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Plan

— Usual States of Matter

— H2O: ice, drinking water, vapor

Phase transitions: landscapes

— Equilibrium Statistical Physics

— Complex State of Matter
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— Dynamics: out of equilibrium relaxations

— Neural Networks

— Associative Hopfield networks: landscapes

— Learning & backpropagation

— Artificial networks & the AI revolution

For details, talk to Daniel Stariolo
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States of Matter
For example, H2O and its phase transitions

Ice
0◦C−−−→ drinking water

100◦C−−−−→ vapor

The molecules are always the same H2O

A physical change, not chemical

Image V. K. Singh
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States of Matter
For example, H2O and its macroscopic properties

Ice drinking water vapor

rigidity

form

compressible

flows

microscopic
structure

yes

fixed

no

non

ordered

no

no

no

yes

disordered

no

no

yes

yes

disordered

M
ac

ro
sc

op
ic

5



States of Matter
For example, H2O and its microscopic properties

Ice drinking water vapor
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Statistical Physics
From microscopic to macroscopic

Proposes simple models and mathematical methods to go from

microscopic 7→ macroscopic

Probability theory and Statistics are central 1 7→ N � 1
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Statistical physics
Advantage

No need to solve the dynamic equations!

Under the ergodic hypothesis, after some equilibration time teq, macro-

scopic observables can be, on average, obtained with a static calcula-

tion, as an average over all configurations in phase space weighted with

a probability distribution function P ({~pi, ~xi})

〈A〉 =
∫ ∏

i

d~pid~xi P ({~pi, ~xi}) A({~pi, ~xi})

〈A〉 should coincide with A ≡ lim
τ→∞

1

τ

∫ teq+τ

teq

dt′A({~pi(t′), ~xi(t′)})

the time average typically measured experimentally

Boltzmann, late XIX
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Statistical physics
Ensembles: recipes for P ({~pi, ~xi}) according to circumstances
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r(0)

r(tw)

tr( )

ε=ct

Isolated system

E = H({~pi, ~xi}) = ct

Microcanonical distribution

P ({~pi, ~xi}) ∝ δ(H({~pi, ~xi})− E)

Flat probability density

SE = kB ln g(E) β ≡ 1
kBT

= ∂SE
∂E

∣∣∣
E

Entropy Temperature

E = Esyst + Eenv + Eint
Neglect Eint (short-range interact.)

Esyst � Eenv β =
∂SEenv

∂Eenv

P ({~pi, ~xi}) ∝ e−βH({~pi,~xi})

Environment

System

Interaction

Canonical ensemble
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Statistical physics
Accomplishments

• Microscopic definition & derivation of thermodynamic concepts

(temperature, pressure, etc.) and laws (equations of state, etc.)

PV = nRT

• Theoretical understanding of collective effects⇒ phase diagrams

Phase transitions : sharp changes in the macro-

scopic behavior when an external (e.g. the tem-

perature of the environment) or an internal (e.g.

the interaction potential) parameter is changed

• Calculations can be difficult but the theoretical frame is set beyond doubt
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Statistical physics
Classical⇔ Quantum

Partition function correspondence

Quantum d dimensional ≡ Classical d+ 1 dimensional

Z(β) = Tr e−βĤ Z(β) =
∑
conf

e−βH(conf)

L
L

β

β-periodic imaginary time direction

φ(~x) φ(τ, ~x) = φ(τ + β, ~x)

Feynman-Hibbs 65, Trotter & Suzuki 76, Matsubara 70s

Quantum Phase transitions, Quantum Monte Carlo methods, etc.
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Statistical physics
Four very important players & concepts

L. D. Landau P. W. Anderson K. G. Wilson D. J. Thouless

Phase transitions

Symmetry breaking

Higgs Mechanism

Glassiness, Localization

Renormalization

Universality

Topology

Disorder, Localization

Theoretical description of phase transitions
Importance of randomness

More is different
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Statistical physics
The main focus was material science

L. D. Landau (Kharkiv/Moscow) - URSS

Nobel 1962 “for his development of a mathematical theory of superfluidity that accounts
for the properties of liquid helium II at a temperature below 2.17K(−270.980◦C)”

