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An active bath

Dynamics of an open system

The system: the Brownian particle

A double bath: bacteria suspension

Interaction

‘Canonical setting’

A few Brownian particles or tracers • imbedded in an active bath

“Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath”

Wu & Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

7



An active bath
Enhanced motility

Mean-square displacement of

the Brownian particle

crossover form super-diffusion

to diffusion

enhanced diffusion constant:

effective temperature

tI = m/γ ' 10−5 s and the first ballistic regime is not visible.

Deff ∝ Teff increases with φ and corresponds to Teff ' 100T

“Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath”

Wu & Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

8



In and out of equilibrium
Take a mechanical point of view and call {ζi}(t) the variables

e.g. particles’ coordinates {ri(t)} and velocities {vi(t)}

Choose an initial condition {ζi}(0) and let the system evolve.

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ

• For tw > teq : {ζi}(t) reach the equilibrium pdf and thermodynamics and

statistical mechanics apply. Temperature is a well-defined concept.

• For tw < teq : the system remains out of equilibrium and thermodynamics

and (Boltzmann) statistical mechanics do not apply.

Is there a quantity to be associated to a temperature?
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In and out of equilibrium
Non-potential forces

Let {ζi}(t) be the positions of the (possibly interacting) particles.

Apply external forces that do not derive from a potential, f i 6= −∇iV ({r}) :

energy injection into the system.

Let the system evolve under f i from {ζi}(0)

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ

• Typically, for tw > tst : {ζi}(t) reach a non-equilibrium steady state

in which thermodynamics and (Boltzmann) statistical mechanics do

not obviously apply.

Is there a quantity to be associated to a temperature?
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Some basic properties
requested

Control of heat-flows : ∆Q follows ∆T .

Partial equilibration – transitivity :

TA = TB , TB = TC ⇒ TA = TC .

Measurable :

thermometers for systems in

good thermal contact (∆Q)

Whatever we identify with a temperature should have these properties
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Kinetic temperature
First temptation

Associate a kinetic temperature Tkin to the kinetic energy via

kBTkin(t0) = m[〈v2
a(t0)〉]

equipartition. This is an instantaneous measurement. But, we know that

• the behaviour of the system depends on the time-delay at which we

measure (recall e.g. the various regimes of the c.o.m. displacement

∆cm(t+ t0, t0),

• in glasses the kinetic temperature is not a good measurement of

out of equilibrium behaviour,

we need to consider time-delayed measurements
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Two-time observables
Correlations

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ
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r(0)

r(tw)

tr( )

tw not necessarily longer than teq. Note change in names given to times (notation)

The two-time correlation between A[ζ(t)] and B[ζ(tw)] is

CAB(t, tw) ≡ 〈A[ζ(t)]B[ζ(tw)] 〉

average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise in Langevin dynamics, etc.)
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Two-time observables
Linear response

− δ δ
+

h

t t

2 2
w w

0 t
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�

r(0)

r(tw)

tr( )

r( )t
h

The perturbation couples linearly to the observable B[ζ(tw)]

E → E − hB[ζ(tw)]

The linear instantaneous response of another observable A[ζ(t)] is

RAB(t, tw) ≡ δ〈A[ζ(t)]〉h
δh(tw)

∣∣∣∣
h=0

The linear integrated response is χAB(t, tw) ≡
∫ t

tw

dt′RAB(t, t′)
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Rue de Fossés St. Jacques et rue St. Jacques

Paris 5ème Arrondissement. LFC
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Fluctuation-dissipation
In thermal equilibrium

P (ζ, tw) = Peq(ζ)

• The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (CAB) and

induced (RAB) fluctuations

RAB(t− tw) = − 1

kBT

∂CAB(t− tw)

∂t
θ(t− tw)

holds and implies

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t′) =
1

kBT
[CAB(0)− CAB(t− tw)]
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Fluctuation-dissipation
Linear relation between χ and C

P (ζ, tw) = Peq(ζ)

