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Aim of this talk
in two sentences

Advocate the use of fluctuation-dissipation relations as:

Tests of Gibbs-Boltzmann equilibration.

A means to measure the GGE effective temperatures in integrable sys-

tems.
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Plan

1. Some words about glassiness, classical and quantum.

Fluctuation dissipation relations and effective temperatures.

2. Quantum quenches in isolated systems.

Example: the Ising chain

L. Foini, LFC & A. Gambassi 11-12

3. FDRs and Generalized-Gibbs-Ensemble effective temperatures.

LFC, L. Foini, A. Gambassi & R. Konik 16

4. Work in progress.
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Disordered spin systems
Quantum fully-connected p-spin model

Ĥsyst =
N∑

i1<···<ip

Ji1...ipσ̂
x
i1
. . . σ̂x

ip + Γ
N∑
i=1

σ̂z
i

σ̂a
i with a = 1, 2, 3 the Pauli matrices, [σ̂a

i , σ̂
b
i ] = 2iϵabcσ̂

c
i .

Γ transverse field. It measures quantum fluctuations.

In the limit Γ → 0 the classical limit should be recovered.

Sum over all p-uplets on a complete graph (extensions to random graphs)

P (Ji1i2...ip) = e
−p! J2

i1i2...ip
/(2Np−1J2)

p ≥ 2 Ising: quantum Sherrington-Kirkpatrick and p-spin models.

p ≥ 2 continuous variables: quantisation achieved by adding a kinetic energy.
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Phase transitions
Quantum fully-connected p ≥ 3 spin model

Jump in the susceptibility across the dashed line: 1st order phase trans.

LFC, Grempel & da Silva Santos 00

In dilute disordered p ≥ 3 models, review:

Bapst, Foini, Krzakala, Semerjian & Zamponi 12

6



Real-time dynamics

The system is coupled to a bath.

Simple model for the bath: independent harmonic oscillators.

Schwinger-Keldysh closed-time path-integral for the quantum case,

similar formalism in the classical limit.

Gaussian integration over the bath oscillator variables ⇒

Two-time long-range interactions.

Typical initial conditions ρ̂bath ⊗ ρ̂syst

ρ̂bath bath in Boltzmann equilibrium

ρ̂syst system in a ‘random’state:

no need of replica trick to average over disorder.
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Real-time dynamics

The system equilibrates (à la Gibbs-Boltzmann) with the environment in

the disordered (PM) phase.

It does not equilibrate in the SG phase if times are not scaled with the

system size and the thermodynamic limit is taken first, meaning

limt→∞ limN→∞

(It should equilibrate with a convenient scaling of times t(N))
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Real-time dynamics
Two-time observables

time0 t t  =t+t w m w
preparation
   time

waiting 
   time

measuring
   time

0 t

Correlation

C(t+ tw, tw) ≡ ⟨[Ô(t+ tw), Ô(tw)]+⟩

Linear response

R(t+ tw, tw) ≡ δ⟨Ô(t+tw)⟩
δh(tw)

∣∣∣
h=0

= ⟨[Ô(t+ tw), Ô(tw)]−⟩
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Real-time dynamics
In the ordered and disordered phases

Symmetric correlation Linear response

Comparison between (PM) and (SG): stationary vs. aging

figs. from LFC, Grempel, Lozano, Lozza & da Silva Santos 02
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FDT & FDR
In and out of equilibrium

The fluctuation-dissipation theorem is a model-independent equilibrium

relation between the linear response and correlations of the correspon-

ding spontaneous fluctuations in equilibrium.

The FDT applies to any pair of observables.

The FDT involves the temperature but no other characteristic of the sys-

tem.

Whenever the FDT does not apply, the system is out of equilibrium.

One can still look at the relation between linear response and correla-

tions out of equilibrium and see what happens : construct a fluctuation-

dissipation relation (FDR).
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FDT
Gibbs-Boltzmann density operator ρ̂ = Z−1e−βĤ

One proves the KMS relations: C̃BA(−ω) = eβωC̃AB(ω)

and then

ImR̃AB(ω) = [ℏ−1 tanh(βℏω/2)]±1 C̃AB
± (ω)

Bosons

Fermions

In the classical limit: ImR̃AB(ω) = βω C̃AB(ω)
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FDR
Any evolution

Just measure

ImR̃AB(ω) C̃AB
± (ω)

take the ratio and extract tanh(βAB
eff (ω)ℏω/2)

In equilibrium all βAB
eff (ω) are equal to the same constant β

Ideas exploited in the glassy context taking care of separation of

time-scales
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FDR
Any evolutionJust measure

ImR̃AB(ω) C̃AB
± (ω)

take the ratio and extract tanh(βAB
eff (ω)ℏω/2)

In equilibrium all βAB
eff (ω) are equal to the same constant β

e.g. quantum p-spin model coupled to an equilibrium bath (β) :

tanh(βeff(ω)ℏω/2) ≃

 tanh(βℏω/2) ωtw ≫ 1 FDT

β∗ℏω/2 ωtw ≪ 1
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Effective temperatures
What happens in glasses?

