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Introduction

Nucleation is one of the processes whereby the formation of new phases
within an ambient metastable phase begins. First-order transformations
in a system that is initially in a metastable state occur via this new-phase
nucleation mechanism. Such transitions are a widely spread phenomenon
in nature and are relevant in many technological applications.

Specifically, the kinetic of first-order phase transitions can be divided
into three stages. In the first one, statistical fluctuations generate nuclei
of the new phase through the transient formation and decay of small
regions within an original phase. The lifetime of these fluctuations is
related to their size. The stochastic behavior of shrinkage and growth
of the nuclei is consistent with the existence of a free-energy barrier to
the phase transition, the nucleation barrier. Over time, the fluctuations
that probe the phase space grow until they become large enough to let
the system escape the metastability. This represents the second stage,
during which a “critical” nucleus appears, and the nucleation barrier is
rapidly overcome. During the late and final stage, a completely different
kinetic occurs. It basically consists of the slow (not exponentially fast)
growth of some nuclei, involving a diffusive mass transfer, with the bigger
clusters devouring the smaller ones. From a thermodynamical point of
view, this behavior is due to the decrease of the free energy of the system
caused by a reduction of the interfacial area and hence of the surface
energy contributions to the thermodynamic functions.

Nucleation processes are ubiquitous in the natural world. Some familiar
examples of nucleation-limited phase transformations are the condensation
of vapors, the crystallization of liquids and precipitations in liquids and
solids. Historically, the nucleation theory has found one of its first
applications in the field of crystal growth [1], and it also plays an important
role in the study of thin film depositions. The process of nucleation is
believed to be involved in such apparently different phenomena as volcano
eruptions [2], electron condensation in solids [3], formation of electron-hole
liquid in semiconductors [4, 5], epitaxial growth of magmatic minerals
[6], creation of ionization tracks in bubble and cloud chambers and in
problems related to atmospheric physics and mineralogy.

In biology and medicine, nucleation plays a role in determining the
structure of large molecules, notably proteins, nucleic acids, and macro-
molecular assemblies, and it is also involved in the kinetics of protein
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folding [7, 8].
Nucleation is also important in technological applications such as in

metallurgy, materials science, electronic engineering, chemical engineering
and food science. The above list is far from being exhaustive and witnesses
the broad scope of this field of research.

The general motivation of this work is to characterize the nucleation
kinetics that occurs in the first-order phase transition regime of the Potts
model. This question is of prominent importance for an understanding of
the nucleation process when multiple phases are involved.

This thesis is organized in two main parts. The first part is an overview
of the current understanding of the topics dealt with in the present work.
In particular, in the first chapter I review the theory of phase transitions,
discussing the distinction between first-order and second-order transitions
and outlining their main properties.

In Chapter 2, some general methods for the study of the non-equilibrium
statistical mechanics of a system are described. I also review Montecarlo
methods, which have been used to carry out the numerical analysis in the
original part of this work.

In Chapter 3, I describe nucleation and coarsening, two processes
whereby the formation of new phases and domain growth occurs and
are of a fundamental importance when studying the dynamics of phase
transitions.

The statics of the Potts model is the subject of Chapter 4. Specifically,
I introduce two methods to solve the one-dimensional problem, and I
briefly outline the main properties of the model in the two-dimensional
case.

In the second part of the thesis I present my original work. All the
results have been obtained via large-scale numerical simulations, therefore
I first introduce the protocols used and explain how finite-size effects
can influence the output data. Then, I define the physical quantities
of interest for my study, and I present and discuss the original results
about the multinucleation process that takes place in the Potts model.
An interesting finite-size effect that has never been observed before is also
discussed and compared to the one affecting the coarsening kinetics of
the Ising model. Starting from this, some features of the spontaneous
symmetry breaking phenomenon occurring in multicomponent systems
are discussed.



Part I

Background





Chapter 1

Statics of phase transitions

A phase transition is the phenomenon that occurs whenever a phase
changes abruptly into another. This definition embraces a very wide
range of processes. Examples of phase transitions include transition to
the superconductive state, the Bose-Einstein condensation, the para- to
ferromagnetic transition, gas condensation and so forth. They have been
widely studied in statistical mechanics and much is known about both
the equilibrium and kinetic viewpoint.

When a system is about to undergo a phase transition, its physics is
characterized by the fact that a single-particle description is no longer
possible because there is no transformation that can eliminate the inter-
action between the single components. In other words, single particle
levels are not sufficient to determine the thermodynamic properties of the
system, in that the collective behavior is precisely what characterizes a
phase transition.

In the following, we present a classification of phase transitions. This
was proposed by Paul Ehrenfest [36] and is based on the derivatives of the
Gibbs free energy, F. We consider the specific example of a gas, although
the concepts introduced are completely general and are not restricted to
gases. The parameters that describe the system are the pressure P , the
volume occupied by the gas V and the temperature T . Let us consider
the Gibbs free energy

F = U − TS + PV, [1.1]

where U is the internal energy and S the entropy. The classification is
done by introducing the notion of order of a phase transition, defined as
the first derivative of the free energy that shows a discontinuity. We then
have

First-oder phase transitions: When a gas undergoes a first-order phase
transition, it is characterized by the following properties

• F(T, P ) continuous;

• S = −
(
∂F
∂T

)
and V = −

(
∂F
∂P

)
discontinuous;
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• There is a latent heat.

Second-oder phase transitions: in this case we have instead

• F(T, P ) continuous;

• S(T, P ) and V (T, P ) continuous;

• Higher order derivatives of the free energy, such as response
functions, are discontinuous.

A response function is a quantity that describes the behavior of the
system in response to the variation of a parameter. For a gas, an example
of a response function is the isothermal compressibility

χT =

(
∂ρ

∂P

)
T

, [1.2]

defined as the change of the density caused by a variation of the pressure
(at fixed temperature), or the specific heat

CV =

(
∂U

∂T

)
V

, [1.3]

that describes the change of internal energy in response to a variation
of the temperature at fixed volume (an analogous quantity CP can be
defined, where the pressure is kept constant).

In order to characterize a phase transition we need to identify an order
parameter and to define which one of the parameters is changed during
the transition. The former is a quantity that has a vanishing thermal
average in one of the phases (typically the high-temperature one) and
non zero in the other. This quantity defines the onset of order at the
phase transition. Unfortunately there is no general rule to identify the
order parameter of a system, but it is closely related to the symmetry
properties of the hamiltonian.

The latter is the thermodynamic parameter of the system that is
varied in order to switch between the different phases. For instance, a
gas can condense either when temperature is lowered or when pressure
is increased. It is worth stressing that the same system can undergo a
first- or a second-order phase transition, according to which parameter is
changed.

1.1 First-order phase transitions

Examples of first-order phase transitions include the solid-liquid transition,
the solid-vapor transition and the liquid-vapor transition. First-order
phase transitions are characterized by the presence of a mixed-phase
regime, namely a region in which some parts of the system have completed
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the transition while others have not. This is the phenomenon of phase-
coexistence.

We can exemplify the first-order phase transitions by considering the
condensation of a gas. Let us start from the Van Der Waals equation

P + a
n2

V 2
=

nRT

V − nb
[1.4]

where n is the number of moles of the gas and R ' 8, 31JK−1mol−1 is
the gas constant. As for the a and b, they are parameters that depend on
the properties of the specific system considered. To better understand
their physical meaning, we recall that eq. [1.4] is a generalization of the
state equation of the ideal gas (to which it reduces when one takes the
limit n → 0 and neglects the second-order terms in n) that takes into
account two things:

1. Gas particles occupy a covolume b, therefore the free volume where
gas molecules can effectively move is V − nb;

2. A pairwise attractive force between the particles is present. Given
the homogeneity of the fluid, the bulk of the particles does not
experience a force, while particles on the surface feel an attraction
towards the inside of the container, because the force is not com-
pensated from the side where the wall is. This attraction between
particles decreases the force exerted by the gas on the walls. The
net force that acts on a surface particle pulling it into the container
is proportional to the density ρ = N/V . The number of particles
in the surface layers is (assuming homogeneity) also proportional
to the density. To sum up, the pressure exerted on the walls of the
container is proportional to the square of the density, so that the
pressure expected by the gas becomes P → P − a n2/V 2.

Eq. [1.4] is a relation f(P, V, T ) = 0, and could be represented in a
three-dimensional plot. Fig. 1.1 shows two sections of [1.4] in the PT and
in the PV plane. In fig. 1.1a the three possible phases are shown divided
by the sublimation line (red) between solid and gas phases, the melting
curve (continuous green) between solid and liquid and the vapor-pressure
curve (blue) between gas and liquid. The point of intersection of these
three lines is the triple point. When the system crosses one of these lines,
it changes phase, undergoing a sudden change of density.

Notice that the vapor-pressure line ends at a point called the critical
point, and thus one can change phase from liquid to gas and back con-
tinuously, that is without a phase transition. This can be accomplished
as follows: starting from a vapor, we first raise the temperature to a
value greater than the critical temperature. so as to get a superheated
vapor, and then raise the pressure. At this point our system has become
a supercritical fluid. Now, simply decreasing the temperature, we end up
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(a) (b)

Figure 1.1
Two section of eq. [1.4] at fixed volume (1.1a) and fixed temperatures
(1.1b).

in the liquid phase. This way, we have circumvented the critical point and
thus changed the phase of the system in the absence of a phase transition.

Fig 1.1b shows the isothermal curves of a Van Der Waals gas: the
cyan ones are for T > Tc; the blue ones for T < Tc, while the red
one corresponds to the critical temperature. At high temperatures, the
isotherm of the gas are roughly represented by a branch of hyperbole, as
in the ideal gas approximation. As the temperature approaches Tc from
above, an inflection point appears at P = Pc and V = Vc, and so the
isothermal compressibility diverges at the critical point

χT =

(
∂ρ

∂P

)
T

→∞ as T → T+
c [1.5]

Physically, we have that a small variation of the pressure leads to a huge
variation of the density. As explained before, the divergence of a response
function is a sign of the presence of a second-order phase transition.
The next section is devoted to the discussion of such second-order phase
transitions.

Instead, a first-order phase transition is observed upon changing the
pressure, as we now explain. Let us take a gas at T < Tc, at very large
volume and low pressure. Keeping in mind fig. 1.1b, it can be seen that
when we increase the pressure, the volume decreases continuously, until
we get to the point G. Once in G, a slight increase of the pressure will
result in an abrupt change of the volume from VG to VF . As we have
seen, the discontinuity in the volume is a sign that a first-order phase
transition is taking place.

Let us look at what happens in the region between G and F. When
approaching G from the low-pressure zone, the system is in a gaseous
phase. The further decrease of the volume forces the particles in small
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regions and droplets of the new (liquid) phase start to form. This is
why there is no change in the pressure, that instead remains constant
at a value called saturated vapor pressure. Indeed, the molecules can
be accommodated in a smaller volume without increasing the pressure
because a fraction has condensed into the liquid phase.

When the system gets to the point F, the gas is entirely condensed.
Liquids, on the other hand, are incompressible, therefore a big variation
of the pressure is needed to cause even a small reduction of the volume.

Figure 1.2
The region between the coexistence curve
(the external one) and the spinodal (the
internal one that intersects the maxima
and minima of the isothermal curves).

The bell-shaped region enclosed
by the critical point and the points
F and G of all the isotherms in
fig. 1.1b is called coexistence region
(shown in fig. 1.2), because – as we
have seen – the system is present
in both a gaseous and liquid phase.
In this region the system is not ho-
mogeneous, because the condensed
and the gaseous phase have differ-
ent densities. Since the Van Der
Waals equation has been derived
for an homogeneous substance, it
cannot describe the physics inside
the coexistence region. We have
already discussed the fact that the
pressure remains constant when

moving between the points F and G of fig. 1.1b, hence the oscillat-
ing part of the Van Der Waals curve must be replaced by a horizontal
line at a height that can be inferred via the Maxwell construction. The
argument is the following: in an isothermal process the Helmholtz free
energy variation is dF = PdV . Since the free energy is a state function its
variation in going from F to G must not depend on the path. Therefore,
the quantity

∫
PdV must not change going along the Van Der Waals

isotherm FABCG or along the straight line FG, meaning that the areas
FAB and BCG must be equal. Although this argument is not rigorous,
because the Van Der Waals isotherm does not describe the equilibrium of
the system in the coexistence region, it can be proven that the conclusion
is correct and the Maxwell construction holds.

In between the points F and G of a Van Der Waals isothermal we
can distinguish three regions: a first where – increasing V – the curve
decreases, FA; a second where the curve increases, AC, and a third
between C and G, where the function decreases again. It can be easily
seen that the region AC is unphysical, in fact, it corresponds to a negative
compressibility χT =

(
∂ρ
∂P

)
< 0, meaning that an increase in pressure

leads to a reduction of the density. On the other hand, the regions FA
and CG do not violate any fundamental principle and in fact correspond
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to metastable states. The limits of these two metastable states are the
points A and C, that are the relative minimum and maximum of the
curve, respectively. Now, as we have done for the coexistence region, we
can trace two lines starting from the critical point downwards, this time
by joining the points A and C of all the isotherms. These lines are called
the spinodal curve.

The states between the coexistence region and the spinodal curve –
represented in fig. 1.2 – are physically accessible states, though their
energy is higher than that of the liquid-gas state at the same P and
T . This means that by compressing the gas very slowly we can take
the system into the metastable state called supercooled vapor. Similarly
– expanding a liquid beyond the coexistence curve results in another
metastable state, namely the superheated liquid. In both of these cases,
a fluctuation of the system leads to the decay from the metastable to the
ground state, that is the liquid-gas mixture.

