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Abstract

Coming soon...



Spin Glasses & Disorder
Spin glasses are magnetic systems in which the interactions between the magnetics mo-
ments are �in con�ict� with each other, due to some frozen-in structural disorder. Thus
no conventional long-range disorder (of ferromagnetic or antiferromagnetic type) can be
established. Nevertheless these systems exhibit a �freezing transition� to a state with a
new kind of order in which the spins are aligned in random directions.

Aging means that older systems relax in a slower manner tham yonger ones. One de�nes
the age of a system as the time spent in the phase under study. The aging properties will
be studied by monitoring the time evolution of correlation functions.

Experimental samples blabla...



Chapter 1

Two models under observation

Two varieties of disorder are encountered in spin models: randomness in the strength
of the bonds and randomness in the strength of an externally applied magnetic �eld.
We study these two types of models by means of their most emblematic representants:
the former beeing the Edwards-Anderson model and the latter beeing the Random-Field
model. We will focus on two three-dimensional Ising models. Spins are bimodal Ising
variables: si = ±1 , i = 1, ..., N = L3. L beeing the lattice linear size.

1.1 Edwards-Anderson (EA)
The Edwards-Anderson spin-glass model is de�ned by its hamiltonian

HEA = −
∑

<i,j>

Jijsisj .(1.1)

The interaction strength Jij act on nearest neighbours on a cubbic three-dimensional lattice
and are independant identically distributed random variables. In this study, we will adopt
two di�erent probability distribution laws for thoses Jij 's: a gaussian distribution with
zero mean and unit variance (Jij = 0, J2 , J2

ij = 1), or a bimodal distribution (Jij = ±1).
We will see that physical quantities do not strongly depend on the very choice of this
distribution.

Simulating an instantaneous quench from in�nite temperature is realised by choosing
a random initial condition: si(t = 0) = ±1 with probability one half. If at high temper-
atures, the systems behaves like a paramagnetic material in thermodynamic equilibrium,
under a critical temperature Tg ' 0.92, the system experiences a breakdown of time trans-
lation invariance: two-time observables1 O(tw, t) cannot be written as function of the time
di�erence O(tw − t). This aging property of this so-called glassy phase does not show any
tendency to stop within the accessible time-window: equilibrium is far from beeing reached.
One can tell that the relaxation time becomes greater than the typical observation time.
In this study, we will focus on the physic of this glassy phase.

1.1.1 Computation
A good compromise to observe the dynamic of this glassy phase within a reasonable com-
putational time is to quench the system down to a temperature of T ' 0.60. In this work,

1tw stands for �waiting-time�.
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Figure 1.1: The 3D Edwards-Anderson phase diagram exhibits a transition from a paramagnetic to a
glassy phase at Tg ' 0.92.

most results are obtained using lattices of linear size L = 60 (representing N = 216 000
spins) at temperature T = 0.60. Periodic boundary conditions are used in order to reduce
�nite size e�ects. The dynamic is reproduced by a standard Monte Carlo algorithm, us-
ing Metropolis et al. prescription. With these parameters, it takes around a full day to
compute 106 Monte Carlo sweeps2 on a 3 GHz processor.

1.1.2 Observables
Globlal correlation and order parameter
The two-time self-correlation, commonly de�ned as

C(t, tw) , 1
N

N∑

i=1

si(t)si(tw) ,(1.2)

quanti�es how two spin con�gurations of the same system, the one taken at tw and the
other one at t ≥ tw, are close to each other. In the large N limit, this quantity is self-
averaging with respect to noise and disorder induced �uctuations. In �gure 1.1.2 we clearly
see this two-time dependence of the correlation for T = 0.60 < Tg, whereas for T =
2.0 the correlation decays exponentially with t − tw regardless of tw. In spin glasses no
consensus as to which is the origin of aging has been reached. Still, the qualitative behavior
of correlations is rather close to the one in domain growth. Figure 1.1.2 shows that if
comparing the con�gurations at tw and at a later time τ + tw, one �nds a clear separation
of time-scales depending on the relative value of τ with respect to tw. For τ ¿ tw, the
correlation function decays regardless of tw: it can be interpreted as the e�ect of thermal
�uctuations within motionless domains. For τ À tw the decay to zero is interpreted as the
result of domain-wall motion. Of course the concept of domain is here a lot less intuitive
than with coarsening systems and has still to be precised. In the limit t ≥ tw À t0,
with t0 some microscopic time scale, the correlation can be written as a sum of two terms
representing these two regimes:

