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Introduction

Coarsening, the ordering of a system via domain growth after a quench
from the homogeneous phase into one with broken symmetry, has attracted
enormous interest in the last 50 years.

The simplest example is a ferromagnet rapidly cooled from very high tem-
perature to well below the critical point. The system starts in an equilibrium
disordered state. This configuration becomes unstable after the cooling and
evolves towards one of the two possible low-temperature ordered configura-
tions with opposite magnetizations. Relaxation toward the new equilibrium
state occurs slowly (i.e. not exponentially fast) by the formation and growth
(coarsening) of domains of aligned spins, of typical size R(t). This problem is
studied by the field of phase ordering kinetics and one theoretical approach
is the kinetic Ising model, originally introduced by Glauber.

One of the reasons of interest in this class of phenomena is that they
are found in, essentially, every area of science. Examples from Condensed
Matter Physics include binary alloys or liquids, polymer blends and liquid
crystals. Besides, coarsening is also believed to have influenced the forma-
tion of cosmic structures in the early universe. In social sciences it under-
lies, for instance, the spreading of opinions, while on the biological side it is
associated to the growth of populations in an ecosystem. Many other ma-
nifestations of coarsening are also found in chemistry, finance and economy,
medical sciences and other fields. This list of examples is far from being
exhaustive and witnesses the broad scope of this field of research.

Perhaps, the most distinguishing aspect of coarsening is the scaling sym-
metry, a central aspect in many areas of Physics. In this context we deal
with dynamical scaling : the structure of the growing domains looks stati-
stically similar at all times upon measuring lengths in units of R(t). One
consequence is that space dependencies in correlation functions appear as
ratios between distances and R(t).

Dynamical scaling remains a hypothesis because its validity has been ri-
gorously proven only in very simple models, like for instance the 1d Glauber-
Ising Model. However, its success in describing experimental and numerical
data is impressive. For example, the assumption of dynamical scaling allows
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INTRODUCTION ii

in some cases to predict the functional form of R(t), a fundamental quantity
in any problem of this kind.

In the last twenty years it has been shown that the evolution of coarse-
ning systems is influenced by random percolative effects. Using the language
of spin systems, we have percolation when there exists a cluster of aligned
spins crossing the lattice. Random percolation theory, which describes the
properties of such clusters in a system of non-interacting spins, is a purely
geometrical problem. Therefore, its connection to phase ordering kinetics,
where interactions among spins play a prominent role, is surprising and in-
teresting in its own. Moreover, a recent proof of dynamical scaling, valid
for an important class of two-dimensional models, relies on the empirical
observation that the domain morphology of a coarsening system in its early
stages exhibits the topological properties of the random percolation clu-
sters. This percolating structure appears after a relatively short transient,
fully determining the later evolution and the final state of the system. In-
terestingly enough, this fact introduces another characteristic length in the
system, requiring a generalization of the usual dynamical scaling framework
formulated in terms of the sole R(t).

The discussion above refers to pure systems, which can be modeled by the
homogeneous Ising Model, for which coarsening has been widely studied and
is quite well understood. Real systems, instead, are often inhomogeneous;
in particular they are often characterized by the presence of quenched ran-
domness, sources of inhomogeneity whose properties do not vary appreciably
over the time scales of a typical experiment.

The general motivation behind this work has been to establish if the afo-
rementioned correspondences between percolation and coarsening holds also
for inhomogeneous models. This question is of paramount importance for a
better understanding of the scaling properties of real systems characterized
by structural disorder.

This Thesis is organized in two main parts.
The first part is an overview of the present understanding about the

topics dealt with in the present study. Specifically, in Chapter 1 I review
the theory of coarsening focusing on the class of systems considered in my
work, namely with a scalar order parameter – e.g. the magnetization –
that is not conserved during the evolution of the system. I also introduce
the kinetic Glauber-Ising Model, which falls in this class and that I have
adopted as an optimal playground to study coarsening.

Chapter 2 deals with a general description of percolation theory, together
with refined mathematical instruments allowing to identify and quantify
percolative effects on coarsening. I also touch upon the topic of fractals,
explaining its connection to percolation.
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In Chapter 3 the Ising Model is extended to include the most common
sources of inhomogeneity, i.e. randomness as due to varying coupling con-
stants and external fields, introducing the so called Random Field and Ran-
dom Bond Ising Models. Then, I proceed to review what is known about
the rich and complex issue of coarsening in these inhomogeneous systems.
In particular I will discuss how even the form of R(t) is not established, due
to the scarcity of analytical methods and the huge numerical effort required
by computer simulations to try to address this problem.

In the second part of the Thesis, I illustrate the methods and the origi-
nal results of my research work. Chapter 4 contains an explanation of the
numerical algorithms and protocols used. It is explained there how Glauber
kinetic evolution can be implemented through a Monte Carlo algorithm spe-
cifically adapted to simulate efficiently quenches to a vanishing temperature.
The realization of a numerical code based on this, the large-scale simulations
performed with such routine, and the analysis of the data obtained in this
way have been the main task of my Thesis.

Finally, in Chapter 5, I present and discuss a number of original results
about the effects of percolation in the coarsening of inhomogeneous systems,
thus far a completely unexplored topic. I conclude by discussing how di-
sordered systems compare with homogeneous ones in terms of their scaling
properties, examining if and to what extent the dynamical scaling hypothesis
can be extended on the basis of our new results.



Parte I

Background
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Capitolo 1

Coarsening phenomena

1.1 Introduction to coarsening

Let us consider a macroscopic system in thermodynamic equilibrium, who-
se state is described by a set of thermodynamic parameters. If we change
one of the parameters or the enivironmental conditions, we observe a non-
equilibrium transient, during which the system evolves toward a new equi-
librium state. For example, imagine a cube of ice in a refrigerator. If we
put it at room temperature, it will start to melt and will reach a new equi-
librium state when it has completely transformed into water that is at the
same temperature as the environement. Another example is the adiabatic
expansion of a gas, which is left free to expand. It will spontaneously reach
a new equilibrium state, characterized by a new set of parameters, notably
with lower pressure.

We can make a distinction between the cases where the relaxation pro-
ceeds fast and equilibrium is reached in a relatively small time and the cases
where it is very slow and takes place in a time diverging with the size of
the system. Let us consider the familiar example of an uniaxial magnet in
zero external field subject to a quench, i.e. a rapid, ideally instantanous
decrease of the temperature. Denoting with TC the Curie temperature, if
the system is initially in the paramagnetic phase at Ti > TC , and we bring
it to a temperature Tf still above TC , we will have a rapid relaxation to the
new equilibrium state, with the system still remaining in the paramagnetic
phase. We only observe a certain finite growth of the size of the correlated
regions, but the average magnetization remains zero.

Similarly, if we quench from Ti < TC to Tf < Ti, the system starts and
remains in the ferromagnetic phase, relaxing rapidly to the new equilibrium
state, with a decrease in the fluctuations and an increase in the absolute
value of the magnetization. The most interesting case is that of a quench
from Ti > TC to Tf < TC , where we drive the system through a second-order
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CAPITOLO 1. COARSENING PHENOMENA 3

phase transition. Immediately before the quench, the system is in an unsta-
ble disordered state corresponding to equilibrium at the initial temperature.
At the final temperature there are two possible ordered configurations, with
opposite values of the magnetization. The relaxation cannot take place in-
stantanously, because the two possible final states are completely equivalent
and there is no reason for the system to choose one of them1, breaking this
symmetry. Instead, the new equilibrium is reached by the formation and
growth of domains of parallels spins, inside which the system is basically
equilibrated in one of the two equilibrium phases, as depicted in Fig. 1.1.
These domains compete in such a way that the smaller ones are eliminated,
so that the typical size of the remaining ones increases. Therefore R(t), the
characteristic size of ordered regions, grows with time as the two different
broken-simmetry phases compete to select the equilibrium state. This class
of phenomena, exhibiting the gradual growth of a new phase – the ferroma-
gnetic one in the last example – goes under the general name of coarsening
and is studied by the theory of phase ordering kinetics [1]. One of the reasons
of interest in the field is that in the thermodynamic limit final equilbrium is
never achieved. Indeed, only when R(t) becomes comparable to the system’s
size the comparison between the few remaining domains can make one to
prevail. In an infinitely extended system this never occurs. Moreover, as we
will see, also in a finite systems the lowest-energy state is not necessarily
reached, as we will see.

Another important example of coarsening is Ostwald Ripening. This phe-
nomenon is also common in emulsions, such as the oil-in-water one. For
example, let us imagine to add a small quantity of oil to a glass of water and
shake the mixture. At sufficiently low temperature we observe that smaller
oil particles shrink, while the larger ones grow, and overall the average size
will increase. As time tends to infinity, the entire population of oil particles
becomes one large spherical particle. In this way, a more thermodynamically
stable state is attained, the surface to volume ratio being minimized. Exam-
ples of similar phenomena taken from everyday life include beer foams, where
smaller bubbles coalesce merging into larger ones, and re-crystallization of
water in ice-cream. Other standard coarsening systems include binary alloys
and liquids, polymer blends and liquid crystals.

Coarsening is not restricted to Physics in a strict sense, but occurs in a
wealth of other non-physical branches of science as well. For example it is
involved in the spatial spreading of opinions [2] or populations [3]. It also
occurs in the field of ecology, when dealing with spatial conflict between, for
instance, two species competing for territory along their mutual boundaries.

1As it would be the case, for example, if an external field were present. In that case all spins would
rapidly align with the external field.
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Figura 1.1: Pictorial representation of a coarsening process. Blue and pink regions are
the growing domains of parallel spins. The four images correspond to snapshots of the
system at subsequent times, with t1 < t2 < t3 < t4.

Many other examples could be made, witnessing the relevance of this field
of research.

1.2 Ising Model and its kinetic evolution

In this work we focus on the domain growth in the two-dimensional ferroma-
gnetic Ising Model after a temperature quench from a disordered phase at
infinite temperature to a sub-critical one, in particular we will chose Tf = 0.
We start therefore with a brief introduction to the model, initially presenting
it in the context of equilibrium Statistical Mechanics.

The Ising Model was devised by the physicist Wilhelm Lenz in 1920,
and it was assigned to his student Ernst Ising, after whom it is called, who
published his doctoral thesis on it in 1925. Its aim was to describe phase
transitions. Although the model was originally conceived for magnetic sy-
stems, it has been successfully applied to many physical situations, such as
binary mixtures and alloys, and it is by far the most studied model of Stati-
stical Mechanics. With some modifications, it is also widely used in biology,
where it can model neural networks, flocking birds, and beating heart cells,
or in sociology, where it has been used to describe, among other things, the
spread and clustering of criminality. In general, it is useful to describe situa-
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tions in which individual elements (e.g., atoms, animals, proteins, biological
membrane, electors, criminals, customers, et cetera) modify their behaviour
so as to conform to that of other agents in their vicinity.

Even though it is quite a crude model, it is of great interest because many
refined models describing more accurately the critical phenomena which oc-
cur in real systems give the same results for a certain set of quantities. This
fact goes under the name of universality and the quantities sharing this pro-
perty are referred to as universal. Moreover, in some cases the Ising Model
can be exactly solved through the methods of Statistical Mechanics, provi-
ding one of the few frameworks where the properties of phase transitions
can be worked out with mathematical rigour.

The basic idea of the model is that atoms with a magnetic momentum
are arranged in a lattice and a spin variable, whose simbol is si, is associated
to each lattice site i. It is assumed that each of these elementary magnets
may point along the two possible orientations of an easy axis, that will be
referred to as up and down. Accordingly, the spin variable takes – apart
from a trivial redefinition of units – the two values si = ±1, i.e. it is
boolean. With these assumptions, the model is adequate to describe uniaxial
magnets, i.e. systems with a preferred polarization axis. Generalizations
to cases with more than one easy axis are possible, as well as for other
types of anisotropies. We will focus on the uniaxal case. For a system
made up of N magnetic moments, the set of spin variables {s} ≡ s1, . . . , sN
specifies a configuration of the system, or a microstate ν in the Γ space, a
N -dimensional discrete space consisting of 2N points.

The model Hamiltonian is

H({si}) = −J
∑
〈ij〉

sisj −
N∑
i=1

Hsi (1.1)

The first term on the r.h.s. mimics the interaction of strength J among
couples ij of spins. The value of J is constant. J > 0 corresponds to
ferromagnetism, favoring a common orientation sisj = 1, and the choice J <
0 corresponds to antiferromagnetic materials. In the following we will always
consider a ferromagnetic model. Moreover, nearest neighbours interactions
will be considered, namely two spins si and sj only interact when i and j
are adjacent sites on the lattice. The notation 〈ij〉 signals in fact that the
sum is extended only to nearest neighbor couples. Such sum consists of γN

2
terms, where γ is the number of nearest neighbors of any given site. This,
in turn, depends on the geometry of the system. For instance, γ = 2 for
a one-dimensional lattice, i.e. a chain, γ = 4 for a two-dimensional square
lattice, γ = 6 for a three-dimensional simple cubic lattice and so on. Finally,
the second term on the r.h.s. of Eq. (1.1) is the energy associated to the
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presence of a magnetic external constant field favouring the polarization of
spins along H.

