagnetic models (more later)

As the particles move in the direction of their velocity, the “connectivity matrix”

is not constant, but evolves (if the interaction range is finite).

There is no momentum conservation and Galilean invariance is broken.

Spontaneous symmetry breaking of polar order, p(t) = 1
N

∑N
i=1 v̂i(t) 6= 0

At v0 = 0 the model is the Heisenberg one. However, this is a singular limit.
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The global behaviour is controlled by the density φ, the noise amplitude kBT

and the particles’ modulus of the velocity v0.

Dynamic phase diagram (kBT, φ) (v0 fixed) from

the polar order parameter p(t) = 1
N

∑N
i=1 v̂i(t)

• Homogenous collective motion (high density, weak noise)

• Ordered bands (intermediate)

• Disordered (low density, strong noise)

“Novel Type of Phase Transition in a System of Self-Driven Particles”,

Vicsek, Czirók, Ben-Jacob, Cohen, Shochet, Phys. Rev. Lett. 75 1226 (1995)

Ginelli, arXiv:1511.01451 in Microswimmers Summer School, Jülich
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Models
Continuum model

The mean center-of-mass velocity 〈v〉 is the order parameter.

The development of 〈v〉 6= 0 for the flock as a whole requires spontaneous

breaking of the continuous rotational symmetry.

Out of equilibrium feature possible also in low dimensions.

Breakdown of linearized hydrodynamics imply large fluctuations in dimensions

smaller than four.

Argument: Improved transport suppresses the very fluctuations that give rise to

it, leading to long-range order in d = 2.

“Flocks, herds, and schools : A quantitative theory of flocking”,
Toner & Tu, Phys. Rev. E 58, 4828 (1998)
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Models
Continuum model : giant density fluctuations

“Long-Range Order in a 2d Dynamical XY Model : How Birds Fly Together”

“Flocks, herds, and schools : A quantitative theory of flocking”,
J. Toner & Y. Tu, Phys. Rev. Lett. 75, 4326 (1995), Phys. Rev. E 58, 4828 (1998)
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Models
Continuum model

∂tv + λ1(∇ · v)v + λ2(v ·∇)v + λ3∇v2︸ ︷︷ ︸
Navier-Stokes w/no Galilean invariance

=

α1v − α2v
2v︸ ︷︷ ︸

“Potential force” imposing v2 = α1/α2

−∇P︸ ︷︷ ︸
“Pressure variation”

+DB∇(∇ · v) +DT∇2v +D2(v ·∇)2v︸ ︷︷ ︸
Dissipative terms

+η︸︷︷︸
Noise

P =

∞∑
n=1

σn(ρ− ρ0)n Pressure tending to impose ρ− ρ0 small

∂tρ+ ∇ · (vρ) = 0 Toner & Tu, Phys. Rev. E 58, 4828 (1998)

α1 < 0 (α1 > 0) in the homogenous (flocking) phase

“Hydrodynamic eqs. for self-propelled part.: microscopic derivation & stability analysis”

Bertin, Droz and Grégoire, J. Phys. A 42, 445001 (2009)
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Models
Run & tumble particles

This mechanism can be described as a repeating sequence of two actions:

(i) a period of nearly constant-velocity translation (run) followed by

(ii) a seemingly erratic rotation (tumble).

Observed by Berg & Brown, Nature (1972)

Simulation from M. Kardar’s webpage

Run with v = 20µm/s ; tumble with rate α = 1/s and duration τ = 0.1 s

Diffusion constants

DRT =
v2

dα(1 + ατ)
' 100µm2/s

DBM =
kBT

6πηR
' 0.2µm2/s
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Models
Run & tumble particles

Some trajectories depending on the environment

Trajectories of E. coli cells in (A) buffer and (B) polymeric solution

“Running and tumbling with E. coli in polymeric solutions”,

Patteson, Gopinath, Goulian and Arratia, Scient. Rep. 5, 15761 (2015)
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Models
Fluctuating hydrodynamic theories in low density limits

Local density scalar field ρ(r, t) =
∑N

i=1 δ(r − ri(t))

Local polar vector field p(r, t) = 1
ρ(r,t)

∑N
i=1 v̂i(t)δ(r − ri(t))

∂tρ+ v0∇ · (ρp) = −∇ ·
(
− 1

γρ
∇δF

δρ
+ ηρ

)
∂tp+ λ1(p ·∇)p = − 1

γp

δF

δp
+ ηp

with wise proposals for the “free-energy” F and noises ηρ and ηp.

