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Question
Does an isolated system reach equilibrium?

Boosted by recent interest in

− the dynamics after quantum quenches of cold atomic systems

rôle of interactions (integrable vs. non-integrable)

− many-body localisation

novel effects of quenched disorder

And, an isolated classical systems?

The (old) ergodicity question revisited

LFC, Lozano & Nessi 17. LFC, Lozano, Nessi, Picco & Tartaglia (in prep)

Quantum: Foini, Gambassi, Konik & LFC 17. de Nardis, Panfil et al. 17
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Quantum quenches
Definition & questions

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of Ĥ0 (or any ρ̂(t0))

• Unitary time-evolution Û = e−
i
~ Ĥt with a Hamiltonian Ĥ .

Does the system reach a steady state?

Is it described by a thermal equilibrium density matrix e−βĤ ?

Do at least some observables behave as thermal ones?

Does the evolution occur as in equilibrium?

Other kinds of density matrices ?
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Classical quenches
Definition & questions

• Take an isolated classical system with Hamiltonian H0, evolve with H

• Initialize it in, say, ψ0 a configuration, e.g. {~qi, ~pi} for a particle system

ψ0 could be drawn from a probability distribution, e.g. Z−1e−β0H0(ψ0)

Does the system reach a steady state?

Is it described by a thermal equilibrium density matrix e−βH ?

Do at least some observables behave as thermal ones?

Does the evolution occur as in equilibrium ?

Other kinds of probability distributions?
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Quenches
Simple examples (kind of building blocks)
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At t = 0 change in V

Continuity in variables

x(0−) = x(0+) = x0

p(0−) = p(0+) = p0

Jump in (potential) energy

dashed to solid:

energy extraction

solid to dashed:

energy injection
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Classical quenches
Models

We chose to study classical disordered models

isolated p spin spherical disordered models

Interesting & very well characterised

equilibrium phases & relaxational dissipative dynamics

rich free-energy landscapes with metastability, flat regions, large and

small barriers, etc.

(also interesting in the context of many-body localisation studies)
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Quenched disorder

Spin Disordered Potential

V = −
∑
ij Jijsisj −

∑
ijk Jijksisjsk + . . .

the exchanges Jij , Jijk , etc. taken from

a probability distribution (details later)

Real variables si ∈ R
Spherical constraint

∑N
i=1 s

2
i = N

Connection with the following problem

A particle
position ~s = (s1, . . . , sN )

in a N dimensional space

under a random potential V (~s)
Sketch for N = 2

but wrapped on the sphere
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Classical dynamics
Coordinate-momenta pairs {~s, ~p} and Hamiltonian

H = K(~p) + V (~s)

with the kinetic energy K(~p) =
1

2m

N∑
i=1

p2i

Newton-Hamilton equations

ṡi = pi/m ṗi = −dV (~s)/dsi

The potential energy landscape makes the models behave differently

−N saddles (including min/max) for two body-interactions V (~s) =
∑
i 6=j

Jijsisj

− x exp(NΣ) saddles for more than two body interactions
∑
i6=j 6=k

Jijksisjsk

(With dissipation used to model domain-growth & fragile glasses, respectively)
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Classical dynamics
Coordinate-momenta pairs {~s, ~p} and Hamiltonian

H = K(~p) + V (~s)

with the kinetic energy K(~p) =
1

2m

N∑
i=1

p2i

Newton-Hamilton equations

ṡi = pi/m ṗi = −dV (~s)/dsi

The potential energy landscape makes the models behave differently

− Finite energy barriers for two body-interactions V (~s) =
∑
i 6=j

Jijsisj

− Barriers scale withN for more than two body interactions
∑
i 6=j 6=k

Jijksisjsk

(With dissipation used to model domain-growth & fragile glasses, respectively)
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Three body interactions
Potential energy landscape
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The initial conditions

•We chose initial states drawn from canonical equilibrium with Hamilto-

nian H0 at inverse temperature β′

• The models have a phase transition at a finite βc

The high temperature phase is a disordered one, a paramagnet (PM)

The low temperature phase is different in the two-body and more than

two-body interaction models :

− two ferromagnetic (FM)-like equilibrium states for two-body (p = 2)

−O(eNΣ) metastable states, like in a glass, in the p ≥ 3 case

• Initial conditions: disordered (PM) or confined (FM/metastable) TAP
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The quench

