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Aim

Better understanding of melting in two dimensions
Why 2d ?
Experimental realisations but in reality,
because it is interesting from a

fundamental viewpoint

a talk about a classical problem and a

timely active extension
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Phases of matter

Solid, liquid and gas equilibrium phases
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Typical & simple (P, 7") phase diagram



Phases of matter

Solid, liquid and gas equilibrium phases

T/ (e/k)
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Typical & simple (¢, 7") phase diagram

Lennard-Jones model system for Argon (more later)

Kataoka & Yamada, J. Comp. Chem. Jpn. 11, 81 (2012)



Equilibrium phases

Macroscopic properties

A gas is an an air-like fluid substance which expands freely to fill any
space available, irrespective of its quantity.

A liquid is a substance that flows freely but is of constant volume, ha-
ving a consistency like that of water or oil. It takes the shape of its
container

A solid is a material with non-vanishing shear modulus.

A crystal is a system with long-range positional order.
It has a periodic structure and its ‘particles’ are located close to the
nodes of a lattice.



Phases and transitions

Names

The states of matter have uniform physical properties in each phase. During a
phase transition certain properties change, often discontinuously, as a result of

the change of an external condition, such as temperature, pressure, or others.



Positional order

Local density properties

The (fluctuating) local particle number density
N
p(ro) =2 iy 0(ro — 1)
with normalisation [ d%ry p(ro) = N.Ina homogeneous system, the coarse-grained

(averaged over a volume v) local density is constant [[p(7¢)|| = N/V

Fluctuations

The density-density correlation function C'(7 + 7o, 7o) = (p(r + 70)p(70))

The average (. . .) is over configurations in a steady state
For homogeneous (independence of 1) and isotropic (" — || = ) cases, is

simply C'(7 + rg,70) = C(r)

The double sumin C'(r + 7, 70) = ()_;; 0(r + 70— 7;)0(ro — 7;)) has
contributions from 7 = j and ¢ # j : Carr + Cais



Positional order

Local density properties

The density-density correlation function

C(r +mro,m0) = (p(r +70)p(ro)) = > _;: (6(r + 10 — T:)0(T0 — 73))

IS linked to the structure factor
N N

S(a) = N (pla)p(~a) = %<Z S eriatrior)

i=1 j=1

with p(q) the Fourier transform of p(r

/dd’r‘lfd ’I"Q ’I"1,’I"2) —iq- (rl TQ)

Exercise : prove it



Positional order

Local density properties

In isotropic cases, i.e. liquid phases, the pair correlation function
% g(r) = average number of particles at distance

from a tagged particle at r(

IS linked to the structure factor

by
S(q) =14+ % fdd’l" g(r>€—iq.r
Peaks in g(r) are related to peaks in S(q). The first peak in S(q) is at ¢qp =

27/ Ar where Ar is the distance between peaks in g(7) (that is close to the

inter particle distance as well).



Positional order

Gas vs. Liquid : pair correlations

“Introduction to Modern Statistical Mechanics”, Chandler (OUP)



Positional order

Crystals, Liquids, Amorphous : structure factors
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Freezing

From liquid to solid: 3d nucleation & growth

/B

& N
/L Eaet (Forward)

Nucleation barrier A F’ Example of crystalline nucleus

Left image borrowed from Gonzalez, Crystals 6, 46 (2016)

right one from L. Filion (Utrecht Univ)



Melting

From solid to liquid: 3d nucleation & growth
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Nucleation barrier A Example of liquid nucleus

Left image from Gasser, J. Phys.: Cond. Matt. 21, 203101 (2009)

right one from Wang, Wang, Peng, Han, Nat. Comm. (2015)



First order route

Nucleation & growth

R radius of nucleus
Nucleation barrier AF'(R)

» ﬁ\ﬂ \R = Fhubble(R) — Fho bubble(R)

~—0f R+ sRI!

with maximum at

_ dAI (R) ~ _§f Ri-1 RA—2  _
fiomr| and AF(R,) ~ G d>2

Crossing point A F'(R*) = 0 with the same parameter dependence

0=AF(R")~ —6fR**+sR*! = |R*~ —




Freezing/Melting

but, this is not the route in 2d

~
]

0 Position & orientation order lost

t *.e"

Crystal

15t order transition

2D —p

Dislocation Unbinding

Orientation order preserved also lost

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)



Crystals vs. Solids

3d vs. 2d

A solid is a material with non-vanishing shear modulus.
A crystal Is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.
The position fluctuations are bounded A* = ((r; — ri™')) < oo
2d solids exist but have a weaker ordering than 3d ones.
They are oriented crystals with no positional order.

Critical phase with algebraic relaxation of position correlations.

Phase transition a la Kosterlitz-Thouless (Nobel Prize).



Hard disks in 2d

Zero temperature crystal: triangular lattice w/6 nearest neigh.

d = 2 packing fraction @ = Sqccupied/ S at close packing @, ~ 0.91



Harmonic solids

Peierls 30s: no finite 7' translational long-range order in 2d

Consider a crystal made of atoms connected to their nearest-neighbours
by Hooke springs. At finite 7" the atomic positions, ¢, fluctuate, ¢, =

R; + u,;, with u; the local displacement from a regular lattice site at /2;

L

Open dashed: perfect lattice positions F2; Filled gray: actual positions ¢@;

Does the long-range positional order (crystal) survive at finite /' ?

not in d = 2 since the mean-square displacement grows with distance

A%(r) = {((u(r) — u(0))?) ~ kgT Inr




Harmonic solids

Peierls calculation

Consider a crystal made of atoms connected to their nearest - neigh-

bours by Hooke springs.
Perfect lattice positions I,
At finite temperature the actual particle positions are @ R = R, +up,.
The potential energy is
U=—> (up —ug,)’ = K gy Vu(r)]?
IR A
(i)
Look at the displacement field, (7, 7 ), in Fourier transform

d'q g
ulr) = [ G ila)e




Harmonic solids

Peierls calculation

A quadratic Hamiltonian that can be diagonalised going to Fourier space

In the continuum limit

d

is the one of a set of independent harmonic oscillators (phonons).