1.2 Second-order phase transitions

We have seen before that, for a Van Der Waals gas, there is a critical
temperature Tc crossing which the system undergoes a second-order phase
transition. This transition is characterized by the divergence of the
isothermal compressibility χT .

Another paradigmatic example of a second-order phase transition is
the para- to ferromagnetic transition that occurs at critical temperature
TC called the Curie temperature. A paramagnet is a material that has the
property of having a magnetic moment that is proportional to an applied
external field ~H. We can model a paramagnet by considering N magnetic
atoms in fixed positions with a magnetic moment ~µi. If an external field
~H is applied to the system and the magnetic moments of different atoms
do not interact, the hamiltonian can be written as

H = −
N∑
i=1

~µi · ~H = −H
N∑
i=1

µ
(z)
i , [1.6]

where we have chosen the z axis along the direction of the field ~H, and µ(z)
i

is the projection of the magnetic moment along the z direction. For spin
1/2 particles, the magnetic moment component along the field can only
assume two values µ(z)

i = ±µ0 = (1/2µB), µB being the Bohr magneton.
For convenience we can introduce a spin variable σ = ±1 and rewrite the
hamiltonian [1.6] as

H = −µ0H
N∑
i=1

σi, [1.7]

where σi represents magnetic moments aligned with the field – σi = 1 –
or antiparallel with the field, σi = −1.
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Figure 1.3
Magnetization vs µ0H for different values of the temperature (see
key).

Paramagnets are characterized by the fact that, when the external field
is no longer present, the magnetic moments return in their disordered
configuration and there will be – on average – half positive and half
negative magnetic moments. As a result, the total magnetic moment of
the material will be zero. This can be proved as follows. Let us first
compute the partition function

Z =
∑
{σi}

eβµ0H
∑
i σi , [1.8]

where β = (kBT )−1 and the sum is over all spin configurations, that is
σi = ±1, i = 1, . . . , N . Since the spins are non-interacting, we can write

Z =
∑
{σi}

N∏
σi=1

eβµ0Hσi =
N∏

σi=1

∑
{σi}

eβµ0Hσi =

=

∑
{σ1}

eβµ0Hσ1

N

= Z N
1

[1.9]

The single-particle partition function is Z1 = eβµ0H+e−βµ0H = 2 cosh(βµ0H),
so eq. [1.9] becomes

Z = 2N coshN(βµ0H) [1.10]

The total magnetic moment along the z axis or magnetization is defined
as
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M = µ0

〈
N∑
i=1

σi

〉
= µ0

N∑
i=1

〈σi〉, [1.11]

Here, as usual, the symbol 〈·〉 means a thermal (or, equivalently ensemble)
average. From eq. [1.8] it is easily seen that M can be computed as

M =
∂Z

∂(βH)
= Nµ0 tanh(βµ0H) [1.12]

Fig. 1.3 shows the magnetization per spin m = M/N as a function
of µ0H. For |µ0H| � kBT , the magnetization asymptotically reaches
a saturation value m = µ0. If |µ0H| � kBT , the hyperbolic tangent
can be approximated by the first term of its Taylor expansion and the
magnetization is linear in H. From a physical point of view, the first case
describes a situation where thermal fluctuations can be ignored, and thus
almost all the spins are aligned with the magnetic field; while the second
limit states that the smaller the field, the fewer the number of spins that
are aligned with it. In particular, as anticipated, we have that

M → 0 as H → 0 [1.13]

Eq. [1.13] states that – at any temperature – paramagnets do not exhibit
a magnetization unless there is an external field H aligning the spins.

Despite all the above, we have every-day experience of materials, like
magnets, that have magnetic properties even in the absence of an external
magnetic field. These materials are called ferromagnets. Phenomenologi-
cally it is well known that some materials behave as paramagnets above
some critical temperature TC and as ferromagnets at T < TC .

A simple but very instructive model that describes ferromagnets is
the Ising model. The Ising model was introduced by Wilhelm Lenz and
assigned to his student Ernst Ising, who discussed it in his doctoral
thesis in 1925. It was originally proposed to provide an insight on phase
transitions, and it has been used to describe many physical and non-
physical systems. For instance, in physics it has been used to study
ferromagnets, antiferromagnets, binary mixtures and alloys. It is also
widely studied in biology, where variations of it are used to study neural
networks, flocking birds and beating heart cells, or in sociology where it
can model spread and clustering of criminality or opinions. In general it
is useful to describe situations in which single elements of a system (i. e.
atoms, proteins, electors, customers and so forth) modify their behavior
so as to conform to that of other agents in their vicinity.

In the Ising model, the paramagnetic hamiltonian [1.6] is generalized
so as to include an interaction term

H = −J
∑
〈ij〉

σiσj −H
∑
i

σi, [1.14]
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where we set µ0 = 1 for simplicity, H is the external magnetic field
oriented in the positive direction of an easy axis, generally the z axis, and
J is a coupling constant that can be either positive or negative. In the
first case, the hamiltonian can be rewritten as

H = −|J|
∑
〈ij〉

σiσj −H
∑
i

σi [1.15]

Eq. [1.15] shows that a couple of nearest neighbors spins decrease the
energy of a factor J if they are parallel, namely they have the same value
of σ – while increases the energy of J if they are antiparallel. Such systems
are called ferromagnets.

On the other hand, if J < 0, he interaction term becomes H =
|J|
∑
〈ij〉 σiσj, and the opposite situation occurs, where the energy is

decreases by couple of nearest neighbors spins that are not aligned. This
describes the phenomenon of antiferromagnetism.

The hamiltonian [1.14] establishes an interplay between two forces. On
the one hand the spins tend to align to the external field H and – on the
other – their orientation is influenced by that of their nearest-neighbors.

Despite being simple and quite crude, the Ising model is characterized
by a very rich behavior. Moreover, it is exactly solvable in both one
and two dimensions. The 1d solution was provided by Ising himself and
turns out to be uninteresting, since it does not show a phase transition at
finite temperature. Indeed, the lower critical dimension of the model is
one, meaning that it undergoes a phase transition only in more than one
dimension. A theorem by Mermin and Wagner [33] states which physical
quantities bear on the value of the lower critical dimension. Among these
we find: the type of interaction (short-ranged for the Ising model, because
it is limited to nearest neighbors) and the dimension of the so called local
order parameter (which for the Ising model amounts to the local spin σi
and is a scalar quantity). In 1944, Lars Onsager found the solution of the
two-dimensional model [47], showing that there is a (second-order) phase
transition at Tc ' 2.26 J/kb. We remark that the solution is possible only
for H = 0, whereas it is still missing for H 6= 0. Analogously, there is no
exact solution in d > 2.

1.2.1 Broken symmetry

We will now describe some of the fundamental features of the model at
H = 0. Let us observe that the Ising hamiltonian is invariant under the
transformation σi → σ′i = −σi

H{σi} = H{σ′i} [1.16]

Now, consider the total magnetization per spin

m ≡ 1

N

∑
i

mi, [1.17]
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where
mi =

1

Z

∑
{σi}

σi e
−βH{σi} [1.18]

In eq. [1.18], Z =
∑
{σi} e

−βH{σi} is the partition function. Since σi is a
dummy variable, we can operate the substitution σi → σ′i and sum over
the σ′i. Using [1.16], the magnetization can be rewritten as

mi =
1

Z

∑
{σ′i}

σ′i e
−βH{σ′i} = − 1

Z

∑
{σi}

σi e
−βH{σi} = −mi, [1.19]

and thus we get mi = −mi = 0. If the magnetization per spin is zero,
so will be the total magnetization m (see eq. [1.17]). This result is not
due to the simplicity of the Ising model. In fact, it just derives from
the symmetry of the hamiltonian, that is quite general. However, real
ferromagnets exhibit a magnetization at least in the low-temperature
regime, and the Onsager solution encompasses this behavior. So, how do
we explain this apparent contradiction?

Any realistic hamiltonian system has some symmetries, for instance
it can be invariant under translations or rotations, therefore, we would
expect that its thermodynamic state should be characterized by the same
properties. However, this is not always true, and many systems are found
in thermodynamic states that do not possess some of the symmetries of
the hamiltonian, a phenomenon that goes under the name of symmetry
breaking.

In the case of the Ising model, we have to break the Z2 (up-down)
symmetry. Even though in real materials (as well as in the Onsager
solution) a spontaneous magnetization develops at H = 0, it is useful, in
order to understand the mathematical mechanisms whereby spontaneous
symmetry breaking occurs, to start from the hamiltonian [1.14] in the
presence of the magnetic field and study carefully the interplay between
the limit H → 0 and the thermodynamic limit of an infinite system. It is
clear that if the limits are taken as follows

lim
N→∞

lim
H→0

m(H,T,N) = 0, [1.20]

the symmetry is not broken. The vanishing of magnetization is due to
the fact that, for any finite N , m(H,N) is given by the sum of a finite
number of analytic functions and is thus itself analytic. Hence, the limit
of null field simply corresponds to the function computed at H = 0

lim
H→0

m(H,T,N) = m(0, T,N) = 0, [1.21]

where the last inequality is due to eq. [1.19].
On the other hand if we take the thermodynamic limit before taking

the limit of zero field, the magnetization might become non-analytic below
some temperature
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Figure 1.4
Free energy for the Ising model vs m, at T > Tc (red) and T < Tc
(blue).

lim
H→0

lim
N→∞

m(H,T,N) 6= 0 [1.22]

When eq. [1.22] is verified for some temperature range, we say that a
spontaneous symmetry breaking occurs.

To better understand this mechanism, let us consider the probability
distribution P (m;H,T,N) that, at a fixed temperature T and external
field H, the system has a magnetization m

P (m;H,T,N) = Z −1

(m)∑
{σi}

e−βH = Z −1 eβHM−βF0(m;T,N) [1.23]

where the
∑(m) means that the sum runs over all configurations for which

the system has a magnetization M = Nm and

exp [βF0 (m; T, N)] =
∑
{σi}

exp

βJ ∑
〈ij〉

σi σj

 [1.24]

The partition function can be written as

Z =
∑
m

exp [βHM − βF0 (m; T, N)] [1.25]

Now let us first consider the case with zero field. If H = 0, f0 = F0/N
is symmetric with respect to m. We expect that – at high temperatures
– a minimum of the free-energy density lies at m = 0, since in this case
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there is no spontaneous magnetization. In the low-temperature regime,
instead, the free energy will exhibit two symmetrical minima. Notice that
the mean value of the magnetization is still zero as for T > Tc, but the
form of f0 is significantly different, as depicted in fig 1.4. For T < Tc, the
system must break the symmetry to fall in one of the minima located in
±1.

Since the exponent in eq. [1.23] is an extensive quantity, in the
thermodynamic limit the probability distribution of the magnetization m
tends to a delta function for T > Tc

lim
N→∞

P (m; T, N) = δ(m), [1.26]

and to a two delta functions for T < Tc

lim
N→∞

P (m; T, N) =
1

2
[δ (m−m0(T )) + δ (m+m0(T ))] [1.27]

In the case in which the magnetic field is, say, positive, the quantity
f(m; H, T ) = F/N ≡ f0(m; T )−Hm has a maximum at a positive value
m = m(H,T ) for T > Tc, while for T < Tc the free energy has two minima
m−(H,T ) and m+(H,T ), that are not equivalent. The minimum with
positivem will be lower than the other because of the presence of a positive
field. In the thermodynamic limit, the probability distribution exhibits
one delta function for high temperatures. Interestingly, for T < Tc only
one delta function peaked around the largest maximum in m+(H,T ) is
obtained in the thermodynamic limit, while the other relative maximum
is suppressed.

In order to prove this let us start from expression of the probability
distribution (dropping the explicit dependence on H and T )

P (m; N) =
e−Nβf(m)∫
e−Nβf(m)dm

, [1.28]

where we have considered m as a continuous variable. For high tem-
peratures, f(m) has just one minimum at m0, thus we can expand the
argument around this point

exp [−Nβf(m)] = exp

[
−Nβf(m0)− 1

2
Nβλ(m−m0)2

]
, [1.29]

with λ = −
(
∂2f
∂ m2

)
m=m0

. Inserting [1.29] in [1.28] we obtain

P (m; N) =
e−

1
2
Nβλ(m−m0)2∫

e−
1
2
Nβ(m−m0)2dm

=

√
2π

Nβ
e−

1
2
Nβλ(m−m0)2 [1.30]
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Eq. [1.30] tells us that P is a Gaussian with a variance σ ∼ 1/N . In
the thermodynamic limit, this Gaussian is a representation of a delta
function, therefore we get

P
N→∞−−−→ δ(m−m0), [1.31]

that is, the probability of the system to have a magnetization m tends to
a delta function peaked around m0 in the thermodynamic limit. Since
m0 → 0 as H → 0 for T > Tc, there is no spontaneous magnetization.