Let us notice that the parameters J and H in Eq. (1.1) are constant and
therefore the model describes an homogeneous system for which any lattice
site is a priori equivalent. In every real system some source of inhomogeneity
is always present, and in some cases that can be modeled by introducing some
site-dependent randomness in J or H, making the Ising model disordered.
The properties of such a model will be discussed in Chap. 3. For the
moment, however, we restrict the attention to the homogeneous case with
Hamiltonian (1.1) which, when the external field is absent, reads

H({si}) = −J
∑
〈ij〉

sisj. (1.2)

An important quantity is the magnetization, defined as

M(H,T,N) =

〈
N∑
i=1

si

〉
, (1.3)

where N is the number of spins on the lattice and the square brackets stand
for the ensemble average. M(H = 0, T,N), the magnetization in the case of
zero external field, is called spontaneous magnetization.

Thermodynamic properties, such as M , can be extracted in the canonical
ensemble from the partition function Z, which for H = 0 reads

Z =
∑
{si}

exp

βJ∑
〈ij〉

sisj

 , (1.4)

where the sum is over all spin configurations and β = 1/kBT , kB being the
Boltzmann constant.

In his doctoral thesis, Ising solved the one-dimensional model, proving
the absence of phase transition. An exact solution in d = 2 in case of
zero external field was provided by Onsager in 1944 [4]. He showed that
in the thermodynamic limit the model presents a phase transition at the
critical temperature Tc ' 2.269J/kB. The order parameter of this transition
is the spontaneous magnetization, which is finite for T < TC , behaves as
M(H = 0, T,N) ∝ (T − Tc)

β with β = 1/8 for T → T−C and is zero for
T > TC , as shown in Fig. 1.2. At the critical temperature, the free energy
has a non-analyticity.

As it is, the model does not posess a natural dynamics, since an evolution
for the spin variables has not been provided. One theoretical approach to
study phase ordering dynamics is the kinetic Ising Model, originally intro-
duced by Glauber [5]. He devised a form of the model whose time evolution
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Figura 1.2: Behavior of the magnetization as a function of temperature in the d = 2 Ising
Model for zero external field. Below TC the system is found in one of the two possible
ferromagnetic phases, with positive or negative value of the magnetization.

can be studied exactly, in statistical terms. Glauber introduced a stochastic
dynamics for the spins, that can make random transitions between the values
+1 and −1, according to a (discrete time) Markov chain. The distinctive
feature of this stochastic process is that the probability that the system is
in a certain state only depends on the state of the system in the previous
instant (timestep), but not on the previous history. In this case the time
variation of the probability Pν of being in state ν is given by the so called
master equation [8]

dPν
dt

=
∑
ν′

[Pν′wν′ν − Pνwνν′ ] , (1.5)

which is the basic analytical tool to deal with the stochastic dynamics of
discrete variables. In Eq. (1.5), wνν′ , the transition rate, is the conditional
probability (per unit time) of going to a state ν ′ given that the current state
is ν. This equation expresses the balance between a gain term and a loss
term. The former – the first on the r.h.s. – represents an income probability
flux, namely the probability per unit time that the system goes to the state
ν from any other state ν ′. The latter, – the second on the r.h.s. – is an
outgoing probability flux, i.e. the probability that the system goes from the
state ν to any other state ν ′.

It is assumed that the transition rates only depend on the values of the
neighbouring spins (apart possibly from the interaction with an external
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field). We also require that a stationary state exist, imposing dPν
dt

= 0, and
that it be described by the equilibrium canonical distribution. Therefore,
setting dPν

dt
= 0 in Eq. (1.5) and replacing the probabilities Pν and P ′ν with

the canonical ones, one obtains

0 =
∑
ν′

[
wν′ν

e−βEν′

Z
− wνν′

e−βEν

Z

]
, (1.6)

where Z is the canonical partition function. In order to satisfy this equation,
one possibility is to set all the terms of the summation to zero. This leads
to the detailed balance condition

wνν′e
−βEν = wν′νe

−βEν′ , (1.7)

that may be also written as

wνν′

wν′ν
= e−β(Eν′−Eν). (1.8)

Notice that Eq. (1.8) does not fix the form of the transition rates, since
there is one equation for two unknowns. Indeed, several choices of the w’s
are found in the literature. We observe that Eq. (1.7) encompasses one of the
fundamental properties of equilibrium, namely the time reversal symmetry.
Indeed this equality means that, if the measure is the canonical one, there is
no net flow of probability between the states ν and ν ′. This is because the
l.h.s. represents the joint probability (per unit time) to be in state ν and
to evolve to ν ′, while the r.h.s. is the probability of the reversed process.
These two probability are set equal by Eq. (1.7), meaning that there are no
net fluxes between the system’s state or, equivalently, that the time reversal
symmetry is at work. Clearly, all the above is only true when the system is
at stationarity, namely when dPν

dt
= 0 in Eq. (1.5). If this is not the case, as

we will see, the evolution occurs out of equilibrium, and both time-traslation
invariance and time-reversal invariance are not necessarily obeyed.

In the original paper by Glauber, this method is specialized to the one-
dimensional Ising Model, resulting in exactly solvable differential equations
thanks to an ad hoc choice of the transition rates. In Sec. 4.3 we will
explicitly report Glauber’s choice verifying that condition 1.7 is satisfied.
This kinetic evolution allows for a single-spin flip, which implies that the
order parameter, the magnetization, can change over time. This is suited to
the study of a ferromagnet, which acquires a non-zero magnetization after a
quench from a paramagnetic phase. Therefore, Glauber dynamical evolution
is a case of non-conserved order-parameter (NCOP) dynamics.

Needless to say, this method is coherent with equilibrium Statistical Me-
chanics, meaning that any static quantity can be recovered. It is also more
powerful since :
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• It is susceptible of several generalizations, by means of appropriate choi-
ces of the transition rates, provided that the condition (1.6) is satisfied.
For instance, it allows one to describe a situation in which each spin
is unequally influenced by its nearest neighbours [12] [13] [14]. Other
examples, involving different model Hamiltonians, are the introduction
of long range couplings, competing interactions, continuous variables
and many other features.

• Even when an analytical solution of the equations for the chosen tran-
sition rates is not possible, Eq. (1.6) is a starting point to build nu-
merical simulations, the so called Montecarlo method. Importantly
enough, these computations often represent the only tool to investigate
the equilibrium properties of a system.

• It not only allows one to recover static properties, but also discloses
dynamical behaviors. For instance, Glauber not only recovered the
absence of spontaneous magnetization in the Ising chain, but he also
found its decay when the system is prepared in an initially magneti-
zed state (for instance by applying a magnetic field). Even though the
specific dynamical behavior is in principle dependent on the choice of
the transition rates 2, it can be shown that basic properties do not de-
pend sensibly on this option. Indeed, there exist a wealth of numerical
results which agree with theoretical ones and actual experiments [6],
irrespective of the choice of the transition rates. The Monte Carlo me-
thod is a powerful tool to study the dynamical evolution of Statistical
Mechanical systems [7]. Specifically, it is the basic tool to investigate
coarsening systems and, as it will be further discussed in Chapter 4, it
will be adopted in this work to simulate the phase ordering kinetics of
the two-dimensional Ising Model.

For completeness, we mention that there exist kinetic evolutions – COP
dynamics – in which the order parameter is conserved. This is suited to
describe binary mixtures, in which the two-states variable describe which
type of particle – water or oil in the previous example about Ostwald ripening
– occupies a given site. Evidently, the number of particles of each type has
to remain constant, therefore variables can change their value only two by
two. A stochastic dynamics used to describe mixtures must respect this
constraint.

Finally, we observe that in the case of systems endowed with a stochastic
evolution, the ensemble average of Statistical Mechanics appearing in Eq.
(1.3) becomes a non equilibrium statistical average. This is an average taken

2Unlike the equilibrium properties, for which we have the same results provided that Eq. (1.8) is
obeyed.
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over all possible conditions compatible with the initial thermodynamic state
(in our case, for instance, the infinite temperature equilibrium state of the
Ising model) and thermal histories. This means that an average is taken also
over the outcomes of all the possible dynamical trajectories generated by the
transition rates, appropriately weighted by their occurrence probability. We
will globally refer to it as thermal average.

1.3 Dynamical scaling

Scaling laws are central to Physics. In Statistical Mechanics, they occur most
notably in the study of second order phase transitions. In phase ordering ki-
netics, a related concept emerges, namely dynamical scaling, a distinguishing
feature of coarsening.

In order to exemplify it, let us consider again a ferromagnet, quenched to
below TC from a temperature Ti above it. The coarsening process is charac-
terized by a patchwork of domains, as in Fig. 1.1, whose interior is essentially
equilibrated, while the non-equilbrium behaviour occurs on the boundaries,
which slowly move and tend to become smoother. The structure evolves
with time and the ordered regions grow with a characteristic size R(t). The
dynamical scaling hypothesis states that the system is fully characterized by
the single length-scale R(t). Hence domain structures at different times are
statistically equivalent if lengths are measured in terms of this characteristic
length. From a pictorial point of view, this simmetry means that in Fig.
1.1. it is not possible to tell whether the fourth panel is a snapshot of the
system at a time t4 > t3 or an enlargement of the configuration at time t3,
namely the one represented in the third panel.

A consequence of dynamical scaling is that all space dependencies in
correlation functions appears as ratios between such distances and R(t). For
examples, referring to a spin system in its coarsening stage, let us consider
the case of an equal-time spin-spin correlation function C(r, t) = 〈si(t)sj(t)〉,
where si = ±1 are spin variables on sites i and j of a regular lattice at a
distance r. Notice that a correlation function should be properly defined as
C(r, t) = 〈si(t)sj(t)〉− 〈si(t)〉〈sj(t)〉, but the second term drops out because
magnetization is not formed in the coarsening stage. When scaling holds,
we have

C(r, t) = c

[
r

R(t)

]
, (1.9)

where c(x) is a scaling function, with x = r/R(t).
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More generally, for a time-delayed spin-spin correlation function of the
form G(r, t, tw) = 〈si(t)sj(tw)〉, we have

G(r, t, tw) = g

[
r

R(tw)
,
R(t)

R(tw)

]
, (1.10)

where g(x, y) is a scaling function of two variables (x = r/R(t), y = R(t)/R(tw)).
These scaling laws are, in principle, strictly obeyed only in a quench to a
vanishing final temperature. In case of a quench to a finite temperature Tf ,
the behaviour of the correlation functions is modified at distances smaller
than the equilibrium correlation length ξ(Tf ), which is small except in the
critical region. In this work, we need not to be concerned by this since we
will always work at Tf ' 0.

It is clear that the form of the function R(t) is very important in the study
of coarsening. For many homogeneous systems of interest, it can be deter-
mined analytically or it is accurately known by numerical simulations[9].
Usually the characteristic length grows algebraically in time, as

R(t) = t1/z, (1.11)

with z a dynamic growth exponent which depends on the dimension n of the
order parameter – namely if it is a scalar with n = 1 as in the original Ising
Model or a vector with n components – and the conservation law, namely if
the order parameter is conserved or not. For scalar order parameter, we have
z = 2 for NCOP dynamics and z = 3 for the COP case. These results are
in excellent agreement with experimental and numerical data. The presence
of inhomogeneities drastically modifies the growth law, as we will se in Sec.
3.3.

Finally, let us notice that for finite systems of size L, scaling may only
hold in the time region where

ξmicro � R(t)� L, (1.12)

where ξmicro is the characteristic microscopic scale of the system, usually
the lattice spacing. Indeed, in order to have scaling domains must be well
formed, with an interior and a boundary well separated, and this accounts
for R(t) � ξmicro. On the other hand, when the characteristic length is
comparable to the system size, the scaling symmetry is spoiled by finite size
effects.

1.4 Scaling and percolation

Even though there is indisputable evidence in favor of the dynamical scaling
hypothesis from both numerical simulations and experiments, no general
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proof is available. It can be shown to be valid analytically by the solution
of some tractable models or in the framework of approximation schemes.
Exact solutions are only possible in one dimension – e.g. it has been proved
for the 1d Glauber-Ising Model [10] – or for vectorial spin systems in the
limit of an infinite number of vector components.