2

Assuming canonical equilibrium at inverse temperature /3, for each g

(@) x 32

The density of states of the phonons (how many of them there are with ¢ bet-

ween ¢ and ¢ + dq)is g(q) o< ¢? !



Harmonic solids

Peierls calculation

Let’s go back to real space and compute the mean-square displacement

A%(r) = ([u(r) — u(0)])

Using the equipartition result (|i(q)|?) o kT /(K q¢*),

kT 1 —cosq-r kT [V 11
AQ _ dd ~ / d d—1 ~
(r) = —— q 2 ® 14"
(
and kBT T d — 1
A2(r) = ((u(r) ~u(0)?) ~ "2 { [lnr]  d=2
cst d>3

Quasi long-range order in d = 2



Mermin-Wagner theorem

Consequences

Some continuous symmetry cannot be spontaneously broken in 2d.

(The Hamiltonian % [ d?r [Vu(r)]? is invariant under global rotations of )
Corollary: a crystal with long-range order cannot existat /" > O in d = 2.
Reason: in low d fluctuations are more effective and inhibit order.

Quasi long-range positional order with algebraically decaying correlations is

possible, C'(r) ~ r~".
Note the similarity with the 2d XY model of magnetism, s; = (cos ¢;, sin ¢;)

H ij !
(i5) (i5) (i7)



Colloidal suspensions

Structure factor: from fuzzy peaks to a disk as /' increases

1 N N .
S(a) = N7 (pl@)p(-a)) = > D feriatrimra)

i=1 j=1
High T Low T

q [units of 2x/a]

-1

q [units of 2m/a] H
Liquid (later) Solid

Figure from Keim, Maret and von Griinberg, PRE 75, 031402 (2007)



Harmonic solids

Peierls 30s: but finite /' orientational long-range order possible

Consider a crystal made of atoms connected to their nearest-neighbours
by Hooke springs. At finite 7" the atomic positions, ¢, fluctuate, ¢, =

R; + u,;, with u; the local displacement from a regular lattice site at /2;

L

Dashed: perfect lattice positions FR; Gray: actual positions @;

Does the long-range orientational order (solid) survive at finite /' ?

yes, even in d = 2 since the correlation

Corient () = (u(r) - u(0)) — cst




Harmonic solids

No long-range translational but long-range orientational order

Angles preserved while no periodic order of the disks’ centres.

How can one quantify orientational order in general ?



Neighbourhood

Voronoi tessellation to identify nearest-neighbours

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the disks.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

Focus on the central light-green face

All points within this region are closer to the dot within
it than to any other dot on the plane

The region has five neighbouring cells from which it is
separated by an edge

The grey zone has six neighbouring cells




Orientational order

Hexatic order parameter

. Nin _6i0;
The local (six) order parameter wﬁj = 1 1 010k (vector)

@
QO

(For beads placed on the vertices of a triangular lattice, each bead ;7 has six nearest-

O
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e OaS:

0@;9( =2k
A
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g

neighbours, k = 1, ..., N{, = 6, the angles verify Ay, = %ﬁ and g ; = 1)

associates arrows (directions) to disks
and measures orientational order



Correlations & defects
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2d colloidal suspensions

Hexatic correlation functions
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Figure from Keim, Maret & von Griinberg, PRE 75, 031402 (2007)



What drives the phase transitions ?
Why did we highlight the particles with 5 & 7 neighbours ?



Defects

Unbinding of dislocations: from the to the hexatic

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

: the external path closes and forms a perfect hexagon.

The effects of the defects are confined. This is the phase.




Defects

Unbinding of dislocations: from the to the hexatic

A free dislocation

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

On the right image : the external path fails to close, no perfect hexagon.

The effect of the defects spreads & kills translation order: hexatic phase.




Defects

Unbinding of dislocations: from the solid to the hexatic

A bound pair of dislocations A free dislocation

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

Destruction of the solid by unbinding of dislocations




Defects

Unbinding of disclinations: from the hexatic to the liquid

The orientation winds by =27 around the blue (seven) and red (five) defects.

Very similar to the vortices in the 2d XY magnetic model.

Halperin, Nelson & Young scenario: the unbinding of disclinations drives a

second BKT-like transition to the liquid.




Freezing/Melting

Mechanisms in 2d

¢ SOLID HEXATIC LIQUID
<

LR orient. QLR orient. SR orient.

QLR transl. SR transl. SR transl.

Arrows oriented (LR) less oriented (QLR) order lost
® five neighbours ® seven neighbours

Voronoi tesselation



Phases & transitions

Berezinskii, Kosterlitz, Thouless, Halperin, Nelson & Young 70s

BKT-HNY

QLR positional & LR orientational

transition BKT (unbinding of dislocations)

Hexatic phase | SR positional & QLR orientational

transition BKT (unbinding of disclinations)

Liquid SR positional & orientational

Two infinite order, & oc ¢®~ with & — 0,

Berenzinskii, Kosterlitz & Thouless

transitions



Berezinskii-Kosterlitz-Thouless

The 2d XY model

At very high temperature one expects disorder.

At very low temperature the harmonic approximation is exact and there

IS quasi long-range order.
There must be a transition in between.

Assumption: the transition is continuous and it is determined by the

unbinding of vortices (topological defects).
Proved with RG, assuming a continuous phase transition.

The correlation length diverges exponentially ., =~ e/ |T=Toxr|™" gt

I s and it remains infinite in the phase with quasi long-range order.



Berezinskii-Kosterlitz-Thouless

Lack of universality of the transition in XY models

The RG proof yields, actually, an upper limit for the stability of the quasi
long-range ordered phase.

