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Plan
5 lectures & 2 exercise sessions

1. Introduction

2. Active Brownian dumbbells

3. Effective temperatures

4. Two-dimensional equilibrium phases

5. Two-dimensional collective behaviour of active systems
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Introduction
General setting

• Closed & open systems

• Equilibrium & out of equilibrium

– Long time scales

– Forces & energy injection

• Individual & collective effects

• Three dimensions vs. two dimensions
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Isolated systems
Dynamics of a classical isolated system

Foundations of statistical physics.

Question : does the dynamics of a particular system reach a flat distri-

bution over the constant energy surface in phase space?

Ergodic theory, ∈ mathematical physics at present.

Dynamics of a (quantum) isolated system :

a problem of current interest, recently boosted by cold atom experiments.

Question : after a quench, i.e. a rapid variation of a parameter in the

system, are at least some observables described by thermal ones?

When, how, which? we shall not discuss these issues here

7



Introduction
General setting

• Closed & open systems

• Equilibrium & out of equilibrium

– Long time scales

– Forces & energy injection

• Individual & collective effects

• Three dimensions vs. two dimensions

8



Open systems
Aim

Our interest is to describe the statics and dynamics of a classical (or

quantum) system coupled to a classical (or quantum) environment.

The Hamiltonian of the ensemble is

H = Hsyst +Henv +Hint

The dynamics of all variables are given by Newton (or Heisenberg) rules, de-

pending on the variables being classical (or quantum).

The total energy is conserved,E = ct but each contribution is not, in particular,

Esyst 6= ct, and we’ll take e0 � Esyst � Eenv .
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Dynamics in equilibrium
Conditions

Take an open system coupled to an

environment

Environment

System

Interaction

Necessary :

— The bath should be in equilibrium

same origin of noise and friction.

— Deterministic force :
conservative forces only, ~F = −~∇V .

— Either the initial condition is taken from the equilibrium pdf, or the

latter should be reached after an equilibration time teq :

Peq(v, x) ∝ e−β(
mv2

2
+V )
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What do we know ?
Equilibrium collective phenomena

N � 1 collective phenomena lead to phase transitions.

E.g., gas, liquid, solid phase transitions in molecular systems.

We understand the nature of the equilibrium phases and the phase transitions.

We can describe the phases with mean-field theory and the critical behaviour

with the renormalization group.

Quantum and thermal fluctuations conspire against the ordered phases.

We understand the equilibrium and out of equilibrium relaxation at the critical

point or within the phases. We typically describe it with the dynamic RG at the

critical point or the dynamic scaling hypothesis in the ordered phase.

E.g., growth of critical structures or ordered domains.
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What do we know ?
Solid, liquid and gas equilibrium phases

Typical (simple) (P, T ) phase diagram
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What do we know ?
Solid, liquid and gas equilibrium phases

Lennard-Jones model system for Argon (more later)

Kataoka & Yamada, J. Comp. Chem. Jpn. 11, 81 (2012)

Typical (simple) (φ, T ) phase diagram
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Equilibrium phases
Macroscopic properties

• A gas is an an air-like fluid substance which expands freely to fill any

space available, irrespective of its quantity.

• A liquid is a substance that flows freely but is of constant volume, ha-

ving a consistency like that of water or oil. It takes the shape of its

container

• A solid is a material with non-vanishing shear modulus.

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.
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Phases and transitions
Names

The states of matter have uniform physical properties in each phase. During a

phase transition certain properties change, often discontinuously, as a result of

the change of an external condition, such as temperature, pressure, or others.
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Freezing transition
From liquid to solid: nucleation & growth

Images borrowed from González, Crystals 6, 46 (2016)

Nucleation barrier ∆F (r) Examples of two crystalline nuclei

2d order of attractive colloids forming a triangular lattice (more later)
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Freezing transition
From liquid to solid: nucleation & growth

Left image from Gasser, J. Phys. : Cond. Matt. 21, 203101 (2009)

Nucleation barrier ∆F (r) Examples of two crystalline nuclei

2d order of attractive colloids forming a triangular lattice (more later)
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Freezing transition
Different routes in 3d and 2d

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)
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Solids
3d vs. 2d

• A solid is a material with non-vanishing shear modulus.

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.

