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Introduction
My interests

— Classical and quantum, open and closed, non-equilibrium systems

— Out of equilibrium dynamics typically due to quenches in the envi-

ronment (open) or the system (closed) parameters.

— Many-body problem in interaction (even quenched randomness)

- collective phenomena

- phase transitions

- emerging thermodynamic behaviour
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Colloidal suspension
Balls in water (bath): easy to visualize

500 nm

Image from Coutland & Weeks 02

Quench: e.g., a sudden change in temperature or packing fraction.
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Colloidal suspension
Very dilute limit : Markov normal diffusion

For simplicity, take a one dimensional system, d = 1 with x0 = v0 = 0

The velocity is Gaussian distributed, in equilibrium, equipartition

〈v2〉 = kBT/m

The displacement of the position x crosses over at tI to diffusive

behaviour since e−βV is not normalizable.

〈x2(t)〉 → 2D t with

D = kBT/γ the diffusion constant.

Coexistence of equilibrium (~v) and out of equilibrium (~r) variables

7



Equilibrium dynamics
Fluctuation-dissipation theorem in the frequency domain

2ImR̃(ω)

ωC̃(ω)

T Bath temperature

ω
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Glassy dynamics
Fluctuation-dissipation relation in the frequency domain

2ImR̃(ω)

ωC̃(ω)

T ∗ Temperature of slow

relaxation

T Bath temperature

ωtw ω

Analytic solution to a mean-field model LFC & J. Kurchan 93
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FDR & effective temperatures
Can one interpret the slope as a temperature?
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Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A

.   .   .

α=1 α=3 α=Μ

x

α=2

(1) Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97
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Effective temperatures
Glasses, coarsening, driven systems

Different observables can behave differently (e.g. velocity vs. positions).

There is a separation of frequency-scales

with a crossover at, roughly, ωtw (or controlled by an external drive)

The FDRs take a very special form:

- ωtw � 1 quasi-stationary relation and FDT with bath T
- ωtw � 1 non-stationary relation and FDR with another T ∗.

Teff(ω, tw) crosses over from T to T ∗ that depends upon

- the initial condition before the quench (disordered vs. ordered) ;

- weakly on other parameters of the systems.

Notion of interacting vs. non-interacting concerning partial equilibrations

LFC 11, review
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Introduction
My interests

— Classical and quantum, open and closed, non-equilibrium systems

— Out of equilibrium dynamics typically due to quenches in the envi-

ronment (open) or the system (closed) parameters.

— Many-body problem in interaction (even quenched randomness)

- collective phenomena

- phase transitions

- emerging thermodynamic behaviour

LFC & Lozano 98, Kennett & Chamon 01, Biroli & Parcollet 02
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Fluctuation-dissipation relations
Quantum setting

Measure

ImR̃AB(ω) and C̃AB
± (ω)

take the ratio and extract tanh(βABeff (ω)~ω/2)

In equilibrium all βABeff (ω) should be equal to the same constant

This is the fluctuation-dissipation theorem (FDT).

If there is a frequency or observable dependence, the system is not

in equilibrium

Do these βeff(ω) play a role in closed systems too?
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Isolated quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of Ĥ0 (or any ρ̂(t0))

• Unitary time-evolution Û = e−
i
~ Ĥt with another Hamiltonian Ĥ .

Does the system reach some steady state ?

Is it described by a thermal equilibrium density matrix?

Do at least some observables behave as thermal ones?

Does the evolution occur as in equilibrium ?

Other kinds of density matrices ?
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Quantum quenches
Questions

Non-integrable systems expected to eventually thermalise (ETH).

Integrable systems?

role of initial states ; non critical vs. critical quenches, etc.

• Definition of Te from 〈ψ0|Ĥ|ψ0〉 = 〈Ĥ〉Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ 〈ψ0|φ̂(~x, t)φ̂(~y, t)|ψ0〉 vs. C(r) ≡ 〈φ̂(~x)φ̂(~y)〉Te .
Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

But the functional form of correlation functions can be misleading !

16



Quantum quenches
Questions

Non-integrable systems expected to thermalise (ETH).

Integrable systems?

role of initial states ; non critical vs. critical quenches, etc.