On the other hand, for T < Tc, f(m) has two minima at m1 and m2

with f(m2) > f(m1). As before, we can expand around these two points

exp [−Nβf(m)] = exp

[
−Nβf(m1)− N

2
βλ1(m−m1)2

]
+

exp

[
−Nβf(m2)− N

2
βλ2(m−m2)2

]
,

[1.32]

with

λi =

∣∣∣∣( ∂2f

∂ m2

)
m

= mi

∣∣∣∣ i = 1, 2 [1.33]

Making use of [1.32] we can evaluate the following integral

∫
e−Nβf(m)dm =

√
π

Nβλ1

e−Nβf(m1) +

√
π

Nβλ2

e−Nβf(m2), [1.34]

and thus rewrite the probability distribution as

P(m,N) =

√
Nβλ1

π

(
e

1
2
Nβλ1(m−m1)2+

e−Nβ[f(m2)−f(m1)] e
1
2
Nβλ2(m−m2)2

) [1.35]

Since f(m2) > f(m1), we can neglect the second term in the thermo-
dynamic limit, so that

P(m,N)
N→∞−−−→ δ(m−m1) [1.36]

For T < Tc, the magnetization approaches m+(0, T ), corresponding to
one of the maxima of the distribution at H = 0.

Eq. [1.36] shows that – in the low temperature-regime – a system
described by hamiltonian [1.14] exhibits a spontaneous magnetization and
the symmetry of the system is broken. This occurs for two reasons:

1. The probability distribution exhibits two maxima for T < Tc;
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2. Even a small field favors one of the two maxima, say m̄, and cancels
the other in the thermodynamic limit, leaving us with only one
delta function picked at m̄. Once the thermodynamic limit is taken,
the secondary peak cannot be recovered by letting H → 0.

According to the discussion above, symmetry breaking can only occur
in an infinite system. Real ferromagnets, however, are made up of a
number of a large but finite number of particles. Moreover, we have
showed how the magnetization appears starting with an external field and
then taking the limit H → 0, but how does this process work in reality?

As for the second point, it can be noted that there will always be a
magnetic field, however small, that can interact with the ferromagnet.
Electronic devices, ions moving in the atmosphere and the charged-particle
component of the cosmic rays can all have a magnetic interaction with
the sample and induce the symmetry breaking. Similarly, the appearance
of a magnetization can be influenced by a boundary condition as, for
instance, an initial configuration with a majority of up spins.

More subtle is the discussion about the symmetry breaking in real
systems. To understand how a spontaneous magnetization can appear
even for systems with a large – but finite – number of particles, let us
recall. what the ergodic hypothesis is. In statistical mechanics one has
to deal with systems that have a number of particles of order N ∼ 1023,
making impossible a microscopic description of the system. For this
reason, the aim of the theory is to find mean values of the parameters
that describe the system. For a generic quantity A, the time average is
defined as

〈A〉τ =
1

τ

∫ t0+τ

t0

A({q(t),p(t)})dt, [1.37]

where τ is a time interval and {q(t),p(t)} is the set of coordinates and
their conjugate momenta.

In order to evaluate the integral in eq. [1.37] we would need the
expression of A({qi(t), pi(t)}. This could be accomplished by solving the
equations of motion for an Avogadro number of particles, a task which is
out of reach. The statistical mechanics recipe is to substitute the average
over time – which requires the knowledge of the microscopic quantities of
the system – with a mean defined over statistical ensembles. An ensemble
is a collection of N copies of the system, all macroscopically equivalent,
namely, described by the same value of the control parameters. Each
of the ensemble elements will have a different microscopic configuration
{q(t),p(t)}(k), where k runs over the number of copies. We can then
define the ensemble average as

〈A〉ens =
1

N

N∑
k=1

Ak, [1.38]
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with N→∞.
To characterize the ensemble and calculate the ensemble average we

must provide the distribution of the systems over all the macroscopic
configurations. Since these coordinates represent a point in the phase space
Γ, the microstates of the N systems of the ensemble can be represented
by N points in Γ. The distribution that characterize the ensemble is
described by a function ρ(q, p) defined in the phase space as

dN = ρ(q,p)dqdp, [1.39]

where dN is the number of systems characterized by a microscopic state
located in the phase space in the elementary volume dqdp.

Having introduced the density of states, the ensemble average can be
redefined as

〈A〉ens =
1

N

∫
A(q,p)ρ(q,p)dqdp, [1.40]

where N =
∫
ρ(q,p)dqdp.

Here is where we use the ergodic hypothesis. It states that, over
a sufficiently long time τ , the locus of the representative point of a
system will cover the entire accessible phase space. In other words, the
requirement is that the system will visit uniformly the phase space for
large enough τ . Only if the ergodic hypothesis holds can we say that

〈A〉τ = 〈A〉ens [1.41]

that is, the ensemble average and the time average coincide. The two
averaging procedures are not equivalent otherwise.

Let us now come back to the Ising model. Consider a system of
N ∼ 1023 particles. As we have seen, in the absence of a magnetic field
H = 0 the distribution develops two symmetrical peaks centered at −m̄
and m̄. Suppose the system is initially in the minimum associated with
positive magnetization. Symmetry is restored when the system jumps
in the other minimum, −m̄, an event that will surely occur since – for
finite N – the system is ergodic. However, in order to escape from the
initial state with positive magnetization, the system needs to overcome a
huge energy barrier and sample highly-improbable configurations. This
dynamical process occurs via nucleation of a droplet, a compact region
of size R made of spins with a negative value of the magnetization. The
cost in energy is proportional to the surface of the droplet Rd−1 and the
probability of such an event to occur is given by the Arrhenius factor
p ∼ e−βR

d−1 . The transition from one state to the other with opposite
magnetization will take place when a nucleus reaches a size of the order
of the linear size of the system, namely when R ∼ N1/d. The probability
of such an event to occur is p ∼ e−βN

(d−1)/d and the thus the time is
τs ∼ τ0 p

−1 = τ0 exp
[
βN (d−1)/d

]
, where τ0 is a microscopic quantity that
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defines time scales. Given that N ∼ 1023 the time τs needed to escape
from the initial state is of order τ0 exp [1015], a huge number for any
realistic choice of τ0

1. In other words, the system does not sample
uniformly the configuration space for every reasonable time scale, and for
all practical purposes it exhibits an ergodicity breaking. Only if we perform
a measurement on a time τ ∼ τs will we observe an ergodic system, namely
the time average and the ensemble average of the magnetization will both
return zero.

1It is sufficient to recall that the age of the universe is approximately 1017 ' e41
secs



Chapter 2

Statistical mechanical
approach to the dynamics

So far, we have talked about equilibrium phase transitions. These corre-
spond to a situation in which the phase of the system is changed by means
of quasistatic transformations, that is, slowly varying a control parameter.
However, it may happen that such parameter is changed abruptly and
the system crosses the critical region passing through non-equilibrium
states. In order to study these processes, we cannot resort to equilibrium
statistical mechanical techniques, because it only describes a system in
an equilibrium state. How, then, can we investigate non-equilibrium
processes?

Unlike statics, for which a well established theory exists, non-equilibrium
statistical mechanics is a still developing field where the dynamical evolu-
tion of a system can be studied in different ways. In this chapter we will
outline some of the most common approaches.

2.1 Hydrodynamic approach

The hydrodynamic approach can be exemplified taking the simple case
of a drop ink diffusing in water. To describe its movement, instead of
considering the trajectory of each single ink particle, we can resort to a
coarse-grained description, starting from Fick’s law

~J(~r, t) = −D∇ρ(~r, t) [2.1]

This law relates phenomenologically the flux of particles ~J(~r, t) at position
~r and time t to the gradient of the particle density ρ(~r, t) via the diffusion
coefficient D. Physically, eq. [2.1] states that if the density is not uniform,
there will be a particle flux towards the low-density regions. To write an
equation for the density we exploit the continuity equation

∇ · ~J +
∂ρ

∂t
= 0 [2.2]
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Inserting eq. [2.2] in [2.1] we obtain

∂ρ

∂t
= D∇2ρ(~r, t) [2.3]

Eq. [2.3] is the so called diffusion equation. It can be solved under the
initial condition that all the ink particles at t = 0 are at the origin. In
this case the solution has radial symmetry and is given by

ρ(~r, t) =
N

(4πDt)3/2
exp

(
− r2

4Dt

)
, [2.4]

where N =
∫
ρ(~r, t)d~r. Note that at t = 0, eq. [2.4] gives a delta

function, reproducing the initial conditions. The hydrodynamic approach
is deterministic, in that it neglects microscopic details of the systems
involved.

Beside the simple example above, an hydrodynamic description has a
general character and can be applied to a variety of systems including
the interacting ones.

2.2 Langevin equation

A more microscopic approach is to write the equation of motion of the
diffusing particle, assuming that the forces due to the particles of the
medium can be replaced by a stochastic force ~F2. In this approach, due
to Langevin, the equation of motion can be written as

m
d~v

dt
= ~F (t), [2.5]

where m and v are the mass and the velocity of the diffusion particle,
respectively. Next, it is assumed that the total force ~F (t) can be separated
in two components: ~F1(t) and ~F2(t). The first is a deterministic force
that can be written as

~F1(t) = − 1

B
~v + ~F ′, [2.6]

where the first term of the r.h.s. is a term due to viscosity and the second
is an external force. For convenience, we put ~F ′ = 0, given that it does
not bear on our discussion. The second term ~F2(t) is a random force
due to the scattering with the particles of the medium with the following
properties

〈~F2(t)〉 = 0; [2.7a]
〈~a2(t1)~a2(t2)〉 = Cδ(t2 − t1), [2.7b]

where ~a(t)=~F2(t)/m, δ is the Dirac delta, t2 > t1 and C is a constant. Eq.
[2.7a] states that the time average or – equivalently – an ensemble average
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of this stochastic force is zero. The second equality is physically justified
by noting that the values of ~a(t1) and ~a(t2) are highly uncorrelated for
large enough τ = t2 − t1. Due to the chaotic nature of the collisions, for
τ larger than a characteristic τ ∗ we have

〈~a2(t1)~a2(t2)〉 = 〈~a(t1)〉〈~a(t1 + τ)〉 = 0 [2.8]

where the last inequality follows from [2.7a]. Due to molecular agitation,
we can expect τ ∗ to be extremely small. Therefore, all calculations can
be made under the assumption that the autocorrelation of the stochastic
force is a delta function, as stated by eq. [2.7b].

In order to determine the constant C one can proceed as follows. Using
eqs. [2.7] and [2.6] we can rewrite eq. [2.5] as

d~v

dt
= −1

s
~v + ~a(t), [2.9]

where s = 1/Bm. Eq. [2.9] is a first-order non-homogeneous differential
equation, whose general solution is

~v(t) = ~v0e
−t/s + e−t/s

∫ t

0

~a(t1)et1/sdt1 [2.10]

Taking the square of eq. [2.10] and averaging we obtain

〈~v2(t)〉 =〈~v2
0〉e−2t/s+

e−2t/s

∫ t

0

∫ t

0

〈~a(t1)~a(t2)〉e(t1+t2)/sdt1dt2 =

〈~v2(t)〉 =〈~v2
0〉e−2t/s + C

s

2
(1− e−2t/s),

[2.11]

where the crossed term has vanished because of [2.7a] and the double
integral has been evaluated via [2.7b]. The constant C can be evaluated
by taking the limit t→∞

〈~v2(t)〉 = C
s

2
, [2.12]

and using the equipartition theorem

C =
6kBT

sm
=

6kBT

Bm2
[2.13]

Consequently, we find

〈~F2(t1) · ~F2(t2)〉 =
6kBT

B
δ(t1 − t2) [2.14]

Eq. [2.14] states that the higher the strength of the fluctuating force, the
higher the viscosity B−1, showing that the two quantities have the same
origin in the collisions of the fluid particles.
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With respect to the hydrodynamic approach, the Langevin equation
provides a description at a more microscopic level. For instance, we
can make predictions about the system fluctuations. Through simple
calculations, it can be found that

〈r2〉 =

{
v2(0)t2 for t� s

6kBTBt for t� s.
[2.15]

This means that, for short times, the particle moves as if it were free
from collisions, that is, with a ballistic motion. For long times, however,
diffusion occurs. In fact, we find the same behavior of the fluctuation in
the hydrodynamic approach

〈r2〉 =
1

N

∫
ρ(~r, t)r2d~r = 6Dt, [2.16]

where the last result has been obtained using eq. [2.4] Comparing [2.16]
with [2.15] we obtain a relation between the mobility B and the diffusion
coefficient

kBTB = D, [2.17]

which is known as Einstein’s relation.

2.3 Master equation

One powerful and very general method to study the dynamics is the
so-called Master Equation

∂Pr
∂t

=
∑
l

Plwlr −
∑
l

Prwrl [2.18]

Eq. [2.18] simply states that the probability Pr that the system is in
the state r varies over time because of two contributions: the incoming
probability flux is given by the probability that the initial state of the
system is l times the probability (per unit time) that the state of the
system changes from l to r; the outgoing flux, instead, is the product of
the probability that the system is in the state r and the probability (per
unit time) of the transition from r to l.

If a stationary equilibrium state exists, and the system is in contact
with a thermal reservoir, it must be described by the equilibrium canonical
distribution. Letting ∂Peqr /∂t = 0 and Peqr = Z −1 exp (−βEr) in eq.
[2.18] one arrives at

1

Z

∑
l

wlre
−βEl −

∑
l

wrle
−βEr = 0 [2.19]

This condition is called semi–detailed balance, which is fulfilled if

wlre
−βEl = wrle

−βEr [2.20]
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Eq. [2.20] is called detailed balance, and can be rearranged as to give

wlr
wrl

= e−β∆Erl [2.21]

Notice how eq. [2.21] does not fix the form of the transition rates, but
only their ratio. Indeed, several choices of the w’s are found in the
literature. We observe that eq. [2.20] embodies one of the fundamental
properties of equilibrium, namely the time reversal symmetry. In fact,
this equality means that, if the measure is the canonical one, there is no
net flow of probability between the states r and l. This is because the
l.h.s. represents the joint probability per unit time to be in the state
l and to evolve to r, while the r.h.s. is the probability of the reversed
process. These two probability are set equal by eq. [2.20], meaning that
there are no net fluxes between the system’s states or – equivalently –
that the time reversal symmetry holds.