“Hydrodynamics of soft active matter”

Marchetti, Joanny, Ramaswamy, Liverpool, Prost, Rao, Simha

Rev. Mod. Phys. 85 (2013)
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Langevin approach
Lennard-Jones potential
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Langevin approach
Lennard-Jones potential
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Langevin approach
Lennard-Jones potential

Figures : credit Chemistry LibreTexts UC Davis
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Freezing
First order route: nucleation & growth

Left image from Gasser, J. Phys. : Cond. Matt. 21, 203101 (2009)

Nucleation barrier ∆F (R) Examples of two crystalline configurations

∆F (R) ≡ Fbubble(R)− Fno bubble(R) ≈ −δf Rd + sRd−1

∆F (Rc) ≈
sd

(δf)d−1
and Rc ≈

s

δf
in d ≥ 2
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Freezing
First order route: nucleation & growth

Left image from Gasser, J. Phys. : Cond. Matt. 21, 203101 (2009)

Crossing point ∆F (R∗) = 0 Examples of two crystalline configurations

∆F (R) ≡ Fbubble(R)− Fno bubble(R) ≈ −δf Rd + sRd−1

0 = ∆F (R∗) ≈ −δf R∗d + sR∗d−1 ⇒ R∗ ≈ s

δf
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Berezinskii-Kosterlitz-Thouless
The 2d XY model

At very high temperature one expects disorder.

At very low temperature the harmonic approximation is exact and there

is quasi long-range order.

There must be a transition in between.

Assumption : the transition is continuous and it is determined by the

unbinding of vortices (topological defects).

Proved with RG, assuming a continuous phase transition.

The correlation length diverges exponentially ξeq ' ea/|T−TBKT|−ν at

TBKT and it remains infinite in the phase with quasi long-range order.

69



2d XY model
Vortices
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2d XY model
BKT transition

T < TBKT T > TBKT

A few paired vortices Vortices are all over and unbound

A small portion of a much larger system with periodic boundary conditions is shown.

Images copied from S. Burton’s site
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Equilibrium phases
Macroscopic properties

• A gas is an an air-like fluid substance which expands freely to fill any

space available, irrespective of its quantity.

• A liquid is a substance that flows freely but is of constant volume, ha-

ving a consistency like that of water or oil. It takes the shape of its

container

• A solid is a material with non-vanishing shear modulus.

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.
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Mermin-Wagner theorem
Consequences

A continuous symmetry cannot be spontaneously broken in 2d.

(The Hamiltonian K
2

∫
ddr [∇u(r)]2 is invariant under global rotations of u)

Corollary: a crystal with long-range order cannot exist at T > 0 in d = 2.

Reason: in low d fluctuations are more effective and inhibit order.

Quasi long-range positional order with algebraically decaying correlations is

possible, C(r) ' r−η .

Note the similarity with the 2d XY model of magnetism, si = (cos θi, sin θi)

−H
J

=
∑
〈ij〉

si ·sj =
∑
〈ij〉

cos θij '
∑
〈ij〉

(1−
θ2
ij

2
) ≈ −1

2

∫
d2r [∇θ(r)]2
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Observables
Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the disks.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

Focus on the central light-green face

All points within this region are closer to the dot within

it than to any other dot on the plane

The region has five neighbouring cells from which it is

separated by an edge

The grey zone has six neighbouring cells
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Close packing of disks
Disks, Voronoi cells & dislocations

A free dislocation A bound pair of dislocations

In the crystal the centers of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

On the right image: the external path closes and forms a perfect hexagon. The

effects of the defects are confined.
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Hard disks in two dimensions
Correlation between the local orientation and density

“Two-step melting in two dimensions : first-order liquid-hexatic transition”

Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)
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Hard disks in two dimensions
Time evolution from different initial states in the co-existence region

“Two-step melting in two dimensions : first-order liquid-hexatic transition”

Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)

Initial state solid in a, liquid in b.

Red lines obtained w/simple MC, other w/smart algorithm
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Hard disks in two dimensions
Pressure loop and finite N dependence

Similar to Van der Waals model for 1st order phase transitions

P cannot increase with V (stability): phase separation via Maxwell construction

Hexatic Liquid
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Hard disks in two dimensions
Pressure loop and finite N dependence

A system with PBCs has a ∼ flat interface with surface energy scaling as

S ' Ld−1 =
√
N and f ' N−1/2. Verified in the inset for φ ' 0.708

Hexatic Liquid
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Observables
Local density

For each bead, i the first estimate of the local density φVor
i is the ratio

between its surface and the area AVor
i of its Voronoi region:

φVor
i =

πσ2
d

4AVor
i

We next coarse-grain this value by averaging the single-bead densities

φVor
i over a disk S

(i)
R with radius R

[[φi]] ≡
∑
i∈S(i)

R

φVor
i /(πR2)