C(t, tw) = Cthermal(t− tw) + Caging(t, tw)(1.3)

with the limit conditions

Cthermal(0) = 1− qEA , lim
tw→t−

Caging(t, tw) = qEA ,(1.4)

lim
t−tw→∞

Cthermal(t− tw) = 0 , lim
tÀtw∞

Cthermal(t, tw) = 0 .

This de�nes qEA, the order parameter, which we see is not trivial to compute.
21 MC sweep ≡ N spins were tried to be �ipped.
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Figure 1.2: The two-time self-correlation C(t, tw) is a function of t− tw above Tg, whereas in the glassy
phase, the time translation invariance is lost. t−tw ∼ tw seperates two time-scales assiociated with thermal
and aging regimes.

Correlation length
As in usual ordering processes, one would like to identify a correlation length and determine
its temperature and time-dependence. A two-time correlation length, ξ(t, tw), can be
extracted from the exponential decay of two-site two-time correlation

C4(r; t, tw) , 1
N

∑

i,j

[
si(t)si(tw)sj(t)sj(tw)− C2(t, tw)

]
|−→r i−−→r j |=r

.(1.5)

Figure 1.1.2 gives an example of a typical C4 function: exponential �tting is very good (at
least at this temperature � T = 0.60 � far below Tg). The results of this analysis are shown
in �gure 1.1.2 where we plot ξ(t, tw) as a function of t − tw for three values of tw given
in the caption. A better representation of the same data is given in �gure 1.1.2 where
we display ξ as a function of 1 − C, evaluated at the same times. The curves are now
monotonic in both 1− C and tw. Note that the values of the correlation length obtained
are extremely short (no more than a few lattice spacings). It makes it reasonable to speak
of thermodynamic limit for lattices of size L = 60.

Local correlations
The random nature of the interactions naturally introduces a di�erent dynamic from site
to site. This local dynamics can be described by two-time spin-spin correlations, which
instead of beeing spatially averaged over the whole bulk, are only averaged over a coarse-
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Figure 1.3: The correlation length ξ is extracted from the exponential behavior of C4(r). Here we show
an example of C4(r; t, tw) for tw = 104 and t = 105.
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Figure 1.4: The correlation length ξ is an ever-growing function of t− tw.
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Figure 1.5: The correlation length ξ is a monotonic function of both 1− C(t, tw) and tw.

graining cell with volume Vr = l3 centered at some site r :

Cr(t, tw) =
1
Vr

∑

i∈Vr

si(t)si(tw)(1.6)

The values of such local correlations vary spatially, and can be interpreted as representing
spatially heterogeneous ages of the dynamical evolution. We study the probability distri-
bution function (pdf) of Cr: ρ(Cr; t, tw, l, L). At �xed temperature, the pdf ρ(Cr; t, tw, l, L)
depends on four parameters, two times t, tw and two lengths l, L. The dependence on t
and tw can be replaced by a dependence on C(t, tw) and ξ(t, tw), the former beeing the
global correlation and the latter the correlation length. Indeed, we show that C(t, tw) is a
monotonic function on the two times (c.f. �gure 1.1.2) and ξ is a growing function of 1−C
(c.f. �gure 1.1.2), thus allowing the invertion (t, tw) → (C, ξ). Let us make the scaling
assumption that the pdfs depend on the coarse-graining length l and the system linear size
L through the ratios l/ξ and ξ/L. In the end, the pdfs characterizing the heterogeneous
aging of the system can be written as