Clearly, the Master Equation is coherent with equilibrium statistical
mechanics, meaning that any static quantity can be recovered from it.
In fact, it is even more powerful since it not only allows one to obtain
static properties, but also discloses the dynamical behavior of a system.
Moreover, it can be used as a starting point to build numerical simulations
in cases where an analytical solution is not possible. This is achieved
through the so called Montecarlo methods, which often represent the only
tool to investigate the equilibrium and non-equilibrium properties of a
system.

2.4 Numerical simulations

The use of computers in physics and in sciences in general has revolution-
ized the way in which scientific research is carried out. In fact, numerical
simulations have turned out to be a tool so powerful and useful that
simulation is often referred to as the third branch of science, because it is
at the same level of theory and experiment.

To implement a numerical simulation, we provide the computer with
the equations that govern the physical phenomena so that the it be able to
perform the calculations. The clear advantage is that the computational
power by far overdoes that of humans, and it consequently allows one
to study systems that could not be studied otherwise. On the other
hand, it can be seen that for thermodynamical calculations the time
required to output meaningful data is way beyond reasonable even for
small systems. To see this, a quick estimate will do. If one has a square
lattice of 20x20 spins and wants to compute the partition function of
the Ising model on this lattice, the number of configuration to take
into account is 2400 > 100100. A supercomputer capable to extract 106

configurations per second would take 10100−6 = 1094 secs to complete this
task; a number that by far exceeds e41 secs ' 1017 secs that is the age of
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the universe. Because of that, some techniques have been developed in
order to overcome such hindrances, in particular, the Montecarlo methods,
which will be described later in this chapter.

Another advantage of a numerical experiment is that we have total
control over the parameters, something that is impossible to obtain during
an experiment carried out in a laboratory. For example, keeping a system
at a constant temperature while performing measurements on it is not an
easy task. Likewise, it is practically impossible to obtain a perfectly pure
sample of material. Instead, these ideal conditions are naturally set up in
the numerical experiment while modeling the system.

2.5 Montecarlo Methods

When dealing with thermodynamical systems, there are two general
methods of simulations: molecular dynamics and Montecarlo methods.

In molecular dynamics one simulates the evolution of a mechanical
system composed of a large number of particles numerically solving
its deterministic equations of motion. A clear advantage is that this
procedures relies on the true kinetics of the constituents and therefore
provides information on dynamical properties, such as viscosity, thermal
conductivity, besides the equilibrium ones, such as, for instance, the
equation of state. However, an important disadvantage is that the huge
complexity of calculations requires an accordingly huge computational
power, even for simple and small systems. This is a serious limitation
that makes it impossible to simulate large-size systems, let alone reaching
the thermodynamic limit.

The second class of simulations is the Montecarlo methods. They allow
one to simulate systems whose kinetics is not necessarily defined. This
is done relying on a stochastic dynamics, whose equations often cannot
be solved analytically, and represent an extremely powerful tool that
significantly decreases the computational time when the deterministic
approach is too burdensome. The origin of the name has to do with the
exploitation of random number sequences, which are encountered when
playing the roulette in the city of Montecarlo, as well as in this type of
algorithms.

In order to exemplify a Montecarlo algorithm, let us consider the
Ising model. As it is, the model does not possess a kinetics, since an
evolution for the spin variables is not provided. One theoretical approach
to study the phase ordering dynamics is the kinetic Ising model, originally
introduced by Glauber [27]. He introduced a stochastic dynamics for the
spins, that can make random transitions according to a discrete time
Markov chain. This is a stochastic process characterized by the fact that
the probability for the system to be in a certain state only depends on
the state of the system in the previous time step, and not on its history.

To introduce the dynamics, we first set the initial configuration of the
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system. For instance, we can choose a state where every spin has a random
orientation, meaning that, on average, we will have one half of the spins up
and one half down. This configuration can be identified with an infinite-
temperature one, since the thermal fluctuations completely prevail over
correlation between spins. Once we have done that, we randomly pick a
spin in the lattice σ and establish a probability for this spin to flip from
its initial state r to l. According to Glauber, this probability is 1

wrl =
1

2

[
1− tanh

(
β

2
∆Erl

)]
, [2.22]

where ∆Erl = El − Er is the difference between the energy of the two
states.

It is important to stress that this choice of the transition rate satisfies
the detailed balance condition [2.20], in fact

wrl
wlr

=
1− tanh

(
β
2
∆Erl

)
1− tanh

(
−β

2
∆Erl

) =
1− tanh

(
β
2
∆Erl

)
1 +

(
tanh β

2
∆Erl

) =

=
cosh

(
β
2
∆Erl

)
− sinh

(
β
2
∆Erl

)
cosh

(
β
2
∆Erl

)
+ sinh

(
β
2
∆Erl

) =

=
2e−

β
2

∆Erl

2e
β
2

∆Erl
= e−β∆Erl

[2.23]

According to the discussion made in sec. 2.3, this ensures us that the
stationary state exists and corresponds to a state described by equilibrium
statistical mechanics.

After establishing whether the spin changes state or not, the procedure
is iterated by randomly choosing another spin. A Montecarlo step (MCS),
the time unit, corresponds to L2 single spin flip attempts.

An important aspect of these methods is that they not only allow one
to study the dynamics of a system, but they are very practical tools to
investigate equilibrium properties. This feature is extremely useful, since
partition functions are not analytically computable if not for very simple
physical problems, and – as seen before – a direct numerical summation is
not realistic with nowadays computers. Montecarlo methods realize what
is called the importance sampling, that is, they sample the phase space
in the most convenient way, performing a biased random walk where the
relative frequency of visitations of the microstate is consistent with the
equilibrium ensemble distribution. In order to understand that, let us
consider the simple cases of a vanishing and infinite temperature. In
the limit of a vanishing temperature, microstates with a high energy
basically do not contribute to the partition function, because they are

1This is actually a generalization of the Glauber’s transition rates that reduces to
his original choice in the one-dimensional case.
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exponentially depressed by the Boltzmann weight. Hence, sampling these
states is a useless waste of time. With the transition rates [2.22], at
low temperature, the kinetics naturally avoids these states, because the
term in square brackets practically vanishes for moves that increase the
energy. Therefore, the Montecarlo trajectory will sample almost only the
low-energy state, which effectively contribute to the partition function.
This is the origin of the name importance sampling which is at the basis
of the efficiency of the method.

A similar reasoning applies in the limit of high temperatures. Indeed,
in this limit, one has wrl ' 1/2, irrespectively of the states r and l. This
means that all the microstates of the system are equally sampled by
the procedure. This is indeed the correct way to sample phase space at
high temperatures, where all the microstates contribute to the partition
function with equal weight.



Chapter 3

Dynamics of phase
transitions

Now that we have presented some of the most common approaches to
study the kinetics of a system, let us focus specifically on the dynamics
of phase transitions. As earlier said, a phase transition consists of the
appearance of a new ordered phase of the system. In this chapter we will
introduce the two most relevant mechanisms whereby this occurs, namely
nucleation and coarsening.

3.1 Coarsening

Let us consider a macroscopic system in the thermodynamic equilibrium,
whose state is described by a set of thermodynamic parameters. If we
change one of the parameters, we observe a non-equilibrium transient,
during which the system evolves toward a new equilibrium state. For
instance, imagine a cube of ice in a refrigerator. If we put it at room tem-
perature, it will start to melt and will reach a new equilibrium state when
it has completely transformed into water that is at the same temperature
as the environment. Another example is a gas which is left free to expand:
it will spontaneously reach a new equilibrium state, characterized by a
new set of parameters, notably with lower pressure.

We can separate the cases in which relaxation towards equilibrium
takes a finite time, and those where the time needed to reach the equi-
librium state depends on the size of the system and thus diverges in the
thermodynamic limit.

Take the familiar example of the Ising magnet, i. e. a system described
by the Ising hamiltonian. If we perform an instantaneous change of
temperature from Ti > Tc to Tf > Tc, we will start from a configuration
where the system is in a paramagnetic state and the global magnetization
is zero and end in a similar one, the only difference being the coherence
length that will be larger the closer Tf is to the critical temperature.
Similarly, if we realize a quench from Ti < Tc to Tf < Ti, we remain in a
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Figure 3.1
Four snapshots of a system in its coarsening stage. The two colors
represent different phases phases (for instance, up spins and down
spins). The system starts in a disordered configuration t1. Small
domains are absorbed by larger ones (t2, t3) up to a point (t4) where
the typical size of domains is comparable with the size of the system
R(t) ∼ L.

ferromagnetic state and – after the new equilibrium state is reached – the
value of the magnetization will rise. What these two situations have in
common is that the system reaches the equilibrium state in a finite time.

One more interesting case is when the system is subject to a quench
from Ti > Tc to Tf < Tc and thus is initially in a paramagnetic state and is
brought across a phase transition that will drive it towards a magnetized
state. Now, in the case of an Ising magnet, there are two such final
states, with positive or negative magnetization. and they are completely
equivalent, that is the system has no reason to "choose" one or the other.
Due to that, relaxation cannot happen rapidly, but instead takes place
favoring the creation and growth of big domains of aligned spins either
positively or negatively magnetized (see fig. 3.1). This class of phenomena,
exhibiting the gradual growth of a new phase – the ferromagnetic one
in the last example – goes under the general name of coarsening, and
is studied by the theory of phase ordering kinetics. During this process
there a is formation of domains that are essentially at equilibrium in their
inside but whose interfaces undergo a dynamical evolution that is driven
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by curvature and tend to become smoother. Therefore, bigger domains
tend to grow to the detriment of the smaller ones, and the growing length
R(t) of the two competing phases also grows over time. The equilibrium
is reached once R(t) becomes comparable with the size of the system,
something that clearly never happens in the thermodynamic limit.

3.1.1 Dynamical scaling

Scaling laws play a fundamental role in physics. In the context of statistical
mechanics, they come out in studying equilibrium second-order phase
transitions. Interestingly, a related concept emerges when one considers
the dynamics of second-order phase transition, namely the dynamical
scaling, a distinguishing feature of coarsening.

In order to introduce it, consider once again the Ising magnet quenched
from above the critical temperature to below. We have explained how
coarsening takes place. As a consequence, the growing length of the
system increases. The dynamical scaling hypothesis states that at late
times and in the scaling limit r � ξ (where r is a distance and ξ the corre-
lation length), the system is fully characterized by the single length-scale
R(t), and that the domain structures at different times are statistically
equivalent, provided that lengths are measured in terms of R(t). Stated
differently, one cannot tell apart a snapshot of the system at a time t1
from an enlargement of another snapshot at a different time t2 (see fig.
3.1). To better understand the implications of this statement, let us
consider the equal-time spin-spin correlation function 1

C(r, t) = 〈σi(t)σj(t)〉, [3.1]

where σi, σj are situated at a distance r on a given lattice. When dynamical
scaling holds, the correlation function is of the form

C(r, t) = c

[
r

R(t)

]
, [3.2]

where c(x) is a scaling function that depends only on the ratio r/R(t).
Because of this, when one plots the correlation function keeping the ratio
r/R(t) constant, one observe the typical collapse showed in fig. 3.2.

It is clear that the form of the growing length R(t) is extremely
important in order to study coarsening phenomena. For many systems
of interest, it can be determined analytically or it is accurately known
by means of numerical simulations. For the Ising model, for example, we
have that

R(t) ∝ t1/2 [3.3]
1The correlation function should be properly defined as C(r, t) = 〈σi(t)σj(t)〉 −

〈σi(t)〉〈σj(t)〉, nonetheless, the second term disappears as the magnetization vanishes
in the coarsening stage.
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Figure 3.2
Typical behavior of the correlation function when dynamical scaling
holds. The curves with different colors correspond to different times.
They all collapse onto one if C(r, t) is plotted against r/R(t).

For a generic system, this length usually grows algebraically in time R(t) ∝
t1/z where z is a dynamical exponent that depends on the properties of
the system and on the type of dynamics.

Finally, let us notice that scaling in a finite system can hold only if

am � R(t)� L [3.4]

where am is the microscopic length that characterizes the system –
typically the lattice spacing – and L is the size of the system. The first
inequality is needed to ensure that the bulk and the boundary of the
domains are well separated. If the domains were made up of a small
number of spins – or, equivalently, if am ∼ R(t) – we would not be able to
distinguish if a spin of the domain belongs to its interior or to its frontier.

If, on the other hand, R(t) ' L, the coarsening ends because domains
cannot grow larger than the entire system and finite-size effects set in.

3.2 Nucleation

Nucleation is a topic that is fundamentally linked to the physics of the
first-order phase transitions. From a practical standpoint, it is involved
in the modern production of traditional and new materials and coatings
for the needs of various technologies.

To date, nucleation is an established area of research and technology.
The first paper on the kinetics of nucleation was published by Volmer and
Weber in 1926, but Gibbs was the first one to obtain basic theoretical
results in this field, in his thermodynamic works from the late 1800.
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Nucleation consists in the appearance of a new phase within an old
one by means of a continuous growth and shrinkage of small nuclei in the
sea of the old phase.

3.2.1 Classical theory of nucleation

The classical theory of nucleation is based on the so-called Landau-
Ginzburg theory. To introduce it, we consider the FOPT that occurs
when we switch sign to the magnetic field h in the Ising model.