For a scalar spin system in higher dimensions, analytical methods are
scarcer and exact result are not available. One analytical approach [11] ma-
nages to prove dynamical scaling in 2d for NCOP dynamics with a scalar
order parameter, enforcing the well known fact that the dynamics of interfa-
ces is in this case driven by curvature. This means that the only driving force
behind coarsening is the tendency of the domain walls to become smoother
(due to surface tension), lowering the energy of the system. Given that, it is
easy to compute the time needed for a domain of a certain area s immersed
in a sea of spins of the opposite sign to shrink and disappear. A complete
theory is possible if the distribution ns of domains of area s is known at
a given time. The theory builds on the empirical observation that such a
distribution in the initial stages of the coarsening process, soon after the
quench, is indistinguishable from the corresponding distribution obtained in
the very different context of random percolation theory, a fact that lacks a
rigorous proof.

The above derivation of dynamical scaling is for the moment limited to
homogeneous models and one may ask if it may be generalized to inho-
mogeneous ones, for which no analytical result is available. The answers
heavily depends on whether the aforementioned correspondence with perco-
lation holds also for inhomogeneous models. Understanding that is one of
the main motivations of our study.



Capitolo 2

Percolation

2.1 Introduction

Let us imagine a plane, like a very large table, on which we randomly throw
some marbles. Some of them will end up touching each other, some will
be isolated. The entire set may be partitioned into clusters, i.e. group of
marbles that are connected by a ”path” of contiguous ones. Similar systems
are the object of study of random percolation theory, which investigates the
properties of these clusters and the probability that there exists a percolating
or spanning one, connecting two opposite boundaries of the system. If the
marbles were made up of a conducting material, in the presence of a perco-
lating cluster applying an electric potential difference between the ends of
the system would result in an electrical current between the two connected
boundaries.

Most real systems describable by a percolation model contain so many
individual elements – the marbles of our example – that surface effects may
be ignored and the system can be considered infinite. In this case, the
percolating cluster is infinite too.

One of the main reasons of interest in percolation is that the appearance
of the percolating cluster can be regarded as a phase transition. Indeed
this is one of the simplest examples of second-order phase transition. At
variance with other well-known transitions, such as the ferro-paramagnetic
one discussed in the previous Chapter, this is a non-thermal transition,
because temperature is not involved.

The first scientific formulation of this problem dates back to the 1940s and
is found in Chemistry, as a model describing the process of polymerization
by the formation of bonds between molecules [15] [16]. The mathematical
formulation of percolation theory appeared in 1957 [17].

Many other phenomena are described in terms of percolation, witnessing
the great theoretical and practical importance of this problem. For instance,

13
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the formation of conducting clusters may cause the breakdown of a dielectric,
the formation of a big cluster of trees in a forest leads to the possibility for
a significant part of the forest to be destroyed by a fire, etc.

The purpose of this work is to discuss how percolation influences the
phase ordering kinetics of an Ising ferromagnet after a sub-critical quench.
Therefore, this chapter provides a concise description of the general theory of
percolation, outlining the formulation of the problem in terms of phase tran-
sition and the connection to fractals. Moreover, we will introduce specific
quantities to identify and quantify percolative effects on spin lattices.

2.2 The basics of percolation theory

2.2.1 First concepts and definitions

There are many types of percolation, but here we focus on the most common
model which is that of random percolation, meaning in the previous example
that marbles are randomly disposed on the table without correlation among
them. Random percolation theory is defined on a lattice, and two variants
are usually considered: site and bond percolation. To introduce random site
percolation, let us consider a lattice whose sites are in one of two states, emp-
ty and occupied. Each site is either occupied with an occupation probability
p, or empty with probability 1− p. This happens independently of the state
of any other site in the lattice. Therefore, we are dealing with uncorrelated
random percolation; in the rest of this work we will sometimes refer to it
simply as percolation. A cluster is a group of occupied sites which are either
nearest neighboring (adjacent) or connected by a group of occupied nearest
neighbours. A percolating cluster is one which spans the system from one
side to the other. Examples of clusters are shown in Fig. 2.1. The yellow
one, which crosses the system from top to bottom, is a percolating cluster.

Random percolation theory deals with the numbers and properties of
the clusters formed in this way. Let us define the cluster number ns(p) as
the number of clusters of size s (s-clusters) per lattice site. The (average)
number of s-clusters in a hypercubic d-dimensional lattice of linear size L is
Ldns(p). Defining the cluster number per lattice site ns(p) – instead of the
total number of s-clusters – provides us with a quantity which is independent
of the lattice size L.

For finite lattices, L < ∞, it is clear that the probability of having a
percolating cluster is very low if the occupation probability p is small and
very high if p is close to 1. However, even for a very small p 6= 0 there is
a finite probability of having a spanning cluster, and it is possible to have
no spanning cluster even for p very close to one. Conversely, for infinite
lattices, it is possible to define the percolation threshold pc, i.e. the smallest
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Figura 2.1: Site [ercolation in a d = 2 square lattice of linear size L = 5. We have one
cluster of size s = 7 (yellow), one of size s = 3 (red), and two of size s = 1 (black).

occupation probability p at which a percolating cluster, which will be infinite,
appears for the first time. This means that for p < pc a spanning cluster
occurs in the infinite system with zero probability, whereas it is present with
probability one for p ≥ pc.

The bond percolation problem is the counterpart of site percolation. Iden-
tifying sites with the vertices of the lattice 1 , bonds are the lines connecting
them, as shown in Fig. 2.2. Each bond between neighbouring lattice sites
can be occupied with probability p and empty with probability 1 − p. A
cluster is a group of occupied bonds which are either adjacent or connected
by a path of occupied ones.

Table 2.1 lists pc for site and bond percolation, for various lattices and
dimensionalities.

Among systems described through bond percolation models we find po-
rous materials. For example, when a rock containing petroleum oil possesses
a system of pores connected one to another, the oil may flow through these
pores to form oil clusters. People working in oil industry are interested in
understanding these systems to maximize the quantity of oil extracted.

In the following we will be interested in site percolation, therefore we
continue to refer to it for our presentation.

The existence for infinite lattices of a diverging quantity, namely the (ave-
rage) cluster size, at a finite value of a parameter (pc), and the qualitative
change in behavior of the system after crossing this value tell us that one
should look for critical behavior. In fact, near pc several quantities exhibit

1Instead, they are usually located in the centres of the plaquettes when representing site percolation
models, like in Fig. 2.1
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Lattice Coord. numb. pc site percolation pc bond percolation
1d 1 1 1
2d honeycomb 3 0.6962 0.65271
2d square 4 0.592746 0.5
2d triangular 6 0.5 0.34729
3d simple cubic 6 0.3116 0.2488
3d BCC 8 0.246 0.1803
3d FCC 12 0.198 0.199
4d hypercubic 8 0.197 0.1601

Tabella 2.1: Percolation threshold are given in column 3 for various lattices in various di-
mensions. Column 2 lists the coordination number, i.e. the number of nearest-neighbours.
Within a given dimension, the percolation threshold decreases with increasing number of
nearest-neighbours.

power-law behavior, and there are scaling laws relating the different criti-
cal exponents, as in ordinary critical phenomena. The concepts and tools
used to study phase transitions and critical phenomena can be applied to
percolation. In this probabilistic systems, the relevant parameter akin to
temperature is p, the occupation probability for site percolation and the
bond density for bond percolation. The critical occupation pc plays the role
of the critical temperature Tc in a magnet.

2.2.2 Percolation in one dimension

Although limited in scope, the one-dimensional percolation is useful to il-
lustrate the main features of this problem, as it can be solved analytically.
Imagine an infinitely long chain, made up of equally spaced sites occupied
according to the rule discussed above. We can deduce the percolation th-
reshold. We are looking for a cluster spanning the whole system. For any
p < 1 there are empty sites, and therefore there is no continuous chain of
occupied sites spanning the system. On the other hand, for p = 1, all sites
are occupied. Thus, for the one dimensional system

pc = 1. (2.1)

Let us consider the clusters formed in the 1d lattice, in the limit L→∞,
which allows us to ignore the effect of the boundary sites. Since a cluster
requires the existence of two empty sites, one at each side of the cluster, the
probability of an arbitrary site being, say, the left (or right) hand side of an
s-cluster2 is

ns(p) = (1− p)ps(1− p) = (1− p)2ps. (2.2)

2The same as the average number of s-clusters per lattice site, i.e. ns.
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Figura 2.2: In this lattice, sites are the vertices and bonds are the lines connecting them.
Occupied bonds are highlighted with thick lines. Blue and red bonds form clusters of size
6 and 3, respectively.

From ns(p) it is easy to infer the probability that a site belongs to an s-
cluster, which is sns(p), since there are s occupied sites in such a cluster.

For p < pc, the probability that an arbitrary site belongs to any (finite)
cluster is simply the probability p of it being occupied. We can verify that
as a simple exercise by direct calculation :

∞∑
s=1

sns(p) =
∞∑
s=1

s(1− p)2ps = (1− p)2

∞∑
s=1

p
d(ps)

dp
= (2.3)

= (1− p)2p
d

dp

∞∑
s=1

ps = (1− p)2p
d

dp

(
p

1− p

)
= p.

where we have used the formula to sum a geometric series.
We can now calculate the mean cluster size. The probability ws that the

cluster to which an occupied sites belongs contains s sites is

ws(p) =
sns(p)

p
, (2.4)

which is a conditional probability. Therefore, the mean or average cluster
size S(p) is given by [18]
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S(p) =
∞∑
s=1

sws = p−1(1− p)2

∞∑
s=1

s2ps = (2.5)

= p−1(1− p)2

(
p
d

dp

)(
p
d

dp

) ∞∑
s=1

ps

=
pc + p

pc − p
,

where we have used pc = 1.
Eq. (2.6) shows that the mean cluster size diverges for p → pc as a

power-law in the distance from the critical occupation probability pc, namely

S(p) ∝ |pc − p|−1. (2.6)

As this property is also valid in higher dimensions, but with a different
numerical exponent, it is natural to define a symbol for the exponent. The
critical exponent γ is defined by

S(p) ∝ |pc − p|−γ, (2.7)

and in the 1d lattice γ = 1. Notice that in a one-dimensional lattice where
pc = 1 the only possibility is to approach it from below. This will not be
the case in higher dimensions, as we will see.

Another important quantity is the pair connectivity g(~r), sometimes also
called (improperly) correlation function, namely the probability that a site
at distance ~r from an occupied site belongs to the same finite cluster 3. This
definition excludes the contribution from the infinite cluster, so it is valid
for p < pc = 1 in 1d. Let r = |~r|. Due to space homogeneity the correlation
function depends only on r. Clearly, g(r = 0) = 1, since the site is occupied
by definition. In 1d, for a site at position r to be occupied and belong to the
same cluster, this site and the (r − 1) intermediate sites must be occupied,
leaving

g(r) = pr = er ln p = e−
r
ξ , (2.8)

where the quantity ξ = − 1
ln(p)

is called the correlation length. Near the

percolation threshold, where p→ pc = 1, we can rewrite it as

ξ =
−1

ln(p)
=

−1

ln[pc − (pc − p)]
' 1

pc − p
, (2.9)

where we have used the fact that ln(1− x) ' −x for x→ 0. It diverges for
p → pc, here as in higher dimensions. Therefore, we have another critical
exponent ν defined by

ξ ∝ |pc − p|−ν , (2.10)
3We use ~r since this definition is valid for arbitrary dimension.
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being ν = 1 for the one-dimensional case.
Through the analytical solution of the 1d percolation problem, we have

seen how the mean cluster size S(p) and the correlation length ξ diverge
at the percolation threshold.4 The divergence can be described by simple
power laws of the distance from the critical occupation probability |pc − p|,
namely

S(p) ∝ |pc − p|−γ, ξ ∝ |pc − p|−ν . (2.11)

Analogous equations, with different critical exponents, are found in higher
dimensions, although analytical solutions are not available.

2.2.3 Self-similarity and fractal dimension

In higher dimensions, the percolating cluster at p = pc is an example of a
random fractal. Before discussing this fact, we give a conceptual introduction
to the concept of fractality and self-similarity, which are also of general
interest in Physics and Mathematics.

For the sake of simplicity, we will exemplify them referring to the Sierpin-
ski gasket, which is not a random fractal but a deterministic one, namely a
figure obtained by the repetition of a deterministic algorithm. This fractal is
built by taking the midpoints of each side of an equilateral triangle, connec-
ting them and emptying, among the four new smaller triangles obtained, the
central one. Ideally, this procedure should be repeated an infinite number
of times, for each equilateral triangle obtained in this way. Fig. 2.3 presents
the four initial steps of this process.

Self-similarity means that any neighbourhood of any point in the figure
contains a copy of the entire figure. Indeed, let us imagine to iterate the
construction of Fig. 2.3 infinitely many times. Then we can choose any point
of the figure, and draw a circle of any radius around it. If we magnify the
encircled portion, we will see again the whole figure, including the internal
structure. Equivalently, this means that the figure can be decomposed into
some number of disjoint pieces, each of which is an exact copy of the entire
figure.

