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Quenches in statistical physics models
passing by critical percolation !

What is it about?

Classical open systems

Statistical physics framework

Stochastic dissipative dynamics

Out of equilibrium

coarsening - phase ordering kinetics

percolation – fractality
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Phenomenon

The talk focuses on a very well-known example

Dynamics following a change of a

control parameter

• If there is an equilibrium phase transition, the equilibrium phases

are known on both sides of the transition.

i.e. the asymptotic state is known.

• For a purely dynamic problem, the absorbing states are known.

• The dynamic mechanism towards equilibrium is understood

the systems try to order locally in one of the few competing states.
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Interests and goals

Practical & fundamental interest, e.g.

• Mesoscopic structure effects on the opto-mechanical properties of phase

separating glasses

• Cooling rate effects on the density of topological defects in cosmology and

condensed matter

Some issues

• The role played by the initial conditions & short-time dynamics

• Full geometric characterisation of the structure

• When does the usual dynamic scaling regime set in?

• The role played by the cooling rate

that are related to each other.

4



Phase separation in glasses

t = 1 min

Gouillart (Saint-Gobain), Bouttes & D. Vandembroucq (ESPCI) 11-14

5



Phase separation in glasses

t = 4 min

Gouillart (Saint-Gobain), Bouttes & D. Vandembroucq (ESPCI) 11-14
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Phase separation in glasses

t = 16 min

Gouillart (Saint-Gobain), Bouttes & D. Vandembroucq (ESPCI) 11-14
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Phase separation in glasses

t = 64 min

Gouillart (Saint-Gobain), Bouttes & D. Vandembroucq (ESPCI) 11-14
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Framework

The talk is on a very well-known problem

The stochastic dynamics of the 2d Ising model after an

instantaneous quench from high to low temperature

• There is a 2nd order phase transition, and

the equilibrium phases are the paramagnet at high T and

the (degenerate) ferromagnet at low T .

• Standard knowledge :

The dynamic mechanism is curvature-driven domain growth.
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2d Ising Model (IM)
Archetypical example for classical magnetic systems

H = −J
∑
⟨ij⟩

sisj

si = ±1 Ising spins.

⟨ij⟩ sum over nearest-neighbours on the lattice.

J > 0 ferromagnetic coupling constant.

critical temperature Tc > 0 for d > 1.

Monte Carlo rule si → −si accepted with p = 1 if ∆E < 0

p = e−β∆E if ∆E > 0

p = 1/2 if ∆E = 0

Non-conserved order parameter dynamics [ ↑↓ towards ↑↑ ] etc. allowed.

[m = 0 to m = 2]
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Phenomenon

Similar questions can be asked in very well-known problems in math, e.g.

Dynamics of a voter model starting from

a random initial condition

• Purely dynamic, violation of detailed balance, no phase transition

• Two absorbing states

• The dynamic mechanism towards absorption is understood

domain growth is driven by interfacial noise
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2d Voter Model (VM)
Archetypical example of opinion dynamics

H does not exist - kinetic model

si = ±1 Ising spins that

sit on the vertices of a lattice.

Voter update rule

choose a spin at random, say si

choose one of its 2d neighbours at random, say sj

set si = sj

In two dimensions full consensus, i.e. m = L−d
∑Ld

i=1 si = ±1 is reached

in a timescale tC ≃ L2 (with lnL corrections)

Clifford & Sudbury 73, Holley & Liggett 75, Cox & Griffeaths 86
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Phase ordering kinetics
si = ±1 at t = 0 MCs, snapshots at t = 4, 64, 512, 4096 MCs

Ising

T = 0

Tc

Voter
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Dynamic scaling
in phase ordering kinetics

Growing length ℓ ≡ ξd(t)

Typically ξd(t) ≃ t1/zd

Excess energy w.r.t. the equilibrium one stored in the domain walls
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Dynamic scaling

At late times there is a single length-scale, the typical radius of the do-

mains ξd(t), such that the domain structure is (in statistical sense) inde-

pendent of time when lengths are scaled by ξd(t), e.g.