Spin Disordered Potential

V = −
∑
ij Jijsisj−

∑
ijk Jijksisjsk+ . . .

with exchanges Jij , Jijk , etc. taken

from a Gaussian pdf

zero mean [Jij ] = 0 and

[J2
i1...ip

] = p!J2
0/(2N

p−1)

Initial energy scale J0

At time t = 0

Same configuration ṡi(0), si(0)

quench J0
i1...ip

7→ Ji1...ip

Final energy scale J

The rugged landscape is

stretched/contracted and pulled up/down

On the sphere
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Dynamic equations
Conservative dynamics

In the N →∞ limit exact causal Schwinger-Dyson equations

(m∂2
t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+
β′J0

J
D(t, 0)C(tw, 0)

(m∂2
t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

with the post-quench self-energy and vertex

D(t,tw) = J2p
2
Cp−1(t,tw) Σ(t,tw) =

J2p(p−1)
2

Cp−2(t,tw)R(t,tw)

and the Lagrange multiplier zt fixed by C(t, t) = 1
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Dynamic equations
Conservative dynamics

In the N →∞ limit exact causal Schwinger-Dyson equations

(m∂2
t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+
β′J0

J
D(t, 0)C(tw, 0)

(m∂2
t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

with the post-quench self-energy and vertex

D(t,tw) = J2p
2
Cp−1(t,tw) Σ(t,tw) =

J2p(p−1)
2

Cp−2(t,tw)R(t,tw)

and the Lagrange multiplier zt fixed by C(t, t) = 1

Solvable numerically & analytically for long times
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Three body model
Dynamic phase diagram
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Three body model
e.g., from equilibrium within a TAP state to the PM
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Three body model
Initial configuration in a metastable (TAP) state
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Three body model
Energy extraction from PM to threshold
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Three body model
Dynamic phase diagram - recap
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Two body model
Non-linear coupling through the Lagrange multiplier only

Diagonal in the basis of eigenvectors ~vµ of the interaction matrix Jij

Projection of the coordinate (spin) vector on the eigenvectors sµ = ~s ·~vµ
with µ = 1, . . . , N

Newton equations are almost quadratic

ms̈µ(t) = [z(t)− λµ]sµ(t)

with z(t) the Lagrange multiplier that enforces the spherical constraint

and λµ the eigenvalues (semi-circle law, with support in [−2J, 2J ])

Two methods to solve :

− forN →∞, closed Schwinger-Dyson equations onC(t, tw) andR(t, tw),
the global self-correlation and linear response (already shown for general p)

− for finite N , solve Newton equations under the spherical constraint
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Dynamic equations
Conservative dynamics for p = 2

In the N →∞ limit exact causal Schwinger-Dyson equations

(m∂2
t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+
β′J0

J
D(t, 0)C(tw, 0) + Other Term

(m∂2
t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

Other equation

with the post-quench self-energy and vertex

D(t, tw) = J2C(t, tw) Σ(t, tw) = J2R(t, tw)

and the Lagrange multiplier zt fixed by C(t, t) = 1 (Technical)
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Two body model
An implicit solution for finite N

The projection of the spin configuration on the eigenvector ~vµ reads (m = 1)

sµ(t) = sµ(0)

√
Ωµ(0)

Ωµ(t)
cos

∫ t

0
dt′ Ωµ(t′) +

ṡµ(0)

Ωµ(0)Ωµ(t)
sin

∫ t

0
dt′ Ωµ(t′)

The time-dependent frequency Ωµ(t) and Lagrange multiplier z(t) are fixed by

1

2

Ω̈µ(t)

Ωµ(t)
−

3

4

(
Ω̇µ(t)

ωµ(t)

)2

+ Ω2
µ(t) = z(t)− λµ

with initial conditions Ω̇µ(0) = 0, Ω2
µ(0) = λmax−λµ and z(t) = ef+ 2

N

∑
µ

λµ〈s2µ(t)〉

Note that the initial conditions {sµ(0), ṡµ(0)} know about the pre-quench po-

tential and the λµ about the post-quench one

Similar to Sotiriadis & Cardy 10 for the quantum O(N) model
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Two body model
Richer results !
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Two body model
III Confined states global behaviour as in GB equilibrium at βf

zf = limt→∞ z(t) = 1
J
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Two body model
III Confined states global behaviour as in GB equilibrium at βf

zf = limt→∞ z(t) = 1
J
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Two body model
III Confined states global behaviour as in GB equilibrium at βf