A first order phase transition at a lower I’ can preempt the BKT one.

It does for sufficiently steep potentials:

Narrow well --
Rotor model —

27 A

- /2 0 /2 T
AB

“First order phase transition in an XY model with nn interactions”

Domany, Schick & Swendsen, Phys. Rev. Lett. 52, 1535 (1984)



Hard disks

Pressure loop and finite /N dependence: evidence for 1st order

Hexatic Liquid

9.2

9.195 1
9.19
9.185
o 4
S ]
T 18 - all  gas-liquad — all
= o1 | P liquid  mixwre  pas
' 2 |
9.175 1 ‘ g
9.17 4 10 1 |
= 5
] | Transition | T
9.165 - Liguid ! region i o a
v, v, V

9.16 -

Similar to Van der Waals model for 1st order phase transitions

P cannot increase with V' (stability): phase separation via Maxwell construction



Hard disks

Coexistence

hexatic liquid

>l SO0 j%
i.l._ ) "Q'Qﬁ

s

- g ﬁﬁn?}.-

Bernard & Krauth, PRL 107, 155704 (2011)



Phases & transitions

BKT-HNY vs. a new scenario by Bernard & Krauth 2011

BKT-HNY BK
QLR pos & LR orient QLR pos & LR orient
transition BKT (unbinding of dislocations) BKT
Hexatic phase SR pos & QLR orient SR pos & QLR orient
transition BKT (unbinding of disclinations) 1st order
Liquid SR pos & orient SR pos & orient

Basically, the phases are the same, but the hexatic-liquid transition is different,

allowing for coexistence of the two phases for hard enough particles

Event driven MC simulations. Sketches from Bernard’s thesis.



Rather hard disks

Lennard-Jones —> Mie potential

Lennard-Jones Potential
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NOTE: The deeper the well depth (£), the
stronger the interaction between the two
particles. When the bonding potential
energy is equal to zero, the distance of
separation, r, will be equal to o

Figure B
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Rather hard disks

Molecular dynamics of overdamped Brownian particles

mrz + 'yI"@' = —VV; Zj(;éi) UMie(Tz’j) + Sz )

r; position of the centre of the | \k
1th particle 1
p % V

rij = |r; — r;| inter-part distance

N

m << -y over-damped limit r/og

very short-ranged, purely repulsive, Mie potential (truncated Lennard-Jones)

& zero-mean Gaussian noise with (7 () 5;?(15’)) — QWkBTé%bé(t — ')
packing fraction ¢ = 103N/ (45)

parameters v = 10 and kg’ I" = 0.05 Digregorio et al. PRL (2018)



Rather hard disks

Phase diagram

qu 0.90 —
P
solid
PRCP v hexatic
075
co-existence Really ?
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Rather hard disks

Two local observables

Space-point dependent normalized density

| N
p(ro) = N Z 0(rg — ry)
k=1
averaged over a volume ¢ around the point r( or the position of a particle 7

Particle dependent hexatic order parameter — a vector —
Nin
1

ij — : 6619jk
NJ
nn f—1

projected on a preferred direction — the averaged one or a reference axis —and

averaged over a volume ¢ around a point r or the position of a particle 2



Rather hard disks
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What happens with the defects ?



Unbinding of defects

Solid-hexatic transition & the emergence of the liquid

0.03
O Dislocations
+5 0.02
| -
@ \ 4
'S)
o)
%5 0.01
go) .
Disclinations
0.7 i (l) 0.74 0.76

Dislocations ¥ unbind at the solid - hexatic transition as in BKT-HNY
Disclinations M unbind when the liquid appears in the co-existence region

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, arXiv:2106.03454



BKT-HNY theory

Solid-hexatic transition & the emergence of the liquid at Pe = 0

Exponential decrease of the number density of defects at the transition

coming from the disordered side

Solid

Hexatic

Liquid

with = (.37 for dislocations at the solid - hexatic transition

and v = (0.5 for disclinations at the hexatic - liquid transition



Dislocations

Atthe Pe =0 -hexatic transition
0.015 -y
_g o0-72/(0y, -0)07
©
2 0.01
O
©
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O
N
20.005
(<b]
o
0 Ra S
-0.04 -0.02 0 0.02 0.04
q)_q)h
Dislocations ¥ unbind close to the - hexatic transition

¢, from the measurement of correlation functions and other observables,

Dotted line exponential form with z = (.37 and p forced to vanish at ¢,



Dislocations

At the Pe =0 -hexatic transition
0.01 T R T
g | IV TSl 1
0.015 "Pe=0 : ’\ i
O e-0572/|¢;h A S :
© ! ko |
2 0.01 i Bl :
.5 II E I T T T -IN‘I T I
= i
S ni hing
- vanis
U) 1
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)
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0 ! - =7 v
-0.04 -0.02 0 0.02 0.04
“*h
Do dislocations V really unbind at the - hexatic transition ¢y, ?

Even experimentally ¢. > ¢p, & pg(¢ > ¢.) is much larger than for us

though v = (.37 is acceptable (effect of parameter b quite large)

Han, Ha, Alsayed, & Yodh, PRE 77, 041406 (2008) Short-range & repulsive microgel



Disclinations

At Pe = 0 close to the 1st order hexatic - liquid transition
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Disclinations M unbind close to where the liquid appears in co-existence at ¢;
Dotted line with v = 0.5 and p, forced to vanish at ¢;, the upper limit of the

co-existence region



Disclinations

At Pe = 0 close to the 1st order hexatic-liquid

0.01 T T T T LI
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Disclinations M unbind close to where the liquid appears in co-existence at ¢;

Dotted line with v = (.5 forced to vanish at ¢;

Han, Ha, Alsayed, & Yodh, PRE 77, 041406 (2008) Short-range & repulsive microgel
Do not identify a 1st order transition