We resort to the procedure of coarse-graining, that is, we take the
lattice and divide it into little boxes of size L, which we will refer to
as the coarse-graining size. We then define the coarse-grained order
parameter ψ(x), which is the spatial average of the microscopic variables
inside the box centered at x.

ψ(x) = L−d
∑
i∈L(x)

σi [3.5]

Considering the coarse-grained variable ψ instead of the microscopic ones
σ is meaningful if

a� L� `, [3.6]

where a is the lattice spacing and ` is the statistical length that character-
izes the problem. In nucleation, this will be the size of the critical droplet.
Eq. [3.6] is necessary since we want fluctuations of ψ(x), to be small but
– at the same time – we need to maintain the physics of the problem.

Next, we consider the Ginzburg-Landau form for the free energy [49]

F(ψ) =

∫
dx{R2 [∇ψ(x)]2 + εψ2(x) + ψ4(x)− hψ(x)}, [3.7]

with ε = a0(T − Tc). For high temperatures, i. e. for ε > 0 and h = 0,
free energy has the form shown in fig 3.3 which exhibits one minimum at
ψ = 0. As T is lowered we get to the critical temperature Tc. If h = 0,
this is the critical point. At this point the presence of the magnetic field
becomes fundamental. In fact, below the critical temperature the free
energy develops two minima and one relative maximum at ψ = 0. If h = 0
the two minima are equivalent and the system has to "choose" one of them
to go to via spontaneous symmetry breaking. If h 6= 0, on the other hand,
one of the minima will have a higher energy than the other. The relative
minimum will be the metastable state, while the absolute one will be
the equilibrium state. The metastable state will be a thermodynamically
stable state until a fluctuation probes the thermodynamic space enough
away from the local minimum and the system will "know" that there is a
state with lower free energy. At this point the decay of the metastable
state begins.
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We now have to make a strong assumption: the fluctuations that bring
the metastable state to decay can be treated as equilibrium fluctuations
about this local minimum of the Gibbs free energy. This assumption
can hold only if the metastable state lasts long enough that metastable
equilibrium is attained, but this is not always true. For instance, we know
that the metastable state has a long lifetime if the system is close to the
coexistence curve (shallow quench), and in this case it is also observed
that droplets that form are few and well separated. If the density of
droplets is very low, they do not "feel" the presence of one another, and
this justifies treating them as non-interacting. In this region, droplets also
appear compact 2, and large enough to be described with macroscopic
ideas such as free energy and surface tension. With this in mind, we make
the following assumptions:

1. Nucleation begins with isolated and non-interacting droplets that
can be treated as fluctuations about the metastable minimum;

2. Droplets are compact with surface and interior well separated;

3. Surface tension is relatively insensitive to the final temperature of
the quench;

4. Free energy density of the droplets bulk is the free energy density
of the stable state.

These are the assumptions that go into the so-called classical theory
of nucleation. From these we can determine the free energy cost ∆F to
produce one of these critical or nucleating droplets as follows

∆F = − |∆f |rd + σrd−1 [3.8]

where σ is the surface tension, ∆f the interior free energy density difference
between the metastable state and the droplet interior (assumed negative),
r the droplet radius and d the dimension of the space. Eq. [3.8] states
that the creation of domains is favored by a bulk term proportional to its
volume and unfavored by interfaces.

The function [3.8] is sketched in fig 3.4. It has a maximum at

rc ∝
σ

∆f
, [3.9]

so

∆Fc ∝
σd

∆fd−1
[3.10]

2For a compact object, the volume V is proportional to Ld, where L is the linear
size of the object and d is the dimension. In addition to compact objects, there are
fractals, for which V ∝ LD, where D < d is called fractal dimension.
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Figure 3.3
Free energy as a function of the magnetization. The function has two
unequal minima.

Figure 3.4
Free energy (eq. [3.8]) as a function of the droplet size r. The surface
term dominates for small sizes; the bulk term at large r. In the inset,
free energy vs the number of droplets.
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is the free energy cost of a critical droplet, that is the droplet which is
equally likely to shrink or grow. It is useful to refer to fig. 3.3: the system
is initially in the metastable state, that is the relative minimum to the
left. As soon as fluctuations about this state "inform" the system that
another state with lower energy is available, nucleation begins and small
droplets start to form and decay, until one large enough overcomes the
free-energy barrier and brings the system to the stable state, that is the
one on the right.

The probability to find a critical droplet is readily computed con-
sidering that in this context droplets are non-interacting equilibrium
fluctuations, so that P will be proportional to the inverse of the time
spent in the metastable state, that is roughly the lifetime of the metastable
state

τ ∝ exp (β∆Fc) = exp

{
β
σ2

∆f

}
[3.11]

This lifetime is larger the closer we are to the coexistence curve,
because in that case ∆f � 1. We recall that we assumed τ to be large
enough. If the system is quenched to a temperature Tf far from the
coexistence curve, then |∆f | � 1 and |∆F| can become of the order of a
few kbT , so that τ becomes very small and there is no more metastable
equilibrium. The quench depth at which this phenomenon takes place is
often called metastability limit or Becker-Döring limit.

We have introduced the classical theory of nucleation, but still have
to provide an observable to measure in an experiment. We recall that
the critical droplets are assumed to be non-interacting, and that the
probability to find one is proportional to 1/τ . Experimental observations,
in fact, suggest that for shallow quenches (that is, for Tf close to Tc)
droplets are few enough to consider them well separated. There is then
a volume V inside which there is at most one droplet with probability
P ∝ τ−1, and thus τ−1 is the number of critical droplet per unit time per
unit volume, and is called the nucleation rate. This represents one of the
quantities measured in experiments.

3.2.2 Becker-Döring theory

In 1935 Becker and Döring reformulated the theory of nucleation in more
refined terms [12].

The basic assumption of their theory is that clusters with l monomers
grow and decay via a mechanism of evaporation - condensation where
the droplet gains or loses a single molecule. Consequently this theory
neglects coalescence and fission. The time derivative of the number of
clusters made up of l monomers can be expressed as

∂nl(t)

∂t
= Jl−1 − Jl, [3.12]
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where

Jl−1 − Jl = [Rl−1nl−1(t)−Rl′nl(t)]−
[
Rlnl −R′l+1nl+1

]
[3.13]

is the unit volume rate at which droplets of l monomers are created. Eq.
[3.12] is a continuity equation that expresses the assumption that the
evaporation and condensation rates which determine Jl are proportional to
the number of droplets of sizes l+1 and l, respectively, with corresponding
proportionality coefficients R′l+1 and Rl.

We can relate R and R′ by assuming that the system is very close
to metastable equilibrium. What is meant by that will be explained
shortly. At equilibrium, the number of droplets of l molecules is given by
equilibrium fluctuations theory, namely

n̄l = exp

{
−∆Fl

kBT

}
[3.14]

where ∆Fl is the free energy cost of a cluster of l monomers. At equilibrium
the number of droplets of size l is a constant so that

∂n̄l(t)

∂t
= 0, [3.15]

Inserting [3.15] in [3.12] and using [3.14] we find

Rl−1 exp

{
−∆Fl−1

kbT

}
= R′l−1 exp

{
−∆Fl

kbT

}
[3.16]

Notice that the above relation expresses a detailed balance condition. Eq.
[3.16] relates the two R’s, but we still need to find an expression for one of
them and justify the equilibrium assumption used to obtain [3.16]. First,
let us write

∂nl(t)

∂t
= −Jl − Jl−1

∆l
=
∂J

∂l
, [3.17]

where we treat l as continuous and thus ∆l is infinitesimal.
From eqs. [3.13] and [3.16] we have an expression for the time deriva-

tive of nl

− Jl = Rlnl(t)−Rl exp

{
−∆Fl −∆Fl−1

kbT

}
nl+1(t) [3.18]

but we still need an expression for Rl. In order to find it, we need to
make the assumption that the droplets of interest are compact, and, as a
consequence we have

Rl ∝ l(d−1)/d [3.19]
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This is a classical assumption, which we expect to break down near
critical points or spinodals, where the vanishing of the surface tension
could lead to a different expression.

We now have to address the question of what it means to be very
close to equilibrium. We first note that nl as defined in eq. [3.14] is a
solution to eq. [3.17], but taking nl(t) = n̄l leads to Jl = 0. This, though,
is not the solution that we need. The vanishing of Jl, in fact, implies that
there is no flow of droplets from small l’s to large ones. We are looking
for a situation where there is a small flow, so that the density will be low
enough for the droplets not to interact and the background can still be
considered in metastable equilibrium.

How do we solve this problem? We need to point out that, if the
lifetime of the metastable state is large, then there will be a time interval
during which droplets will become critical at a constant rate yet their
number will be so small that the effect on the background metastable
state is negligible. We use this idea to define a steady state condition,
postulating the existence of a steady state solution nsl such that

∂nsl
∂t

= 0 but Jl = I 6= 0 [3.20]

where I is a constant. We impose the condition [3.20] by requiring

lim
l→0

nsl = n̄l and lim
l→∞

nsl = 0 [3.21]

These two boundary conditions, usually called the source and sink
conditions, can be viewed physically as taking droplets that grow beyond
some critical size, breaking them up and returning them to the background
to keep nl(t) ∼ n̄l for small l.

A solution of [3.17] that satisfies these conditions is

nsl = I

∫ ∞
l

n̄l
Rl′n̄l′

dl′ [3.22]

and

I−1 =

∫ ∞
0

dl

Rln̄l
, [3.23]

where n̄l is defined in eq. [3.14].
Eq. [3.23] defines the nucleation rate for the Becker-Döring theory.

Now let us compute it explicitly for the case of the Ising model, in order
to be able to compare it with the expression found before. In this case
we have

∆Fl = hl + σl
d−1
d [3.24]

and thus the nucleation rate will be (via eqs. [3.14], [3.19], [3.23] and
[3.24])
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I =


∫ ∞

0

exp β
[
−|h|l + σl

d−1
d

]
l
d−1
d

dl


−1

[3.25]

where the magnetic field is negative because we are in the metastable
state. We now define the variable

t ≡ |h|
d

σd
l [3.26]

and rewrite eq. [3.25]

I−1 =
σ

|h|

∫ ∞
0

exp
[
−β σd

|h|d−1

(
t− t d−1

d

)]
l
d−1
d

dt [3.27]

Close to the coexistence curve we will have h ∼ 0 and the integral [3.27]
can be evaluated thanks to the method of the steepest descent. This
amounts to expanding the argument of the exponential up to second order
in t and performing the resulting gaussian integral. We thus obtain

I =
|h|
σ

[
d− 1

d

]d−1{
σd(d− 1)

d2kbT |h|d−1

} 1
2

exp

[
−σ

d(d− 1)d−1

kbT |h|d−1dd

]
[3.28]

Putting d = 2 and h = ∆f (obtained comparing [3.24] and [3.8]), it
we can rewrite the exponential term in [3.28] as

exp

{
−σ

d(d− 1)d−1

kbT |h|d−1dd

}
= exp

{
−β σ2

4∆f

}
[3.29]

Eq. [3.29] gives a smaller nucleation rate with respect to the one found
via the classical theory of nucleation, because of the 1/4 factor in the
exponent. The Becker-Döring theory, however, also gives the expression
for the prefactor, and now it has been made clear that – just like the
expression found in the previous section – the nucleation rate that we
have found is a steady state rate.

Still, this theory presents some problems. Above all, the structure
of the droplets is not given by the theory, but is – at best – inserted by
hand in eq. [3.19].

For all of these reasons, other theories were developed over the years.
For example, Lothe and Pound [13] considered the contributions from
extra degrees of freedom of a cluster (in addition to its size) to its Gibbs
free energy of formation. Langer [14], [15], [16] developed a field theory
to extend the Becker-Döring steady-state solution to include the effect of
other microscopic degrees of freedom of a cluster. Zeng and Oxtoby [18]
improved the temperature dependence of the nucleation rate predicted
by classical nucleation theory by expressing the droplet free energy as a
functional of the radial density profile ρ(r).





Chapter 4

Potts model equilibrium

The Potts model [9] is a generalization of the Ising model to a spin with
more than two states. Historically, a version of the model with four states
was first studied by Ashkin and Teller [11], but the model with a generic
number of states q was introduced by Domb and his research student
Potts as a thesis topic in 1951.

The model did not attract great interest soon after its publication,
but a few years later it has been intensively studied, because it has proven
to be very rich in Its critical behavior, for instance, has been shown to
be more general than that of the Ising model, and its basic features are
related to a number of outstanding problems in lattice statistics [44], [45],
[46].

The Potts model is defined by the following hamiltonian 1

H = −J
∑
〈ij〉

δ(σi, σj), [4.1]

where σi can assume values from 1 to q; δ is the delta of Kronecker and J

is the coupling constant that can be either positive (ferromagnetism) or
negative (anti-ferromagnetism), just like we have seen for the Ising model.
The sum is limited to the nearest-neighbors spins and σi is the i -th spin.
Eq. [4.1] states that two nearest-neighbor spins interact only if they are
in the same state and – if so – they decrease the energy by a factor −J.

By letting q = 2 and exploiting the equivalence δ(σi, σj) = 1
2
(1 + σiσj)

we have a system with two spin levels described by an hamiltonian that –
up to an irrelevant constant – corresponds to the Ising hamiltonian with
the replacement J→ J/2.