• Definition of Te from 〈ψ0|Ĥ|ψ0〉 = 〈Ĥ〉Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ 〈ψ0|φ̂(~x, t)φ̂(~y, t)|ψ0〉 vs. C(r) ≡ 〈φ̂(~x)φ̂(~y)〉Te .
Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal: put qFDT to the test to check whether Teff = Te exists

Foini, LFC & Gambassi 11 & 12
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Quantum quench
Quantum Ising chain

The initial Hamiltonian ĤΓ0 = −
∑

i

σ̂xi σ̂
x
i+1 + Γ0

∑

i

σ̂zi

The initial state |ψ0〉 ground state of ĤΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with ĤΓ.
Iglói & Rieger 00

Reviews: Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case Γc = 1 the critical point. Rossini et al. 09
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Γ0→ Γc= 1
Teff from the FDR

~ ImR̃(ω) = tanh(βeff(ω)ω~/2) C̃+(ω)
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βzeff(ω) 6= βMeff (ω) 6= ct

Foini, LFC & Gambassi 11 & 12

Similar ideas used in, e.g., Bortolin & Iucci 15 (hard core bosons)

Chiocchetta, Gambassi & Carusotto 15 (photon/polariton condensates), etc.
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Summary
Fluctuation-dissipation relations

No Gibbs-Boltzmann equilibrium.

Use of fluctuation-dissipation relations to check for deviations

from Gibbs-Boltzmann equilibrium in the dynamics of closed

quantum systems.
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Fluctuation-dissipation relations

Can they be used to infer the steady state density operator?
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The Generalised Gibbs Ensemble
Proposal for integrable systems

In an integrable system with N degrees of freedom there are

N local conserved charges or integrals of motion Q̂k, k = 1, . . . , N

such that they are mutually commuting [Q̂k, Q̂k′ ]− = 0 and

they all commute with the Hamiltonian [Ĥ, Q̂k]− = 0.

The relevant stationary density operator is expected to be the GGE one

ρ̂GGE = Z−1 e−
∑N
k=1 λkQ̂k

in the sense that limt�t∗〈Ôloc〉(t) = 〈Ôloc〉GGE = Tr Ôlocρ̂GGE

for all local Ôloc

M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii 07
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The Generalised Gibbs Ensemble
How to fix the λk after a quantum quench?

In an integrable system with N degrees of freedom there are

N local conserved charges or integrals of motion Q̂k, k = 1, . . . , N

The GGE density operator

ρ̂GGE = Z−1 e−
∑N
k=1 λkQ̂k

depends on N Lagrange multipliers (related to effective inverse tempe-

ratures) that are fixed by imposing

〈ψ0|Q̂k|ψ0〉 = 〈Q̂k〉GGE = Tr Q̂kρ̂GGE

M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii 07
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Quantum quench
Quantum Ising chain : FDR and GGE for M̂ = L−1

∑L
i=1 σ̂

z
i

~ ImR̃M(ω) = tanh(βMeff (ω)ω~/2) C̃M+(ω)
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TMeff (ω = 2εk(Γ,Γ0)) = TGGEk (Γ,Γ0)

For finite L, ImR̃M (ω) and C̃M+
(ω) are non-zero only at ω = 2εk with εk the energy of the quasi-

particles (free-fermions that diagonalise the Hamiltonian).

Foini, LFC & Gambassi 11 & 12
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Quantum quench
Quantum Ising chain : FDR and GGE for M̂ = L−1
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From the FDR to the GGE
Lehman representation

The correlation and linear response are

C+(t2, t1) = 1
2
〈[Â(t2),Â†(t1)]+〉

R(t2, t1) = i〈[Â(t2),Â†(t1)]−〉 θ(t2−t1)

The expectation value 〈 ··· 〉 is calculated over a generic density matrix ρ̂

(units henceforth such that ~=1 and [X̂,Ŷ ]±≡X̂Ŷ±Ŷ X̂ )

Taking a Fourier transform wrt to t2 − t1

C̃+(ω) = π
∑

m,n≥0

δ(ω + En − Em)|Anm|2(ρnn + ρmm)

Im R̃(ω) = π
∑

m,n≥0

δ(ω + En − Em)|Anm|2(ρnn − ρmm)

where the sums run over a complete basis of eigenstates {|n〉}n≥0 of the

Hamiltonian Ĥ with increasing eigenvalues En, and Xmn = 〈m|X̂|n〉.
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From the FDR to the GGE
Lehman representation

Note that C̃+(ω) and Im R̃(ω) are non-zero only if ω takes values within the

discrete set {Em − En}m,n≥0 (due to the delta functions) and Anm 6= 0.