The position fluctuations are bounded ∆2 = 〈(ri − rlatti )〉 <∞

• 2d solids exist but have a weaker ordering than 3d ones.

− They are oriented crystals with no positional order.

− Critical phase with algebraic relaxation of position correlations.

− Phase transition à la Kosterlitz-Thouless (Nobel Prize).
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Freezing transition
2d crystalline clusters & defects

Images borrowed from González, Crystals 6, 46 (2016)

Two clusters Grain boundary
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Introduction
General setting

• Closed & open systems

• Equilibrium & out of equilibrium
– Long time scales

– Forces & energy injection

• Individual & collective effects

• Three dimensions vs. two dimensions
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What we do not know
Long time-scales for relaxation

Systems with competing interactions remain out of equilibrium and it is not clear

• whether there are phase transitions,

• which is the nature of the putative ordered phases,

• which is the dynamic mechanism.

Examples are :

• systems with quenched disorder,

• systems with geometric frustration,

• glasses of all kinds.

Static and dynamic mean-field theory has been developed – both classically and

quantum mechanically – and they yield new concepts and predictions.

Extensions of the RG have been proposed and are currently being explored.
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Glassy features
What do they have in common?

— No obvious spatial order, disorder (differently from crystals).

— Many metastable states

Rugged landscape

— Slow non-equilibrium relaxation

τmicro � τexp � τrelax

Time-scale separation

— Hard to make them flow under external forces - energy injection
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Energy injection
Traditional: from the borders (outside)

Rheology Transport
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Drive & transport
Rheology of complex fluids

Newtonian Shear thickening
Pe

Shear thinning

Rheology of complex fluids

Shear thinning τrelax decreases, e.g. paints

Shear thickening τrelax increases, e.g. cornstarch & water mix

e.g. review Brader 10
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Drive & transport
Driven interface over a disordered background

T>0

T=0

v

FF
c

Phase
Moving

Creep
Depinning 

A line Depinning & creep avalanches

e.g. review Giamarchi et al 05, connections to earthquakes Landes 16
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Active matter
Definition

Active matter is composed of large numbers of active "agents", each of

which consumes energy in order to move or to exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of

thermal equilibrium.

Energy injection is done “uniformly” within the samples (and not from the

borders).

Coupling to the environment (bath) allows for the dissipation of the injec-

ted energy.
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Active matter
Introduction

• Scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

• Also artificial realisations: Janus particles, granular like, etc.

• 3d, 2d and 1d.

• Modelling: very detailed to coarse-grained or schematic.

− microscopic or ab initio with focus on active mechanism,

− mesoscopic, just forces that do not derive from a potential,

− Cellular automata like in the Vicsek model.
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Natural systems
Birds flocking
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Natural systems
Birds flocking
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Natural systems
Birds flocking
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Natural systems
School of fish
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Natural systems
School of fish
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Natural systems
Cell migration

Collective cell migration is the process whereby a group of cells move in

concert, without completely disrupting their cell-cell contacts. Collective

migration is important during morphogenesis, and in pathological pro-

cesses such as wound healing and cancer cell invasion.

Physicists approach : Jülicher, Joanny, Shraiman, etc.
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Natural systems
Bacteria

Escherichia coli - Pictures borrowed from the internet.
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An active bath

(Influential paper)

Dynamics of an open system

The system: the Brownian particle

A double bath: bacteria suspension

Interaction

‘Canonical setting’

A few Brownian particles or tracers • imbedded in an active bath

“Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath”

Wu & Libchaber, Phys. Rev. Lett. 84, 3017 (2000)
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An active bath
Enhanced diffusion

Mean-square displacement of

the Brownian particle

crossover form super-diffusion

to diffusion

enhanced diffusion constant:

effective temperature

(more later)

A few Brownian particles or tracers • imbedded in an active bath

“Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath”

Wu & Libchaber, Phys. Rev. Lett. 84, 3017 (2000)
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Artificial systems
Nano HexBugs on a table

Propulsion: batteries

e.g., Ciliberto group ENS-Lyon
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Artificial systems
Granular walkers on the plane

Asymmetric particles

Propulsion: baseline vibration of disordered plane

e.g., Dauchot group ESPCI-Paris, Menon group Amherst

40



Artificial systems
Janus particles

Particles with two faces (Janus God)

e.g. Bocquet group ENS Lyon-Paris, di Leonardo group Roma
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Microscopic scales