P. W. Anderson (Princeton) - USA

Nobel 1977 “for their fundamental theoretical investigations of the electronic structure of
magnetic and disordered systems”

K. G. Wilson (Cornell) - USA

Nobel 1982 “for his theory for critical phenomena in connection with phase transitions”

F. D. Haldane (Princeton), J. M. Kosterlitz (Brown) & D. J. Thouless (Seattle) - UK

Nobel 2016 “for theoretical discoveries of topological phase transitions and topological
phases of matter”
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Landscapes
A useful representation - mathematically derived

T = 30◦C T = 0◦C T = −0.1◦C

liquid liquid-ice co-existence ice

at the transition

The states of matter are the deepest valleys

L. D. Landau On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7, 19 (1937)

(Kharkiv/Moscou) Nobel 1962
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Landau Theory
Landscapes - mathematically derived

T = 30◦C T = 0◦C T = −0.1◦C

liquid liquid-ice co-existence ice

at the transition

Ice (deepest valley) is stable below T = 0◦C

but one can super-cool liquid water (metastable)

L. D. Landau On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7, 19 (1937)

(Kharkiv/Moscou) Nobel 1962
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Geometric randomness
Mathematics & applications

Erdös-Rényi (1959) - draw a link between two nodes with probability p

Questions :

complete subgraphs?

is the graph connected?

etc.

Networks
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Geometric randomness
Percolation

Probability Π

of there being a path

taking from one end to the other

as a function of p

for different system sizes L

Phase transition
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Spin-glasses
Magnetic impurities (spins) randomly placed in an inert host

~ri are random and time-independent since

the impurities do not move during experimental time-scales⇒

quenched randomness

Magnetic impurities in a metal host

spins can flip but not move

RKKY interaction potential

V (si, sj) ∝
cos 2kF rij

r3ij
sisj

very rapid oscillations about 0

positive & negative

slow power law decay.
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Spin-glasses
Models on a lattice with random couplings

Ising spins si = ±1 sitting on a lattice

Jij are random and time-independent since

the impurities do not move during experimental time-scales⇒

quenched randomness

Magnetic impurities in a metal host

spins can flip but not move

Edwards-Anderson model

HJ [{si}] = −
∑
〈ij〉

Jijsisj

Jij drawn from a pdf with

zero mean & finite variance
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Giorgio Parisi
Prix Nobel 2021

Replica Symmetry Breaking (end of 70s)

21



Michel Talagrand
Prix Abel 2024

Rigorous proof (00s)

M Talagrand, The Parisi formula,

Annals of mathematics, 221 (2006)

Building upon F. Guerra’s, Sum rules for the free energy in the mean field spin glass model, in Mathematical

Physics in Mathematics and Physics : Quantum and Operator Algebraic Aspects (Sienna, 2000), 161, Fields

Institute Communications 30, A.M.S., Providence, RI, 2001
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Glasses
Ancient - modern
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Glasses
Peculiar physical features

Structure

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

Crystal Glass

Experiments
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Glasses
Peculiar physical features

Relaxation time vs. 1/temperature

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

super-cooled liquid glass

Experiments
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Glasses
Peculiar physical features

Self intermediate scattering function vs. time-delay

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

Aging in Lennard-Jones mixtures

Barrat, Berthier, Kob, Sciortino, etc.

Simulations

Understanding of the slow dynamics in terms of analytical solution to mean-field

models and motion along almost flat directions in the landscape
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Hamiltonian = Cost function
The “spherical cow” p-spin model

The standard model of glassy behavior Huge conceptual jump!

HJ [{si}] =
∑

i 6=j 6=k 6=l︸ ︷︷ ︸
sum over all groups of p = 4

Jijkl︸ ︷︷ ︸
interactions

sisjsksl︸ ︷︷ ︸
variables

There are i, j, k, l = 1, . . . , N variables

and N(N − 1)(N − 2)(N − 3)/4 predetermined couplings Jijkl from a p.d.f.