Disclinations

At Pe = 0 close to the 1st order hexatic-liquid

0.005 Pe=0 —=— N |
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-0.04 -0.02 0 0.02 0.04

Disclinations M unbind close to where the liquid appears in co-existence at ¢;

Dotted line with = (.5 forced to vanish at ¢; (upper co-existence)

Anderson, Antonaglia, Millan, Engel & Glotzer, PRX 7, 021001 (2017) MC hard
N =16384 — pg ~ 0.01 at ¢; also more than us but we use /N = 260000



Disclinations

At the hexatic - liquid transition ¢, at all Pe

dislocations

disclinations

=

s

bs
D

- ,_(_‘),
{7

Very few disclinations, and always very close to other defects, so not free



Grain boundaries & clusters

Classification

The classification in Pertsinidis & Ling, PRL 87, 098303 (2001)



Coarse graining

Square boxes with ¢/ = 30
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Clusters

Close to the hexatic - liquid transition

free dislocations —— vacancies —® — clusters ——

0.2 -
(@)

0.1

Pd

 — S

0.7 072 074 0.76

As soon as the liquid appears in co-existence, defects in clusters dominate



Clusters

Within the co-existence region at Pe = 0

O 20 T R aos——— : B 'free disldcations ' :
- \}{ GO RO S S o o , @ dislocations pairs, |
’j\/ i s 0.6 | A free disclinations | 1
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\Y% G - s 5 | O total defects \ .
: m L y O defect clusters ,
iR e i 1
V@ R 0 1 . [ |

0.74 0.76 069 070 0.71 072 073

packing fraction (n)

Clusters A proliferate within the co-existence region
Vacancies e remain approximately constant within the co-existence region

Qi, Gantapara & Dijkstra, Soft Matter 10, 5419 (2014) Event drive MD hard disks



Clusters

Percolation: finite size scaling

The probability of there being a wrapping cluster (ds = 30 )

N=642 =  128° =+  9256° —+— 5{2° —v—
1

The curves cut at a
single point:

% 05 finite size scaling
indicates this is
the critical
parameter
0
0.70

At gbp close but below the ¢; where the liquid first appears.



Clusters

Hexatic - liquid transition

Hexatic order

heat map

The green cluster of defects percolates (vertically)

Invation of liquid phase (on the defect cluster) within the hexatic one



Rather hard disks

~ Algebraic distribution of defect cluster sizes

¢ =0.715

within the coexistence region

aspects of critical percolation of clusters of defects

Though, careful, recall geometric vs. Fortuin-Kasteleyn clusters in Ising model, Potts for

various q, etc. Still to be better understood.



Is this really related to the 1st order nature of the transition ?



Soft disks

defect ratio

Defect ratio & size distribution

Pe=0,m§6ﬁ'—c’:—6re (b) Pe = 0, soft core (b)
| 0.15 L

01 0‘.““4.._
0.05 -

M
vvvv

-, | 1.185

Tlr.""':i ;
....... AESEEEEEE B = _x2.079

1.18 1.19 1.2

Qb n

For soft disks the hexatic-liquid transition is continuous, no signature
of co-existence. Still, similar picture ; proliferation of clusters with aspects

of critical percolation at the hexatic-liquid transition.



Plan

1. Equilibrium phases: solidification/melting
Special in two-dimensions
Solid, hexatic & liquid phases
Phase transitions

Topological defects

2. Active matter
Self-propelled Brownian disks in 2d
Phase diagram
Solid, hexatic & liquid phases ; motility induced phase separation

Topological defects



Active matter

Definition

Active matter is composed of large numbers of active "agents"”, each of

which consumes energy in order to move or to exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of

thermal equilibrium.

Uniform energy injection within the samples (and not from the borders).

Coupling to the environment (bath) allows for the dissipation of the injec-
ted energy.



Active matter

Realisations & modelling

Wide range of scales: macroscopic to microscopic
Natural examples are birds, fish, cells, bacteria.
Also artificial realisations: Janus particles, granular, etc.
3d, 2d and 1d.
Modelling: very detailed to coarse-grained or schematic.
microscopic or ab initio with focus on active mechanism,
mesoscopic, just forces that do not derive from a potential,

Cellular automata like in the Vicsek model.



Active matter

Natural & artificial systems

Experiments & observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna, et al.

Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans



Active disks

Overdamped Brownian particles (the standard model)

Active force F',.; along n; = (cos 6;(t),sin 0;(t)) @
mi; + 5 = Foelti —7; > Uniie(rig) + &, =1,
j(#4)
r; position of the centre of ith part & ;; = |r; — r;| inter-part distance,
short-ranged repulsive Mie potential, over-damped limit 1 << ~y

& and 7) zero-mean Gaussian noises with
(EH) () = 29kpT o776 (t—1') and (1 (t) 1 (t)) = 2Dgdi;d(t —1').
The units of length, time and energy are given by o4, 7, = DQ_1 and ¢

Dy = 3kpT/(y02), » = 102N/ (4S),v =10 and kT = 0.05

Péclet number Pe = F,.04/(kpT) measures activity



Repulsive hard potential

Mie form
10 : . . :
(b) Uwca
8 | ULy
U —_—
6r Upal ——
",
> 47
2 |
\
ol I

1 1.2 1.4 1.6 1.8 2
r [o4]

de[(a/r)*™ — (o/r)"] + € with n = 32



Active Brownian disks

The typical motion of particles in interaction

Pe=0

Pe induces a persistent motion
_ -1
Tp = Dy



Weak activity



Active disks

iqui

ic, co-existence & li

, hexat
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jagram wi

Phase d

to5e]
e

&
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QRERES

SoTesete

ion

t

injec

Weak energy

small Pe

0.8

0.78

From pressure P(¢), correlations G & G, distributions of ¢; & 1)s; at kT = 0.05

, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

igregorio

D



Active disks

Correlation functions in solid, hexatic and liquid phases

(b)
0.740 —=—
o axl2749
103 VLI
1 f (d)
10" = T~
=~ 0=0.810 J:,o 1 0=0.850 —+—
© 0.820 —»— 510 0.860 —»—
© 0.830 —— O 0.870
102 0.840 —=— 0.880
0.850 —=— 0.890
_ -x/49.18 _ -x/16.96
VS U < I