Glasses are out of equilibrium.

There is a separation of time-scales in their relaxation,

with a crossover at, roughly, ωtw

The FDRs take a very special form :

ωtw ≪ 1 quasi-stationary relation and FDT OK.

ωtw ≫ 1 non-stationary relation and a single constant Teff .

Teff depends upon

the initial condition before the quench (disordered vs. ordered) ;

weakly on other parameters of the systems.

Review LFC 11
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Dissipative quantum glasses
Quantum p-spin coupled to a bath of harmonic oscillators

C

R

τ

χ

C

Out of equilibrium decoherence

LFC & Lozano 98
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Isolated quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0⟩ the ground-state of Ĥ0 (or any ρ̂(t0))

• Unitary time-evolution with Û = e−
i
ℏ Ĥt with a Hamiltonian Ĥ .

Does the system reach some steady state?

Are at least some observables described by thermal ones?

When, how, which?
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix?

Do their dynamics satisfy the equilibrium rules?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states ; non critical vs. critical quenches, etc.

• Definition of Te from ⟨ψ0|Ĥ|ψ0⟩ = ⟨Ĥ⟩Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ ⟨ψ0|ϕ̂(x⃗, t)ϕ̂(y⃗, t)|ψ0⟩ vs. C(r) ≡ ⟨ϕ̂(x⃗)ϕ̂(y⃗)⟩Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

But the functional form of correlation functions can be misleading !
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix?

Do their dynamics satisfy the equilibrium rules?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states ; non critical vs. critical quenches, etc.

• Definition of Te from ⟨ψ0|Ĥ|ψ0⟩ = ⟨Ĥ⟩Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ ⟨ψ0|ϕ̂(x⃗, t)ϕ̂(y⃗, t)|ψ0⟩ vs. C(r) ≡ ⟨ϕ̂(x⃗)ϕ̂(y⃗)⟩Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal : put qFDT to the test to check whether Teff = Te exists
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FDRs
Quantum SU(2) Ising chain (integrable)

The initial Hamiltonian ĤΓ0 = −
∑
i

σ̂x
i σ̂

x
i+1 + Γ0

∑
i

σ̂z
i

The initial state |ψ0⟩ ground state of ĤΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with ĤΓ.
Iglói & Rieger 00

Reviews : Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Specially interesting case Γ = Γc the critical point. Rossini et al. 09

Claims of thermal equilibration due to gapless spectrum.
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Quantum quench
e.g., Teff from σ̂z and M̂ = L−1

∑
i σ̂

z
i (finite L chain)

ℏ ImRz,M(ω) = tanh

(
βz,M
eff (ω)ωℏ

2

)
Cz,M

+ (ω)

0 2 4 6 8
ω

0.5

0.75

1

T
eff

T
M

eff

T
z

eff

T
E

eff
0.01 0.1 1

1

1.5

2

T
-1

1 / T
z

eff

βz
eff(ω) ̸= βM

eff (ω) ̸= ct: no thermal equilibrium
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Ising chain
Non-interacting integrable model

After Jordan-Wigner and Bogoliubov transformations:

ĤΓ = −
∑

k ϵk(Γ) η̂
†
kη̂k

with fermionic creation and annihilation operators η̂†k and η̂k,

and charges leading to conserved quantities

n̂k = η̂†kη̂k

independently of the initial state.
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Ising chain
Non-interacting integrable model

The Gibbs-Boltzmann measure should be generalized to

The Generalized-Gibbs Ensemble (GGE)

ρ̂GGE = Z−1
GGE e

−
∑

k βGGE
k ϵk(Γ) n̂k

with effective inverse temperatures βGGE
k fixed by

⟨ψ0|n̂k|ψ0⟩ = ⟨n̂k⟩GGE

Applied to the quenched Ising chain this condition yields βGGE
k (Γ0,Γ)

for k = ±π(2n+ 1)/L and n = 0, . . . , L/2− 1
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Ising chain
Non-interacting integrable model

Take, for example, M̂ = L−1
∑L

i=1 σ̂
z
i

recall that σ̂z
i = 1− 2η̂†i η̂i

In the FDR the frequency ω selects each mode k such that ω = 2ϵk and

βM
eff (ω) = βGGE

k ω = 2ϵk

One can ‘read’ the GGE effective temperatures from the FDR

Same mechanism in other non-interacting integrable systems.

In interacting integrable cases?
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Summary
Fluctuation-dissipation relations

• Use of fluctuation-dissipation relations in the dynamics of closed quan-

tum systems to check for Gibbs-Boltzmann equilibrium.