(like Jijkl = +1 or Jijkl = −1)

Phenomenology: thermodynamics, long relaxation times, rugged landscapes
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p-spin models
Capture many physical systems

• Forgot particles and used binary si = ±1 or spherical
N∑
i=1

s2i = N variables

• Instead of finite d real space place the spins on a complete (hyper-)graph

Interactions

Spins

System

Model

Two-body

Spherical

FMs

Curie-Weiss

Two-body

Ising

Spin glass

SK model

p ≥ 3-body

Ising or spherical

(Fragile) Glasses

p-spin

28



Rugged landscapes
Beyond the Landau potential

N degrees of freedom

fre
e-

en
er

gy
de

ns
ity

Figure adapted from a picture by C. Cammarota

Topography of the free-energy landscape on the N -dimensional sub-

strate made by theN order parameters. Depends on modelHJ [{si}].

Numerous studies by theoretical physicists (TAP 1977) and probabilists

29



An optimisation problem
How to partition the group in two minimising hate feelings?

One can try all possible cuts if there are a few persons but not if there are many !
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Hamiltonian = Cost function
Its construction

In the graph partitioning - group splitting example

• i, j = 1, . . . , N label the persons.

• Predetermined Jij = −1 for love or Jij = 1 for hate feelings

• si = 1 if i is in group A or si = −1 if i is in group B

find the assignment of all the si so that they add up to zero (
N∑
i=1

si = 0) & the

Cost function is minimised

HJ [{si}] =
∑
i 6=j︸ ︷︷ ︸

sum over all pairs

Jij︸ ︷︷ ︸
love/hate
quenched

(
1 + sisj

2

)
︸ ︷︷ ︸

vanishes if i, j in different groups
selects pairs in same group

31



Cost function
Rugged landscape in a large dimensional space
a sketch for a given realisation of the love/hate couplings Jij

The N variables {si}

C
os

tf
un

ct
io

n

How to reach the absolute minimum ?

Smart algorithms?
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The neurons
and their connections

pre-synaptic neuron – synapsis – post-synaptic neuron

directional connection

a “molecule” another “molecule”

S. Ramón y Cajal, ca. 1890 (Madrid) Nobel 1906 Physiology and Medecine
Image M. J. Hove & S. A. Martínez, Brain & Behaviour 2024
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The neurons
One models them as simply as possible

W. S. McCulloch & W. Pitts Bull. Math. Biophys. 5, 115 (1943)
(neurophysiologist & logician at Chicago)
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The neurons
also their connections and activity

• the pre-synaptique neuron is active and sends information (“fires”)

to the post-synaptic neuron

a > 0

• the pre-synaptic neuron is quiescent

a = 0

36



The neurons
and the received signal

• the post-synaptic neuron receives the information sent by the emitting neuron

weighted by the synaptic factor w

a > 0 w h = wa

• if the pre-synaptic neuron is quiescent no signal arrives to the second neuron

a = 0 w h = wa = 0

• The synapses can be inhibitory (w < 0) ou excitatory (w > 0)
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The neural networks
graph with many nodes and even more links

a2

a1

0

w2

w1

w3
f(h = w1a1 + w2a2)

At each instant, each neuron calculates the sum of the messages sent by their neighbours,

weighted by the synapses, h, it applies a function , f .

if the result is larger than a threshold, f(h) > θ, the receptor neuron fires, a > 0

and so on and so forth on the full network.
Details to make precise : parallel or random sequential dynamics
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The neural networks
Fonctioning

Where is the memory? In the synapses, the w

D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory (1949)
(psychologist, McGill, Montréal)

Can one build a neural network that recognizes an object which has
been previously learnt?

Theoretical physicist trick: place the neurons on a complete graph (w 6= 0) & use Ising

spins s = ±1 and symmetric synapses

w1 −1

= Magnetic system

J. J. Hopfield, Neural networks and physical systems with emergent collective compu-

tational abilities., Proc. Nat. Acad. Sc. USA, 79, 2554 (1982) (Princeton) Nobel 2024
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The Hopfield Model
Associative memories - one pre-selects the w

Imagewww.nobelprize.org
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The Hopfield Model
Associative memories - one pre-selects the w

Imagewww.nobelprize.org
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The Hopfield Model
Properties

• The synapses {w} fix the landscape, the memories are deep valleys

• Basins of attraction: the presented object should have some similarity with

the one stored in memory. This is needed for the network to recall.