C(r, t) ≡ ⟨ si(t)sj(t) ⟩||x⃗i−x⃗j |=r ∼ ⟨ϕ⟩2eq f
(

r

ξd(t)

)
C(t, tw) ≡ ⟨ si(t)si(tw) ⟩ ∼ ⟨ϕ⟩2eq fc

(
ξd(t)

ξd(tw)

)

etc. when r ≫ ξeq, times such that t, tw ≫ t0 and C < ⟨ϕ⟩2eq.

Review Bray 94
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Dynamic scaling

At late times there is a single length-scale, the typical radius of the do-
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)
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(
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Review Bray 94
Is this really all there is?
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Interests and goals

Practical & fundamental interest, e.g.

• Mesoscopic structure effects on the opto-mechanical properties of phase

separating glasses

• Cooling rate effects on the density of topological defects in cosmology and

condensed matter

Some issues

• The role played by the initial conditions & short-time dynamics

• Full geometric characterisation of the structure

• When does the usual dynamic scaling regime set in?

• The role played by the cooling rate

that are related to each other.
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2d square IM at T=0

t=0.0
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2d square IM at T=0

t=0.57533
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Spanning cluster
Has this cluster something to do with (critical) percolation?
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Percolation
Purely geometric problem

Take a lattice Λ in d spatial dimensions.

Define a site occupation variable ni = 1, 0 with probability p, 1− p

In the limit L → ∞ there is a continuous phase transition at pc such that

the probability of there being a cluster of occupied nearest-neighbour sites that

crosses a sample from one end to another in at least one Cartesian direction

lim
L→∞

P (p, L)

 = 0 if p ≤ pc

> 0 if p > pc

pc depends on Λ and d.

At pc the spanning cluster has fractal properties that are well characterised
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Percolation
Purely geometric problem

Take a lattice Λ in d spatial dimensions.

Define a site occupation variable ni = 1, 0 with probability p, 1− p

In the limit L → ∞ there is a continuous phase transition at pc such that

the probability of there being a cluster of occupied nearest-neighbour sites that

crosses a sample from one end to another in at least one Cartesian direction

lim
L→∞

P (p, L)

 = 0 if p ≤ pc

> 0 if p > pc

pc depends on Λ and d.

The distribution of finite size clusters is algebraic at pc
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Percolation
Exact results at the critical threshold

Probability of percolation along the horizontal or vertical directions, π1

Probability of percolation along the horizontal and vertical directions, πhv

(On a torus) Probability of percolation along the diagonal direction, πd

From SLE & CFT calculations.
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Percolation
Exact results at the critical threshold

Winding angle vs. curvilinear length of the wall

⟨θ2(x)⟩ = ct +
4κ

8 + κ
lnx

with κ = 6

From SLE & CFT calculations.
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Coarsening
Is this really critical percolation?

Back to the dynamic problem
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2dIM : various lattices
Initial conditions for an instantaneous quench

Equilibrium at infinite temperature, T0 → ∞, initial condition.

The spins take ±1 values with probability 1/2.

Site occupation variable ni = (si + 1)/2 = 1, 0 with p = 1/2

From a site percolation perspective:

pc = 0.65 Kagome lattice.

pc = 0.59 Square lattice.

pc = 0.55 Bow-tie lattice.

pc = 0.5 Triangular lattice.