103 102




Active hard disks

Distribution of the local density

q)cp
0.7
Pe=1 Pe =10
@ eivars | e (b)
40 ) 0.7200 - - 0790
[\ a -~ 0.794 £ 8
% 20 — 0.79% R
/7N 4\ —x— 0.798 ¢
20 /i Nt N\ - 0820
, s \ 10
0t NI A7, W
0.7 0.72 0.74 0.7 0.74 0.78 082 0.86
0; 0;

First order - coexistence Second order



Dislocations

At the -hexatic transition at weak Pe
v Pe=0 —v—
SRR 10 -
\ ‘ v..:' 20 —v—
0.02¢ 1 | \\ -. 20
\ 4 \¥J ’ -,:. 40 —v—
NN 50
= }\ N
0.01 W \\%
' \V\\v
M,
| N2 =
0 0.05 0 S 005

Four (¢, v, a, b dotted) vs. three (¢, v = 0.37, a, b dashed) parameter fits on data

in the hexatic & solid phases only. Criteria to support v = 0.37:
—x? ... but not clear which one is better
— closeness between ¢ and ¢y, Batrouni et al for 2dXY

— not crazy values for a, b but crazy values for v if let to be fitted



Dislocations

At the solid-hexatic transition at weak Pe

v =0.37

Pe v a b D Oh x~ /ndf

0 0.37 | 8 2 0.75 | 0.735 1.61

10 | 037 | 1.5 | 1.61 §0.853 | 0.840 2.76

20 | 037 1.2 | 1.59 §0.883 | 0.870 1.34

30 | 037 2 1.9 §0.897 | 0.880 2.08

40 [ 0.37 | 0.81 | 1.47 §0.898 | 0.885 0.791

50 |1 0.37 10.38 | 1.17 §0.895 | 0.890 0.493

U free

Pe v a b e dn x* /ndf

0 9 13 [0.002[f 1 0.735 0.920

10 06 f 04 | 0.7 | 0.857 | 0.840 2.89

20 103} 5 [ 310881[0870 1.39

30 0.8 1 0.2 | 0.3 |0.909 | 0.880 2.08

40 0.7 1 02 | 04 | 0.90 | 0.885 0.924

50 . 0.2 § 7 3 | 0.892 | 0.890 0.461




Dislocations

Pd

Effect of coarse-graining: the notion of freedom

002 |

0.01

a=»>u. 7
,b=0.003,v=2281 -
% Pe=10, dS=3'O +

B45,a=0.077,b=0.869 — -
,b=0.00001,v=4787 -
Pe=10, d;=5.0 —y—
44, a=0.016,b=0.630 — -
2,b=0.0001,v=2772

0 0.05

Pe =10

¢n = 0.84

d. = 0.853 (0)
¢ = 0.847 (2)
b = 0.845 (3)
¢ = 0.844 (5)



Disclinations

At the hexatic - liquid transition at weak Pe

1 Y Pe=0 —=—|
\{\. \ 10 —=—
0.004g= - ® 20 —=—
R WA T 30 —=—
N BN 50
0.002 NN Ry
LR

:0.05 o T 7005

Messier than for dislocations
¢; upper limit of co-existence at Pe = 0 & critical hexatic - liquid at Pe # (
Dotted and broken lines show three (a, b, ¢..) and four (also ) parameter fits.

Vertical lines are at ¢, (end of the hexatic phase)



Disclinations

At the hexatic - liquid transition at weak Pe

v = 0.50
Pe v a b | De | O ! x°/ndf
0 0.5 10.072]0.62 §0.734 | 0.725 0.430
10 0.5 | 0.06 | 0.81 §0.823 | 0.795 1.09
20 0.5 | 0.05] 0.8 §0.857 | 0.830 0.710
30 0.5 10.025]0.64 f 0.866 | 0.845 0.895
40 0.5 10.053]0.71 §0.880 | 0.850 0.809
50 0.5 10.016]0.41 §0.874 | 0.855 0.233
U free
Pe v [ a b I Oc o) X~ /ndf
0 04 | 0.4 2 | 0.7 10.725 3.24
10 2 10.01210.03 § 0.85 §0.795 0.859
20 1 0.02 | 0.2 0.9 10.830 0.858
30 0.3 10.09 | 2 0.86 | 0.845 0.965
40 2 10.013]0.01 } 0.96 }0.850 0.661
50 0.9 10.008| 0.1 } 0.88 }0.855 0.288

®n

0.735
0.840
0.870
0.880
0.885
0.890



Disclinations

Effect of coarse-graining: basically, no free disclinations

0.004 Pe =10
¢, = 0.795
& ds @
2 0.822
3 0.821
No more

= | B i B e
-0.05 0 0.05



Clusters

Percolation: finite size scaling

The probability of there being a wrapping cluster (ds = 30 )

05 Wrap, L=10 ——— T
20 ——
04 | 40

80

160
Spanxy,L:m ——

20 —e—
02 40
80

160
0.49 0.495 05 0.505 0.51

0.78 0.8 0.82 0.84

At ¢, close but below the ¢; where the liquid first appears.

Critical site percolation data from M. Picco



Clusters

Percolation: cluster size distribution

P(n) ~n~"with 7 = 1+ d/ds = 187/91 ~ 2.05

Pe =0 (a)

$=0.700 —+—
0710 —*
0712 —=—

510
0.720
10% 0.725
0.730 B
g8 0735 A
4 10 102 100 10t

Red data points at ¢, within the co-existence region at Pe = 0, and slightly below
¢; at Pe # 0.