Fidelity Integrated linear response

C(t1,0)→ q0 χ(t1,t2) =
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Two body model
III Confined states global behaviour as in GB equilibrium at βf

Fidelity Integrated linear response

C(t1,0)→ q0 χ(t1,t2) =
∫ t1
t2
dt′R(t1,t′)
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Two body model
Richer results !
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Two body model
I Large energy injection on a confined state
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Two body model
I Large energy injection on a confined state: Tµ spectrum
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Ω2
µ(t)→ (zf − λµ)/m ≡ ω2

µ

The µ modes sµ(t) decouple and

become independent harmonic oscillators

with conserved energy

eµ = ekin
µ (t) + epot

µ (t)

Mode temperatures

〈Hkin
µ 〉 = 〈Hpot

µ 〉 = Tµ

where . . . = limτ�1
1
τ

∫ tst+τ
tst

dt′ ...
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Two body model
I Large energy injection on a confined state: Tµ from the FDR
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−ImR̂(ω)/(ωĈ(ω)) = βeff(ω)
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Two body model
An integrable model? Yes, Neumann’s model (1850)

Motion of a particle on SN−1, enforced by
∑

k x
2
k = N

The Hamiltonian is

H = 1
4N

∑
k 6=l L

2
kl + 1

2

∑
akx

2
k

with Lkl = (xkpl − xlpk)/
√
m

The integrals of motion are Ik = x2
k +

∑
l(6=k)

L2
kl

ak−al

K. Uhlenbeck 1982

Translation from Neumann to p = 2 spherical model

ak 7→ −λµ and Iµ = s2
µ + 1

N

∑
ν(6=µ)

s2µp
2
ν+s2νp

2
µ−2sµpµsνpν

λν−λµ
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Two body model
Two (or more) possibilities : GB, GGE or none

• The system is able to act as a bath on itself and equilibrate to

ρGB = Z−1 e−βfH

• The system is not able to act as a bath on itself as it is an integrable system.

Does it approach a Generalised Gibbs Ensemble (GGE)

ρGGE = Z−1
GGE e

−
∑N
µ=1 βµIµ

with Uhlenbeck’s constants of motion Iµ and βµ fixed by

〈Iµ〉GGE = Iµ(t = 0+)

It depends on the kind of quench, phases in the dynamic phase diagram,

and on the observables !

Full classification in progress
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Conclusions

Study of the quenched dynamics of classical isolated disordered models

We showed that they can

• equilibrate to GB measures

• undergo non-stationary (aging) dynamics

• or (most probably) approach a GGE

depending on the type of model (highly interacting or quasi quadratic)

and the kind of quench performed.

Work on the extension of these studies to the quantum models and the

better understanding of the approach to a GGE is under way
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Fluctuation-dissipation relations
Classical setting

Measure

ImR̃AB(ω) and ωC̃AB(ω)

take the ratio and extract βABeff (ω)

In equilibrium all βABeff (ω) should be equal to the same constant

This is the fluctuation-dissipation theorem (FDT).

If there is a frequency or observable dependence, the system is not

in Gibbs-Boltzmann equilibrium

Do these βeff(ω) play a role in closed systems too?
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GGE and FDT temperatures
A generic method
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quantum integrable systems now in a

classical integrable one LFC, Lozano, Nessi, Picco & Tartaglia (in prep)
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GGE and FDT temperatures
A generic method
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Glassy dynamics
Non stationary relaxation & separation of time-scales

Density-density correlation density response
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Glassy dynamics
Fluctuation-dissipation relation: parametric plot
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FDR & effective temperatures
Can one interpret the slope as a temperature?
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(1) Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97
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FDT & effective temperatures
Sheared binary Lennard-Jones mixture

χk(Ck) plot for different wave-vectors k, partial equilibrations.

J-L Barrat & Berthier 00
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Effective temperatures
Glasses, coarsening, driven systems

Different observables can depend differently (e.g. velocity vs. positions).

There is a separation of time-scales,

with a crossover at, roughly, ωtw (or controlled by the drive)

The FDRs take a very special form:

- ωtw � 1 quasi-stationary relation and FDT with bath T
- ωtw � 1 non-stationary relation and FDR with another T ∗.

Teff(ω, tw) crosses over from T to T ∗ that depends upon

- the initial condition before the quench (disordered vs. ordered) ;

- weakly on other parameters of the systems.

Notion of interacting vs. non-interacting concerning partial equilibrations.