Image taken from Bechinger et al, Rev. Mod. Phys. 88, 045006 (2016)

42



Mechanisms of propulsion
Flying bird & swimming fish
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Mechanisms of propulsion
Bacteria

Flagella (whip), e.g. d = 20 nm, ` = 15-20 µm
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Mechanisms of propulsion
Chemical

Self electrophoresis process

Paxton, Baker, Kline, Wang, Mallouk & Sen

Mitchell, “Self-electrophoretic locomotion in microorganisms:

bacterial flagella as giant ionophores” FEBS Lett. 28, 1 (1972)
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Mechanisms of propulsion
Colloidal rollers

“Emergence of macroscopic directed motion in populations of motile colloids”

Bricard, Caussin, Desreumaux, Dauchot & Bartolo, Nature 503, 95 (2013)
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Problem & questions
From single to many-body

• How does an atypical force, the active force, alter the dynamics of an

object (with a given form and mass distribution) immersed in a ther-

mal bath, i.e. subject to friction→ dissipation and

thermal fluctuations→ noise.

• Collective effects of an ensemble of such objects in interaction.

− Dynamic phase transitions? 3d vs. 2d?

− Active solid, liquid, gas phases?

− Collective dynamics?
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Models & Methods
From very detailed to approximate

Biological Statistical physics Non-linear dynamics

Microscopic Brownian/Run&Tumble Cellular automata

Collective Phases & transitions Bifurcations

Experiments Soft-condensed matter

Numerical MD, MC, Lattice Boltzmann Integration

Analytical Liquid/Glass theory Hydrodyn/Mechanics
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The position and velocity of an agent are ri and vi = v0v̂i with v0 = cst.

Each microscopic update is such that the individual’s direction is updated accor-

ding to the mean . . . over its neighbours

v̂i(t+ δt) = v̂j(t)|ri−rj |<r + ηi(t)

plus some noise ηi (normalisation is imposed after each step) and moves at

constant speed v0 in the new direction

ri(t+ δt) = ri(t) + v0v̂i(t+ δt) δt

“Novel Type of Phase Transition in a System of Self-Driven Particles”,

Vicsek, Czirók, Ben-Jacob, Cohen, Shochet, Phys. Rev. Lett. 75 1226 (1995)
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The particles are self-propelled due to v0

The total number of particles is conserved (no birth/death).

The velocity direction plays a similar role to the one of the spin in the Heisenberg

(or XY) ferromagnetic models (more later)

As the particles move in the direction of their velocity, the “connectivity matrix”

is not constant, but evolves (if the interaction range is finite).

There is no momentum conservation and Galilean invariance is broken.

Spontaneous symmetry breaking of polar order, p(t) = 1
N

∑N
i=1 v̂i(t) 6= 0

At v0 = 0 the model is the Heisenberg one. However, this is a singular limit.
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Vicsek model
Minimal (cellular automata) model for flocking

Flocking due to any kind of self-propulsion and alignment with neighbours.

The global behaviour is controlled by the density φ, the noise amplitude kBT

and the particles’ modulus of the velocity v0.

Dynamic phase diagram (kBT, φ) (v0 fixed) from

the polar order parameter p(t) = 1
N

∑N
i=1 v̂i(t)

• Homogenous collective motion (high density, weak noise)

• Ordered bands (intermediate)

• Disordered (low density, strong noise)

“Novel Type of Phase Transition in a System of Self-Driven Particles”,

Vicsek, Czirók, Ben-Jacob, Cohen, Shochet, Phys. Rev. Lett. 75 1226 (1995)

Ginelli, arXiv:1511.01451 in Microswimmers Summer School, Jülich
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Models
Continuum model

The mean center-of-mass velocity 〈v〉 is the order parameter.

The development of 〈v〉 6= 0 for the flock as a whole requires spontaneous

breaking of the continuous rotational symmetry.

Out of equilibrium feature possible also in low dimensions.

Breakdown of linearized hydrodynamics imply large fluctuations in dimensions

smaller than four.

Argument: Improved transport suppresses the very fluctuations that give rise to

it, leading to long-range order in d = 2.