Clusters

Percolation: (in)dependence of coarse-graining Pe = 10

0.75 0.75) 0.79  0.81

¢, displaces towards larger values with increasing d but d¢, 7 do not change.



Clusters

Percolation: fractality

Binned scatter plot of the mass of each cluster 1 against its radius of gyration Rgc

104 X
]
10°
®)
(-
10°
10

L 10°

At gbp close but below ¢; where the liquid first appears.

Dashed inclined line 7. ~ R, %t with d; ~ 1.90



Clusters

Percolation: the critical curve




Strong activity



Active disks

Phase diagram with , hexatic, liquid, co-existence and MIPS

(l) ______________________
o - Motility induced

0.7 * Hexatic phase separation

gas & dense
o 0.5 Co-existence

hexatic-liquid
Cates & Tailleur

03 Ann. Rev. CM 6, 219 (2015)
Liquid/gas oo - ol Farage, Krinninger & Brader
0.1 coox from £OS —e— PRE 91, 042310 (2015)
density peaks O
o 10 100 200
Equilibrium Pe » Activity

Pressure P (¢, Pe)(EOS), correlations GG (1), Gg(r), and distributions of ¢;,

e

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)



Active disks

otility induced phase separation

- /2

— blue 0 —red T

The colours indicate the direction along which the particles are pushed

by the active force F',



Active disks

Motility induced phase separation

Zoom over left border — 0



Active disks

Motility induced phase separation

OT © GO, o) =
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Zoom over right border <— 7



Active disks

Motility induced phase separation

- o
2 © o o © =
= - w 3 N 3
a" » B i
= >0 '
c o
3 C go
—_ el Q o /

=3 =

<3 Qo

SN —

Q 50

B £ 32

g o Il. l. .

g

/ |
/Spinodal Decomposition

Nucleation Mucleation

0]}

Temperature

Ethylene Glycol [%)

Aoy ¢——————— 9d

00c 00}

Similar to phase separation with percentage of system covered by dense and

gas phases determined by a level rule
Cates & Tailleur (2012)



Active disks

Motility Induced Phase Separation

Dense/dilute separation®
For low packing fraction ¢
a single round droplet.

A mosaic of different

hexatic orders? with

gas bubbles?3*

Defects ?

Lcates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
2Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
3Tjhung, Nardini & Cates, PRX 8, 031080 (2018)

4Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)



Active disks

Modulus of the local hexatic order parameter

Pe=1 Pe = 200

Pe=200,0=0.500 —o—

10
10,2

N A~ OO
N A~ OO

552 04 o6 08
|\|16||

Co-existence in passive limit and in MIPS




Active disks

Local density distributions across MIPS

Pe=200,0=0.250 ,_
0.500 —— g
0.750 —— § |
0.800 —=
0820 =
0.860 =

01 03 05 0.7

The position of peaks does not change while changing the global packing frac-
tion ¢ but the relative height of them does. Transfer of mass from gas to dense

component as ¢ increases



MIPS

free disclinations —=—

0.04

©
Q.

0.02

Point-like defects

Pe=100

® & 0 0 0 0 0 0 0 ¢ 9
1
|

0.2___ __ 04 0.__6.__

(a)
1

1
1
{
1
'
- '
'
{
1
'
1
i

o

)

0.8

A zoom over high ¢

free dislocations —»— vacancies —o—

N

0.8 0.825 0.

Y Ty m

-

85 0.
0

875 0.9

Densities p are quite independent of ¢ in the bulk of the MIPS phase



MIPS

Configuration

Hexatic order map Defects

Zoom over the rectangular selection



Clusters

Probability distribution of sizes

Pe = 100 (d)
¢=0.300

—— P(n) ~n e ™

o
1 10 100 200
Pe

10° 103 0%

Independence of ¢ at fixed Pe within MIPS



MIPS

No criticality due to gas bubbles in cavitation

Percolation transition

102 Lo 108

No ¢ dependence in MIPS

L estimated linear size of dense phase



MIPS

Bubbles in cavitation

100 L] LI ll L] Ll L] Ll Ll L | Il :a.

& = 0.75, Pe = 50 —+ 3

100 .

107" 200 =

"o ]

ol 3 <

=

10°F 3
10‘4F )

Algebraic distribution of bubble sizes with an exponential cut-off



Results

Summary

- hexatic a la BKT-HNY even quantitatively (/) and indepen-
dently of Pe. Universality.

Hexatic - liquid very few disclinations and not even free. Breakdown
of the BKT-HNY picture for all Pe.

Close to, but in the liquid, percolation of clusters of defects, with pro-
perties of uncorrelated critical percolation (d, 7).

In MIPS, network of defects on top of the interfaces between hexa-
tically ordered regions, interrupted by the gas bubbles in cavitation.



Growth



MIPS: regimes

Multinucleation, evaporation/coagulation, scaling regime, saturation

|||||I'I'I'| ||l|||'|'|'| |||||l'l'|'| |||||I11|_ 104

) | ||l||'|'| T |||||l'l'| T Illllg)?
al B £ amm A, 3
2 L :
10°F 5050 ¢ ]
: 3 W
- Pe=50 = 10
[ 100
200 = O1n2 !
Dﬁ101 N | 210 c 5 CC)
: 0.264 ] = [EE
C 10- - © 535
- p286 1 10! § §§
t0.338 = | c o O
100 ||||||,|,|] 1 |||||,u] |||um] |||||m]_ 100 » 1 |||uu| 1 lllll|.|l 1 |||n|ﬂ L
102 10" 10° 10" 102 102 10" 109 10" 102

On the scaling regime: Redner, Hagan & Baskaran, PRL 110, 055701 (2013)

Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014), etc.