ρ(Cr; C(t, tw), l/ξ(t, tw), ξ(t, tw)/L) .(1.7)

We numerically test this proposal assuming that the thermodynamic limit applies so that
the last scaling ratio disapears. Holding C and the ratio l/ξ constant gives a full collapse
of datas as shown in �gure 1.1.2.
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Figure 1.6: Pdf of local correlation Cr. (left) Cr is coarse-grained on boxes of linear size l = 9 at C = 0.6
�xed. The curves correspond to three waiting-times given in the key. (right) Cr is coarse-grained, at
C = 0.6 �xed, on boxes with length l chosen to keep l/ξ constant. The curves correspond to the same tw's
with respectively l = 9, 11, 13. The collapse is improved with respect to the left �gure.

1.2 Random Field (RF)
The Random-Field model is de�ned by its hamiltonian

HRF = −J
∑

<i,j>

sisj −
∑

i

hisi .(1.8)

Here again, J > 0 is the strength of the short range ferromagnetic interactions between
spins, hi represents a local random magnetic �eld on site i. We will adopt two di�er-
ent distribution functions for those independent identically distributed random variables:
gaussian (hi = 0, h2

i = 1), or bimodal (hi = ±1). In the limit J À 1, the model reduces to
the well known Ising model with a phase transition from paramagnetic to ferromagnetic
state occurring at Tc/J = 4.515. In the limit J ¿ 1, the random magnetic �eld destroys all
possible long range order. Fine tuning the temperature T and the spin-spin coupling J , we
can exhibit a spin glass domain. It's aging regime can be observed during a relatively long
time if the lattice is large enough (L > 200). After that period, the system �nally adopts
a ferromagnetic order. For a bimodal distribution of hi and taking T = 1 and J = 1,
�gure 1.2 shows that the global correlation function C(t, tw) is the one of an aging system,
very similar to the one in EA model (c.f. �gure 1.1.2). Here again, we can distinguish two
regimes : the thermal one for t− tw < tw where correlation only decays because of thermal
�uctuations, and the aging regime for t− tw > tw due to some domain-wall motion.

Using the exponential decay of the two-time two-site correlation function C4(r; t, tw)
de�ned in 1.1.2, we can extract a two-time correlation length ξ(t, tw). Results of this
analysis are shown in �gure 1.2 where we plot ξ(t, tw) versus 1− C(t, tw). The behaviour
of ξ is very similar to the one obtained with EA model (c.f. �gure 1.1.2), it is monotonic
in both 1−C and tw. Nevertheless, in this coarsening system, the values of the correlation
length are much higher than with EA model.
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Figure 1.7: (up) Image of the domain-wall structure in a RF lattice of size L = 250, at temperature
T = 1 and at t = 103 (J = 1, bimodal hi). (down) Image of the same system at t = 4.85 · 106.
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Figure 1.8: The Random Field model phase diagram shows that the critical temperature between the
paramagnetic (PM) and the ferromagnetic (FM) order is a decreasing function of the disorder strength
H/J .
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Chapter 2

Continuous Time Monte Carlo

2.1 The trouble with Metropolis
The standard Monte Carlo algorithm generates a markovian sequence of con�gurations as
follows :

• a spin is selected with uniform probability amongst all spins ;

• the probability P of �ipping this spin is computed according to a thermodynamically
reasonable formula: if C and C′ are two con�gurations separated by one spin �ip
with energy cost ∆E, then P must satisfy the detailled balance equation: P (C →
C′)/P (C′ → C) = exp (−∆E/T ) ;

• a random number R is drawn over the interval [0; 1] ;

• the reversal is performed if R < P , else it is rejected.

The number of attempts can then be used as a measure of time. The Metropolis et al.
solution for P is given by

• P = 1, if ∆E ≤ 0 ;

• P = exp (−∆E/T ), otherwise.