In Gibbs-Boltzmann equilibrium ρnn ∝ exp(−βEn) since there is a single

charge, Q̂1 = Ĥ , and for any bosonic Â, the FDT holds ∀ ω

~Im R̃(ω) = tanh(β~ω/2) C̃+(ω)

In contrast, for the GGE, ρnn ∝ exp(−∑k λkQkn) with Qkn ≡ 〈n|Q̂k|n〉
and the sums include many terms. However, one can cut these sums by

properly choosing Â and extracting the λk’s from the corresponding FDR
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Quantum quench
Hard-core bosons in one dimension

Consider the Lieb-Liniger model with density %

Ĥc =

∫
dx
[
∂xφ̂

†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)
]

initialized in the ground state of Ĥc=0 and evolved with Ĥc→∞

a non interacting problem

Mapping to hard-core bosons, that after a Jordan-Wigner transformation

become free fermions,

Ĥc→∞ =
∑

k εkf̂
†
k f̂k with εk = k2

The conserved charges are 〈Q̂k〉 = 〈f̂ †k f̂k〉 = 4%2/(ε2k + 4%2)

and the Lagrange multipliers λk = ln[ε2k/(4%
2)]
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Quantum quench
Hard-core bosons in one dimension

Consider again the c = 0 to c→∞ quench of the Lieb-Liniger model

In the stationary limit, the density operator ρ̂(q, t) (for q 6= 0, π)

C+(q, t) =
∑

k

e−i(εk−εk−q)|t|(
nk−q + nk

2
− nk−qnk)

R(q, t) = iθ(t)
∑

k e
−i(εk−εk−q)t (nk−q − nk)

The Fourier transform picks ω = εk − εk−q with two solutions k1,2(q, ω)

Measuring at frequency ω and wave-vector q related by ω = 2ε(q+π)/2,

a single mode is selected, k1 = k2 = (q + π)/2, and the FDR becomes

ImR(q, ωq)/C+(q, ωq) = tanhλq with λq = ln[ε2q/(4%
2)]
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Quantum quench
Hard-core bosons in one dimension

32



Quantum quench
The one dimensional Bose gas

Consider the Lieb-Liniger model with density %

Ĥc =

∫
dx
[
∂xφ̂

†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)
]

initialized in the ground state of Ĥc=0 and evolved with Ĥc<+∞, now

an interacting problem

Bethe Ansatz solution:

limt→∞〈Ô〉 = 〈ϑGGE|Ô|ϑGGE〉

with the eigenstate |ϑGGE〉 characterised by a “mode occupation” ϑGGE(λ)

computed, for this problem, in

de Nardis, Wouters, Brockmann & Caux 14
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Quantum quench
The one dimensional Bose gas

Let us parametrize ϑGGE(λ) as

ϑGGE(λ) = 1
1+eε(λ)

and ε(λF )=0.

One particle-hole kinematics at low momentum k � kF = π%

The FDR of the density-density correlation and linear response is

Im R̃(k, ω)/C̃+(k, ω) = tanh(k∂λε(λ)/(2πρt(λ))|λ(k,ω)

Without entering the technical details, ε(λ), ρt(λ) and λ(k, ω) depend

on ϑGGE(λ).

Computing the left-hand-side one can reconstruct ϑGGE(λ) and com-

pare it to the exact form derived by de Nardis et al 14

34



Quantum quench
Hard-core bosons in one dimension
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ϑnum from FDR & ϑGGE from direct calculation.

Error due to the low k expansion present in both evaluations.

de Nardis, Panfil, Gambassi, LFC, Konik, Foini 17
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Summary
Fluctuation-dissipation relations

The FDRs of carefully chosen, but quite natural, observables

“contain” the GGE effective temperatures.

They can be used to measure them or, even more generally,

to construct the steady state density matrix.

Advantages:

One does not have to know the conserved charges.