A topological indicator known as fractal dimension is associated to any
fractal. There are several different definitions of it. One can be introduced
similarly to the classical definition of the space-dimensionality in standard
geometry. Let us consider a plane figure. If its linear dimension L is doubled,
the area S increases by a factor of 4. In general one has that if the linear
dimension increases by a factor XL the area grows by a factor XS given by

XS = XD
L , (2.12)

4There are other quantities, not discussed here, which exhibit a similar behavior.
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Figura 2.3: The first four steps of the construction of the Sierpinski gasket. In each step,
we connect the midpoints of each equilateral triangle in the figure. The area of the fractal
is the blue region.

where D is the space dimension. We can rearrange the previous equation
into

D =
logXS

logXL

, (2.13)

where D = 2 for a plane figure. This is a way to define the dimension of a
geometrical shape. Clearly, we speak of a surface since we are considering
D = 2, we should speak of a volume for D = 3 and so on, but this is only a
matter of terminology. Looking at Fig. 2.3, we can notice that if the linear
dimension of the basis triangle is doubled (XL = 2), then the area of whole
fractal (blue triangles) increases by a factor of three (XS = 3). Proceeding
as above, we can say the fractal dimension of the Sierpinski gasket is

DSG =
log 3

log 2
' 1.585. (2.14)

Eq. (2.12) is equivalent to

S ∝ LD. (2.15)

In general, the occurrence of this kind of power law with a non-integer D
signals that we are dealing with a fractal.

The difference between a deterministic fractal, like the Sierpinski gasket,
and a random fractals is that the former is identical at all scales while the
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latter exhibits a statistical self-similarity, repeating a pattern stochastically.
The concept of non-integer dimension applies to both cases.

2.2.4 Cluster structure

We now consider the geometry of clusters. All the following concepts apply
in any dimension.

Let us start by considering the mean square distance Rs between two
sites of an s-cluster

R2
s =

1

s

s∑
i=1

|~ri − ~rcm|2 (2.16)

From that we can define the (squared) correlation length as

ξ2(p) =

∑
sR2

s(p)s
2ns(p)∑

s s
2ns(p)

. (2.17)

The numerator of the R.H.S. of this formula is the average of R2
s, over all

cluster sizes, with weights given by s2ns(p), the probability that an occupied
site belongs to an s-cluster multiplied by the number of sites it is then
connected to. The denominator acts as a normalization. Therefore, ξ(p) is
the average of the distance between two sites belonging to the same cluster.
As the most important contribution is given by the largest clusters, it is also
the typical radius of the largest finite cluster, both below and above pc, the
percolating cluster being excluded when p ≥ pc. As p approaches pc, we
expect it to diverge as

ξ ∝ |pc − p|−ν , (2.18)

analogously to the 1d case, but with a different exponent. For 2d percolation,
methods of Conformal Field Theory [20] give ν = 4/3, in excellent agreement
with numerical results. In 3d, ν is somewhat smaller than 0.9.

We can now discuss the behavior of the mass M(L) of the percolating
cluster, namely the number of sites it is made up of. If the percolating cluster
were a compact figure, we would have M(L) ∝ Ld, with d the geometric
dimension of the lattice. Instead, as already mentioned, the percolating
cluster is a fractal for p → pc , when the correlation length diverges. This
can be verified as follows. Imagine to have several lattices of different sizes L,
large enough that finite size effects can be neglected, and to bring all of them
to the percolation threshold by randomly occupying sites with probability pc.
Let us then plot the masses of the percolating cluster which has appeared in
each lattice against the respective sizes. Numerical data obtained simulating
this procedure are shown in Fig. 2.4 and they are well described by

M(L) ∝ LD, (2.19)
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with D non-integer, being the fractal dimension of Eq. (2.12). For the 2d
case, we have D = 91

48
< 2 from numerical data [21] and this result has also

been proved in the context of Conformal Field Theory [22]. We recall that
this holds when p = pc and consequently L� ξ →∞.

Figura 2.4: Numerical data for the size of the largest cluster at p = pc as a function of the
lattice size L on a double-logarithmic plot. The power law M(L) ∝ LD, with D = 91/48
signals the fractal behaviour typical of critical percolation.

In order to understand what happens when the occupation probability
becomes larger than the critical value, let us remember that the correlation
length ξ(p) constitutes the characteristic linear size of the largest finite clu-
ster for any p 6= pc. Since for p > pc finite clusters reside inside the holes of
the percolating cluster, in this case the correlation length can be identified
as the typical radius of the largest holes in the percolating cluster 5. If p
continues to increase after having exceeded pc, more and more sites are oc-
cupied and the average hole size decreases. Therefore ξ decreases, and for

5Indeed, when ξ diverges at p = pc there are holes of all sizes, consistently with the property of
self-similarity of fractals.
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p� pc we will have ξ � L. In this case we can divide the system into boxes
of linear size ξ, inside which the percolating cluster has fractal properties. In
d dimensions, the total volume Ld will be divided into (L/ξ)d boxes. Since
the cluster inside each of these boxes of size ξd has a mass of order ξD, the
total mass of the cluster is given by

M(L) =

(
L

ξ

)d
ξD = ξD−dLd. (2.20)

We can summarize the behaviour of the total mass of the cluster, putting it
in scaling form, writing

M(L, p) = LDm

(
L

ξ(p)

)
, (2.21)

where m(x) is a scaling function whose behaviour is

m(x) =

{
const. for x� 1
xd−D for x� 1.

(2.22)

The scaling function describes a crossover from fractal to uniform behavior
at length scales L much larger than the correlation length. In Nature, there
are many examples of this type of behavior. For example, let us consider the
surface of a table. On length scales much larger than its size, the surface is
smooth so that it can be considered a regular two-dimensional plane figure
(usually a rectangle or a circle) and m(x) in Eq. (2.21) is a constant. Instead,
going to very small scales, the surface will become very rough and probably
fractal. Taking the surface of the little bumps and pits into account, the area
of the entire figure increases more than fourfold if the linear size is doubled.
This is expressed by a fractal dimension 2 < D < 3.

Finally, let us notice that we have not specified the geometry of the lattice,
i.e. square, triangular, kagome or other. That is why the results presented
in this section are universal : D and the critical exponent ν have the same
values for all lattices of a given dimension. This is true also for the other
critical exponents, like γ in Eq. (2.7), and is reminiscent of the Statistical
Mechanical theory of phase transitions.

2.3 Classification of spanning clusters at pc

Let us now focus on the 2d square lattice with periodic boundary conditions
(PBC) at the percolation threshold. It is possible to classify the various
types of spanning cluster according to some of their topological properties.
Concretely, we can assign a label (m,n) to such clusters according to their
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Figura 2.5: An example of (0, 1) percolating cluster, crossing vertically, on a square lattice
of linear size L = 8. White sites are empty, gray and black sites are occupied, with the
black ones forming the spanning cluster.

winding numbers, i.e. how many times they wind in the horizontal (n) and
vertical (m) direction. There are several possibilities, as the PBC lattice is
a torus and clusters can wind in various ways around it. We illustrate the
three most probable cases, which are :

• A percolating cluster crossing the system either horizontally or ver-
tically, the latter is shown in Fig 2.5. Unfolding the torus into the
square, such a cluster connects two opposite boundaries of the lattice.
Horizontal clusters are labeled (1, 0) and vertical ones (0, 1).

• A percolating cluster conceivable as the union of a (1, 0) and a (0, 1)
structure, therefore spanning the system in the two directions as seen
in Fig. 2.6. We convene to label it (0, 0).

• A percolating cluster that wraps around the lattice once in the vertical
direction and once in the horizontal direction, giving a diagonal crossing



CAPITOLO 2. PERCOLATION 25

Figura 2.6: An example of (0, 0) percolating cluster crossing both horizontally and verti-
cally, on a square lattice of linear size L = 8. White sites are empty, gray and black sites
are occupied, with the black ones forming the spanning cluster.

when the torus is unrolled into the square. This is labeled (1, 1) if the
crossing is from top left to bottom right, while (1,−1) if it is from
bottom left to top right. The latter possibility is exemplified in Fig.
2.7.

We denote the probability of having an (n,m) configuration by πn,m. In
the context of random percolation theory, it can be exactly proven [23] that

π0,1 + π1,0 ' 0.3388,

π0,0 = 0.61908,

π1,−1 + π1,1 ' 0.04196,

with π0,1 = π1,0 and π1,−1 = π1,1. There exist configurations with higher
winding numbers occurring with exceedingly small probabilities, that we
will not consider here. Table 2.2 summarizes the probabilities discussed
insofar, it will be useful for future reference.
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Figura 2.7: An example of (−1, 1) percolating cluster, crossing diagonally, on a square
lattice of linear size L = 8 with PBC. White sites are empty, gray and black sites are
occupied, with the black ones forming the spanning cluster.

Type of crossing Probability
Horizontal and vertical π0,0 = 0.61908
Straight, horizontal π1,0 = 0.1694
Straight, vertical π0,1 = 0.1694
From left bottom to right top π1,−1 = 0.0209
From left top to right bottom π1,1 = 0.0209

Tabella 2.2: Summary of the three types of crossings considered, for a cluster at perco-
lation threshold on a square lattice with PBC, with respective probability of occurrence.
The values of the probabilities are approximated.

2.4 Winding angle for hulls

We now proceed to introduce some concepts and results which will allow us
to evaluate the effects of percolation in the phase ordering kinetics of the
quenched ferromagnetic Ising Model.
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In our presentation of percolation we have considered empty and occu-
pied lattice sites. This corresponds to the gas lattice variable description of
Statistical Mechanics. We can go from that to spin variables simply iden-
tifying an empty site with a down spin and an occupied sites with an ’up’
one, or vice versa. From now on, we will use the spin variable description in
which a spin cluster or domain is a connected set of aligned spins.

A broken bond is a link of the lattice between two unaligned neighbo-
ring spins. This is exemplified in Fig. 2.8, where we use square lattice for
simplicity, but the extension to other kind of lattices is immediate.

The domain wall of a spin cluster is its external and internal contour,
constructed as follows. One first generates a dual lattice by placing a site
at the center of each plaquette of the original lattice. Next, the links on
the dual lattice that cross broken bonds on the original lattice are joined
together. In this way, one finds closed loops on the dual lattice that run
along the external and, if present, internal boundaries of a spin cluster. The
hull of a domain is the external part of the countour. We can associate
a length to these contours by counting the number of broken bonds they
cross, therefore taking the lattice spacing as the unity. Simple examples are
a cluster composed of a unique spin, with an hull of length 4, and a two-spin
cluster, whose hull has length 6 6. An example of hull of length 30 is shown
in Fig. 2.9.

Figura 2.8: Sketch of an Ising spin configuration with the boolean spin variables repre-
sented by black and red dots on the square lattice sites. Broken bonds are drawn with
green lines on the edges of the lattice

Let us consider two points P and Q at a distance x along the hull of a
domain, and trace the tangent to the hull in these two points. The angle
between the two tangents, measured counterclockwise in radiants units, is
the winding angle θ(P,Q). By fixing x, one can calculate the average winding
angle for two points separated by this distance, 〈θ(x)〉.

6In these cases the domain walls coincides with the hulls
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Figura 2.9: Example of a domain, its domain wall (in green) and hull (in red). Unaligned
spins have been removed.

On a lattice at the percolation threshold, it can be exactly proven through
methods of Conformal Field Theory that for each hull the average squared
winding angle 〈θ2(x)〉 satisfies [24]

〈θ2(x)〉 = a+
4k

8 + k
lnx, (2.23)

where a is a constant and k = 6. This equation holds when x� 1, the unity
of distance being the lattice spacing, therefore in the continuous limit, when
the microscopic structure of the lattice can be ignored.

Let us mention that Eq. (2.23) has been derived also for other critical
phenomena, with a different value of k. For example, one can perform the
same analysis for the thermal phase transition of the 2d ferromagnetic Ising
Model. After preparing the system at the critical temperature TC , one can
also measure the squared winding angles of the correlated clusters’ hull,
finding the same equation but with a value of k as different as k = 3.

We stress that these are purely geometrical properties which can be mea-
sured on any lattice configuration. Indeed Eq. (2.23), and the value of k in
particular, will be used in Chapter 5 as a tool to highlight the presence of
a cluster with the same topological properties of the ones found in random
percolation, in the a priori very different problem of the phase-ordering of
the quenched Ising model. Upon measuring 〈θ2(x)〉 along the coarsening
clusters of spins we will find Eq. (2.23) obeyed with a value k = 6 with
excellent precision.
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Inhomogeneous Systems

3.1 Introduction

In Sec. 1.2, we said that Eq. (1.1) is the Hamiltonian of the homogeneous
Ising Model (IM) because the parameters in it do not vary in space. In such
a model, in the thermodynamic limit all lattice sites are equivalent. This is
true a priori, in the sense that although a single realization of the system
can be inhomogeneous, local observable do not depend on space after the
thermal averaging. For example consider the set {si} of spins variable : in
a realization we may have sj = +1 and sk = −1 (see for instance Fig. 1.1),
but for the thermal averages we have 〈si〉 = 〈sj〉. An inhomogeneous model
might be simply one in which we fix the value of one spin, say si = 1, or we
adopt fixed boundary conditions. Each of these modifications would spoil
space-translation invariance.