LFC 11, review
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Fluctuation-dissipation relations
Quantum setting

Measure

ImR̃AB(ω) and C̃AB
± (ω)

take the ratio and extract tanh(βABeff (ω)~ω/2)

In equilibrium all βABeff (ω) should be equal to the same constant

This is the fluctuation-dissipation theorem (FDT).

If there is a frequency or observable dependence, the system is not

in Gibbs-Boltzmann equilibrium

Do these βeff(ω) play a role in closed systems too?
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Plan

1. Introduction.

2. Fluctuation-dissipation relations

— Measurements of effective temperatures and properties.

— Relation to free-energy densities and entropy.

— Fluctuation theorems.

3. Quantum quenches.

4. Integrable systems and Generalized Gibbs Ensembles.

LFC, Kurchan & Peliti 97 ; Foini, LFC & Gambassi 11 & 12 ; Foini, Gambassi,

Konik & LFC 16 ; de Nardis, Panfil, Gambassi, LFC, Konik & Foini 17

Thanks to the joint autumn programs at KITP 2015
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Plan

4 Integrable systems and Generalized Gibbs Ensembles.

- As a test of non-thermal equilibrium

Foini, LFC & Gambassi 11 & 12

- Integrable non-interacting systems

Foini, Gambassi, Konik & LFC 16

- Integrable interacting systems

de Nardis, Panfil, Gambassi, LFC, Konik & Foini 17

Thanks to the joint autumn programs at KITP 2015
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Fluctuation-dissipation relations
Quantum Ising chain

The initial Hamiltonian ĤΓ0 = −
∑

i

σ̂xi σ̂
x
i+1 + Γ0

∑

i

σ̂zi

The initial state |ψ0〉 ground state of ĤΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with ĤΓ.
Iglói & Rieger 00

Reviews: Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case Γc = 1 the critical point. Rossini et al. 09
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Quantum quench
Teff from the FDR (quench to Γc = 1)

~ ImR̃(ω) = tanh(βeff(ω)ω~/2) C̃+(ω)
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βzeff(ω) 6= βMeff (ω) 6= ct

Foini, LFC & Gambassi 11 & 12

Similar ideas in Bortolin & Iucci 15 (hard core bosons)

Chiocchetta, Gambassi & Carusotto 15 (photon/polariton condensates)

48



Summary
Fluctuation-dissipation relations

Use of fluctuation-dissipation relations to check for deviations

from Gibbs-Boltzmann equilibrium in the dynamics of closed

quantum systems
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Fluctuation-dissipation relations

Can they be used to infer the steady state density operator?
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From the FDR to the GGE
Lehman representation

The correlation and linear response are

C(t2, t1) = 1
2
〈[Â(t2),Â†(t1)]+〉

R(t2, t1) = i〈[Â(t2),Â†(t1)]−〉 θ(t2−t1)

The expectation value 〈··· 〉 is calculated over a generic density matrix ρ̂

(units such that ~=1 and [X̂,Ŷ ]±≡X̂Ŷ±Ŷ X̂ )

Taking a Fourier transform wrt to t2 − t1

C̃(ω) = π
∑

m,n≥0

δ(ω + En − Em)|Anm|2(ρnn + ρmm)

Im R̃(ω) = π
∑

m,n≥0

δ(ω + En − Em)|Anm|2(ρnn − ρmm)

where the sums run over a complete basis of eigenstates {|n〉}n≥0 of the

Hamiltonian Ĥ with increasing eigenvalues En, and Xmn = 〈m|X̂|n〉.
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From the FDR to the GGE
Lehman representation

Note that C̃(ω) and Im R̃(ω) are non-zero only if ω takes values within the

discrete set {Em − En}m,n≥0 (due to the delta functions) and Anm 6= 0.

In Gibbs-Boltzmann equilibrium ρnn ∝ exp(−βEn) since there is a single

charge, Q̂1 = Ĥ , and for any bosonic Â, the FDT holds ∀ ω

Im R̃(ω) = tanh(βω/2) C̃(ω)

In contrast, for the GGE, ρnn ∝ exp(−∑k λkQkn) with Qkn ≡ 〈n|Q̂k|n〉.
By properly choosing Â we can extract the λk ’s from the corresponding FDR.
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From the FDR to the GGE
Example: a non-interacting integrable model

Take a non-interacting Hamiltonian in its diagonal form

Ĥ =
∑

k

εk η̂
†
kη̂k,

η̂k ’s are creation operators for excitations of energy εk

The number operators Q̂k = η̂†kη̂k are the (commuting) conserved charges.