MIPS: regimes

Growth of the dense component, X, and hexatic order, Ry

T 102 prrrrm—rrrrm—r e
R [ ]

Illlll LI I!IIIII L IIIIIII LI I!IIIII LI 1
g i :  average size of clusters —+— 1
3 . total mass of gas

t1/3 i

102, o5k © n of hexatic clusters
5122 a L D i ]
103 10242 = | 10 : E :
) PRRTTT BETSTRTTITY BT TTTT TR TTTTT .......IE 3 N . .
101 100 10" 102 10° 10" 100 10! 102 10° 107 ¢ L : E
t t F-m : ]
1600 10° E
A 10" E

0.001 0.01 0.1 1 10 100

N=1282 5122

Rg ~ t1/3 in the scaling regime (a la Lifshitz-Slyozov-Wagner), and R — ¢ L
Ry ~ t913in the scaling regime and Ry — Rfﬂ} < L (similar to pattern
formation, e.g. Vega et al. PRE 71, 061803 (2005))



MIPS: macro vs micro

Stationary state, zoom over the box, or video disk, slab, random

Local hexatic order map Local density map

Local hexatic order saturates to a size independent value
Defects on the boundaries between different hexatic ordered patches

Note the bubbles within the dense droplet


https://www.dropbox.com/sh/znn5bj6fddov02s/AAAgKYc9P_vwuo8HBgujxOCSa?dl=0%2Fmovie2.mov&preview=Movie2.mov

MIPS

In the stationary state, size distributions

hexatic patch radii bubble radii

100 T | R 100 ' T T ] E
: $=0.75, Pe=50 — : : $=0.75, Pe=50 — 1
100 ] 100 ]

\ 200 = ] ok 200 =

-6 I S T | 1 I 1 [ T T
120 10 10 100

—Rp /Ry (Pe) exponential RA° e~ 1t /R (Pe) algebraic w/exp cut-off



Summary & conclusions

There is still a lot to be understood in the very "classic" problem of melting
of passive systems in two dimensions.

New picture with a first order phase transition towards the liquid.

The standard lore on topological effects is only partially verified.

Effects of activity?

We established the phase diagram of active Brownian particles
we studied the statistics of topological defects

and the coarsening dynamics

This is a problem in which numerical simulations have been of great help.



Active Brownian systems

Phase diagrams & plenty of interesting facts

RO
G
S

hexatic - solid

liquid - hexatic —¥—
coex. from EOS —e—

density peaks O

liquid - hexatic —%—
density peaks O

1 10 100 200 0

100 200
Pe

Disks Dumbbells



ummary

Finite:

Teff(dense)

¢

- hexatic
domain
hexatic - solid
liquid - hexatic —%—
coex. from EOS —e— ! ; ;
density peaks O S AR
100 200 - Teff(gas).
1.2 ‘ ;
! Dilute phase ©O '
1 . 1
1t . All particles . i
—_ | Dense phase &
O 1 1
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Fluctuation-dissipation

Linear relation between x and A? in equilibrium
P(C, tw) = Feq(C)

The dynamics are stationary

A% 5 (t tw) = ([A(t) — B(tw)]?) =[Ca4(0) + CeB(0) — 2CARB(t — tw)]

— A% 5 (t — tw)

The fluctuation-dissipation theorem between spontaneous (A%B) and

induced (1 4 ) fluctuations
1 OA%5(t —ty)

Rt —tw) = 5725, ot —t,)

holds and implies

t
/ / 1
an(t = t) = [ At Ran(t.t) = 5 [N p(t = t) — A3(0)
tw B




Fluctuation-dissipation

Linear relation between x and A? out of equilibrium ?
P(C,tw) 7 Feq(C)

The dynamics are stationary

A% 5 (t tw) = ([A(t) — B(tw)]?) =[Ca4(0) + CeB(0) — 2CARB(t — tw)]

— A2 5 (t — tw)

The fluctuation-dissipation theorem between spontaneous (AiB) and

induced (R 4 ) fluctuations
1 OA%5(t —ty)

Rap(t —ty,
AB( ) # ki ot
does not hold but one can propose

ot —t,)

A%t —tw) — A% p(0)]
2kpTeg(t — to)

t
Xap(t — ty) E/dt’ Rap(t,t") =
tw




Teff =T

Co-existence in equilibrium

Pe=0 ¢ =0.710

Integrated linear response & mean-square displacement: their ratio (FDT) 7 =  — 1,

‘ 1.2
¢CP A2 - dilute phase = —
A% - dense phase = - 1 e A sty A i s e qremrrin|
0.7 | ¥ - dilute phase <
X - dense phase g 08
|_
=05 é 0.6
5 I
0.3 - - — 0.4
2% 7 i 02 Dilute phase
0.1 P E b
L ‘ ‘ 0 ‘ ‘ epse phase‘
1 10 100 1000 0 100 200 300 400 500
T T

Method: linear response computed with Malliavin weights (no perturbation applied) as

proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma, in preparation



Teff £ T

Co-existence in MIPS
Pe=50 ¢ =0.5

Integrated linear response & mean-square displacement: their ratio (FDR) 7 = — 7,

: : 0000 : 12 - ‘
Vop || |mmmmmm A2 - dilute phase - - Dilute phase
1000 A% -all particles .-z 3 1+ All particles
0.7 100 | A% - dense phase — - P~ . ] CIID Dense phase
z - & 0.8 |
10 } =
0.5 ) I
< Ll ; 0.6
< 0.4
0.3 01 % - dilute phase lj(]:,) '
001 F - % - all particles 1 02 |
0.1 2 % - dense phase y
— 0.001 ‘ . ‘ 0 ‘ ‘ ‘ ‘
0 100 200 1 10 100 1000 0 200 400 600 800 1000
T T

Method: linear response computed with Malliavin weights (no perturbation applied) as

proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma, in preparation



Hard disks in two dimensions

Pressure loop and finite NV dependence

Hexatic Liquid

9.2 1

9.195

9.19 -

9.185

BP(20)’

9.18 1

9.175

9.17

9.165

9.16

A system with PBCs has a ~ flat interface with surface energy scaling as
S~ L1 = /N and f ~ N~1/2. Verified in the inset for ¢» ~ 0.708



Passive system

Structure factor - very low and very high density

Liquid

Solid

Bragg peaks

Primitive vectors

_ A4 V3 1
10 X X 1600 ql o CL\/_ ( 2 7 2)
X X X
5 % % 1200 q2 — CL\/_ (O 1)
° X P Unit of length

. o\ 1/2
X X < M 400 a = o
10 o ’ (2\/§¢) d

-10 -5 0 5 10



Observables

Structure factor in 2d : test of positional order

r; and r; are the positions of the disks 2 and j and q is a wave-vector :
S(q) = — 3 parior)
N 4

Visualisation: two dimensional representation in the (¢, ¢, ) plane.