The rejection rate thus becomes quite high if a typical spin �ip costs, energetically speaking,
∆E À T . A huge number of trials is then required to generate new con�gurations. For
instance, the Edwards-Anderson model sees its rejection rate grow above 95% in the glassy
phase (c.f. �gure 2.1).

2.2 Algorithms
The continuous time Monte Carlo algorithm is a rejection free method: it generates a new
con�guration with every choice of spin. Each step of the method involves computing the
time to leave the current state (the �waiting-time� τi which is a random variable) rather
than attempting moves that will be rejected. It can also be seen as a method accounting
for the a priori probability of reversal before, rather than after, chosing the site to change.
In that sense, it is a re-organization of the standard Monte Carlo algorithm.
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Figure 2.1: With the EA model, Metropolis Monte Carlo algorithm has a rejection rate above 95 % in
the glassy phase (T < Tg ' 0.92).

In the standard MC algorithm, when the probability to reject the change is λi, the
probability pi(t) to remain in the current state for t time steps decays exponentially as

pi(t) = λt
i = exp (t ln λi) .(2.1)

The �waiting-time� τi has thus to be

τi =
ln R

lnλi
,(2.2)

where R is a uniform random number on ]0; 1].
So each spin si, according to the energy cost of its reversal ∆Ei, is beeing attributed

a random �waiting-time� τi = −max[1, exp (−∆Ei/T )] ln R where R is a uniform random
number on the interval ]0; 1]. Afterwards the procedure is :

• spin si0 having the shortest �ipping time τi0 is �ipped ;

• τi0 is reactualised, as well as τj 's of nearest neighbours sj of si0 ;

• time is updated: t←− t + τi0 .

The principal drawback of this method stands on the necessity to maintain updated an
ordered list of N spins, sorted in terms of τi. If the computational time spent to create this
ordered list from scratch is spent once and for all, the overhead number of manipulations
required to keep it updated after each spin �ip, is proportionnal to (z + 1)N , z beeing the
number of nearest neighbours1. One can see that this leads to a serious slow down of the
e�ciency of this so-called rejection free scheme.

1In our 3D case z = 6.
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Nevertheless, adopting a convenient model allows us to get rid of this sorting issue. Let
us stick to a bimodal distribution of the Jij 's (resp. the hi's). Therefore the energy cost
to �ip a spin can only take a �nite number of values :

∆EEA
i = 2si





∑

j∈v(i)

Jijsj



(2.3)

∆ERF
i = 2Jsi





∑

j∈v(i)

sj + hi



(2.4)

For instance, in the Edwards-Anderson model, it can take seven di�erent values so that
spins can be gathered in seven di�erent boxes :

si
∑

j∈v(i) Jijsj ∆ERF
i Box #

6 12 1
4 8 2
2 4 3
0 0 4
-2 -4 5
-4 -8 6
-6 -12 7

Each spin �ip requires the following calculations :

• a box c is chosen with probability NcPc/Q, where Nc is the number of spins in box
c and Q =

∑
c NcPc ;

• a spin si0 is chosen with uniform probability within the box c ;

• si0 is �ipped ;

• the �ipped spin is moved to its new box according to its new state, as well as its
nearest neighbours ;

• the time is updated t←− t− ln(R)/Q where R is an uniform random number drawn
within ]0; 1].

It is straightforward that this last algorithm reduces to the former one if the number of
boxes goes to N . Using this algorithm, it is not necessary anylonger to maintain updated
an ordered list of N spins: this problem reduces to the one of arranging spins in a few
boxes, with no matter of how spins are classi�ed in each box.