Initial condition at p = 0.5, below pc
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2d square IM at T=0

t=0.0
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2d square IM at T=0

t=0.57533
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2d square IM at T=0

t=0.94844
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2d square IM at T=0

t=2.00847
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2d square IM at T=0

t=2.57898
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2d square IM at T=0

t=3.99211
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2d square IM at T=0

t=6.58423
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2d square IM at T=0

t=7.46144
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2d square IM at T=0
The percolating structure was decided at tp ≃ 8 MCs

t=7.46144 t=128.0

Arenzon, Bray, LFC & Sicilia 07 Blanchard, Corberi, LFC & Picco 14
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2d square IM at T=0
The final configuration will be one with two horizontal stripes

t=7.46144 t=128.0

Olejarz, Krapivsky & Redner 12, Blanchard & Picco 13
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Is it critical percolation?
Analysis of clusters and boundaries

Domain area: sum of filled dots

External boundary or hull: red broken line

Hull-enclosed area: sum of lattice sites within the red boundary (including

the two empty sites)
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Is it critical percolation?
Full distribution of hull-enclosed areas

Quench from T0 → ∞.
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Is it critical percolation?
Finite size scaling of the bump

Take A to be the hull-enclosed area or the domain area.

At critical percolation, finite size scaling of the number density of areas

N (A,L) = 2c A−τ +Np(A/L
D)

with D = d/(τ − 1) the fractal dimension of the percolating clusters.

Stauffer & Aharony 94

For hull-enclosed areas τ = 2 and D = 2

For domain areas τ = 187/91 ≃ 2.05 and D ≃ 1.9

NB the corresponding exponents for critical Ising conditions are different but take values close to these.

The constants 2c are known, e.g. 2cd ≈ 0.06

Cardy & Ziff 03 Sicilia, Arenzon, Bray & LFC 07
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Is it critical percolation?
The probabilities of percolation in different directions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 102 104 106

π
h
v
,

(π
h

+
π

v
),

π
d
ia

g

t/Lzp

L=40
80

160
320

41



Is it critical percolation?
The winding angle

0
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〈θ
2
(x

,t
)〉

ln(x)

t = 1.218
14.841

180.804
2202.647
k = 5.90

ln(x/`G(t))

κ ≃ 5.9
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When?

Let us call tp(L)

the time needed to reach

the critical percolation state
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Determination of tp(L)
Cloning trick and measurement of the overlap

Quench a system from T0 → ∞ to T = 0 at t = 0.

Let it evolve at T = 0 until tw.

Make a copy of the instantaneous configuration, σi(tw) = si(tw).

Let the two clones evolve with different thermal noises.

Compute the time-dependent overlap

qtw(t, L) =
1
Ld

∑Ld

i=1⟨si(t)σi(t)⟩

If tw < tp(L) limt≫tw qtw(t, L) = 0

If tw > tp(L) limt≫tw qtw(t, L) > 0
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Determination of tp(L)
The overlap

limt→∞ qtw(L)(t, L) should reach a constant independent of L

 0.7

 0.8

 0.85

 20  40  80  160

q
t w

L

(a)

L0.45
L0.50

tw=L0.55

 20  40  80  160

L

(b)

 20  40  80  160

L

(c)

L0.30
L0.32
L0.33

tw=L0.35

Square FBC Kagome FBC Triangular PBC

tp(L) ≃ L0.5 tp(L) ≃ L0.33
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First conclusion
Approach to critical percolation

The zero-temperature non-conserved order parameter dynamics of

the 2d Ising model and the dynamics of the 2d Voter model, both

starting from a totally uncorrelated T0 → ∞ paramagnetic initial

state, approach uncorrelated critical percolation after a time

tp ≃ Lzp .

The exponent zp depends upon the effective connectivity of the lat-

tice and the microscopic dynamics.

For instance, zp = 0.5 for the 2d Ising model with non-conserved

order parameter dynamics and zp = 1.667 for the 2d Voter model,

both on the square lattice.

Blanchard, Corberi, LFC & Picco 14 ; Tartaglia, LFC & Picco 15
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First conclusion
Approach to critical percolation : why is this feature interesting?

A mechanism that went unnoticed in this context so-far.

Seems to be universal.

In RG language it suggests the first approach to a fixed point that is

not fully attractive (critical percolation) and the subsequent departure

from it.

Analytical challenge: how can one prove this claim?

Manifold consequences:

metastability, blocked striped states at zero temperature ;

corrections to dynamic scaling.

47



First conclusion
Approach to critical percolation : why is this feature interesting?