The GGE density matrix is ρ̂ ∝ e
∑
k λkQ̂k with Q̂k = η̂†kη̂k,

while βk ≡ λk/εk defines a mode-dependent inverse “effective temperature”.

For Â =
∑

k (αkη̂k + α∗kη̂
†
k) ⇒ Im R̃(ωk)

C̃(ωk)
= tanh(λk/2)

with ω = ωk ≡ εk (in the absence of degeneracies with respect to k and αk ∈ C)
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Quantum quench
Hard-core bosons in one dimension

Consider the Lieb-Liniger model with density %

Ĥc =

∫
dx
[
∂xφ̂

†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)
]

initialized in the ground state of Ĥc=0 and evolved with Ĥc→∞

Mapping to hard-core bosons, that after a Jordan-Wigner transformation

become free fermions,

Ĥc→∞ =
∑

k εkf̂
†
k f̂k with εk = k2

The conserved charges are 〈Q̂k〉 = 〈f̂ †k f̂k〉 = 4%2/(ε2k + 4%2)

and the Lagrange multipliers λk = ln[ε2k/(4%
2)]
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Quantum quench
Hard-core bosons in one dimension

Consider again the c = 0 to c→∞ quench of the Lieb-Liniger model

In the stationary limit (and for q 6= 0, π)

C(q, t) =
∑

k

e−i(εk−εk−q)|t|(
nk−q + nk

2
− nk−qnk)

R(q, t) = iθ(t)
∑

k e
−i(εk−εk−q)t (nk−q − nk)

The Fourier transform picks ω = εk − εk−q with two solutions k1,2(q, ω)

Measuring at frequency ω and wave-vector q related by ω = 2ε(q+π)/2,

a single mode is selected, k1 = k2 = (q + π)/2, and the FDR becomes

ImR(q, ωq)/C(q, ωq) = tanhλq with λq = ln[ε2q/(4%
2)]
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Quantum quench
Hard-core bosons in one dimension
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Quantum quench
The one dimensional Bose gas

Consider the Lieb-Liniger model with density %

Ĥc =

∫
dx
[
∂xφ̂

†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)
]

initialized in the ground state of Ĥc=0 and evolved with Ĥc<+∞, now

an interacting problem.

Bethe Ansatz solution:

limt→∞〈O〉 = 〈ϑGGE|O|ϑGGE〉

with the eigenstate |ϑGGE〉 characterised by a “mode occupation” ϑGGE(λ)

computed, for this problem, in

De Nardis, Wouters, Brockmann & Caux 14
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Quantum quench
The one dimensional Bose gas

Let us parametrize ϑGGE(λ) as

ϑGGE(λ) = 1
1+eε(λ)

and ε(λF )=0.

One particle-hole kinematics at slow momentum k � kF = π%

The FDR of the density-density correlation and linear response is

Im R̃(k, ω)/C̃(k, ω) = tanh(k∂λε(λ)/(2πρt(λ))|λ(k,ω)

Without entering the technical details, ε(λ), ρt(λ) and λ(k, ω) depend

on ϑGGE(λ).

Computing the left-hand-side one can reconstruct ϑGGE(λ) and com-

pare it to the exact form derived by De Nardis et al 14
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Quantum quench
Hard-core bosons in one dimension
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ϑnum from FDR & ϑGGE from direct calculation.

Error due to the low k expansion present in both evaluations.

de Nardis, Panfil, Gambassi, LFC, Konik, Foini 17
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Summary
Fluctuation-dissipation relations

The FDRs of carefully chosen, but quite natural, observables

“contain” the GGE effective temperatures.

They can be used to measure them or, even more generally,

to infer the steady state density matrix
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4 Integrable systems and Generalized Gibbs Ensembles.