One possible source of inhomogeneity is quenched disorder. A system is
disordered if some parameters describing it are not deterministically fixed,
but extracted from a probability distribution. The original part of this work
will focus on the phase ordering kinetics of two types of disordered Ising
Model, the Random Bond lsing Model, in which we introduce randomness
in the coupling constants, and the Random Field Ising Model, in which there
is a random external field acting on each spin. We will focus on the case in
which such features are fixed for a given realization of the system and do
not vary during the coarsening process, acting as external constraints. We
call this type of disorder quenched – i.e. frozen – or quenched randomness.
If disorder acts locally, as in the two models mentioned above, it spoils the
homogeneity of the system.

This chapter serves as an introduction to disordered systems. We will
formally describe the two aforementioned models and we will review some
general results about the phase ordering kinetics in presence of quenched
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randomness. We will focus on the case with NCOP dynamics, on which our
research is exclusively focused.

3.2 Models

Imagine we want to describe a real material, like a magnetic solid, using
the IM with the usual nearest-neighbor interaction. An improvement can
be done considering that in real systems the coupling between particles is
not constant, but varies in space. This can be induced by different effects,
such as lattice deformations or other defects. To account for that, the Ising
Hamiltonian for zero external field can be written more properly as

H({s}) = −
∑
〈ij〉

Jijsisj. (3.1)

It is practically impossible to know which is the precise spatial configura-
tions of the couplings Jij. A useful simplified model assumes that they are
stochastic variables with a certain distribution, namely

Jij = J0 + θij, (3.2)

where J0 is the coupling constant for the pure model and the θ’s are random
numbers.

If J0 + θij > 0 ∀(i, j) one has always Jij > 0, i.e. all the couplings remain
positive. The ferromagnetic phase is preserved and we have a disordered fer-
romagnet. In this case disorder only influences some quantitative properties
of the system, such as the value of the critical temperature, but the gross
features of the model are retained. For this reason this kind of disorder is
sometimes denoted as weak (although the same term is sometimes used in
disordered systems with a different meaning).

The situation changes if for some (i, j) it is Jij < 0. The fact that
some couplings are negative may have consequences on the existence of the
ferromagnetic phase. Indeed in this case a new ingredient, frustration, comes
on the scene, drastically modifying the properties of the system, as it is well
known in the case of spin-glasses. In this case we speak of strong disorder.

Finally, if for some (i, j) it is Jij = 0, it means that some bonds are
removed 1. This kind of disorder is weak or strong depending on the fraction
of missing bonds, which in turn depends on the distribution of the θ’s.

The θ’s are usually uncorrelated and extracted from a density described
by a single parameter J , such that θijθkl = J 2δijδkl. [Here and in the

1A related model, with bond dilution, is obtained by removing some bonds while leaving unaltered the
values of the other coupling constant. This can also be obtained by the RBIM choosing θij = ±J0, each
value taken with probability d.
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following we will denote by · · · an average over the possible values of the
quenched-disorder variable (here θij). This in order to distinguish it from
the thermal average 〈. . . 〉, which, as explained at the end of Sec. 1.2, is
taken over the distribution of the random events – such as the spin-flips in
the Ising model – occurring in the stochastic evolution of the system for
any given realization of the quenched disorder (if present).] For example,
one can choose a bimodal distribution with θij = ±J , or a Gaussian with
zero mean and variance J 2. Another possibility is to extract the θ’s from
a uniform distribution with support [−J ,J ], therefore with zero average.
In our numerical experiments we always make this choice, and we always
restrict to the case J0 > J without frustration. However, the general results
we will present in the next sections are expected to be valid also for the
RBIM with different choices of the noise distribution, provided that the
disorder is weak.

The Random Field Ising Model (RFIM) attempts to describe the fact
that any material experiences some external field, which in many cases is
unknown and position-dependent. We can describe that by adding to the
homogeneous Ising Hamiltonian a site-dependent external field Hi, namely

H({si}) = −J
∑
〈ij〉

sisj −
N∑
i=1

Hisi. (3.3)

As for the coupling constants in the RBIM, the fields are also usually taken
to be uncorrelated random variables for which various choices of the distri-
bution can be made. In our study we have adopted a bimodal distribution
with Hi = ±h, each value taken with probability 1/2.

We ask now if the RFIM admits a ferromagnetic (ordered) phase, namely
if random fields introduce a weak or strong disorder. To answer, we follow
an argument due to Imry and Ma [25]. Let us start by considering a pure
system at temperature well below Tc and suppose that there is a positive
magnetization. If one tries to destroy the magnetized state by reversing
the spins in a bubble of linear size r inside an ordered domain – a process
referred to as nucleation – one has to pay an energy of order ∆E ∼ Jrd−1.
Indeed there is an energetic cost 2J for every pair of unaligned spins, and the
number of such couples is proportional to the surface of the droplet which,
in turn, is proportional to rd−1. At low temperature this corresponds to a
comparable increase of the free energy, since the entropic gain is negligible in
that situation. That is why the formation of such droplets is suppressed in a
pure system. Let us now introduce a random field with bimodal distribution.
In a bubble where there is a majority of Hi = −h, the formation of the
droplet can be advantageous because now the alignment of spins with the
external field is accompanied by an energy gain. According to the central
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limit theorem, the sum of the N ∝ rd random fields inside the bubble is a
stochastic variable with zero average and standard deviation σ = h

√
N ∼

H0r
d/2. From that we can estimate the total energy variation by adding this

contribution to the surface term computed before

∆E = Jrd−1 −H0r
d/2. (3.4)

If this quantity is non-positive the droplet will be flipped and others will
do the same, thus destroying the ferromagnetic state. For d/2 > d − 1,
namely d < 2, the second term in Eq. (3.4) always prevails over the first
for sufficiently large bubble size r, regardless of the value of J and H0. In
this case, there exist a bubble of size rIM (an Imry-Ma domain) which can
be advantageously reversed, triggering the destruction of the ferromagnetic
phase. Notice that rIM increases when the strength of the disorder H0

decreases. Therefore, for d < 2 the ferromagnetic phase of the RFIM is
unstable against any random field. Since the reasoning is based on energetic
considerations (not free-energy considerations) it is true only at T = 0. This
simple heuristic argument can be supported by a more rigorous proof, which
shows that also for d = 2 the ferromagnetic phase is not sustained at any
temperature. At finite temperature the situation is more complicated, and
will not be considered here.

3.3 Coarsening in inhomogeneous systems

In a homogeneous system, as for instance one described by the homogeneous
IM, coarsening occurs at any final temperature Tf , provided it is below TC ,
including Tf = 0. Indeed, as said in Sec. 1.4, in this case the domain growth
proceeds by smoothening of the interfaces, which tend to become flatter to
lower the energy of the system. This process is regulated by their curvature
[11] and does not need thermal activation.

Quenched disorder usually introduces preferred positions where interfaces
get pinned – stuck – in local energy minima. The dynamics can then proceed
only by means of thermal activation. Take, for instance, the RFIM and
consider two neighboring domains, one in which the majority of the spins
are down and the field is predominantly negative and the other in which the
reversed situation occurs. This corresponds to the existence of an energy
barriers ∆E associated to the domain wall between the two regions,. Indeed,
for one domain to grow (say the first), some spins of the other domain,
which were previously aligned with the random field, have to disalign with
it, resulting in an energy increase. This barrier pins the interface which can
move only by means of thermal fluctuations. A similar situation occurs in
the RBIM.
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Pinning barriers slow down down the kinetic with respect to the homo-
geneous case. In the rest of the Section we will present a simple argument,
which shows how the growth of the characteristic length R(t) is modified by
the presence of quenched disorder.

Assuming the dynamical scaling property, the typical ∆E is expected to
depend on the configuration only through the growing length, namely

∆E = f [R(t, ε), ε], (3.5)

where ε generally represents the parameter 2 denoting the strength of the
disorder and R(t, ε) is the growing length in presence of disorder. (Here and
in the following, R(t) – as well as all thermodynamic quantities – is defined as
averaged both over the thermal history and the disorder realizations). The
time tesc needed to escape an energy barrier ∆E is given by the Arrhenius
expression

tesc ∝ eβ∆E. (3.6)

Making the simplifying assumption that the slowing down of the evolution
can be taken into account by a simple rescaling of time (t → t/tesc) in the
expression (1.11) of R(t) (with z = 2 for NCOP dynamics) one has

R(t, ε) = at1/2e−
β
2

∆E. (3.7)

The next point is to find the form of f [R(t, ε), ε] in Eq. (3.5), in order to
substitute into Eq. (3.7). Although this cannot be done in general, most of
the systems can be divided into three [26] classes, according to the way ∆E
depends asymptotically on R(t). We detail below these cases, using R(t) to
mean R(t, ε) in order to simplify the notation.

1. ∆E approaches a constant value, i.e.

lim
R(t)→∞

f [R(t), ε] ≤ c(ε),

where c(ε) is usually an increasing function of disorder, but it is constant
with respect to R(t). This implies that there is an upper limit to the
height of the barriers. Accordingly, from Eq. (3.7) one finds that for
long times the same growth-law of a homogeneous system is obeyed,

although with a smaller pre-factor, of order ae−
β
2
c(ε), which depends

strongly on temperature and disorder. A prototypical example of this
behavior is the RBIM in d = 1.

2. ∆E diverges logarithmically with the growing length, that is

lim
R(t)→∞

f [R(t), ε] = z(ε) lnR(t),

2Or the parameters, if more than one is needed to describe the disorder.
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with z(ε) constant in time. Substituting into Eq. (3.7), one finds the
large-time behavior

R(t) ' t1/ζ(ε), (3.8)

with an exponent ζ(ε) = 2 + βz(ε) which depends on temperature and
disorder. This behavior, as we will see, is observed pre-asymptotically
both in the RBIM and in the RFIM in d > 1.

3. ∆E diverges algebraically with the growing length, namely

lim
R(t)→∞

f [R(t), ε] = b−1(ε)R(t)ψ,

where ψ > 0 is an exponent and b(ε) is another constant. This leads to
a logarithmic growth

R(t) ' [b(ε)β−1 ln t]1/ψ. (3.9)

This is the asymptotic behavior observed in most disordered magnets.

3.4 Crossover in the growth law

The next step is to establish to which class the RBIM and RFIM belong.
This can be more easily understood in one-dimensional systems, for which
the task is simplified by the fact that interfaces are point-like. As an example
of the type of reasoning involved, let us consider the RFIM for d = 1, always
assuming a bimodal distribution with hi = ±h like we did in our research
work 3. Let us imagine to have a single interface in the system originally
located between sites i and i + 1 (namely sisi+1 < 0) as represented in
Fig. 3.1 by the continuous blue line.
Let us suppose that at a later time the interface moves a distance r away
from the original position and is located between sites i + r and i + 1 + r.
According to the central limit theorem, the energy variation (the barrier) is
a stochastic variable with zero average and standard deviation σ = hr1/2, so
one has

∆Ei,i+r = −
i+r∑
j=1

hj ∼ hr1/2. (3.10)

This equation indicates that the pinning energy increases algebraically with
the typical distance x(t) traveled by the interface. Since it can be shown that
(as in the clean case) the average size of domains R(t) grows proportional
to x(t) [27], we conclude that the 1d RFIM belongs to the third class of Sec.
3.3. Indeed, in the large time limit one has R(t) ∝ (ln t)2 [28].

3Other possible choices do not make significant differences.
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Figura 3.1: An interface initially located between sites i and i+1 (plotted in the continuous
blue line) moves to a new position r sites away (dashed orange line).

As ∆E is a monotonously increasing function of R(t), it will prevail over
the thermal energy scale kBTf if R(t) is larger than a given value which
depends on h and Tf . Hence, there exist a length λ such that for R(t) ∼ λ
it is ∆E ∼ kBTf . Substituting Eq. (3.10) into the last expression, we find

λ(h/Tf ) ∼ (h/Tf )
−2. (3.11)

This crossover length is important because it separates the ordering process
into two regimes. In the first one, corresponding to R(t) � λ, domain
growth is dominated by thermal fluctuations and is therefore the same as in
the pure system with R(t) = t1/2. In the second regime, when R(t) � λ,
the kinetics is strongly affected by disorder and one has R(t) ∝ (ln t)2.

As a basis for the original work presented in Chapter 5, we want to
know if these results transfer to higher dimensions, for the RFIM as well as
the RBIM. However, understanding coarsening in inhomogeneous systems
in d > 1 is much harder. On one hand this is due to the fact that analytical
approaches are much more difficult, and on the other hand because physical
intuition is less straightforward when interfaces are lines or surfaces that
in the presence of the pinning centers can bend and stretch. Moreover,
numerical simulations – crucial in the absence of analytical tools – are very
demanding due to the slow growth of R(t).