A mechanism that went unnoticed in this context so-far.

Seems to be universal.

In RG language it suggests the first approach to a fixed point that is

not fully attractive (critical percolation) and the subsequent departure

from it.

Analytical challenge: perhaps in the voter model.

Similar master equation to the one of the 1d Glauber chain

Krapivsky et al. 90s

Mapping to random walks Cox & Griffeaths 80s

But... finite L effects searched
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Aggregation
Approach to critical percolation: why is this feature interesting?

Bidimensional diffusion-limited cluster-cluster aggregation

M/lD

l

The gelation cluster at tp its scaled mass, with D = 1.89

Hasmy & Jullien 96
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2d square IM at T=0
The final configuration was decided at tp
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πhv ≈ 0.62

πh + πv ≈ 0.34

πd ≈ 0.03

stripe states with the probabilities of critical percolation

Barros, Krapivsky & Redner 09, Blanchard & Picco 13
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Correction to scaling
Linear-Log scale, zoom over C ≲ 0.1

C(r, t, L)

r
ξd(t)

f
(

r
ξd(t)

)
g
(

r
ξd(t)

, ξp(t)
L

)
with ξp(t) ≡ t1/zp and ξd(t) ≡ t1/zd

zp ≃ 1/2 for the square & Kagome, and zp ≃ 1/3 for the triangular lattice.

53



Second conclusion
Early approach to percolation

ξp(t) ≃ t1/zp is a new growing length-scale that brings about a new

scaling variable to be taken into account in dynamic scaling.

Studies of the 2d

Ising model with non-conserved order parameter dynamics

Voter model

Ising model with conserved (Kawasaki) order parameter dynamics

ξp(t) ≃ t1/zp or ξp(t) ≃ ξnd (t)

Blanchard, Corberi, LFC & Picco 14 ; Tartaglia, LFC & Picco 15
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Statistics of finite areas
The predictions for t > tp

nh(A, t) ≡
(2)ch

(A+ λt)2
nd(A, t) ≈

(2)cd (λdt)
τ−2

(A+ λdt)τ

in the long time limit t≫ tp.

We derived the expected scaling forms, as ξd(t) = (λt)1/2 :

ξ4d(t)nh(A, t) = fh

(
A

ξ2d(t)

)
nd(A, t) ≈ (λdt)

−2 fd

(
A
λdt

)
.

The new parameters are cd = ch +O(c2h) and λd = λ+O(ch). Moreover,

the sum rules, Nh(t) = Nd(t) and
∫
dA And(A, t) = 1 relate ch to τ (or τ ′) !

Arenzon, Bray, LFC & Sicilia, PRL 07 & PRE 07.
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Simulations vs. theory
Number density of (finite) hull-enclosed areas per unit area

T0 → ∞ and T = 0

10-12

10-10

10-8

10-6

10-4

100 101 102 103 104 105

n(
A

,t)

A

t = 4
    8

    16
    32
    64

    128
    256

Solid lines

analytical prediction :

nh(A, t) ≡
(2)ch

(A+ λt)2
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Summary

• Evidence for the approach to critical percolation at a time-scale

that diverges with the system size as tp ≃ Lzp .

• The new growing length-scale, ξp(t) ≃ t1/zp dominates at short

times and is needed to improve the scaling of finite-size and finite-

time data.

This effect also exists at finite temperature. Metastability acquires

a finite life-time.

• We derived the number density of hull & domain enclosed areas

and interface length for t > tp and we showed that they satisfy

dynamic scaling with respect to ξd(t) ≃ t1/zd with zd = 2 for

times t≫ tp.
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Phase separation in glasses
— Sodium potassium borosilicate SiO2 (70%) B2O3 (20%) BaO (10%)

heterogeneous glass with special mechanical properties.

— Raw material mixed and melted at T ≃ 1500 C.

— Mixture cooled at ambient T : no dynamics (Paris → Grenoble).