- As a test of non-thermal equilibrium

Foini, LFC & Gambassi 11 & 12

- Integrable non-interacting systems

Foini, Gambassi, Konik & LFC 16

- Integrable interacting systems

de Nardis, Panfil, Gambassi, LFC, Konik & Foini 17
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Two-time observables
Correlations

timet=0 t tw

preparation

   time

waiting 

   time

measuring

   time

0 τ

The two-time correlation between two observables Â(t) and B̂(tw) is

CAB(t, tw) ≡ 〈 Â(t)B̂(tw) 〉

expectation value in a quantum system, 〈. . .〉 = Tr . . . ρ̂/Trρ̂

or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.
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Two-time observables
Linear response

− δ δ
+

h

t t

2 2
w w

0 t

The perturbation couples linearly to the observable B̂ at time tw

Ĥ → Ĥ − h(tw)B̂

The linear instantaneous response of another observable Â(t) is

RAB(t, tw) ≡ δ〈Â(t)〉h
δh(tw)

∣∣∣∣∣
h=0

Similarly in a classical system
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Fluctuation-dissipation theorem
Gibbs-Boltzmann density operator ρ̂ = Z−1e−βĤ

C̃BA(−ω) = eβωC̃AB(ω)

and then

ImR̃AB(ω) = [~−1 tanh(β~ω/2)]±1 C̃AB
± (ω)

Bosons

Fermions

Classical limit : ImR̃AB(ω) = βω C̃AB(ω)
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Quantum quench
Teff from the longitudinal spin FDR
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Foini, LFC & Gambassi 11
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Quantum quench
Teff from FDT ?

For sufficiently long-times such that one drops the power-law correction

−βxeff '
Rx(τ)

dτCx
+(τ)

' −τcAR

Ac

A constant consistent with a classical limit but

T xeff(Γ0) 6= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T xeff(Γ0, ω) 6= T zeff(Γ0, ω) 6= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0 in the quantum Ising chain
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FDT & effective temperatures
Role of initial conditions

T ∗ > T found for quenches from the disordered into the glassy phase

(Inverse) quench from an ordered initial state, T ∗ < T

2d XY model or O(2) field theory Binary Lennard-Jones mixture

Berthier, Holdsworth & Sellitto 01 Gnan, Maggi, Parisi & Sciortino 13
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Quantum quenches
Expectations

Non-integrable systems expected to eventually thermalise.

Integrable systems?

role of initial states ; non critical vs. critical quenches, etc.

• Definition of Te from 〈ψ0|Ĥ|ψ0〉 = 〈Ĥ〉Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ 〈ψ0|φ̂(~x, t)φ̂(~y, t)|ψ0〉 vs. C(r) ≡ 〈φ̂(~x)φ̂(~y)〉Te .
Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

But the functional form of correlation functions can be misleading !
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Quantum quenches
Questions

Non-integrable systems expected to thermalise.

Integrable systems?

role of initial states ; non critical vs. critical quenches, etc.

• Definition of Te from 〈ψ0|Ĥ|ψ0〉 = 〈Ĥ〉Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ 〈ψ0|φ̂(~x, t)φ̂(~y, t)|ψ0〉 vs. C(r) ≡ 〈φ̂(~x)φ̂(~y)〉Te .
Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal: put qFDT to the test to check whether Teff = Te exists

Foini, LFC & Gambassi 11 & 12
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Two-body model
Integrable system ?

Model with N constants of motion: (extensions of) the Lewis invariants

2Iµ = ρ−2
µ (t)s2

µ(t) +m(ρµ(t)ṡµ(t)− ρ̇µ(t)sµ(t))2

with ρµ(t) given by the Ermakov equation

mρ̈µ(t) + [z(t)− λµ]− ρ−1/3
µ (t) = 0

Such system should approach a Generalized Gibbs Ensemble

ρGGE = Z−1
GGE(βµ) e−

∑N
µ=1 βµIµ

How to fix βµ after a quench? 〈Iµ〉GGE = Iµ(t = 0+)

H.R. Lewis 67, Ermakov Univ. Izv. (Kiev) 20, 1 (1880)
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Two-body model
Integrable system ?

Model with N constants of motion: (extensions of) the Lewis invariants

2Iµ = ρ−2
µ (t)s2

µ(t) +m(ρµ(t)ṡµ(t)− ρ̇µ(t)sµ(t))2

with ρµ(t) given by the Ermakov equation

mρ̈µ(t) + [z(t)− λµ]− ρ−1/3
µ (t) = 0

Such system should approach a Generalized Gibbs Ensemble ?

ρGGE = Z−1
GGE(βµ, ρµ(t)) e−

∑N
µ=1 βµIµ(sµ,pµ,ρµ(t))

How to fix βµ after a quench? 〈Iµ〉GGE = Iµ(t = 0+)

H.R. Lewis 67, Ermakov Univ. Izv. (Kiev) 20, 1 (1880)
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