“Flocks, herds, and schools : A quantitative theory of flocking”,
Toner & Tu, Phys. Rev. E 58, 4828 (1998)
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Models
Continuum model : giant density fluctuations

“Long-Range Order in a 2d Dynamical XY Model : How Birds Fly Together”

“Flocks, herds, and schools : A quantitative theory of flocking”,
J. Toner & Y. Tu, Phys. Rev. Lett. 75, 4326 (1995), Phys. Rev. E 58, 4828 (1998)
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Models
Continuum model

∂tv + λ1(∇ · v)v + λ2(v ·∇)v + λ3∇v2︸ ︷︷ ︸
Navier-Stokes w/no Galilean invariance

=

α1v − α2v
2v︸ ︷︷ ︸

“Potential force” imposing v2 = α1/α2

−∇P︸ ︷︷ ︸
“Pressure variation”

+DB∇(∇ · v) +DT∇2v +D2(v ·∇)2v︸ ︷︷ ︸
Dissipative terms

+η︸︷︷︸
Noise

P =

∞∑
n=1

σn(ρ− ρ0)n Pressure tending to impose ρ− ρ0 small

∂tρ+∇ · (vρ) = 0 Toner & Tu, Phys. Rev. E 58, 4828 (1998)

α1 < 0 (α1 > 0) in the homogenous (flocking) phase

“Hydrodynamic eqs. for self-propelled part.: microscopic derivation & stability analysis”

Bertin, Droz and Grégoire, J. Phys. A 42, 445001 (2009)
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Models
Run & tumble particles

This mechanism can be described as a repeating sequence of two actions:

(i) a period of nearly constant-velocity translation (run) followed by

(ii) a seemingly erratic rotation (tumble).

Observed by Berg & Brown, Nature (1972)

Simulation from M. Kardar’s webpage

Run with v = 20µm/s ; tumble with rate α = 1/s and duration τ = 0.1 s

Diffusion constants

DRT =
v2

dα(1 + ατ)
' 100µm2/s

DBM =
kBT

6πηR
' 0.2µm2/s
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Models
Run & tumble particles

Some trajectories depending on the environment

Trajectories of E. coli cells in (A) buffer and (B) polymeric solution

“Running and tumbling with E. coli in polymeric solutions”,

Patteson, Gopinath, Goulian and Arratia, Scient. Rep. 5, 15761 (2015)
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Models
Fluctuating hydrodynamic theories in low density limits

Local density scalar field ρ(r, t) =
∑N

i=1 δ(r − ri(t))

Local polar vector field p(r, t) = 1
ρ(r,t)

∑N
i=1 v̂i(t)δ(r − ri(t))

∂tρ+ v0∇ · (ρp) = −∇ ·
(
− 1

γρ
∇δF

δρ
+ ηρ

)
∂tp+ λ1(p ·∇)p = − 1

γp

δF

δp
+ ηp

with wise proposals for the “free-energy” F and noises ηρ and ηp.

“Hydrodynamics of soft active matter”

Marchetti, Joanny, Ramaswamy, Liverpool, Prost, Rao, Simha

Rev. Mod. Phys. 85 (2013)
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Models
Focus on simpler ones

Homogenous energy injection, contrary to rheology (from boundaries)

Non-persistent

Change in time, in direction, where they

are applied,

on point-like or elongated particles

Persistent

Constant strength,

axial direction
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Problem & questions
From single to many-body

• How does an atypical force, the active force, alter the dynamics of an

object (with a given form and mass distribution) immersed in a ther-

mal bath, i.e. subject to friction→ dissipation and

thermal fluctuations→ noise.

• Collective effects of an ensemble of such objects in interaction.

− Translational and rotational motion.

− Fluctuation-dissipation theorem &

effective temperatures.

− Phases.
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Plan
5 lectures & 2 exercise sessions

1. Introduction

2. Active Brownian dumbbells

3. Effective temperatures

4. Two-dimensional equilibrium phases

5. Two-dimensional collective behaviour of active systems

Some reviews: Vicsek 10, Fletcher & Geissler 09, Menon 10, Ramaswamy 10,

Romanczuk et al 12, Cates 12, Marchetti et al. 13, de Magistris & Marenduzzo 15
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