For the RFIM, the pattern of behaviors exhibited in higher dimensions
is richer tha in the one-dimensional case. First, a wealth of numerical data
show that also in d = 2 [29] [30] [31] and d = 3 [29] [32] the asymptotic grow-
th of R(t) is logarithmic as in Eq. (3.9), although the value of the exponent
ψ cannot be precisely determined numerically, due to the very slow increase
of R(t). Therefore, the pinning barriers encountered at late times should
have a similar nature to the one-dimensional ones, as it is also suggested by
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the fact that for the crossover length one has λ(h/Tf ) ∼ (h/Tf )
−2 as for

d = 1 [Eq. (3.11]. Experiments on real systems [33] confirm the logarithmic
growth.

The behavior of the model in the pre-asymptotic stage is, instead, richer
and more debated. In [32] a pure-like early stage with R(t) = t1/2 was found.
However, in [34], by taking the limit Tf → 0 with ε = h/Tf fixed, a power
law of the type of Eq. (3.8) was observed in the initial stage with the h/Tf
dependent exponent ζ.

It was proposed [35] that these apparently contrasting observations can
be reconciled in a double crossover scenario. Accordingly, by opportunely
tuning the parameters, it should be possible to observe two crossovers in a
single quench history. A first one from the homogeneous-like growth to the
disorder-dependent power law of Eq. (3.8), and a second one after which
one recovers the asymptotic logarithmic behavior of Eq. (3.9). However,
this has never been reported thus far and the question remains unsettled.

For the RBIM, roughening theory applied to interfaces predicts [36] that
in d ≥ 2 the growth law is logarithmic with ψ = 1/4. The correctness of this
prediction remained controversial until recently, when large-scale numerical
simulations for d = 2 [37] have produced sufficient evidence for the existence,
after a long-lasting algebraic regime of the type of Eq. (3.8), of a crossover
to an asymptotic logarithmic growth. It was also found that the crossover
length behaves as in the RFIM, namely λ(J /Tf ) ∼ (J /Tf )−2 . Nonetheless,
a precise numerical determination of the exponent ψ is impossible also in
this case. Experiments on real two-dimensional systems find a logarithmic
growth with ψ = 4 [38] [39]. The nature of the pre-asymptotic algebraic
power-law is still unclear.

3.5 Zero-temperature quenches

From the discussion of Sec. 3.3 it seems that it is not possible to study
zero-temperature quenches in the RFIM and RBIM. Indeed, we know that
the presence of quenched randomness gives rise to energy barriers which can
be overcome only by means of thermal activations, as exemplified in Sec.
3.4 for the 1d RFIM. Therefore, at T = 0 the dynamics is frozen.

Nonetheless, there is a way to study – de facto – a zero temperature
quench numerically. It is indeed possible to quench to a temperature Tf
high enough to allow for thermal activation, but low enough to prevent the
destruction of the ordered phase by thermal fluctuations. For the RBIM,
it is sufficient to choose a temperature well below TC but which allows to
overcome barriers, in order to be able to observe a congruous growth of the
domains in a reasonable time. If, in addition, Tf is so low that its effect only
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amounts to a facilitation in crossing energy barriers, quenching to such a Tf
basically reproduces the main features of the true dynamics in the Tf → 0
limit.

For the RFIM, instead, we know from Sec. 3.2 that for d = 2 the fer-
romagnetic phase is not sustained at any temperature, including T = 0.
However, it is still possible to observe coarsening by quenching at very low
temperature if the strength of disorder h is sufficiently small. Indeed, we ha-
ve seen that nucleation – which destroys the ordered phase – can only occur
for a droplet of size rIM . Therefore, after a quench to a low temperature the
system will order as long as R(t) � rIM and, limiting the simulations to a
range of times such that this condition is fulfilled, we can avoid nucleation
and observe an effective ferromagnetic ordering of the system. Let us recall
that rIM diverges in the limit h → 0. Therefore, by choosing sufficiently
small values of h, the coarsening regime can extend to very long times.

Mutatis mutandis, the same happens for the homogeneous one-dimensional
Ising Model. The critical point is T = 0 and therefore, strictly speaking, if
T 6= 0 there is no phase transition and the system remains globally disorde-
red. However, if we quench to a very low temperature, the model actually
orders as at T = 0 until R(t) is much smaller than the equilibrium cor-
relation length ξ(Tf ). Since ξ(Tf ) ' e2J/kBTf , it can be made arbitrarily
large by controlling the quenching temperature. Hence, one can observe the
coarsening process for an arbitrarily long time.

In our simulations, we will enforce the two limits where both the tem-
perature and the strength of the disorder vanish. Specifically, we will take
T → 0 and J → 0 or h → 0, for the RBIM and the RFIM respectively,
keeping the ratios εRB = J /T and εRF = h/T constant. In so doing, the sy-
stem is described by a single parameter, which makes the results more easily
interpretable (more details on the numerical algorithm will be given in Sec.
4.3 and 4.4). Another important advantage of a small temperature limit is
to reduce thermal fluctuations and hence the noise affecting the data.

3.6 Numerical results for growing lengths

The knowledge of the growing lentgh R(t) is fundamental in every coarsening
problem. Therefore we report preliminarly here our results for R(t), for the
various systems we have simulated.

As already mentioned, previous studies on the RFIM report a crossover
from a disorder-dependent power law to a logarithmic growth, in the limit of
Tf → 0 and ε fixed we are interested in. In Fig. 3.2, we plot our numerical
determination of the growing length, for different values of εRF . Let us
first observe that the curves are indistinguishable until R(t) ' 2, meaning
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that disorder is not effective when the configuration is still very close to the
initial condition. Roughly speaking this means that the first pinning center
has not been encountered yet in the evolution. Then, when domains start to
establish, we observe the disorder-dependent power law, with an exponent
which decreases as εRF increases. This is clearly observed in the double-
logarithmic plot of Fig. 3.2 as a straight behavior of the curves in a certain
time-domain. This is true until a crossover time is met, when the curves
start to deviate from the power law behavior, with a gradual downward
bending, signaling the beginning of the crossover to the logarithmic growth
(which is not fully entered in our simulations). Notice that the crossover
time is smaller for larger ε, as expected since λ(ε) ∼ ε−2 , as mentioned in
Sec. 3.4.

Figura 3.2: Growth law for the 2d RFIM with various disorder strengths εRF (increasing
from top to bottom, see key), for a lattice of size L = 200. Data have been averaged over
105 − 106 samples. The dashed line is the t1/2 law.

Also for the RBIM, we know from Ref. [37] that the logarithmic growth
law is preceded by a very long-lasting pre-asymptotic regime in which R(t)
obeys a disorder-dependent power law. In Fig. 3.3 we observe precisely this
power law. In Ref. [37] it is also shown that the crossover to the asymptotic
regime where R(t) grows logarithmically occurs at very long times, of order
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106−107 MCS at least. This explains why we see no sign of such a crossover
in the time region considered.

Figura 3.3: Growth law for the 2d RBIM with various disorder strength εRB (increasing
from top to bottom), for a lattice of size L = 200. Data have been averaged over 106

samples. The dashed line is the t1/2 law.

Accessing the regime of logarithmic growth for the two models requires a
huge numerical effort, not only because of the pinning of the dynamics but
also because enormous system sizes are needed to obtain a reasonable time-
window of domain growth before we encounter finite-size effects. However,
the time region here depicted is enough for our purposes. Therefore the
above plots serve as a reference to understand the original results presented
in Chapter 5.
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Percolation and Coarsening in
Disordered Systems

40



Capitolo 4

Numerical Algorithms and
Protocols

4.1 Introduction

In this work, we have used large-scale computer simulations to study the
coarsening dynamics of the homogeneous and inhomogeneous Ising Model.
Therefore we start with a brief generic introduction to numerical simulations
to put this in a more general context.

The invention of computers has had strong effects on Statistical Mecha-
nics and Physics in general. They are used to make the content of the theory
explicit, performing tasks and calculations that are too long and tedious to
be carried out by people. They have led to the development of a new method
of scientific research, simulation, which is sometimes called the third branch
of science, because it is at the same level as theory and experiment.

In a simulation of a physical system we define the equations which descri-
be it, so that the computer can explicitly solve them. It can be considered
an experiment, sometimes referred to as a numerical experiment.

Results of a numerical experiment can be directly compared to real ex-
periments in order to determine the validity of the model, and to analytical
solutions to judge the validity of the various approximations. Furthermore, it
is possible to consider situations which are not accessible in real experimen-
ts, checking the theoretical predictions. Moreover, numerical experiments
give access to microscopical details, such as position and velocity of each
particle at any time. For example, one could numerically solve the equation
of motion for the single molecules in a gas obtaining a complete dynamical
description of the system at a microscopic level. Finally, we have a total con-
trol over a numerical experiment, which is impossible in real experiments.
For example, keeping a system at a constant temperature while performing
measurements on it is not an easy task. Likewise, it is practically impossible
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to obtain a perfectly pure sample of a material. Instead, these ideal condi-
tions are naturally set up in the numerical experiment while modeling the
system.

4.2 Monte Carlo methods

There are two general classes of simulations: molecular dynamics and the
Monte Carlo methods.

In molecular dynamics one simulates the evolution of a mechanical system
composed of a large number of particles numerically solving its determini-
stic equations of motion. A clear advantage is that this procedure relies on
the true kinetics of the constituents and therefore provides information on
dynamical properties, such as viscosity, thermal conductivity, besides the
static equilibrium ones, such as, for example, the equation of state. A se-
rious disadvantage, however, is the complexity of the calculations, which
require great computational power even for simple and small systems. This
makes it impossible to simulate large-size systems and therefore to reach the
thermodynamic limit.

Instead, as we have seen in Sec.1.2, the Monte Carlo methods allows
one to simulate systems whose dynamics is not defined (as the Ising model).
This is done relying on a stochastic dynamics – an example is Glauber kinetic
evolution – whose equations often cannot be solved analytically. Therefore,
these simulations are often the only available tool. The origin of the name
has to do with the exploitation of random number sequences, which are
encountered when playing roulette in the city of Monte Carlo as well as in
this type of algorithms.

An important aspect of this procedure is that it not only allows one to
simulate the dynamical evolution of a system, but also to investigate equili-
brium properties. Indeed analytical estimations of the partition function are
available only in very few ideal cases, and a direct summation of all the terms
involved in its calculation is impractical even for a small system. For exam-
ple, for 20x20 = 400 spins a computer should enumerate 2400 > 10100 confi-
gurations and therefore as many terms in the partition function of Eq. (1.4).
Instead, by the Monte Carlo method one manages to sample phase space in
the most statistically convenient way. This is the same situation pollsters
face when they interview people to find out their preferences or opinions. In
that case, the interviewers try to devise methods to obtain estimates from
a small but statistically significant fraction of the population. Monte Carlo
calculations are analogous. A sample of representative states is created by
performing a biased random walk through the configuration space in which
the relative frequency of visitations is consistent with the equilibrium en-
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semble distribution. For example, Monte Carlo procedures treat the above
20x20 spin system successfully sampling only 106 configurations. That is
because these schemes are devised so as to probe mainly those states that
are statistically more important in the sum (1.4), performing what is called
importance sampling. For example, for T → 0 the vast majority of the 2400

configurations are of such a high energy that they have negligible weight
e−βE in the Boltzmann distribution and sampling them is not needed.

In this work, we have used the Monte Carlo method to simulate the phase
ordering kinetics of the 2d ferromagnetic Ising Model, implementing Glauber
kinetic evolution. The rationale behind this method has been discussed at
the end of Sec. 1.2. We have written a numerical code in FORTRAN which
simulates the relaxation to equilibrium of the model after a quench from the
infinite-temperature equilibrium state to a very low temperature, allowing
us to analyze the dynamical process of coarsening. The code is reported in
Appendix A and we proceed to explain its working principles in the next
section.

4.3 Dynamical evolution

Our algorithm, specialized to the 2d case, starts by generating a configu-
ration of the system in an initial state ν, in which the orientation of each
spin is completely random. On average, we will have one half of the spins
for each orientation, and this completely homogeneous configuration can be
described as an infinite-temperature one, meaning that thermal fluctuations
dominate the system and there is no correlation between spins. We choose
such a Ti =∞ initial state because it is easily prepared, but it can be sho-
wn that the effects of a finite Ti do not spoil the basic results obtained for
Ti =∞.

After preparing the initial condition we randomly pick out one of the
spins in the lattice, indexed by i, with the random choice made with the
aid of a pseudo-random number generator. Let us call ν ′ the configuration
which would be generated from ν by flipping the spins si.