Visualisation: each bead is painted with the colour of its coarse-grained

local density value, [[φi]], denser in red, looser in blue.
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Observables
Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

Focus on the central light-green face

All points within this region are closer to the dot within

it than to any other dot on the plane

The region has five neighbouring cells from which it is

separated by an edge

The grey zone has six neighbouring cells
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Observables
Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

With dashed lines, the triangular lattice

The vertices are the sites

Each site has six nearest neighbours

The angles of the edges of the triangular lattice are

θij = 2πj/6

The hexagonal lattice is the Voronoi tessellation
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Observables
Local density

For each bead, i the first estimate of the local density φVor
i is the ratio

between its surface and the area AVor
i of its Voronoi region:

φVor
i =

πσ2
d

4AVor
i

We next coarse-grain this value by averaging the single-bead densities

φVor
i over a disk S

(i)
R with radius R

[[φi]] ≡
∑
i∈S(i)

R

φVor
i /(πR2)

Visualisation: each bead is painted with the colour of its coarse-grained

local density value, [[φi]], denser in red, looser in blue.
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Initial conditions
Three cases

Crystal Hexatic order Random

with the desired φ
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Observables
Positional order

The (fluctuating) local particle number density

ρ(r0) =

N∑
i=1

δ(r0 − ri)

with normalisation
∫
ddr0 ρ(r0) = N . In a homogeneous system ρ(r0) = N/V .

The density-density correlation function C(r+ r0, r0) = 〈ρ(r+ r0)ρ(r0)〉
that, for homogeneous (independence of r0) and isotropic (r 7→ |r| = r)

cases, is simply C(r + r0, r0) = C(r).

The double sum in C(r+ r0, r0) = 〈
∑

ij δ(r+ r0 − ri)δ(r0 − rj)〉 has

contributions from i = j and i 6= j : Cequal + Cdiff
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Observables
Positional order

The density-density correlation function

C(r + r0, r0) = 〈ρ(r + r0)ρ(r0)〉 =
∑

ij〈δ(r + r0 − ri)δ(r0 − rj)〉

is linked to the structure factor

S(q) ≡ 1

N
〈ρ̃(q)ρ̃(−q)〉 =

1

N
〈
N∑
i=1

N∑
j=1

e−iq·(ri−rj)〉

by

N S(q) =

∫
ddr1

∫
ddr2 C(r1, r2) e−iq·(r1−r2)
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Observables
Positional order

In isotropic cases, i.e. liquid phases, the pair correlation function

N
V g(r) = average number of particles

at distance r from a

tagged particle at r0

is linked to the structure factor

S(q) =
1

N
〈
N∑
i=1

N∑
j=1

e−iq·(ri−rj)〉

by
S(q) = 1 + N

V

∫
ddr g(r) eiq·r

Peaks in g(r) are related to peaks in S(q). The first peak in S(q) is at q0 =

2π/∆r where ∆r is the distance between peaks in g(r) (that is close to the

inter particle distance as well).
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Observables
Liquid

“Introduction to Modern Statistical Mechanics”, Chandler (OUP)
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Observables
Experiments & simulations of liquids

Inter-peak distance in g(r) is ∆r ' σ ' 3Å

Position of the first peak in S(q) is at q0 ' 2π/∆r ' 2 Å−1

“Structure Factor and Radial Distribution Function for Liquid Argon at 85K”,

Yarnell, Katz, Wenzel & König, Phys. Rev. Lett. 7, 2130 (1973)

89



Observables
Structure factor for crystals

ri and rj are the positions of the beads i and j and q is the wave-vector :

S(q) =
1

N

∑
ij

〈eiq·(ri−rj)〉

Visualisation: 2d representation in the (qx, qy) plane, Bragg peaks.

Triangular lattice in real space Hexagonal lattice in reciprocal space

Voronoi cell Brillouin zone
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Observables
Hexatic order

The local hexatic fluctuating order

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

with N i
nn the number of nearest (Voronoi) neighbours of bead i and θij

the angle between the segment that connects i with its neighbour j and

the x axis.

For beads placed on the vertices of a triangular lattice, each bead has

six nearest-neighbours, j = 1, . . . , 6, the angles are θij = 2πj/6 and

ψ6i = 1 for all i.

measures orientational order
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Observables
Hexatic order

The local hexatic fluctuating order

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

We also look at the average of the modulus and modulus of the average

2N ψ6 =

∣∣∣∣∣
N∑
i=1

ψ6i

∣∣∣∣∣ 2N Γ6 =
N∑
i=1

|ψ6i|

and the correlation functions

g6(r) =

∑
ij[〈ψ∗6iψ6j〉]

∣∣∣
rij=r

[〈|ψ6i|2〉]
Note that the normalisation is site independent
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Passive system
Structure factor - very low and very high density