— Mixture heated at T = 1000 C phase separates into

one glassy phase : 75% SiO2 + 25% B2O3.

another glassy phase : 60% SiO2 + 20% B2O3 + 20% BaO

roughly c = 50% each.

— 3d X tomography at ESRF (ID 19 line).

— Sample size 700 µml ; pixel size 0.7 µm.

D. Bouttes (ESPCI), E. Gouillart (Saint-Gobain) & D. Vandembroucq (ESPCI)
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Is it critical percolation?
Number density of the areas of percolated clusters
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At t = 16 MCs the bump converged to a stationary form that satisfies the finite

size scaling of critical site percolation with τ = 2.05 and D = 1.9, and the

scaling function is the one of critical percolation (not shown).

Insert: failure of collapse if critical Ising exponents are used.
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Approach to percolation
Scaling of finite-size area density with ξp(t) ≃ t1/zp

Aτ N (A,L; t)

0.1

10−4 10−2 1 102 104

t = 1
2
4
8

16
32
64

(A/t4)0.308

A/ξ2p(t)

with ξp(t) ≡ t1/zp and

conjecture: zp = zd/n with n the lattice coordination and zd = 2.

Blanchard, LFC, Picco & Tartaglia 16
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2d square IM at T=0
The final configuration was decided at tp

t=7.46144 t=128.0

stripe states with the probabilities of critical percolation:

a spanning cluster along the two Cartesian directions 2πhv ≈ 0.64

along only one of them 1− 2πhv ≈ 0.36

Barros, Krapivsky & Redner 09, Blanchard & Picco 13
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U(1) field theory in 3d
Relativistic bosons ; also 4He, type II superconductors, cosmology

L = 1
c2
|ψ̇|2 + iµ{ψ∗ψ̇ − cc} − |∇ψ|2 + gρ|ψ|2 − g

2
|ψ|4

S =
∫
ddx L action ; L Lagrangian density, ψ(x⃗, t) complex field.

µ chemical potential, c velocity of light, ρ and g parameters in potential.

critical temperature Tc > 0 in d = 3.

Langevin dynamics −γψ̇ viscosity friction plus ξ noise

time-dependent complex Ginzburg-Landau, stochastic Goldstone (µ→ 0)

and Gross-Pitaevskii (c→ ∞) model for BECs close to the Mott insulator

transition and in their gaseous phase, respectively.

Non-conserved order parameter dynamics Gardiner et al 00s
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U(1) field theory in 3d
Time evolution of vortex configurations, tubes of ψ = 0

t = 0 t = 3 t = 5
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U(1) field theory in 3d
Vorticity & reconnection conventions

2πvx =
∑

plaq[∆θ]2π = 0,±1, . . .

One field configuration with two possible line structures

Maximal & stochastic reconnection rules

while just one choice in

Kajantie et al. 00, Bittner, Krinner & Janke 05, Kobayashi & LFC 15
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U(1) field theory in 3d
Number density of vortex loops in equilibrium
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High & low T Close to T
(S)
L

Stochastic rule, three algebraic regimes :

At T ≫ Tc, for l ≪ L2 Gaussian statistics l−5/2

for l ≫ L2 fully-packed loops large-scale statistics l−1

At T
(S)
L < Tc, percolation l−2.17

Kobayashi & LFC in preparation
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U(1) field theory in 3d
Number density of vortex loops after a quench to T = 0
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There is a tp ≃ 6 such that for t
>∼ tp three algebraic regimes :

l ≪ t1/2 dynamic scaling l2P (l) against l/t1/2

t1/2 ≪ l ≪ L2 percolation-like l−2.17

L2 ≪ l fully-packed loops large-scale statistics l−1

Kobayashi & LFC in preparation
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Second conclusion
Early approach to percolation

A similar phenomenon observed in the 3d U(1) field theory or XY

model.

ξp(t) ≃ t1/zp is a new growing length-scale that brings about a new

scaling variable to be taken into account in dynamic scaling.