The partition function of the model defined on a lattice of N sites is
a sum of qN terms

ZN =
∑
{σ}

exp

K∑
〈ij〉

δ(σi, σj)

 , [4.2]

1An interaction with the magnetic field H
∑N
i=1 σi can be added, as for the Ising

model.
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where K = βJ. Eq. [4.2] is exactly computable in the one-dimensional
case by using either the recursive method or the transfer matrix approach.

Recursive method We consider a chain of N spins with free boundary
conditions for the extremal spins of the chain. If we add an extra
spin the partition function becomes

ZN+1 =

 q∑
σN+1=1

eKδ(σN , σN+1)

ZN [4.3]

Making use of the identity

exδ(a,b) = 1 + (ex − 1)δ(a, b), [4.4]

the sum in eq. [4.3] becomes
q∑

σN+1=1

eKδ(σN , σN+1) =

q∑
σN+1=1

[
1 + (eK − 1)δ(σN , σN+1)

]
= q + (eK − 1)

[4.5]

Inserting [4.5] in eq. [4.2] we get

ZN+1 = (q − 1 + eK)ZN [4.6]

Through a simple calculation (using the equivalence [4.4]) we can
compute Z2

Z2 =

q∑
σ1=1

q∑
σ2=1

eKδ(σ1,σ2) =

q∑
σ1=1

q∑
σ2=1

(
1 + (eK − 1)δ(σ1, σ2)

)
=

q2 + q(eK − 1) = q (eK + q − 1),

[4.7]

thus we get

ZN = q (q − 1 + eK)N−1 [4.8]

Having found the partition function, we can find all the other
thermodynamic functions and the model is solved. For instance, we
can compute the free energy per unit spin in the thermodynamic
limit

fPM = − lim
N→∞

1

βN
ln ZN = −β−1 ln(eK + q − 1) [4.9]
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Transfer matrix Let us take a one-dimensional lattice with periodic
boundary conditions, i. e. σN+i ≡ σi. The transfer matrix method
is based on the observation that the sum on the spin configurations
can be equivalently expressed in terms of a product of q×q matrices,
as follows

ZN =
∑
{σ}

V (σ1, σ2)V (σ2, σ3) . . . V (σN , σ1), [4.10]

where the matrix elements of V (σ, σ′) are defined by

V (σ, σ′) = exp (Kδ(σ σ′)) [4.11]

Since

〈σ|V |σ′〉 =

{
eK if σ = σ′,

1 if σ 6= σ′

V has the exponential term on the diagonal and all ones off-diagonal

V =


eK 1 . . . 1
1 eK . . . 1
. . . . . . . . . . . . . . .
1 1 . . . eK


It easy to see that the product of the matrix V correctly reproduces
the Boltzmann weights of the Potts model configurations. In this
approach, the configuration space of a single spin may be regarded
as the Hilbert space of a q-state quantum system. The states will
be denoted by |σ〉 where σ = 1, . . . , q and the completeness relation
is expressed by the formula

q∑
σ=1

|σ〉 〈σ| = 1 [4.12]

We can now come back to the computation of the partition function.
Making use of eq. [4.10] and the completeness relation [4.12], the
partition function can be expressed as

ZN =

q∑
σ1=1

q∑
σ2=1

· · ·
q∑

σN=1

〈σ1|V |σ2〉 〈σ2|V |σ3〉 . . . 〈σN |V |σ1〉

=

q∑
σ1=1

〈σ1|V N |σ1〉 = Tr V N

[4.13]

The fact that ZN is expressed in terms of the trace of the N−th
power of the operator V is clearly due to the periodic boundary
conditions we adopted. The simplest way to compute the trace of
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V N consists of bringing V into a diagonal form. So we have to solve
the equation

L = ||V N − λ1 || = 0 [4.14]

Let us denote x ≡ eK− λ. The determinant [4.14] can be computed
by using the well-known property that a determinant does not
change by summing or subtracting rows and columns. Subtracting
the second column from the first one, the third column from the
second one and so on we get

L =

∥∥∥∥∥∥∥∥∥∥∥∥

x− 1 0 . . . 0 0 1
1− x x− 1 0 . . . 0 1

0 1− x x− 1 . . . 0 1
. . . . . . . . . x− 1 0 1
0 0 . . . . . . x− 1 1
0 0 . . . . . . 1− x x

∥∥∥∥∥∥∥∥∥∥∥∥
Summing the first row and the second one, the second row and the
third one and so on, we get

L =

∥∥∥∥∥∥∥∥∥∥∥∥

x− 1 0 . . . 0 0 1
0 x− 1 0 . . . 0 2
0 0 x− 1 0 . . . 3
. . . . . . . . . x− 1 0 4
0 0 . . . . . . x− 1 q − 1
0 0 . . . . . . 0 x+ q − 1

∥∥∥∥∥∥∥∥∥∥∥∥
So the determinant becomes

L =
(
eK − 1− λ

)q−1 (
eK + q − 1− λ

)
= 0 [4.15]

The roots of the polynomial [4.15] are

λ+ = eK + q − 1 and λ− = eK − 1 [4.16]

For q ≥ 0 we have λ+ ≥ λ−. The eigenvalue λ+ is not degenerate,
while λ− is (q−1) times degenerate. From a physical viewpoint this
degeneration is easily explained considering that the Potts model
only distinguishes if two sites are in the same state or not; so there
is just one way in which they can be equal but (q−1) ways in which
they can be different.

Now that we have computed the eigenvalues of V N we have found
the partition function

ZN = TrV N = λN+ + (q − 1)λN− [4.17]
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In the thermodynamic limit, the free energy per unit spin depends
only on the largest eigenvalue λ+

fPM = − lim
N→∞

1

βN
ln ZN =

= lnλ+ + lim
N→∞

ln

[
1 + (q − 1)

(
λ−
λ+

)N]
= − 1

β
ln
(
eK + q − 1

)
,

[4.18]

where eq. [4.18] coincides with [4.9] as expected.

Let us briefly comment the expression [4.9] obtained for the free
energy of the Potts model. First of all, it can be seen that fPM is a
continuous function for every value of the temperature. This means that
the one-dimensional Potts model does not undergo a phase transition.

Moreover, by setting q = 2

fPM(q = 2) = − 1

β
ln
(
eK + 1

)
= fI + const [4.19]

we can recover the expression of the free energy of the one-dimensional
Ising model with zero external field. This is obvious since – as explained
before – the hamiltonian of the Potts model and that of the Ising model
are equivalent up to a constant that, however, does not change the
thermodynamic functions.

Even though an exact solution for the two-dimensional Potts model is
still missing, exact information can be obtained for its behavior at the
critical point in particular lattices. Of this result – which exploits the
equivalence between the Potts model and an ice-vertex rule [44], [20] –
we only outline the main features. For every q > 1, the model undergoes
a phase transition, the critical temperature being

Tc =
1

ln(1 +
√

(q))
[4.20]

where, for convenience, both the coupling constant J and the Boltzmann
constant kB have been put equal to one. Interestingly, this transition is
of the second order for 2 ≤ q ≤ 4, while it is a first-order phase transition
for q > 4 At odds with what happens in the Ising model, then, the Potts
model can undergo a first-order phase transition even as a result of a
change in temperature.
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Chapter 5

Protocols and results

5.1 Dynamical evolution

In this work we have studied the kinetics of the two-dimensional q-state
Potts model quenched from an initial temperature Ti > Tc to a final
temperature Tf < Tc. The study has been made numerically, via a
Montecarlo method that we describe in the following.

We have prepared an initial state r in a completely disordered con-
figuration, meaning that – on average – a fraction N/q of the spins take
one of the q possible states, where N is the total number of spins. In this
state, thermal fluctuations completely prevail over the correlation between
spins, so it can be identified with the equilibrium state at Ti =∞. We
have chosen this particular state since it is easy to prepare, but it can be
shown that it does not influence the basic results.

After preparing the initial state we have to establish a dynamics.
Similarly to what we have seen for the kinetic Ising model, we choose a
spin σij in the lattice and a state l between 1 and q, both at random 1,
and assign a certain probability

wrl = min(1, e−β∆Erl) [5.1]

to the elementary move that changes the state of such spin from the
original state r to l. The expression [5.1] is called Metropolis-Hastings
transition rate, after the two scientists who introduced it. Here ∆Erl =
El − Er is the energy difference between the two configuration of the
system r and l. Inserting [5.1] in [2.20] one can immediately verify
that Metropolis-Hastings transition rates fulfill the detailed balance. In
this work, studied the dynamics characterized by the transition rate [5.1],
where β = (kBTf )−1. From now on, time t will be measured in Montecarlo
steps (MCS).

1At odds with the Ising model, where the only possible choice is to flip the spin in
the other state, in this case we have to choose the target state of the spin among one
of the q available ones.
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5.2 Finite-size effects

The study of a system in statistical mechanics allows us to recover ther-
modynamic functions only if we take the thermodynamic limit, i. e., the
limit of infinite volume and number of particles, keeping their ratio finite

V →∞, N →∞, N

V
= ρ = const, [5.2]

where ρ is the density.
Clearly, this is a problem when we perform numerical simulations,

since the computer memory is finite and cannot handle an infinite number
of data. In fact, in a numerical set up, we are forced to consider systems
with a finite size L, that we can choose as large as possible. The finiteness
of the system size always bears some influence on the results, therefore
we need to be able to identify and manage this source of error.

From a practical point of view, the effects of the finite size are visible
when the growing length of the system – which grows over time – starts to
be comparable with the size of the system, and this can affect the results
in many ways. For instance, let us consider the familiar example of a
two-dimensional Ising model in its coarsening stage on a square lattice of
size L. We have explained that the typical size of the domains increases
in time as R(t) ∼ t1/2. For some time t∗, R(t) will be comparable with
the system size, corresponding to a situation where there are roughly only
two large competing domains of opposed spin. As the dynamics evolve,
suppose that one of these two domains prevails over the other, so that the
system is made up of all aligned spins. At this point, the power-law [3.3],
disappears, because it only holds when there is a competition between
different phases, and R(t) will converge to a value of order L.

Needless to say, in an infinite-size system, what described above does
not occur, because for any given region where a phase prevails over the
other, there will always be another part of the system, no matter how far,
where the opposite situation occurs. As a consequence, R(t) will maintain
its power-law growth indefinitely.

Another more subtle effect of the finiteness of the system is discussed
below. We have to keep in mind that the fluctuations of any physical
quantity are not present in the thermodynamic limit, so, the output data
are cleaner the bigger the size of the system. This property is called
self-averaging. When studying finite systems, however, such self-averaging
is not complete, and some fluctuations remain. In order to understand
how this works in a coarsening system, one can think of the original
square lattice as a collection of L/R(t) subsystems of size R(t). Spins in
such boxes are not statistically independent because they are located at
distances smaller than the correlation R(t). On the other hand, different
boxes can be considered as independent realizations of a statistical process
and contribute to the self-averaging property. When the growing length is
very small compared to L, we have a large number of independent boxes
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contributing to the average, hence the data for physical quantities will
show a very small fluctuations around their mean value. However, the
growing length increases over time and the data will be averaged over a
number of subsystems that decreases as R(t)−1. From a practical point of
view, this means that one needs a great number of realizations to obtain
clean data at long times.

These are just some examples of how a finite system can influence the
results of a numerical simulation. According to the particular system con-
sidered, finite-size effects can bear on the behavior of physical quantities
in different ways. We will show an example later in this chapter.

5.3 Growing length and excess of energy

The growing length R(t) is a physical quantity of primary importance
in phase transitions. It can be easily computed numerically, considering
the following simple argument. Let us define a defect as a couple of
neighbor spins that are not aligned. They are typically located on domains’
boundaries, and the number of such defects Ndef is related to R(t). In fact,
Ndef is equal to the total length of the interfaces present in the system
which, in turn, is proportional to the number of domains Ndom times their
typical size, namely

Ndef ∝ NdomR(t)d−1 [5.3]

On average, the size of a domain is of the order of R(t)d 2, thus the
number of domains Ndom is

Ndom ∝
N

R(t)d
[5.4]

where N = Ld is the total number of spins. Inserting [5.4] into [5.3] one
gets

R(t) ∝ N

Ndef
[5.5]

The multiplicative constant is irrelevant as we are only interested on
how the growing length varies over time.

We can verify that R(t) obtained from Eq. [5.5] has the meaning of a
typical domain size through some examples. At t = 0, in the completely
disordered state, Ndef ' N , so R(t) ' 1. In a configuration with only
two domains of spins separated by two interfaces of length L , we would
have

R(t) =
N

2L
=
L

2
[5.6]

2Notice that we are assuming that domains are compact, i. e., non-fractal.
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in accordance with the fact that each domain occupies on average half of
the available space.

Let us notice that values of R(t) are meaningful until R(t) ≤ L, as of
course the typical dimension of a part of the system cannot exceed the
system size. Therefore, the values R(t) > L obtained through Eq. [5.5]
must be discarded. For example, in a completely magnetized configuration
with all the spins pointing in the same direction, Ndef = 0 and the growing
length would diverge according to the above definition. We remind that
finite size effects affect the process when R(t) starts to be comparable to
L.

Now, let us introduce a quantity related to the growing length, namely
the function excess of energy

φE = e(t)− e(∞), [5.7]

where e(t) is the energy at a time t and e(∞) = e(∞, Tf) is the equilib-
rium energy of the system, at the final temperature of the quench. φE
is proportional to the interfacial energy. Interfaces consist of nearest-
neighbor non aligned spins, or defects. As we have seen, the number of
defects is proportional to the reciprocal of the growing length (see eq.
[5.5]), so that

φE ∝ R(t)−1 [5.8]

Eq. [5.8] means that the excess of energy and the growing length provide
us with the same dynamical information.