2.3 Benchmarking
Looking back at this algorithm, we see that the time spent for one Monte Carlo sweep is
strictly proportional to N , the total number of spins. Moreover, it is rejection free: no
computational time is spent trying to �ip spins that do not have a favorable neighbourhood.
The speed of this algorithm is therefore completely independent of the temperature. If in
standard Monte Carlo, the physical e�ect of the temperature is �coded� in the rejection rate
making it uneasy to obtain old samples, here it is directly coded on the age of the sample:
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Figure 2.2: (left) EA : The velocity ratio of continuous time algorithm over standard MC is larger than
1 in the glassy phase. (right) RF : it is much larger than 1 for T < 3. (J=1).

a sample that has experienced 1000 spin �ips at very low temperature has to be older
than its twin brother also having experienced 1000 spin �ips but at a higher temperature.
We make the following measurements with the EA model: for di�erent temperatures we
measure the time (in seconds) needed to obtain a system of a certain age with standard MC
and with continuous time algorithm on a 2.6 MHz processor. Of course measured times
depend on the very structure of the simulation programs, however a great deal of attention
has been paid to each program e�ciency (to minimize the number of operations, and the
memory access.). In order to get rid of these technical contingencies, we present the results
in the ratio of measured time for standard MC and continuous time versus temperature.
We repeat this operation for two waiting times (tw = 0 and tw = 1000). Figure 2.3 shows
clearly that in the glassy phase (T < Tg ' 0.92) it is worthwhile to use continuous time
algorithm.
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Chapter 3

Tempering

We study the possibility to reproduce the aging dynamics of glassy systems by use of the
Parallel Tempering algorithm. This algorithm uses several copies of the same physical
system, at di�erent temperatures. Each copy freely evolves during a certain period of time
with standard Monte Carlo dynamics, until copies are periodically o�ered the possibility
to exchange their temperature.

The basic ideas behind this algorithm relies on the reality that at low temperatures,
in spin glasses and disordered systems, a lot of local energy minima appear in the phase
space, separated by barriers. In order to properly thermalize the system, all these regions
have to be visited. But the characteristic time needed by the system to escape from a local
minimum increases very rapidly upon lowering the temperature. We therefore need to
help the system escaping local minima, avoiding in this way long relaxations. Introducing
additional possibilities of warming and cooling through the exchanges, the system will
explore more easily the complicated phase space. The formalism makes use of an extented
canonical ensemble made of M di�erent replicas of the sample we want to simulate, which
is described by a Hamiltonian H(X). With X we denote, for simplicity, all the microscopic
spin variables. To the m-th replica we associate an inverse temperature βm. The state of
the extended system is speci�ed by the set of X , X1, ..., XM . With β , β1, ..., βM we
indicate the set of temperatures, and for simplicity we assume βm βm+1. The partition
function is given by

Z(β) =
M∏

m=1

e−βmH(Xm) =
M∏

m=1

Z(βm)(3.1)

where Z(βm) refers to the original system. Once the set β is speci�ed, the probability
distribution of X is

P(X, β) =
M∏

m=1

P (Xm, βm)(3.2)

P (Xm, βm) =
e−βmH(X)

Z(β)

Introducing a transition matrix W (Xm, βm À Xn, βn), which de�nes the probability of
exchanging temperatures between two replicas with con�gurations Xm and Xn and tem-
peratures βm and βn, the detailed balance is satis�ed if

P(...;Xm, βm; ...; Xn, βn; ...)W (Xm, βm À Xn, βn) =(3.3)
P(...; Xn, βn; ...; Xm, βm; ...)W (Xn, βn À Xm, βm) .
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Combining last equations we obtain the condition

W (Xm, βm À Xn, βn)
W (Xn, βn À Xm, βm)

= e−∆ with ∆ , (βn − βm)[H(Xm)−H(Xn)] .(3.4)

3.1 Algorithm
We will only focus on this �exchange� part of this algorithm. Let us consider two replicas
of the same physical system (same realisation of disorder), at two di�erent temperatures
Ti and Ti+1 = Ti + δTi (δTi 0). We note ∆ , (βi+1Ei + βiEi+1) − (βiEi + βi+1Ei+1) =
δβi(Ei+1 − Ei) with δβi = − δTi

T 2
i
. The rules for the exchange process are an extension of

the usual Metropolis criterion :

• swap the temperatures of the two replicas if ∆ < 0 ;

• swap the temperatures with probability Pswap = exp (−∆) otherwise.