In the 2d Ising model ξp(t) ≃ t1/zp and ξd(t) ≃ t1/zd are rather

well separated as zp ≃ 0.5 and zd = 2.

In the 2d Voter model it is hard to disentangle the two since

zp ≃ 1.667 and zd = 2.

In the 3d U(1) model we still do not know zp.

Kobayashi & LFC in preparation
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Interests and goals

Practical & fundamental interest, e.g.

• Mesoscopic structure effects on the opto-mechanical properties of phase

separating glasses

• Cooling rate effects on the density of topological defects in cosmology and

condensed matter

Some issues

• The role played by the initial conditions & short-time dynamics

• Full geometric characterisation of the structure

• When does the usual dynamic scaling regime set in?

• The role played by the cooling rate

that are related to each other.
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Theoretical motivation
Network of cosmic strings

They should affect the Cosmic Microwave Background, double quasars, etc.

Picture from M. Kunz’s group (Université de Genève)
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Topological defects
instantaneous configurations

Domain walls in the 2dIM Vortices in the 3d xy model

One can give a precise mathematical definition but the visual one is enough
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Finite rate quenching protocol
How is the scaling modified for a very slow quenching rate?

∆g ≡ g(t)− gc = −t/τQ with τQ1 < τQ2 < τQ3 < τQ4

Standard time parametrization g(t) = gc − t/τQ

Simplicity argument: linear cooling could be thought of as an approxima-

tion of any cooling procedure close to gc.
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Density of domain walls
At t ≃ τQ in the 2dIM with NCOP dynamics

Coarsening in the low-T phase has to be taken into account

N(t ≃ τQ, τQ) = n(t ≃ τQ, τQ)L
2 ≃ τ−1

Q

while the KZ mechanism yields NKZ ≃ τ
−ν/(1+νzc)
Q ≃ τ−0.31

Q .

Biroli, LFC & Sicilia 10
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Summary
Three parts

• Evidence for the approach to critical percolation at a time-scale

that diverges with the system size as tp ≃ Lzp .

• The new growing length-scale, ξp(t) ≃ t1/zp dominates at short

times and is needed to improve the scaling of finite-size and finite-

time data.

• In slow quenches, need to take coarsening into account at suffi-

ciently long times, e.g., t ≃ τQ to describe the remnant density

of topological defects ayer a finite rate quench correctly.
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Zurek’s argument
Slow quench from equilibrium well above gc

The system follows the pace imposed by the changing conditions, ∆g(t) =

−t/τQ, until a time −t̂ < 0 (or value of the control parameter ĝ > gc) at

which its dynamics are too slow to accommodate to the new rules. The

system falls out of equilibrium.

−t̂ is estimated as the moment when the relaxation time, τeq , is of the order of

the typical time-scale over which the control parameter, g, changes :

τeq(g) ≃
∆g

dt∆g

∣∣∣∣
−t̂

≃ t̂ ⇒ t̂ ≃ τ
νzc/(1+νzc)
Q

The density of defects is n̂KZ ≃ ξ−d
eq (ĝ) ≃ (∆ĝ)νd ≃ τ

−νd/(1+νzc)
Q

and gets blocked at this value ever after

Zurek 85
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Finite rate quench
Sketch of Zurek’s proposal for RτQ
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Infinitely fast quench
Dynamic scaling

From a completely uncorrelated initial state either to the critical point or

into the symmetry broken phase.

Infinite system size, thermodynamic limit.

Rc(t) ≃ t1/zc or R(t) ≃ t1/zd

and

n(t) ≃ R−d(t)

These quantities relax.

Review in Hohenberg & Halperin 77 ; Bray 94
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Finite rate quench
Sketch of the effect of τQ on R(t, g)

cfr. constant thin lines, Zurek 85
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Density of domain walls
Test of universal scaling in the 2dIM with NCOP dynamics

Dynamic scaling implies

n(t, τQ) ≃ [R(t, τQ)]
−d with d the dimension of space

Therefore

n(t, τQ) ≃ τ
dν(zc−zd)/zd
Q t−d[1+ν(zc−zd)]/zd

depends on both times t and τQ.