• The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (CAB) and

induced (RAB) fluctuations

RAB(t− tw) = − 1

kBT

∂CAB(t− tw)

∂t
θ(t− tw)

holds and implies

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t′) =
1

kBT
[CAB(0)− CAB(t− tw)]
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Fluctuation-dissipation
Linear relation between χ and ∆

P (ζ, tw) = Peq(ζ)

• The dynamics are stationary

∆AB(t, tw)=〈[A(t)−B(tw)]2〉=2[CAA(0) + CBB(0)− CAB(t− tw)]

→ ∆AB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (∆AB) and

induced (RAB) fluctuations

RAB(t− tw) =
1

2kBT

∂∆AB(t− tw)

∂t
θ(t− tw)

holds and implies

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t′) =
1

2kBT
[∆AB(t− tw)−∆AB(0)]
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Brownian motion

First example of dynamics of

an open system

The system : the Brownian

particle

The bath: the liquid

Interaction : collisional or po-

tential

‘Canonical setting’

A few Brownian particles or tracers • imbedded in, say, a molecular liquid.

Late XIX, early XX (Brown, Einstein, Langevin)
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Fluctuation-dissipation
Brownian motion

mv̇ + γv = h+ η

Correlation 〈x(t)x(tw)〉h=0 7→ 2kBTγ min(t, tw) at t, tw � tI Stationary

Displacement 〈[x(t)− x(tw)]2〉h=0 7→ 2kBTγ (t− tw) at t, tw � tI

Linear response
δ〈x(t)〉h
δh(tw)

∣∣∣∣
h=0

= γ−1θ(t− tw)

2kBTRxx(t, tw) = ∂twCxx(t, tw) θ(t− tw) FDT does not hold

2kBTRxx(t, tw) = ∂t∆xx(t, tw) θ(t− tw) looks like FDT
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Fluctuation-dissipation
Active dumbbell in the last diffusive regime

The c.o.m. diffuses, ∆2
cm(t+ t0, t0) ' 2dDA t, for t� ta,

with the diffusion constant DA = kBT/(2γ) (1 + Pe2)

The c.o.m. integrated linear response function χcm(t+ t0, t0) = dµ t

with the mobility µ = 1/(2γ)

We use the deviation from equilibrium fluctuation-dissipation theorem,

χcm(t+ t0, t0) = 2kBTeff(t+ t0, t0)∆2
cm(t+ t0, t0)

to define, a possibly time(s)-dependent, effective temperature, Teff .

For the active dumbbell, at t > ta, we find a constant

kBTeff =
µ

DA

= kBT

(
1 +

Pe2

8

)
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Fluctuation-dissipation
Active dumbbell in the last diffusive regime

The c.o.m. diffuses, ∆2
cm(t+ t0, t0) ' 2dDA t, for t� ta,

with the diffusion constant DA = kBT/(2γ) (1 + Pe2)

The c.o.m. integrated linear response function χcm(t+ t0, t0) = dµ t

with the mobility µ = 1/(2γ) implying

kBTeff =
µ

DA

= kBT

(
1 +

Pe2

8

)

Exercise: Prove these results.
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Fluctuation-dissipation
Active dumbbell

The definition of the effective temperature using the deviation from the

equilibrium fluctuation-dissipation theorem

χcm(t+ t0, t0) = 2kBTeff(t+ t0, t0)∆2
cm(t+ t0, t0)

is not equivalent to the kinetic temperature

kBTkin(t0) = 2md〈v2
cma(t0)〉

• The kinetic temperature concerns the velocity variable while

the effective temperature concerns the position variable.

• The kinetic temperature is an instantaneous measurement while

the effective temperature is a time-delayed measurement.
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Fluctuation-dissipation
Active dumbbell

The definition of the effective temperature using the deviation from the

equilibrium fluctuation-dissipation theorem yields

kBTeff = kBT (1 + Pe2/8)

and is not equivalent to the kinetic temperature

kBTkin = kBT [1 +mdkBT/(2γσd)2 Pe2]

• The kinetic temperature concerns the velocity variable while

the effective temperature concerns the position variable.