• The network has a maximal capacity: critical value(numberoflearntobjects

numberofneurons

)
c

beyond this limit, the network is no longer able to recall

Phase Transition: order (correct functioning) - disorder

• The network also builds illegitimate valleys which correspond to spurious memories

D. J. Amit, H. Gutfreund & H. Sompolinsky Phys. Rev. Lett. 55, 1530 (1985) with
the replica method of statistical physics developed by G. Parisi Nobel 2021
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Boltzmann Machines
Physics⇒ stochastic dynamics∼ temperature

T = −0.1◦C

super-cooled liquid ice

D. Ackley, G. E. Hinton & T. Sejnowski, A Learning Algorithm for Boltzmann Machines,
Cognitive Science, 9 147 (1985)
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Deep learning
Restricted Boltzmann Machines→ multi-layer neural networks

All the synapses are oriented from left to right

i

j

ai → si Ising spins

ai = f
(∑

j

wijaj︸ ︷︷ ︸
hi

)

∼ 100000 Hidden layers

Input Output

G. E. Hinton, many influential articles on network learning, e.g.
D. E. Rumelhart, G. E. Hinton & R. J. Williams, Learning representations by back-propa-
gating errors, Nature 323, 533 (1986)
Number of citations to G. E. Hinton in Google Scholar since 2019: 568048 Nobel 2024
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Deep learning
Learning with Big Data and generalisation

The network represents a function that is applied to the input vector and yields the output

The combination of many functions f lets the network approximate very complex functions

i

j

si = f
(∑

j

wijsj︸ ︷︷ ︸
hi

)

F (Input Data) vs.Output Data

Training

Dynamics of the {w}

∼ 100000 Hidden layers

Input Output

Data Injection Classification
Learning

the weights are adjusted
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The error function
minimize it as much as possible to train the network

Difference between the known result and the one proposed by the network

(if we input a cat, do we get a cat as output?)

Error

The weights {w}
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Deep learning
Learning with Big Data and generalisation

The network represents a function that is applied to the input vector and yields the output

The combination of many functions f lets the network approximate very complex functions

Once learnt, these approximate functions can generalise and yield new results

i

j

si = f
(∑

j

wijsj︸ ︷︷ ︸
hi

)

F (Input Data) vs.Output Data

Training achieved

F (New Data) = New Result

∼ 100000 Hidden layers

Input Output

Data Injection Classification
Learning

achieved

47



Dynamics of complex systems
Complex landscapes in material, computer & neuro sciences

AlphaFold, from DeepMind, predicts the protein folds (valleys of a complex landscape)
D. Baker (Seattle), D. Hassabis and J. M. Jumper (DeepMind) Nobel Chimie 2024
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Some figures
Deep learning vs. our brain

• Chat GPT is a large language model

“The exact number of neurons & synapses in GPT-4 hasn’t been publicly disclosed”

Chat GPT-3 has 175 000 000 000︸ ︷︷ ︸
11

∼ 1011 parameters

Chat GPT-4 has more

• A human brain

has ∼ 100 000 000 000︸ ︷︷ ︸
11

∼ 1011 neurons

2× 1011 grains of sand in Ipanema beach

Each neuron receives∼ 10 000 = 104 synapses

10 000︸ ︷︷ ︸
4

×100 000 000 000︸ ︷︷ ︸
11

= 1000 000 000 000 000︸ ︷︷ ︸
15

∼ 1015 synapses
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Du chaos
dans les réseaux de neurones

Un système dynamique, avec des neurones qui s’activent au cours du temps

hi(t+ ∆t) = hi(t) + ∆t
[
− hi(t) +

∑
j(6=i)

wijsj(t)
]

si(t+ ∆t) = f(hi(t+ ∆t))

• Apparition de motifs d’activité irréguliers si wij 6= wji (asymétrie)

potentiel action hi activité −1 ≤ si ≤ 1

temps t temps t

H. Sompolinsky, A. Crisanti & H-J Sommers, Chaos in random neural networks,
Phys. Rev. Lett. 61, 259 (1988)
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