NB t can be much longer than t∗ (time for starting sub-critical coarse-

ning) ; in particular t can be of order τQ while t∗ scales as ταQ withα < 1.

Since zc is larger than zd this quantity grows with τQ at fixed t.
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Third conclusion

Need to take coarsening into account at sufficiently long times,

e.g., t ≃ τQ to describe the remnant density of topological de-

fects ayer a finite rate quench correctly.

Relevant for, e.g. recent study of vortices in Bose-Einstein conden-

sates, e.g.

Su, Gou, Bradley, Fialko & Brand 13

Chomaz, Corman, Bienaimé, Desbuquois, Weitenberg, Nascimbène,

Beugnon & Dalibard 15
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Conclusion

A nice (non mysterious !) problem that, I think, will still surprise us.

• Amenable to nice analytic treatment and the use and develop-

meant of new techniques.

• Easy to study numerically.

• Relevant to material science and experiments.

• Open to quantum and beyond physics extensions.
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Simulations
Test of universal scaling in the 2dIM with NCOP dynamics

R |∆g|ν cst (|∆g|νzct)1/zd

zc ≃ 2.17 and ν ≃ 1 ; the square root (zd = 2) is in black

Also checked (analytically) in the O(N) model in the large N limit.
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Dynamics in the 2d XY model
Vortices : planar spins turn around points

Schrielen pattern : gray scale according to sin2 2θi(t)

After a quench vortices annihilate and tend to bind in pairs

R(t, g) ≃ λ(g){t/ ln[t/t0(g)]}1/2

Pargellis et al 92, Yurke et al 93, Bray & Rutenberg 94
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Dynamics in the 2d XY model
KT phase transition & coarsening

• The high T phase is plagued with vortices. These should bind in pairs

(with finite density) in the low T quasi long-range ordered phase.

• Exponential divergence of the equilibrium correlation length above TKT

ξeq ≃ aξe
bξ[(T−TKT )/TKT ]−ν

with ν = 1/2.

• Zurek’s argument for falling out of equilibrium in the disordered phase

ξ̂eq ≃ (τQ/ ln
3(τQ/t0))

1/zc with zc = 2 for NCOP.

• Logarithmic corrections to the sub-critical growing length

R(t, T ) ≃ λ(T )
[

t
ln(t/t0)

]1/zd
with zd = 2 for NCOP
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Dynamics in the 2d XY model
KT phase transition & coarsening

nv(t ≃ τQ, τQ) ≃ ln[τQ/ ln
2 τQ + τQ]/(τQ/ ln

2 τQ + τQ)
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Jelić and LFC 11

86



Square lattice 2dVM
Number density of cluster areas
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Square lattice 2dVM
Scaled number density of cluster areas

10−2

10−1

1

1 10 102 103 104 105 106 107

A
ν
n
d
(A

,t
)

A

t = 0
2
8
32
128
512

2048
4096
16384

cd

ν ≃ 1.98 →> 2

88



Square lattice 2dVM
Scaled number density of cluster areas
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Microscopic dynamics?
The voter model : opinion dynamics

H does not exist - kinetic model

si = ±1 Ising spins that

sit on the vertices of a lattice.

Voter update rule

choose a spin at random, say si

choose one of its 2d neighbours at random, say sj

set si = sj

Non-physical dynamics, no detailed balance.

Clifford & Sudbury 73, Holley & Liggett 75, Cox & Griffeaths 86
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
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Square lattice 2dVM
Average number of wrapping clusters

The analyses of N (A, t) and Qtw(L)(t) is hard.

Instead, we look at the dynamic finite-size scaling of the average # of

wrapping clusters

t/Lzp

Np(t, L) = f(t/Lzp) with zp ≃ 1.667

Similar scaling in the Ising model, with the corresponding zp.

Tartaglia, LFC & Picco 15
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