• The kinetic temperature is an instantaneous measurement while

the effective temperature is a time-delayed measurement.
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Fluctuation-dissipation
Active finite (low) density dumbbell system

φ = 0.1
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Fluctuation-dissipation
χcm(t+ t0, t0) = 2kBTeff ∆2

cm(t+ t0, t0)

Teff ' 200T
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T = 0.05 Pe' 4 Pe' 40

Very weak φ-dependence in this scale but...
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Fluctuation-dissipation
χcm(t+ t0, t0) = 2kBTeff ∆2

cm(t+ t0, t0)

Non monotonic dependence on φ
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“Dynamics of a homogeneous active dumbbell system”,

Suma, Gonnella, Laghezza, Lamura, Mossa & LFC, Phys. Rev. E 90, 052130 (2014)
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Fluctuation-dissipation
χcm(t+ t0, t0) = 2kBTeff ∆2

cm(t+ t0, t0)

Like in Wu & Libchaber Differently
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“Dynamics of a homogeneous active dumbbell system”,

Suma, Gonnella, Laghezza, Lamura, Mossa & LFC, Phys. Rev. E 90, 052130 (2014)
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Effective temperature
Properties and measurement

— Relation to entropy.

— Control of heat-flows : ∆Q follows ∆T .

— Partial equilibration – transitivity :

TA = TB , TB = TC ⇒ TA = TC .

thermometers for systems in

good thermal contact (∆Q)

Review LFC 11

Whatever we identify with a temperature should have these properties
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Interacting polymers
The “DNA” example

Molecular dynamics

Linear molecules

Fdet
i deterministic force

Fact
i stochastic motor forces

act during τ

mv̇i + γvi = Fdet
i ({rj}) + Fact

i + ηi

Loi, Mossa & LFC 08-11
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Interacting polymers
The “DNA” example

Molecular dynamics

Linear molecules

Fdet
ia deterministic force

Fact
ia stochastic motor forces

act during τ

on % polymers

Passive tracers

mv̇ia + γvia = Fdet
ia ({rj}) + Fact

ia + ηia

Loi, Mossa & LFC 08-11
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Interacting polymers
Forces

Fdet
αi = −

Np∑
ν(6=α)

Nm∑
j=1

∇νjVinter(rαiνj)−
Nm∑
j=1

∇νjVintra(rαiνj)

mechanical force acting on monomer i in polymer α exerted by the other

monomers in the same and different polymers.

The inter and intra polymer potentials are of Lennard-Jones type :

Vinter(r) =

{
4ε

[(σ
r

)12
−
(σ
r

)6
]

+ ε

}
θ(21/6σ − r)

Vintra(r) =

 k(r − r0)2 nn{
4ε
[(

S
r

)12 −
(
S
r

)6]
+ ε
}
θ(21/6σ − r) next nn

Unit of energy, 2kBT , length 0.4 nm, force 20 pN at ambient temperature.
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Interacting polymers
Structure of the passive model : liquid

Parameters such that lines are semi-flexible S = 2.5 r0 in liquid phase

Miura et al., Phys. Rev. E 63, 061807 (2001).

For Np = 250 and ρ = 1, Nm–independent structure factor for Nm
>∼ 21.
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1st peak

q−1
0 ' nn distance

(typically α 6= ν)

2nd peak

q−1
1 ' equil. bond r0

Analysis of radius of gyration : non-Gaussian chains.
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Interacting polymers
Dynamics of the passive model : liquid
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for

Nm
<∼ 50

We used

Nm = 21

∆2(t) =
1

NpNm

Np∑
α=1

Nm∑
i=1

〈|rαi(t+ t0)− rαi(t0)|2〉 Mean-square displacement

Fs(Q, t) =
1

NpNm

Np∑
α=1

Nm∑
i=1

〈eiQ[rαi(t+t0)−rαi(t0)]〉 Incoherent scattering
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Interacting polymers
Adamant motor activity

Requirements :

– Homogeneously distributed in the sample.