φ = 0.66

φ = 0.76

Liquid

Solid

Bragg peaks

Primitive vectors

q1 = 4π
a
√

3

(√
3

2 ,−
1
2

)
q2 = 4π

a
√

3
(0, 1)

Unit of length

a =
(

π
2
√

3φ

)1/2
σd
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Passive system
Structure factor - progressive increase in density

φ = 0.66 φ = 0.72 φ = 0.76
(liquid) (liquid) (solid)

φ = 0.734 φ = 0.74 φ = 0.75
(co-existence) (co-existence) (co-existence)
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Passive system
Hexatic order parameter

Dumbells Hexatic local vector
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Plan

1. The result: new phase diagram

2. The interacting dumbbells model

3. Passive case

4. Active case

5. Discussion of

Mobility induced phase transition for purely repulsive interactions

vs.

just an extension of the Bernard & Krauth passive system scenario
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Observables
Hexatic order

The local hexatic fluctuating order

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

We also look at the average of the modulus and modulus of the average

2N ψ6 =

∣∣∣∣∣
N∑
i=1

ψ6i

∣∣∣∣∣ 2N Γ6 =
N∑
i=1

|ψ6i|

and the correlation functions

g6(r) =

∑
ij[〈ψ∗6iψ6j〉]

∣∣∣
rij=r

[〈|ψ6i|2〉]
Note that the normalisation is site independent
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Single active dumbbell
Control parameters

Number of dumbbells N = 1 and box volume S in two dimensions:

packing fraction φ =
πσ2

d

2STransport rates:

Advective transport Lv 7→ σd Fact/γ

diffusive transport D 7→ kBT/(2γ)
Péclet number Pe =

2Factσd

kBT

Active force Lv 7→ σd Fact/γ

viscous force ν 7→ γσ2
d/md

Reynolds number Re =
mdFact

σdγ2

Pe ∈ [0, 40] Re < 10−2

We keep the parameters in the harmonic (fene) and WCA (repulsive) potential

fixed. Stiff molecule limit: vibrations frozen.

Interest in the Pe (and later φ) dependencies.
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Hard disks in two dimensions
Orientation vector construction

“Two-step melting in two dimensions : first-order liquid-hexatic transition”

Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)
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Hard disks in two dimensions
Coexistence

“Two-step melting in two dimensions : first-order liquid-hexatic transition”

Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)
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Summary
Equilibrium phases of 2d matter

• 2d passive systems made of hard or soft disks in interaction

BKTHNY BeKr

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT (unbinding of dislocations) BKT

Hexatic phase SR pos & QLR orient SR pos & QLR orient

transition BKT (unbinding of disclinations) 1st order

Liquid SR pos & orient SR pos & orient

101



Active dumbbell system
Mechanism for segregation
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Active dumbbell system
Structure factor Pe = 10 & Pe = 40

φ = 0.734 φ = 0.84 φ = 0.88

Pe = 10
(liquid) (upper limit of co-existence)

φ = 0.26 φ = 0.28 φ = 0.34

Pe = 40
(liquid) (lower limit of co-existence

103



Harmonic solids
Peierls calculation

Consider a crystal made of atoms connected to their nearest-neighbours

(nn) by Hooke springs.

CallφRi
the position of the ith atom that, at zero temperature, is located

at a vertexRi of a regular lattice, the equilibrium positions of the springs.

At finite temperature the atomic positions fluctuate, φRi
= Ri + uRi

,

with uRi
the local displacement fromRi.

1d sketch u

Does the long-range positional order survive at finite T in 2d?
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Harmonic solids
Peierls calculation

Consider a crystal made of atoms connected to their nearest-neighbours

(nn) by Hooke springs.

CallφRi
the position of the ith atom that, at zero temperature, is located

at a vertexRi of a regular lattice, the equilibrium positions of the springs.

At finite temperature the atomic positions fluctuate, φRi
= Ri + uRi

,

with uRi
the local displacement fromRi.

1d sketch u

No! ∆2(r) = 〈[u(r)− u(0)]2〉 ' kBT
K

ln r in d = 2
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BKT-Halperin-Nelson-Young
The 2d particle systems

At very high temperature (low density) one expects disorder.

At very low temperature (high density) the harmonic approximation is

exact and there is quasi long-range order.

There must be a transition in between.

Assumption : the transition is continuous and it is determined by the

unbinding of dislocations in the solid (topological defects).

Proved with RG that assumes a continuous phase transition.

The correlation length diverges exponentially ξeq ' ea/|T−Tc|
−ν

at Tc

and it remains infinite in the phase with quasi long-range order.
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Active dumbbell system
Active mechanism for segregation

Activity favours segregation
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