In order to measure the traditionnal osbervables and compare them with standard Monte
Carlo dynamics, we �rst use the Parallel Tempering method until tw, we then extract the
replica beeing at T = 0.60 at time tw. We �nally use standard Monte Carlo Metropolis
algorithm on this particular system, and make the measurements on it.

3.2 Implementation
At this stage, this algorithm still has a lot of parameters to be �xed. How many replicas
are necessary ? What should be the temperature range ? Which are the pairs of replicas
that should be o�ered a temperature swap ? How often these swaps should be attempted
?

3.2.1 Temperature sampling
To avoid a high rejection rate on the exchange process, the mean probability of swaps
needs to be not too close to zero :

< Pswap >=< exp(−∆) >= O(1) .(3.5)

It is clear that we can't say anything a priori on the relative values of Ei and Ei+1. Since

< exp(−∆) >' exp(− < ∆ >) +
1
2
(< ∆2 > − < ∆ >2) + ... ,(3.6)

keeping the �rst moment (the other ones are di�cult to estimate but are a posteriori
negligeable), we have :

< ∆ >= δβi(< Ei+1 > − < Ei >) ,(3.7)

< ∆ >' −δTi

T 2
i

d < E >

dT
ci .(3.8)

We are thus able to estimate the temperature sampling by

δTi = Ti

√
ln(Pswap)
−d<E>

dT ci
.(3.9)
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Figure 3.1: Mean energy per spin for the 39 replicas (3D EA, gaussian Jij 's) sampling the temperature
window T ∈ [0.60; 1.0]. Error bars indicates their measured energy variance. A reasonable rejection rate is
guarenteed if those variances �ll the mean energy gap between two adjacent replicas. We notice that the
energy depends weakly on the temperature.

The energy E beeing extensive, it is noticeable that the number of replicas should be
proportional to L3/2. One can easily get < E > (T ) by numerically measuring the energy
of a small system at di�erent temperatures.

With Edwards-Anderson model, < E > (T ) can be modelized by a parabol (see �gure
3.2.1). We obtain the following phenomenological law for Edwards-Anderson model :

δTi = 1.36
√
− ln (Pswap)L−3/2f(Ti)(3.10)

with f(Ti) , Ti√
Ti−0.557

which is bounded by 1.5 and 2.9 for a temperature window T ∈
[0.6; 1.0], so the dependence on temperature is quite smooth. Satisfying results are obtained
choosing δT ' 0.1.

With the random-�eld model, the temperature dependence of the energy is much
stronger (c.f. �gure 3.2.1) so that δT becomes drastically small (δT ' 0.001). A too
large number of replicas is needed, making it impossible to compute within a reasonable
time on an ordinary computer. We conclude to the impossibility of using Parallel Temper-
ing with this particular model. Note that using bigger lattices allows us to have a longer
aging regime, and consequently a smoother temperature dependence of the energy (at least
during this aging regime). However δT still remains too small since it is proportional to
L−3/2.

From now on, we will only focus on the Edwards-Anderson model, with a gaussian
distribution of Jij 's.
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Figure 3.2: Mean energy per spin in the RF model (J = 1). We shall notice that energy strongly depends
on temperature.

3.2.2 Temperature range
We test the in�uence of the temperature range, all other parameters beeing kept constant.
Several temperature windows are tried: [0.5; 1.0], [0.5; 1.1], [0.6; 1.0], [0.6; 1.1], [0.6; 0.9].
Clearly all windows exceeding Tg ' 0.92 give similar results: a faster aging of the system.
We choose the less time-consuming temperature range, that is to say the smallest: [0.6; 1.0].

3.2.3 Tempering rate
We test di�erent rates of attempts to exchange replica temperature: one every Monte
Carlo sweep, one every ten, one every hundred. Reducing this rate clearly slows down
the dynamics of replicas on the temperature axis. Nevertheless it does not have a strong
in�uence on the correlation functions. Finally, we decide that a unitary ratio is the most
natural choice.