Then comes the core of the Monte Carlo method for the Ising Model. We
introduce a stochastic dynamics specifying the transition probability wνν′
from the configuration ν to ν ′. This is done in accordance with the detailed
balance condition (1.8) which we rewrite as

wνν′

wν′ν
= e−β∆Eνν′ , (4.1)

using
∆Eνν′ = Eν′ − Eν . (4.2)
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As explained in Sec. 1.2, this condition describes a system for which a
stationary state exists and amounts to equilibrium. Therefore, choosing
transition rates that satisfy Eq. (4.1) allows us to simulate the relaxation
to the new low-temperature equilibrium state of the system after the initial
condition has become unstable due to the quench. In our algorithm we have
adopted

wνν′ =
1

2

[
1− tanh

β

2
∆Eνν′

]
, (4.3)

a generalization of the transition rates Glauber introduced in the original
1963 paper 1.

First of all, let us explicitly verify that this choice satisfies the detailed
balance condition by substitution into Eq. (4.1)

wνν′

wν′ν
=

1− tanh β
2
∆Eνν′

1− tanh β
2
(−∆Eνν′)

=
1− tanh β

2
∆Eνν′

1 + tanh β
2
∆Eνν′

=

=
cosh β

2
∆Eνν′ − sinh β

2
∆Eνν′

cosh β
2
∆Eνν′ + sinh β

2
∆Eνν′

=

=
2e[−

β
2

∆Eνν′ ]

2e[
β
2

∆Eνν′ ]
= e−β∆Eνν′ .

(4.4)

After establishing whether the spin is flipped or not, the procedure is iterated
by randomly choosing another one. A Monte Carlo step (MCS), the time
unit, corresponds to L2 single flip attempts.

Our aim is to study the coarsening process which takes place in a ferro-
magnet when it is cooled from Ti > TC to Tf < TC . In order to do that,
it is sufficient, after having prepared the initial state as discussed above, to
evolve the spin system by means of the Montecarlo procedure using Tf in
Eq. (4.3).

In our work we choose the limit Tf → 0, for the reason that will be
discussed in the next sections. This limit is built in the numerical routine
by assigning a very small value, like 0.01, to the temperature T appearing
in the transition rates (4.3) through 2 β.

4.4 Accelerated dynamics

In order to better understand the T → 0 dynamics and its advantages, let us
start from the simpler case of the pure system. For notational convenience,

1It is easily verified that this form, suited to any dimensionality and also to inhomogeneous systems,
reduces to the simpler original Glauber’s form in the homogeneous one-dimensional case.

2We set kB = 1 in the code. Together with |J | = 1, this amounts to measuring the temperature in
unit of J/kB .
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in the following we will use both the notation sk or si,j for the k-th spin
located on a two-dimensional lattice site of cohordinates i, j. Let us consider
the variation of energy ∆Epure

νν′ , given in Eq. (4.2), resulting from the flip
of such spin. In this case, the local field hlocij is the sum of the values of the
nearest neighboring spins:

hlocij = J(si,j+1 + si,j−1 + si+1,j + si−1,j), (4.5)

with J is the coupling constant, which we take equal to unity. This enters
in the expression used to calculate ∆Epure

νν′ :

∆Epure
νν′ = −2hlocij sij, (4.6)

a result which can be easily inferred directly from the Hamiltonian (1.2). If
the local field is zero, flipping the spin causes no change in the energy of
the system, ∆Epure

νν′ = 0. Eq. (4.3) becomes wνν′ = 1/2. Such a move is
therefore accepted with probability 1/2.

If the local field is not zero and the spin is unaligned with it, a flip causes
the energy to decrease, namely ∆Epure

νν′ < 0. In this case, Eq. (4.3) in the
limit T → 0 gives wνν′ = 1. In other words, energy-decreasing spin flips are
always accepted.

Finally, if the local field is not zero and the spin is aligned with it, we
would have ∆Epure

νν′ > 0. This brings wνν′ = 0, namely energy-increasing
spin flips are always rejected.

In all our simulations, the value of the temperature is always finite, howe-
ver small. Therefore, strictly speaking the transition rates for the two last
cases above – namely when the energy increases or decreases after the move,
respectively – tend to the extreme values 0 and 1. For example, when trying
to update a spin aligned with its nearest neighbors – one in the bulk of a
domain – this would imply an exceedingly small probability of accepting this
energy-increasing flip, of order e−∆E/T with ∆E = 8 (since the coordination
number is 4 on the square lattice considered here). For, say, T = 0.01 this
probability is so small that no such a flip is observed during any reasonable
computer time, therefore we do not even include attempts to flip these spins
in the dynamical evolution of the systems. In other words, the algorithm
considers the spins in the bulk not updatable and does not try to flip them
at all, greatly increasing the efficiency of the simulation. Indeed, when do-
mains start to form after the first MCSs, almost all the updatable spins are
those located on the corners of interfaces, as shown in Fig. 4.1, and their
number in the late stages of the evolution is a small fraction of the total.
We call this accelerated dynamics no-bulk-flip: it improves the quality of
the results and is exact in the limit T → 0 we are considering, as shown in
a number of studies [40] [41].



CAPITOLO 4. NUMERICAL ALGORITHMS AND PROTOCOLS 46

Figura 4.1: Enlargement of a portion of an interface. White spins are up, while black
spins (including the checkered one) are down. All spins are aligned with the majority of
their nearest neighbors, therefore are not updatable at Tf = 0, except the checkered one
on the corner which is aligned with half of its nearest neighbors. Our algorithm flips such
spins with probability 1/2.

In presence of quenched randomness, we use the same transition rates
(4.3). What changes is the local field acting on a single spin. In the RFIM
we must add to the energy variation of Eq. (4.6) the effect of the external
random field hextij = εRF

3 acting on the spin. In this way, the energy variation

∆ERF
νν′ for the RFIM becomes

∆ERF
νν′ = ∆Epure

νν′ + 2hextij sij. (4.7)

Since we will always consider the limit T → 0 with ε fixed, it is always
2hextij sij � ∆Epure

νν′ . Therefore, the random field significantly affects only the
spins for which ∆Epure = 0, namely those with a zero pure local field (4.5).
Let us call them paramagnetic spins and focus on a particular one, sk, which
is aligned to the external random field so that skh

loc
k > 0. According to Eq.

(4.7), its flip would bring an energy variation ∆Ek = +2hamp, hence it is a
disadvantageous energy-raising move. From Eq. (4.3), such a spin will be

3As seen at the end of Sec. 3.5
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flipped with probability wk equal to

wk =
1

2

[
1− tanh

2hamp
2T

]
=

1

2
(1− tanh εRF ) . (4.8)

For example, if εRF = 0.5, we have wk ' 0.25, meaning that on average
4 attempts will be needed to flip the spin. Following the same train of
thoughts, if we need an average of 8 attempts if εRF = 1 and 55 attempts
if εRF = 2. In pure systems, coarsening proceeds by smoothening of the
domain interfaces through the update of paramagnetic spins. Therefore, it
is evident that a sufficiently large random external field slows down the pha-
se ordering kinetics of the system, as the presence of spins like the above
sk will tend to block the evolution of the interfaces, this mechanism being
known as pinning. When this occurs, the system remains in a local energy
minimum until an energy-raising fluctuation takes place, with a probability
given by Eq. (4.8). These fluctuations are possible because the value of the
temperature is always finite, although very small. Let us stress that the on-
ly relevant fluctuations are those for which ∆Epure = 0, namely exerted on
paramagnetic spins, because e∆Epure/KBT is huge. Therefore, in this disorde-
red case the dynamics can proceed only by means of thermal activation. At
the same time, from the numerical examples after Eq. (4.8) it is clear that
pinning effects soon become prohibitive as the strength of disorder increases.
For this reason we limited ourselves to εRF ≤ 2.

In the RBIM, the energy variation in flipping a spin is the same as in
Eq. (4.6), but the local field (4.5) must be modified using a different coupling
constant for each nearest neighbor. Spins aligned with half of their nearest
neighbors have an actual local field whose only contribution comes from
the random components θ’s of the couplings of Eq. (3.2). The θ’s are
extracted from a uniform distribution with support [−εRBT,+εRBT ] and
so the sum of four of them is typically also of order ±εRBT . Spins for
which ∆ERB

νν′ ' +εRBT originate the pinning phenomenon, similarly to what
observed in the RFIM.

4.5 Growing length

The growing length R(t), the typical size of domains, is of primary impor-
tance in the study of coarsening as it is evident from Secs. 1.1, 1.3 and
3.3. A related quantity is the number Ndef of defects, namely the couples of
unaligned spins in the system.

Defects are located on domains’ boundaries, thereforeNdef is proportional
to the length of the typical domain interface. This is in turn proportional to
the number Ndom of domains multiplied by their typical size R(t). Therefore
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we arrive at
Ndef ∝ Ndom ·R(t). (4.9)

The area of a typical domain is proportional to [R(t)]2, therefore the number
of domain is proportional to the total number N of spins – the surface of
the lattice – divided by [R(t)]2, namely

Ndom ∝
N

[R(t)]2
. (4.10)

Inserting Eq. (4.10) in Eq. (4.9) gives

R(t) ∝ N

Ndef

, (4.11)

The algorithm uses this argument as follows: it counts the number Ndef

of defects, scanning the lattice, and then calculates R(t) = N/Ndef . The
multiplicative constant is irrelevant as we are interested in how R(t) grows
with time.

We can confirm that R(t) obtained from Eq. (4.11) has the meaning of
typical domain size through some examples. At t = 0, in the completely
disordered state, Ndef ' N , so R(t) ' 1. In a configuration with only two
domains of spins separated by two interfaces of length L , we would have

R(t) =
N

2L
=
L

2
,

in accordance with the fact that each domain occupies on average half of
the available space

Let us notice that values of R(t) are meaningful until R(t) ≤ L, as of
course the typical dimension of a part of the system cannot exceed the
system size. Therefore, the values R(t) > L obtained through Eq. (4.11)
must be discarded. For example, in a completely magnetized configuration
with all the spins pointing in the same direction, Ndef = 0 and the growing
length would diverge according to the above definition. Finite size effects
start affecting the growth when R(t) starts to be comparable to L.

4.6 Properties of clusters

In order to identify and quantify percolative effects in the phase ordering
kinetics of the system, we need to measure a number of properties of the
clusters present in the system (see Secs. 2.4 and 2.3).

First, the algorithm counts the clusters and measures their masses. To do
so, an array V is introduced composed of N entries, the value of each entry
recording if the site has yet been visited in the search (see below). Then the
algorithm proceeds as follows :
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• An initial site is selected. This is classified as visited, namely the
corresponding entry of V changes from 0 to 1

• The algorithm checks how many of the nearest neighbors of the initial
site belong to the same cluster, i.e. their spins are aligned with the
initial one.

• The same procedure is repeated starting from each of the sites recogni-
zed as belonging to the cluster, provided they were not visited before,
namely if the corresponding V entry is still 0.

• When no more such sites are found, all the elements of the cluster have
been counted.

• Another unvisited site is then selected and the procedure is iterated
with the difference that, when a new cluster, say the n-th is explored
the entries of V change from 0 to n. In this way we also record, for
each site, the cluster to which it belongs.

Recognizing all the clusters allows one to compute the pair connectivity
g(r), defined in Sec. 2.2.2. The algorithm stops when all the sites have been
visited.

By following the interface of a cluster, the algorithm measures it and
check if the cluster crosses the boundaries of the system. In such case, the
winding numbers, introduced in Sec. 2.3, are also determined.

The largest cluster is singled out as its hull is best suited to the measure
of the winding angle (Sec. 2.4), since a larger interval of distances x is
represented. The winding angle for each distance x is measured cumulatively
by following the contour.



Capitolo 5

Coarsening and Percolation

5.1 Introduction

In this chapter, we report and explain a number of results about the in-
fluence of percolation in the coarsening of the quenched ferromagnetic Ising
Model. These results concern pure and inhomogeneous 2d models. For the
former they partly build on previous findings, nonetheless confirming them
independently, while they are completely original for the latter.

We will start by what was already known for the homogeneous system,
underlining a recent result [46] about the time scale over which percolation
starts to affect the phase ordering kinetics. Then, we will present numeri-
cal data for the various quantities defined in Secs. 2.4, 2.3 and 4.5 which
allow one to identify and quantify the aforementioned effects. We will see
that these tools are particularly apt to extend the analysis to disordered fer-
romagnets. Indeed, we will explicitly compare results for the homogeneous
and inhomogeneous systems, touching upon the concept of superuniversality,
which is relevant in the study of disordered systems.

In the following we will always consider the coarsening of the 2d ferro-
magnetic Ising Model on the square lattice with PBC, after a quench from
infinite to a very small temperature. Data are obtained by means of Monte
Carlo simulations which implement Glauber NCOP dynamics, as discussed
in Sec. 4.3. We will make large use of the concept of spin cluster, as defi-
ned in Sec. 2.4, which is a percolation-inspired way of defining a domain of
aligned spins.