Eq. [5.8] represents a rapid practical tool to compute R(t). Indeed,
in the simulations the energy of the system is known at any time because
elementary moves contribute with an energy change which is known and
given by eq. [5.1]. The energy of the equilibrium e(∞) is computed
starting from the system configuration where all the spins have the same
state, σi = s, where s ∈ [1, q ] and letting the system relax to the final
temperature Tf . The initial state can be identified with the one with null
temperature Ti = 0, because thermal fluctuations are completely absent
and the spins are all aligned. As earlier said, a quench from Ti < Tc to a
final temperature below the critical one brings the system exponentially
fast to equilibrium, hence allowing the evaluation of e(∞) in a short time.

Another method to compute R(t) exploits the relation between the
growing length and the correlation function. It will be described in sec.
5.5.

5.4 Dynamical regimes of the Potts model

We have studied the kinetics of the 2d q-Potts model on a LxL square
lattice with periodic boundary conditions, namely σij = σi+L,j = σi,j+L,
for different values of the system size L, of the number of accessible states
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Figure 5.1
Different dynamical regimes in the long term relaxation of the q-state
Potts model with q > 4, after a quench from Ti = ∞ to Tf < Tc
(taken from [22]).

q and of the final temperature Tf . In particular, we have examined the
first-order phase transition regime, corresponding to values of q larger
than 4. This means that the system is initially trapped in a metastable
state, whose lifetime depends on q and Tf because the transition is of the
first-order and, in order to reach its ground state, it has to overcome an
energy barrier. For this reason, we would expect that dynamics to be
characterized by nucleation. [22], as sketched in fig. 5.1. Previous studies
[22] have shown that the dynamics is much richer than one could naively
expect and that, besides nucleation, a number of different phenomena are
involved. Specifically, it is known that there are four different dynamical
regimes depending on the final temperature. Let us briefly describe such
different kinetic regimes. For T ∗ < Tf < Tn, the dynamics is characterized
by coarsening from very early times. This is due to the fact that, in that
range of temperatures, the energy barrier is very low and the system
escapes the metastable state very rapidly. This can be seen in fig. 5.2. In
this figure, taken from [22], the excess of energy φE is plotted for L = 300,
q = 9 and different values of the final temperature. By looking at the
curves for 0.5 ≤ T < 0.7 one can observe how, after a short transient, the
excess of energy decreases as φ ∼ t−1/2, a sign that the system is in a
coarsening stage and the nucleation process is over.

For a quench to very low temperatures 0 < Tf < Tg, the system gets
stuck in blocked states, like the ones depicted in fig. 5.3, for a time τ
that depends on Tf and on the type of blocked state. Striped states are
represented in fig. 5.3a, while honeycomb states are in fig. 5.3b. When
the system is in such configurations, the dynamics is slowed down because
the spins on the interface are aligned with the majority of their nearest
neighbors. In order to create a "dent" and break down the interface, a
time τ ∼ p−1 ∝ e∆E/T has to elapse, where the activation energy ∆E = 2
for the striped states and ∆E = 3 for the honeycomb states, respectively.
The lower the temperature, the larger is τ .

Blocked states affect the dynamics in different ways and, according on
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Figure 5.2
φE vs t for the 9-Potts model, L = 300. It is clear the FOPT regime,
and also the finite size effects (taken from [22]).

(a) (b)

Figure 5.3
Examples of striped states (5.3a) and honeycomb states (5.3b). Spins
with different values are represented by different colors. Spins on the
interface are aligned with their nearest-neighbors and are flipped with
a probability that rapidly decreases as T decreases (taken from [22]).
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(a) (b)

Figure 5.4
In fig. 5.4a the excess of energy is represented vs time for q = 9 in
the low temperature regime 0 < Tf < Tg. The plateau corresponds to
glassy states like the ones in fig. 5.4b (taken from [22]).

the value of the final temperature T < T ∗, we can distinguish two regimes.
For Tg < Tf < T ∗, the normal coarsening process is interrupted when
the system gets stuck into these highly symmetric blocked configurations.
Instead, at very low temperatures 0 < Tf < Tg, the function excess of
energy has the behavior shown in fig. 5.4a. The plateau corresponds
to a disordered metastable state characterized by almost square-shaped
domains with a wide distribution of sizes (as shown in fig. 5.4b). This
type of metastable state has been identified as a glassy one [42], [43].
The system relaxes from this glassy states after a sequence of thermally
activated jumps, but then gets again trapped in a blocked state.

Finally, for a quench to a final temperature Tn < Tf < Tc the dynamics
is dominated by nucleation. This process can be seen by looking at the
curves in fig. 5.2 for 0.7 ≤ T ≤ 0.72. At first, the excess of energy does
not vary much, a sign that the system is trapped in a metastable state.
At a time τ ∗, such metastable state is escaped, and, accordingly, φE
decreases abruptly. The time τ ∗ and the width of the jump both depend
on Tf . Shortly after that, the results are very noisy for the detriment of
self-averaging discussed above. As R(t) ' L, finite-size effects intervene,
as it can be seen by the downward bending of the curves.

Our results are focused on the behavior of the system in its nucleation
regime.Hence, in order to improve upon the existing data, we have studied
the behavior of the excess of energy φE on a system larger than the one
in fig. 5.2, in order to avoid finite size effects. The results are shown in
fig. 5.5, for L = 1000 and different values of the final temperature. From
this figure one can conclude that – far from the critical temperature –
coarsening begins almost immediately. Indeed, the curve with T = 0.5,
for instance, shows that the plateau vanishes at very short times t ' 10,
meaning that the metastability is escaped very soon. For T & 0.715,
the system gets trapped in the metastable state for a rather long time
and then a step appears, bigger as T gets closer to Tc (we remind that
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Figure 5.5
φE vs t for the 9-Potts model, L = 1000. It is clear the FOPT regime.

Tc ' 0.72134 in this case), where energy abruptly decreases. At long
times, the system is in its coarsening stage for every value of the final
temperature simulated. A qualitatively similar behavior is observed for
different choices of q, as it can be seen in figs 5.6 and 5.7, although the
value of q changes some features of the process as, notably, the amplitude
of the step and the time at which it occurs. Notice the markedly different
behavior at long times of our results, contained in fig. 5.5, with respect to
those of ref. [22] shown in fig. 5.2. This is due to the fact that our results
are finite-size effects free, whereas strong finite-size effects are present in
the data of ref. [22].

We point out that the first-order phase transition observed in the Potts
model is different from the one found in the Ising model by switching
the sign of the magnetic field (see sec. 3.2). In that case, in fact, there
are just two phases competing, namely the phase of spins up and that of
spins down. Hence, the phase of the spins aligned with the magnetic field
will necessarily prevail at long times.

In the Potts model, on the other hand, we have q different phases.
Since all of them are energetically equivalent, there is no way to know
which one will prevail over the others. This means that a mechanism of
spontaneous symmetry breaking will be involved in establishing which
phase will be the winning one. Therefore, it is interesting to establish
how such a symmetry breaking occurs and how many phases are involved
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Figure 5.6
φE vs t for the 5-Potts model. It is evident that the step is almost
absent, even for T ' Tc.

Figure 5.7
φE vs t for the 100-Potts model.
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in the nucleation process. We discuss these issues in the next section.

5.5 Correlation functions

The correlation function C(r, t) for the Ising model has been defined in
eq. [3.1]. Let us recall that the correlation function quantifies how much,
at a time t, two spins σ, σ′ placed at a distance r are correlated, that is,
are in the same state. For the Ising model, this can be done by averaging
the spin product, as expressed in [3.1]. In the Potts model, instead, the
spins can assume values from 1 to q and the definition [3.1] cannot be
applied to our case. This is because spins with different values would be
weighted differently in the correlation. Therefore, we have to define the
correlation function as follows

C(~r, t) = 〈δ(σi, σj)〉 −
1

N

∑
k

〈δ(σi, σk)〉, [5.9]

where j = i+~r, k runs over the lattice and N−1 is the normalization factor.
Notice that the spin correlation is computed through a delta function. Eq.
[5.9] states that the correlation function is obtained by subtracting the
average spin correlation between generic spins in the lattice from the spin
correlation between spin couples separated by a vector ~r. One can easily
get convinced that the last term in eq. [5.9] amounts to the correlation
between two spins in a completely uncorrelated system.

Because of the homogeneity of the system (encoded in the hamiltonian
[4.1]), C(~r, t) does not depend on the site i and eq. [5.9] can be rewritten
as

C(~r, t) =
1

N

∑
i

〈δ(σi, σj)〉 −
1

N2

∑
i,k

〈δ(σi, σk)〉, [5.10]

where a spatial average, namely a sum over all sites i, has been taken.
We can also exploit the isotropy property of the system to sum over

all the spins σj at distance r from σi, thus obtaining

C(r, t) =
1

Nz

∑
i,j=i+r

〈δ(σi, σj)〉 −
1

N2

∑
i,k

〈δ(σi, σk)〉, [5.11]

where r = |~r| and z is the coordination number of the lattice. For the
square lattice, we have z = 4. Expression [5.11] is best suited for numerical
computations because the spatial averages reduce the noise.

In order to distinguish between the behavior of the different phases,
we need to define a partial correlation function as follows

Cσ(~r, t) = 〈δ(σi, σj)〉σ − δ(σi, σ)〉 [5.12]
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where j = i+ ~r and 〈. . . 〉σ is an average made only on spins in the state
σ. Exploiting homogeneity and isotropy as above, we rewrite the partial
correlation function as

Cσ(r, t) =
1

Nz

N∑
i,j=1

〈δ(σi, σj)〉σ −
1

N

N∑
i=1

〈δ(σi, σ)〉, [5.13]

which is the definition we use in the simulations.
The partial correlation function Cσ(r, t) has been practically computed

in the following way:

• Considering every possible couple of spins σi, σj, we add one when-
ever these two spins are both equal to σ, and zero otherwise (this is
the first term of the right hand side), then averaging over realiza-
tions;

• From this value we subtract the number of σ-spins present in the
lattice averaged over realizations.

Computing Cσ for every value of σ allows us to study the behavior of all
the q phases separately. An efficient way to extract information about
which phases expand and which ones vanish over time is to examine the
partial growing length, that can be computed from the following implicit
relation

Cσ(Rσ(t), t) =
1

2
Cσ(0, t). [5.14]

Eq. [5.14] expresses the property that, in correspondence of the growing
length, the correlation function is reduced by a factor two with respect to
its value in r = 0.

Obviously we can recover the total correlation function by summing
the partial ones after weighting each one of them appropriately, namely
by the fraction 〈δ(σi, σ)〉 of spins in each state σ

C(r, t) =

q∑
σ=1

〈δ(σi, σ)〉Cσ(r, t), [5.15]

Similarly to what done in eq. [5.14], the definition of the total correlation
length R(t) can be obtained from the implicit equation

C(R(t), t) =
1

2
C(0, t) [5.16]

We have checked that this definition of the total growing length, although
different from the one of eq. [5.5] provides consistent results. The quantity
R(t) computed via [5.16] is represented in fig. 5.8 for q = 9, L = 700
and Tf = 0.715. Using the relation [5.8], we can make a comparison with
the orange curve of fig. 5.5. After a transient in which R(t) ' 1, the
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correlation length exhibits a jump at t ∼ 6 · 103 and begins to grow as t1/2
from t ∼ 4 · 104. Notice, however, how at t ' 106 R(t) begins to decrease.
This is due to the presence of finite-size effects at such long times.

Figure 5.8
Correlation length vs t for the 9-Potts model, for T=0.715 and L=700.

Let us consider the partial growing lengths Rσ(t). They are plotted
in fig. 5.9 for q = 9, L = 700 and T = 0.715. Again, we can refer to fig.
5.5 to compare the results. The jump of the excess of energy occurs at
t ∼ 5 · 103. Using the language of the classical theory of nucleation, we
can say that at that time critical nuclei are created. By looking at fig.
5.9, we see that at that time the growing length of each of the phases is
starting to grow. Coarsening begins at t ∼ 3 · 104, when all the phases
are still present. Shortly after that, the cyan curve, corresponding to the
less represented phase, starts to decrease (until it goes to zero at t ∼ 106).
Then, all the Rσ(t)’s start to vanish one at a time, in correspondence of
a time τσ that depends on the phase.

For this choice of the parameters, the process of nucleation and
the subsequent one of coarsening involve initially all the phases of the
system. For this reason, we say that the dynamics is characterized by
multinucleation.

In fig. 5.10 we show the partial growing lengths with the same
parameters as before, but with different values of the final temperature, in
order to observe possible differences. For temperatures 0.7 . Tf . 0.72,
we can identify the same qualitative behavior of fig. 5.9, although the time
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Figure 5.9
Rσ(t) is plotted against t for all the values of σ from the one most
represented in the system, denoted as #1, to the least represented,
denoted as #9. It can be seen that two species survive up to the last
simulated time, tf ' 106 MCS. The other phases vanish one at a
time at different times.

at which the phases are eliminated and the height of the maximum strongly
depends on Tf . In particular, for temperatures close to T = 0.72 ' Tc,
some phases do not even start growing. For Tf = 0.68, the Rσ(t)’s grow
together up to the last simulated MCS, proving that the system is in a
different dynamical regime or that the decay of the phases occurs on huge
times.