Foini, Gambassi & LFC 11-12

• Use of fluctuation-dissipation relations to measure the GGE effective

temperatures
LFC, Foini, Gambassi & Konik soon

• Also useful to distinguish (or not) glassiness from MBL ?
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Another example
1d hard-core bosons in a super-lattice potential

ω

(local) density operator

Â = B̂ = n̂in̂i

(non-local) boson operator

Â = B̂ = b̂†i b̂i

Bortolin & Iucci 15

Similar ideas in models of photon/polariton condensates,

Chiocchetta, Gambassi, Carusotto 15
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Asymptotic limit
of the dynamics isolated many-body systems

— Stationary measure reached ?

— In one or several time-regimes?

— Which one(s)?

— Thermal à la Gibbs-Boltzmann or other?

All these questions can be posed, and are difficult to answer, in both

classical and quantum systems.

In the following : equilibrium ≡ Gibbs-Boltzmann equilibrium.
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Dynamics in equilibrium
Conditions on quantum systems

Equilibrium is a matter of statics,

instantaneous probability density ρ̂(t0)

but also of dynamics,

evolution operators Û(t0 → t)

ρ̂ 7→ e−βĤ/Z and Û 7→ e−iĤ(t−t0)/ℏ to ensure that the system

reaches Gibbs-Boltzmann equilibrium at a given time t0.
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Asymptotic limit
of the dynamics isolated many-body systems

— Stationary measure reached?
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Two-time observables
Correlations

timet=0 t tw
preparation
   time

waiting 
   time

measuring
   time

0 τ

The two-time correlation between two observables Â(t) and B̂(tw) is

CAB(t, tw) ≡ ⟨ Â(t)B̂(tw) ⟩

expectation value in a quantum system, ⟨. . .⟩ = Tr . . . ρ̂/Trρ̂

or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.
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Two-time observables
Linear response

− δ δ
+

h

t t

2 2
w w

0 t

The perturbation couples linearly to the observable B̂ at time tw

Ĥ → Ĥ − h(tw)B̂

The linear instantaneous response of another observable Â(t) is

RAB(t, tw) ≡
δ⟨Â(t)⟩h
δh(tw)

∣∣∣∣∣
h=0

Similarly in a classical system
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Linear response
In an asymptotic steady case

The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

Fourier transforms

C̃AB(ω) and R̃AB(ω)

Kubo formula, just linear response, to obtain

−π−1ImR̃AB(ω) = C̃AB(ω)∓ C̃BA(−ω)
Bosons

Fermions

No need to use ρ̂ = Z−1e−βĤ to prove this relation.

Usual notation : −π−1ImχAB(ω) = SAB(ω)∓ SBA(−ω) = [Â, B̂]∓
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Quantum quench
No Teff from FDT

A quantum quench Γ0 → Γc = 1 of the isolated Ising chain

0 0.2 0.4 0.6 0.8 1Γ0
0

0.5

1

1.5

2

T
eff

T
eff

x
 t >> 1

T
eff

x
t >>1 FDT class

T
eff

x ω = 0 r = 0

T
eff

x ω = 0 r = 10

T
eff

E 

Foini, LFC & Gambassi 11
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Quantum quench
No Teff from FDT
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Another example
1d hard-core bosons in a super-lattice potential

Fermionic representation :

Ĥ0(∆) = −
∑

i f̂
†
i f̂i+1 + h.c. +∆

∑
i(−1)i f †

i fi

Quench from the ground state of Ĥ0(∆) to Ĥ = Ĥ0(∆ = 0).

Although ρ̂ 7→ ρ̂GGE ≈ ρ̂GB for ∆ ≫ |ωk| = O(1)

Chung, Iucci & Cazalilla 12

the FDT is not satisfied in this same limit, and different FDRs yield dif-

ferent Teffs.

Bortolin & Iucci 15
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Quantum quench
Teff from the longitudinal spin FDR

0 2 4 6 8 10τ0

0.2

0.4

0.6

0.8

1
C

x
(τ)

R
x
(τ)

10 20 301e-13

1e-09

1e-05

1e-01

10 20 30

-0.25

0

0.25

Insets

e−τ/τc

τ−2 sin(4τ + ϕ)

Cx(τ) ≃ Ace
−τ/τc [1− acτ

−2 sin(4τ + ϕc)]

Rx(τ) ≃ ARe
−τ/τc [1− aRτ

−2 sin(4τ + ϕR)]

Foini, LFC & Gambassi 11
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Quantum quench
Teff from FDT?

For sufficiently long-times such that one drops the power-law correction

−βx
eff ≃ Rx(τ)

dτCx
+(τ)

≃ −τcAR

Ac

A constant consistent with a classical limit but

T x
eff(Γ0) ̸= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T x
eff(Γ0, ω) ̸= T z

eff(Γ0, ω) ̸= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0 in the quantum Ising chain
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