– Motor acts at the center of the polymers (OK on short time-scales).

– Linear response regime.

Intensity given by a fraction of the conservative mechanical force of the

passive system

|Fact
αi | = f

1

NpNm

Np∑
α=1

Nm∑
i=1

|Fdet
αi | = f F F ' 163.5

– Time series of randomly applied kicks on % polymers.

– Activation time scale τ = 500 MDs: constant Fact
αi over this period.

The motor action is independent of the structural rearrangements induced
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Interacting polymers
Structure properties
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Interacting polymers
Dynamics: the diffusion constant increases with Pe
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Active matter
Integrated linear response against correlation function
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q0 first peak in structure factor

C(t) ∝
∑
〈eiq0·[r(t+t0,t0)−r(t0)]〉

χ(t) ∝
∑∫ t+t0

t0

dt′
δ〈eiq0·r(t+t0)〉

δh(t′)

∣∣∣∣∣
h=0

H → H − 2h
∑

ε cos(q0 · r)

Sums over all monomers, t is time-delay

χ(t) =
1

kBTeff(t)
[C(0)− C(t)]

In equilibrium Teff(t) = T . Here, Teff(f) = ct > T , for small C .

41



Interacting polymers
Tracer’s velocities

Spherical particles with mass mtr that interact with the active matter.
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Interacting polymers
Tracer’s diffusion (cfr. Wu & Libchaber’s work)
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Interacting polymers
Outcome of FDT on polymers & tracers’ diffusion and kinetic energy
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Partial equilibrations
Wave-vector dependence analysis

FDT
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Fine Problems

To be further studied

45



Experiments
Human FDT

“Human Balance out of Equil. : Nonequilibrium Statistical Mechanics in Posture

Control”, Lauk, Chow, Pavlik & Collins, Phys. Rev. Lett. 80, 413 (1998)
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Experiments
Ear Hair bundle

“Comparison of a hair bundle’s spontaneous oscillations with its response to

mechanical stimulation reveals the underlying active process”

Martin, Hudspeth & Jülicher, PNAS 98, 14380 (2001)
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Experiments
Mechanical response of the cell cytoskeleton

“Non equilibrium mechanics of active cytoskeletal network”

Mizuno, Tardin, Schmidt, MacKintosh, Science 315, 370 (2015)
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Experiments
Boltzmann distribution for the sedimentation of a gas

Under the only effect of gravity, how does the density of a perfect gas

depend upon the vertical distance z from a reference z0 ?

P (z + dz)− P (z) = −mgρ(z) dz ⇒ dP (z)

dz
= mgρ(z)

with m the mass of the particles in the gas, g the gravitational accelera-

tion, ρ(z) the density of the gas at height z and P (z) its pressure at the

same height.

Using the perfect gas law P (z) = ρ(z)kBT

dρ(z)

dz
= − mg

kBT
ρ(z) ⇒ ρ(z) = ρ(z0) e−βmgz
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Experiments
Sedimentation of Janus particles in a very dilute limit
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“Sedimentation and effective temperature of active colloidal suspensions”

Palacci et al. Phys. Rev. Lett. 105, 088304 (2010)
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Summary

• Deviations from FDT reveal the nonequilibrium character of a system.

• It was used for ear hair bundles, the cytoskeleton, bacterial baths, etc.

• A time-delay dependent effective temperature can be extracted from

the modification of the FDT.

• Its thermodynamic properties have to be tested by measuring it with

thermometers, checking partial equilibrations, etc.

− In low density interacting systems of particles and polymers under
adamant motors (homogeneous liquid systems) X

− In interacting active dumbbell systems : need to revisit the effects
of clustering and coexistence (see next lectures !)

− In active hard disk models : same claim as above.

− In Vicsek model : + difficulty posed by singular passive limit.
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