Just one observable needs to be used. The sweeping is made

in frequency and wave-vector.
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Two-time observables
Correlations

timet=0 t tw

preparation

   time

waiting 

   time

measuring

   time

0 τ

The two-time correlation between two observables Â(t) and B̂(tw) is

CAB(t, tw) ≡ 〈 Â(t)B̂(tw) 〉

expectation value in a quantum system, 〈. . .〉 = Tr . . . ρ̂/Trρ̂

or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.
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The observable M
Correlation & linear response

The two-time correlation & linear response between two observables

Â(t) and B̂(tw) are

C±AB(t, tw) ≡ 〈 [Â(t), B̂(tw)]± 〉

expectation value in a quantum system, 〈. . .〉 = Tr . . . ρ̂/Trρ̂

or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.
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Two-time observables
Linear response

− δ δ
+

h

t t

2 2
w w

0 t

The perturbation couples linearly to the observable B̂ at time tw

Ĥ → Ĥ − h(tw)B̂

The linear instantaneous response of another observable Â(t) is

RAB(t, tw) ≡ δ〈Â(t)〉h
δh(tw)

∣∣∣∣∣
h=0

Similarly in a classical system
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Fluctuation-dissipation theorem
Gibbs-Boltzmann density operator ρ̂ = Z−1e−βĤ

C̃BA(−ω) = eβωC̃AB(ω)

and then

ImR̃AB(ω) = [~−1 tanh(β~ω/2)]±1 C̃AB
± (ω)

Bosons

Fermions

Classical limit : ImR̃AB(ω) = βω C̃AB(ω)
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Quantum quench
Teff from the longitudinal spin FDR
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Foini, LFC & Gambassi 11
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Quantum quench
Teff from FDT ?

For sufficiently long-times such that one drops the power-law correction

−βxeff '
Rx(τ)

dτCx
+(τ)

' −τcAR

Ac

A constant consistent with a classical limit but

T xeff(Γ0) 6= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T xeff(Γ0, ω) 6= T zeff(Γ0, ω) 6= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0 in the quantum Ising chain
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FDT & effective temperatures
Role of initial conditions

T ∗ > T found for quenches from the disordered into the glassy phase

(Inverse) quench from an ordered initial state, T ∗ < T

2d XY model or O(2) field theory Binary Lennard-Jones mixture

Berthier, Holdsworth & Sellitto 01 Gnan, Maggi, Parisi & Sciortino 13
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Dissipative quantum glasses
Quantum p-spin model coupled to a bath of oscillators

C

R

t−tw

χ

C

Classical FDT beyond the shoulder

Out of equilibrium decoherence

LFC & Lozano 98
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Glassy dynamics
Non stationary relaxation & separation of time-scales

Density-density correlation density response
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C(t, tw) χ(t, tw) =
∫

t

tw
dt′ R(t, t′)

Correlation Time-integrated linear response

Analytic solution to a mean-field model LFC & J. Kurchan 93
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Glassy dynamics
Fluctuation-dissipation relation: parametric plot
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Another example
1d hard-core bosons in a super-lattice potential

Fermionic representation :

Ĥ0(∆) = −∑i f̂
†
i f̂i+1 + h.c. + ∆

∑
i(−1)i f †i fi

Quench from the ground state of Ĥ0(∆) to Ĥ = Ĥ0(∆ = 0).

Although ρ̂ 7→ ρ̂GGE ≈ ρ̂GB for ∆� |ωk| = O(1)

Chung, Iucci & Cazalilla 12

the FDT is not satisfied in this same limit, and different FDRs yield dif-

ferent Teffs.

Bortolin & Iucci 15
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Another example
1d hard-core bosons in a super-lattice potential

ω

(local) density operator

Â = B̂ = n̂in̂i

(non-local) boson operator

Â = B̂ = b̂†i b̂i

Bortolin & Iucci 15

Similar ideas in models of photon/polariton condensates,

Chiocchetta, Gambassi, Carusotto 15
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Fluctuation-dissipation theorem
Classical dynamics in Gibbs-Boltzmann equilibrium

The classical FDT for a stationary system with τ ≡ t− tw reads

χ(τ) =

∫ τ

0

dt′ R(t′) = −β[C(τ)− C(0)] = β[1− C(τ)]

choosing C(0) = 1.
Linear relation between χ and C

Quantum dynamics in Gibbs-Boltzmann equilibrium

The quantum FDT reads

χ(τ) =

∫ τ

0

dτ ′ R(τ ′) =

∫ τ

0

dτ ′
∫ ∞

−∞

idω

π~
e−iωτ

′
tanh

(
β~ω

2

)
C(ω)

Complicated relation between χ and C
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