To understand in a visual way how the system evolves in time, we
can refer to fig. 5.11. There are shown some snap-shots of the lattice for
q = 9, L = 700 and at T = 0.715 taken at different times. A comparison
can be made with fig. 5.5 and 5.9. In the first picture, the system is in a
completely disordered configuration. At t ∼ 104, all of the phases nuclei
are present in the lattice. After that, coarsening occurs, so that smaller
nuclei shrink and some phases are progressively eliminated. At t = 106

MCS, there are still 4 different phases competing.
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(a) Rσ(t) for T=0.72 (b) Rσ(t) for T=0.71

(c) Rσ(t) for T=0.7 (d) Rσ(t) for T=0.68

Figure 5.10
Rσ(t)

′s for q = 9, L = 700 and various temperatures. It can be seen
that both the number of nuclei that reach a certain size and the time
at which their size begins to grow strongly depends on the temperature.

5.6 Number of phases and finite-size effects

Another interesting issue is related to the finite-size effects. As discussed
in sec. 5.2, these amount to a dependence on the size of the system L
of some quantities, for instance the excess of energy or the correlation
function.

We have studied the excess of energy for q = 9 and q = 100 for three
different sizes and temperatures, to verify if it is affected by finite size
effects or not. The results are shown in figs. 5.12 and 5.13.

From fig. 5.13 we can conclude that, for q = 100, there are no visible
finite-size effects. In fact, all the curves taken at T = 0.40103 and L = 700,
L = 1000 and L = 1300 are perfectly overlapped up to the last simulated
time. For q = 9 (fig. 5.12), instead, the curves with L = 500 shows
finite-size effects for every temperature. In particular, at T = 0.7 (the
black one), it begins to move away from the other two at a time t ' 2 ·105,
while at T = 0.719 and T = 0.72 the finite-size effects set in at t ' 6 · 105.
As for the curve with size L = 750, it is affected by finite-size effects
at a time t ' 4 · 105 only for T = 0.72 (the grey one), while is is not
appreciably different from the one with L = 1000 at lower temperatures.

We have looked for finite-size effects also in other quantities. More
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(a) (b)

(c) (d) (e)

Figure 5.11
Dynamics of the 9-Potts model, T=0.715, L=700, for t = 103 (a),
t = 104 (b), t = 3 · 104 (c), t = 105 (d), t = 106 (e) (measured in
MCS). It can be seen that, over time, more nuclei tend to grow to the
detriment of the others.

specifically, we have evaluated how the partial growing lengths vary with
L. The Rσ(t) are shown in fig. 5.14 for q = 9, T = 0.715 and different
sizes of the lattice. It is evident that they exhibit a dependence on L. In
particular, the maximum of the curves is reached at a time τ that roughly
scales with the size as

τ ∝ L2 [5.17]

as it can be seen from fig. 5.15. After this maximum, all the curves begin
to decrease and rapidly vanish. This is a finite-size effect.

Another quantity that we have considered is the height of the maximum
reached by the different curves for different system sizes. This represents
the maximum dimension reached by a phase before disappearing. As can
be seen from fig. 5.16, it is found that

hm ∝ L [5.18]

Notice how the data in fig. 5.14 are noisy, particularly for L = 700 and
L = 1000. As a consequence, the results for τ and hm are not very clean
either. This is due to the fact that, as explained before, the correlation
function is evaluated considering all the possible spin couples. This is a



62 Protocols and results

Figure 5.12
Excess of energy vs t for the 9-Potts model. The curves are taken
at three temperatures for L = 500, L = 750 and L = 1000. They
overlap up to t ' 2 · 105, where the curves for L = 500 are spoiled by
finite-size effects. This shows that, for these parameters, φE does not
depend on the system size L.
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Figure 5.13
Excess of energy vs t for the 100-Potts model. The curves correspond
to T = 0.40203 at different sizes L = 700, L = 1000 and L = 1400.
They overlap, showing that φE does not depend on the system size L
for these parameters.

burdensome operation especially at large L, where it takes a long time
to complete a realization. However, simulations are still running, and we
expect to have cleaner data soon.

From both figs 5.15 and 5.16 it is seen that the 7laws [5.17] and [5.18]
describe the data more accurately for the bigger phases. This is reasonable,
because scaling expressions such as [5.17] and [5.18] are expected to hold
when the nuclei are well-defined and well formed.

Notice how the fact that the excess of energy, and hence R(t), is free
from finite-size effects for a value of the size L does not imply that the
partial growing lengths defined in [5.14] share the same property for such
size. Indeed, the excess of energy only takes into account the number
of interfaces, and the energy associated to interfaces does not depend
on the particular state of interacting spins, as long as they are different.
This is clear from the Potts hamiltonian [4.1]. Nonetheless, the size of
the system may bear on the number of phases involved in the dynamics
without affecting the total energy, as it is schematically illustrated in fig.
5.17. The configuration on the left shows a system of size L1 at a time t
where six phases are present. On the right, instead, an analogous system
with a different size L2 < L1 is represented at the same time t. It can
be seen that, although two phases (the green one and the gray one) are
absent in the smaller lattice, the number of interfaces (and hence the
energy) of the two systems is the same.
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(a) (b)

(c) (d)

Figure 5.14
Partial growing lengths Rσ(t)’s vs time for different values of the
system size L. It is clear how the maximum size hm reached by the
single phases increases with the system size, as well as the time at
which hm is reached.

This explains why the total energy can be insensitive to the system
size whereas the number of phases can depend on it. the excess of energy
(or, equivalently, the total growing length) may not depend on the size,
while number of phases and the size of their nuclei may do.

It is instructing to comment this effect in the context of the symmetry
breaking phenomenon. In order to do that, it is helpful to compare it
with what happens in an Ising ferromagnet quenched from Ti > Tc to
Tf < Tc. We know that the relaxation occurs via coarsening, meaning
that big clusters grow over time to the detriment of smaller ones, so that
the typical domain size increases in time as R(t) ∼ t1/2. Since equilibrium
is reached when R(t) ∼ L, it is never reached in an infinite system. As
explained before, in fact, neither of the two phases (spins up and spins
down) prevails over the other and hence the paramagnetic phase is never
broken in the thermodynamic limit.

On the other hand, if L is finite, coarsening is interrupted after a
time t ' L2, when R(t) ∼ L. This corresponds to a situation in which
one of the phases has prevailed, breaking the up-down symmetry, and
aligning all the spins. In other words, the spontaneous symmetry breaking
amounts to a finite-size effect.
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Figure 5.15
Time at which the maximum of the R(t)’s is reached vs L.

Figure 5.16
Height of the maximum of the R(t)’s is reached vs L.
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Figure 5.17
Two configurations of a system described by the Potts hamiltonian.
They are characterized by the same number of interfaces (and energy),
but in the right one the green and the grey phases have vanished.

Our results show another kind of finite-size effect that influences the
number of surviving phases. We have shown that this number depends on
the system size L. In particular, a small size forces the least represented
phases to disappear earlier as compared to what occurs in a larger system.
This is not due to the fact that their size Rσ(t) has become comparable
with L, since it can be checked that Rσ(t) � L, but rather to the fact
that the more represented phases impede their development. As the
system evolves, all the phases are progressively eliminated because of
this finite-size effect until, at a certain time, only two of them remain to
compete. At this point the dynamics is dominated by a coarsening process
identical to the one that takes place in the Ising ferromagnet, since the
Potts model reduces to the Ising model when the number of states is 2.
As we know, these two phases will experience the finite-size effect much
later, when their growing length reaches a value that is comparable with
the system size Rσ(t) ∼ R(t) ∼ L.

Our data suggest that in an infinite system both dynamical processes
of nucleation and coarsening involve all the q phases of the system, no
matter how long the time is. However, a more detailed study of this
phenomenon performed with different choices of the parameters must be
carried out for a conclusive evidence on that.

5.7 Properties of the clusters

We have also looked at the cluster area distribution, since it can provide
us with information about the critical behavior of the model. First, the
algorithm counts the clusters and measures their masses. To do so, an
array w is introduced composed of N entries, the value of each entry
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recording if the site has yet been visited in the search (see below). Then
the algorithm proceeds as follows :

1. An initial site is selected. This is classified as visited, namely the
corresponding entry of w changes from 0 to 1;

2. The algorithm checks how many of the nearest neighbors of the
initial site belong to the same cluster, i.e. their spins are aligned
with the initial one;

3. The same procedure is repeated starting from each of the sites
recognized as belonging to the cluster, provided they were not
visited before, namely if the corresponding w entry is still 0;

4. When no more such sites are found, all the elements of the cluster
have been counted;

5. Another unvisited site is then selected and the procedure is iterated
with the difference that, when a new cluster, say the n-th is explored
the entries of w change from 0 to n. In this way we also record, for
each site, the cluster to which it belongs.

This process has been iterated for certain specific times chosen with
a logarithmic bin. The program then prints out the area of a cluster on
one column and the correspondent number of cluster with that area. The
algorithm stops when all the sites have been visited.

We have looked at the cluster area distribution over time for q = 9
and at T = .715. The results are shown in fig 5.18. There is represented
the area distribution, with the constraint that the results are printed only
if the number of clusters N(Ai, t) of area Ai at a time t at a time larger
than 10. This procedure, called bootstrapping, improves the statistics
of the results. For short times, the distribution has an exponential
behavior, with a cutoff size that increases in time. At t ' 1000, this
behavior is no longer present. Instead, N(Ai, t) obeys a power law that
is interrupted at a size that decreases in time and, for large sizes, a
flat tail appears in the distribution. The power law is characterized by
an exponent τ that decreases over time. By comparing fig. 5.18 with
the excess of energy 5.5, we can conclude that the power-law behavior
begins roughly in correspondence of the jump in the excess of energy and
persists thereafter. The nucleation regime is instead characterized by the
exponential behavior.

A comparison can be made with the behavior of the cluster area
distribution for the Ising model, depicted in fig. 5.19, that was computed
in ref. [29]. Also in this case an exponential behavior is observed, with a
cutoff that depends on time. Very soon, this is replaced by a power-law
behavior that holds in the range 103 ≤ A ≤ 106 and is characterized by
an exponent τ ' 2.04. The analysis carried over in [29] shows that the
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Figure 5.18
Dynamical evolution of the cluster distribution for q = 9, L = 800
and T = .715. At t ' 1000 MCS the exponential behavior disappears
and the distribution starts to display a tail at a time that decreases
over time. The key shows the times at which N(A, t) is computed.

form of A can be related to the well known cluster distribution of the
exactly solved random percolation problem. In particular, the value of τ
and the scaling properties of the "bump" observed in fig. 5.19 at large A
are the same as those of percolation. These facts have been used in [29] to
infer the existence of a percolation network in the coarsening pattern of
the Ising model, a fact that bears important consequences among which
the possibility to develop an exact theory for coarsening. Instead, the
distribution that we find for the problem at hand (see fig. 5.18) does not
match with the one of the Ising model, in particular because the exponent
τ depends on time and is smaller than the one of random percolation,
τ = 2.04. Furthermore, the bump observed in the Ising model at large
values of A is replaced by the flat tail, whose meaning has not been
clarified. These observations suggest that the multinucleation kinetics
of the Potts model with q > 4 is characterized by different geometrical
properties as compared to those of the Ising model.
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Figure 5.19
Cluster number distribution for the Ising model quenched from Ti =∞
to Tf = Tc/2, shown at various times for L = 2560. In the inset the
data obtained from a quench from Tc to Tc/2 (taken from [29]).





Chapter 6

Conclusions

In this thesis, after a general introduction on equilibrium and non-
equilibrium phase transitions, we have explored the nucleation properties
of Potts model kinetics for different values of the system size L, of the
number q of accessible states for the spins, and of the final temperature
Tf .

We have studied the behavior of the function excess of energy φE =
e(t) − e(∞), which is closely related to the growing length R(t). This
quantity indicates quite clearly that there is a first-order phase transition
regime. In fact, φE exhibits a plateau followed by an abrupt jump.
This behavior is consistent with the picture where the system is initially
situated in the metastable state and has to overcome a free-energy barrier
in order to get to its ground state. This is accomplished by means of
a nucleation process, namely the continuous growth and decay of small
droplets that do not change significantly the free energy until one or more
nuclei reach a critical size, the energy drops abruptly and the system
approaches the lower-energy state. At this point, a competition between
nuclei settles in and coarsening begins.

We tried to understand how many phases are involved in the nucleation
and in the coarsening process. This has been done by examining the partial
correlation functions of the single phases Cσ(t, r)’s and the corresponding
growing lengths Rσ(t)’s. We have collected the results for q = 9, different
values of the final temperature Tf and of the system size L. A first
observation is that the behavior of the phases strongly varies with the
final temperature. As we expected, below a certain temperature Tn ' 0.7
phases grow all together up to the simulated time, after which some of
them will presumably disappear in favor of the remaining ones via a
coarsening process. For Tn < Tf < Tc, instead the growing lengths of the
single phases reach a maximum value hm at a time τ that depends on the
phase and after that they decay and vanish. It is important to stress that
there is more than just one phase that survives after the jump in energy.
This behavior is consistent with a multinucleation process, that involves
a number of spin states that depends on the final temperature and L.

We have also found another interesting property of the system by
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looking at the typical size Rσ(t)’s of the various phases. We have studied
the dependence of this quantity on the system size L. We found that
the Rσ(t) increase up to a critical time τσ, different for each phase, after
which the domains shrink to zero and the phase is eliminated. The time
τ and the maximum size hm reached by the domains of that phase are
monotonously increasing (possibly algebraically) functions of the system
size. This fact sheds some light on the mechanism whereby the symmetry
is broken dynamically in multicomponent systems.
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