O @) O @)
@) @) @)
@) @) O O
O 0 ®) (%) O ©
a| O
o 2 e oo
@) O @) @) e o o O
O nga1o
@‘smaap iol oi o bﬁ‘jﬁ\« B
O O -;i ® @H;Q ®

(a) (b)

Triangular lattice in real space Hexagonal lattice in reciprocal space



Passive system

Structure factor - progressive increase in density

¢ = 0.66 ¢ = 0.72 ¢ = 0.76

(liquid) (liquid) (solid)

40 10 X X 1600
. X X X
30
W >< 1200
0
20 X X 800
X X
5
10 X X X 400
10 X X
0 0
10 5 0 5 10

¢ = 0.734 ¢ = 0.74 ¢ = 0.75

(co-existence) (co-existence) (co-existence)
400 1000
10 X X 300 10 10 X X
800
o >< X i, - < Mo x> X
X X 200 X X X X 600
0w X 0 < 200 0 X X
400
X X K # x .
5 100 -5 5
X = X X . 10 X x 200
10 % AV -10 10 % ?g
0 0 0



Active system

Structure factor Pe =10 & Pe = 40

¢ = 0.734

140
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100

80

60

40

20

¢ = 0.84

¢ = 0.28

(upper limit of co-existence)

10 /\
7
400
5
300 <
X
0
200 >
-5
100
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0
-5 0 5 10 -10

(lower limit of co-existence)
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Kinetic energy

0.35

03

Kinetic energy

0.05

Two populations in co-existence region

0.25 |

0.2t

0.15 f

0.1t

single dumbbell
25-75 - liquid
25-75 - dense
50-50 - liquid
50-50 - dense

X
*
|

50 100

Pe

150

200

— Liquid/disordered

— Dense/hexatic

The averaged hexatic modulus is computed for each particle on a radius of 10 o4

around the particle itself, and a particle is considered to be inside a cluster only if this

value is greater than 0.75. Those particles contribute to the “dense” branch.

Petrelli, Digregorio, LFC, Gonnella, Suma, Eur. Phys. J. E 41, 128 (2018)



Active dumbbell

Control parameters

Number of dumbbells /N and box volume S in two dimensions:

. . 7TO'(21N
packing fraction | ¢ =
Energy scales: 25
Péclet number | Pe =
thermal energy kg’ kT
Active force Lv + oq Fact /7 Mg Fact
_ 5 Reynolds number | Re = 5
viscous force v/ +—+ o5 /mg Tq7y
Pe € [0, 200] Re < 1072 N = 5122 ~ 2.6 x 10°

Stiff molecule limit: vibrations frozen.

Interest in the ¢, F,.+ and kI’ dependencies, kp T = 0.05 fixed.



Active disks

Equation of state (eos) : pressure

all

gas-liquid

all

N

P hquid  mixture gas

Liquid i Tla:mnun
1 I region | Cas
V1 V
_ _ Fact .
AP = P — Pgas = 5% D0 - 1y)




Positional order

Experiments & simulations of liquids

s(Q)

glr)

Inter-peak distance between the peaks in () is Ar ~ o ~ 3A

Position of the first peak in S(q) is at qo ~ 27 /Ar ~ 2 A~}

“Structure Factor and Radial Distribution Function for Liquid Argon at 85K”,

Yarnell, Katz, Wenzel & Konig, Phys. Rev. Lett. 7, 2130 (1973)



Defect clusters

T

Percolation features P (1) ~ n~

anos .

, ¢=0.780 ——
10 _ g
T —F—
m <4 _B_
; 10
5
o 10° 0.850 —=—
0.860 —o—
o 0.870 o
0
L 10 10 103 10*
Vo) n
=
o

50 100 150 200 1 10 100 200
Pe Pe

d s from the radius of gyration of the clusters



Active disks

Solid, hexatic, liquid & MIPS

1st order
w/co-existence
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free dislocations at solid-hex
free disclinations in the liquid

0.03

o©
o
NA

defects ratio
o
it

Pe=20

020

0.15

0.10 .

0.84

0.05

0.88

dislocation

N

(c)

in MIPS
[Pe=100 | 006 = w,(,‘gé)
0.04 ( Y

0.80

0.90

5-fold / 7-fold
disclinations

05

0.88 0.90

Ocp ||

0.7

076
0.3 | 074

0.1

100 200

L 0 1 2 3 4 5
0 1 10
Pe

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, arXiv:1911.06366



Clusters

Percolation: hexatic color maps & clusters

iPe=20, $=0.820 (¢

Pe=20, 0=0.810 (4-op) CgaRy S
SRS

The liquid permeates the sample through the interfaces between local hexati-

cally ordered patches

But, are these the most relevant critical clusters ? Recall Fortuin-Kasteleyn



MIPS

Stationary state

Dense/dilute separation®
For low packing fraction ¢
a single round droplet.

A mosaic of different

hexatic orders? with

gas bubbles?3*

Defects ?

Lcates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
2Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
3Tjhung, Nardini & Cates, PRX 8, 031080 (2018)

4Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)