3.2.4 Update Rules
Which are the pairs of replicas that should be o�ered a temperature swap ? We test two
methods illustrated in �gure 3.2.4:

It turns out that both rules gives similar results. Monitoring the temperature of a given
replica (c.f. �gure 3.2.4), we see as expected that it explores the whole temperature range.
Since it is a spin glass, we clearly note a slowing down of this particular dynamic in time
(time scale of �gure 3.2.4 is logarithmic).
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Figure 3.3: Representation of the exchange schemes for the parallel tempering method. (left) alternating
scheme used to attempt to exchange temperatures between di�erent systems. (right) a system can travel
up to far temperatures in only one step.
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Figure 3.4: (left) The 'trajectory' of a particular system along temperature axis shows that replicas
explore the whole temperature range. (right) Zoom between t = 1.12105 and t = 1.18105.

3.3 Benchmarking
We just saw that the Parallel Tempering method, applied to the Edwards-Anderson model,
is insensitive to a lot of parameters. Figure (3.3) gives an example of the two-time cor-
relation function measured for a system prepared until tw with standard MC and with
Tempering. The correlation function of the system obtained with Tempering is the one
of an older system than the one obtained with standard MC. From this point of view,
Tempering is a success since it produces older systems for the same waiting time.

In order to quantify the velocity of this algorithm, we try to �gure out the relation
between the age of a system prepared with standard MC (given by the waiting time tw)
and the e�ective age of a system prepared with Tempering (denoted by teffw ). One way of
doing so would be to prepare a system with Tempering, and then try to �nd which is value
teffw of the waiting time needed to obtain a system showing the same corrrelation function
with a full standard MC procedure. This can be easily done since the age of a system can
be determined with the change of correlation function slope around t− tw ∼ tw. Note that
these functions can nerver be superposed exactly entirely, but we are only interested in the
aging part of it. From this �rst study, we guess a power law: teffw ∝ (tw)α.

In order to get the exponent α more precisely, we make the following measurements: for
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Figure 3.5: Global correlation C(t, tw) is measured after the system evolved with standard MC or parallel
tempering until tw = 104. Parallel tempering dynamics give an older sample for the same tw.

both methods, and for di�erent waiting times, we measure the time τ∗ = t∗−tw needed for
the two-time correlation to reach C∗ = 0.6 (this particular value of C was chosen because
it is situated in the aging regime). As shown in �gure 3.3, we �nd power laws (�ts beeing
really precise)

τ∗Tempering ∝ (tw)αT(3.11)
τ∗MC ∝ (teffw )αMC ,

thus obtaining the following power law

teffw ∝ (tw)α ,with α , αT

αMC
' 1.27 .(3.12)

We repeat this operation for several other temperatures T , the behaviour of α with T
is given in the inset of 3.3.

Parallel Tempering is a heavy method to set up: a lot of parameters are to be tuned,
and the simulation of a consequent number M of replicas until tw is time-consuming and
requires a certain amount of hardware facilities (especially memory). However, the power
law between the age of a sample obtained with Tempering and the one obtained with
standard MC, indicates that this new method is worthwile if one wants to prepare very old
samples. Moreover, we saw that its e�ciency is increasing with the temperature gooing
down.
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Figure 3.6: A quantitative comparison of Tempering versus standard Monte Carlo is done by measuring
times needed to reach C = 0.6 for di�erent tw. For a given tw, the tempering process gives an older system
than standard MC.
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Figure 3.7: We superpose correlation functions obtained using standard MC after di�erent waiting-times
tw with ones obtained using Tempering after corresponding teffw .
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3.4 Conclusion
Nice physical result : scaling of ρ(Cr;C, ...) by use of the dynamical correlation length ξ.

Continuous Time Monte Carlo = very good for Random Field model.
Parallel Tempering = good to get very old samples of Edward-Anderson systems.
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