5.2 An unexplained connection

Let us consider the coarsening system without disorder, characterized by a
patchwork of domains whose typical linear size R(t) grows as

50
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R(t) = t1/2, (5.1)

as explained in Sec. 1.3.
At some point, R(t) will equal the lattice size L. This happens after a

time teq which we can estimate by imposing R(teq) ' L, leading to

teq ' L2. (5.2)

teq represents the minimum time scale over which the system equilibrates –
we will see shortly why. There is at least one correlated spanning cluster in
the system after this time, where correlated stands for a cluster which has
reached the boundaries by gradual growth of its size and which is internally
equilibrated, like that in Fig. 5.1.

It is possible to classify the spanning clusters appearing at teq according to
their topological properties, namely the number of times they wrap around
the torus in the vertical and horizontal direction [42]. We will label a cluster
winding n times in the horizontal direction and m times in the vertical one
by its winding numbers (n,m). The three most probable configurations are :

• A straight stripe spanning the system, of which an example is given in
Fig. 5.1 for vertical crossing. Focusing on the interface of this stripe,
we see that once formed this configuration persists indefinitely, in the
sense that its winding numbers do not change although the domain wall
becomes smoother. Indeed, when the system equilibrates, the entire
interface will be completely straight. Since flipping a spin on a straight
interface is energetically disadvantageous, this is impossible at Tf = 0.
As shown in Fig. 5.2, when this cluster form, the system is stuck in such
an infinitely lived metastable state and does not reach the completely
ordered ground state (GS). We refer to a vertical stripe as (0, 1) and to
horizontal one by (1, 0).

• A cluster which can be seen as the union of a vertical and a horizontal
stripe, namely crossing the system in the two directions. As time goes
on, this kind of cluster engulfs the entire system that rapidly reaches
the GS. Therefore, we can also consider it stable. As it surely leads
to a situation in which all spins are aligned, we convene to label it by
(0, 0).

• A diagonal crossing, illustrated in Fig. 5.3. This kind of stripe is not
stable, because the spins on its interface (see Fig. 5.4) can be flipped
with no variation in the energy of the system; we have called them
paramagnetic spins in Sec. 4.4. On the interface, after a spin is flipped
others will become updatable. Therefore this configuration decays to
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the GS. However, the process of flipping paramagnetic spins is slow,
and this structure survives quite a long time. Attainment of the GS
occurs in fact over a time scale tdiag ' L3 [43]. This explains why we
said that teq is the smallest time scale needed to reach equilibrium: the
final configuration is attained in a time of order teq for the previous
cluster of type (0, 0), but if the system ends up with the present ones
the time needed is larger. As our simulations run up to final times
t � teq � tdiag, we will not observe this decay. We label a diagonal
crossing (−1, 1) if the stripe spans the system from left bottom to top
right and (1,−1) if spans from left top to bottom right.

These are the most probable types of wrapping cluster one can have at teq.
More exotic types of crossings are possible, but since their probabilities of
occurrence are exceedingly small, they are more difficult to access by means
of numerical simulations. Denoting with πn,m the probability of finding an
(n,m) spanning cluster, it is found numerically that for a coarsening process
in the conditions we have adopted [42]

π0,1 = π1,0,

π1,−1 = π1,1.

We limit ourselves to these three types, for which we report in table 2.2 the
relevant information, including the probability of occurrence.

Figura 5.1: Snapshot of a homogeneous 2d IM, coarsening after a zero-temperature
quench, which has reached a vertical straight stripe state, labeled by (0, 1). Up spins
are white and down spins are black.

In Fig. 5.5 we have plotted the probabilities π(n,m) of the above types
of crossings against time obtained from the simulation of a homogeneous IM
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Figura 5.2: A straight portion of the interface in Fig. 5.1. Up spins are white and down
spins are black. No spin can be flipped at Tf = 0, because they are all aligned with three
nearest neighbors.

Figura 5.3: Snapshot of a homogeneous 2d IM, coarsening after a zero-temperature
quench, which has reached a diagonal stripe state, labeled by (1, 1). Up spins are white
and down spins are black.

of size L = 1280. We see how the curves reach the corresponding values
listed in Table 5.1. These values, here as in all the following, are marked by
dashed lines representing, from the upper to the lower one, π0,0, π1,0 + π0,1

and π1,−1 + π1,1.
Now, let us notice one of the fundamental facts which has inspired this

work. The values reached by the curves in Fig. 5.5 are exactly those of
Table 2.2 of Sec. 2.3, relative to a lattice at percolation threshold pc [23].
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Figura 5.4: Enlargement of a portion of the interface for a diagonal stripe in Fig. 5.3.
White spins (including the dotted ones) are up and black spins (including the checkered
ones) are down. All checkered spins on the interface of the black domain can be flipped, as
well as the dotted spins on the interface of the white domain. This explains why diagonal
stripes are unstable.

Type of crossing Probability Stability
Horizontal and vertical π0,0 = 0.61908 Stable, leading to GS
Straight, horizontal π1,0 = 0.1694 Stable , GS not reached
Straight, vertical π0,1 = 0.1694 Stable , GS not reached
From left bottom to right top π1,−1 = 0.0209 Decaying to GS over tdiag
From left top to right bottom π1,1 = 0.0209 Decaying to GS over tdiag

Tabella 5.1: Summary of the three types of crossings considered for a pure 2d IM on a
square lattice with PBC, with probability of occurrence and stability properties. tdiag ' t3
is the time scale needed for diagonal stripes to decay.

This means that the probability of having in the coarsening system at teq a
spanning cluster with winding numbers (n,m) is the same of having a per-
colating cluster with the same winding numbers on a lattice at the critical
occupation probability pc. For percolation, mathematical proofs are availa-
ble for the values of the crossing probabilities [23] [42]. As for coarsening,
they are indisputably confirmed by numerical evidence (as our data reported
in Fig. 5.5), but to date no progress has been made toward framing these
results in a mathematical theory, neither this connection to the radically
different problem of random percolation is explained.

In the coarsening problem, the initial fraction of spins of a given sign ap-
proaches 1/2 in the large-size limit and does not change significantly over teq.
As the critical occupation probability on the square lattice is pc ' 0.59, the
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Figura 5.5: Numerical data for the probabilities π(n,m) of the three different types of
crossings of table 5.1 for a homogeneous 2d IM on a square lattice with L = 1280 and
PBC, quenched from Ti → ∞ to T = 0. The three values do not sum to one because
other types of crossings occur with small probabilities.

above correspondence is not trivially due to a spin configuration that can
be mapped onto the critical point of percolation by switching from spin
variables to gas lattice variables.

That being said, this quantitatively precise connection comes as comple-
tely unexpected. Indeed, coarsening is a non-equilibrium statistical mechani-
cal problem whose dynamical evolution is driven by spin interactions, while
percolation is a purely geometrical problem where sites are uncorrelated.

In the rest of this work, we will further explore this surprising result
and its consequences, in particular extending the analysis to inhomogeneous
systems for the first time.

5.3 A quickly sealed fate

Given that structures akin to those of random percolation are present at teq
under the form of correlated clusters which have reached the boundaries of
the lattice, one may ask if it is possible to pinpoint at what time they have
appeared in the system for the first time. This question has been the subject
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of a recent study [46], concerning the homogeneous model. We resume the
essential facts here.

According to the analysis in [46], there exists a time tp � teq which
divides the evolution of the system into two stages. For 0 < t < tp, spanning
clusters are either absent or are instable. They may appear, but then they
are cut, disappearing until another one forms. This happens typically 10−20
times before tp. Then, at tp a stable percolating cluster establishes.

The situation described insofar can be traced back by looking at Figs. 5.6,
5.7, 5.8, 5.9, where snapshots of the evolution of a homogeneous 2d IM on a
square lattice, coarsening after a quench from infinite to zero temperature,
are shown.

Figura 5.6: Snapshot of the evolution of a 2d IM on a square lattice with L = 128,
coarsening after a quench at t = 0 from infinite to zero temperature. Up spins are shown
in red, down spins in white. At t=0, no percolating cluster is present.

At the time of the quench t = 0 a percolating cluster typically does not
exist, since the initial occupation probability for the two spin orientation is
p = 1/2, which is different from the critical occupation probability pc ' 0.59
for the square lattice. This can be seen in Fig. 5.6.

A first percolating cluster appears very soon, in this example at
tf = 0.57 � teq ' L2, see Fig. 5.7. However, it quickly disappears at
t ' 1 (Fig. 5.8). It is replaced by another percolating cluster which also
disappears, and so on until at time tp ' 7� teq a stable percolating cluster
of type (0, 0) (see Table 5.1) establishes. This is shown in Fig. 5.9. The
winding numbers of this cluster will remain unchanged, even though the
holes inside it will fill, so that at teq it will constitute a stripe of type (0, 0)
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Figura 5.7: Same as Fig. 5.6, but for tf = 0.57. A percolating cluster is shown in black.

Here, there are four important points to make:

1. The cluster formed at tp will persist indefinitely in the evolution. It
will not be cut, as those appearing and disappearing before tp.

2. This spanning cluster will already have one of the couples of winding
numbers of Table 5.1, and these numbers will remain either unchanged
or will change over the time scale tdiag � teq if the crossing is diagonal.

3. Even though the winding numbers of these structures are the same of
those observed at teq, other geometrical features may be very different,
as it is obvious since tp � teq and correspondingly R(teq)� R(teq ' L,
meaning that domains change a lot in going from tp to teq. In particular,
the objects found at tp are not ordered domains internally equilibrated,
with the non-equilibrium behavior taking place only on the interface, as
it is at teq. Instead, as shown in the snapshots , this percolating cluster
is a highly-ramified structure with many holes, i.e. internal regions of
unaligned spins, which in fact exhibits the morphological properties of
critical percolation 1. What matters is that the cluster can only fill in :
the inner holes will disappear over the time scale teq, but it will not be
cut and the winding numbers will remain the same up to teq at least.

4. Perhaps most importantly, tp scales with the system size as

tp ' Lαp , (5.3)

1This point will be quantitatively expressed and verified in Secs. 5.5 and 5.6
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Figura 5.8: Same as Fig. 5.6, but for tf ' 1. The percolating cluster present in Fig. 5.7
has disappeared.

where the constant prefactor is of order 1 and the exponent αp is de-
pendent on the geometry of the lattice. For our purposes, it suffices to
know that αp is very close to 0.5 for the square lattice and comparable
(0.33 − 0.5) for other geometries considered in [46], like the kagome,
triangular and bow-tie lattice.The result (5.3) shows that tp is not a
microscopic time, since it grows unbounded with the size L of the sy-
stem. Moreover, as αp < 2, it is also tp � teq, hence the formation of
the percolating structure occurs – so to say – in the middle of the coar-
sening stage. As we will discuss later in Sec. 5.3.2 this has important
consequences.

5.3.1 Evidence for the existence of tp

There are different techniques whereby it is possible to confirm Eq. (5.3).
Given the importance of this result, we explain here one of these methods,
which also informs us on the value of the exponent αp. The basic idea is
that if a percolating cluster appears at tp and persists later in the evolution
of the system, then two systems with an identical spin configuration at tp
evolving under different thermal histories should be strongly correlated in
some sense.
One quantity which can measure this correlation and give it a precise mea-
ning is the overlap. This is defined as follows : at t = tw one makes two
copies of the configuration si(tw) = σi(tw), and lets them evolve with dif-
ferent thermal noises. This means that flips of spins are attempted with
different random numbers. The overlap between the two clones at time
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Figura 5.9: Same as Fig. 5.6, but for tp ' 7. At time tp, a stable percolating cluster,
shown in blue, establishes. The winding numbers of this cluster will remain unchanged.

t ≥ tw is

q(tw, t, L) =
1

N

∑
i

〈si(t)σi(t)〉, (5.4)

where the angular brackets indicate an average over different realizations
of the evolution of the two replicated systems. If we make the copy of the
system at tw < tp, there is no reason why the two different thermal histories
will take the clones in a correlated state. Therefore, the value of the overlap
will decay to zero over time. Instead, by letting tw go beyond tp, we create
the two clones when the percolating structure has already established. As
such a cluster spans the system and is stable (in the sense discussed above),
we expect the two copies to be strongly correlated for all subsequent times.
Accordingly, the value of the overlap will stabilize to a finite value for t→∞.

This argument can be checked by computing the asymptotic overlap
limt→∞ q(tw, t, L) for various tw and for different sizes. Selecting the va-
lues of tw which keep the overlap constant as L varies provides the relation
between tp and L, because only tw = tp can give rise to the same correlation
over varying system sizes. For the square lattice, if tw = L0.5 the overlap
decreases with L, while it increases if tw = L0.55, as shown in Fig. (5.10).
As these variations are very small, we conclude that Eq. (5.3) holds with
0.5 < αp < 0.55.

5.3.2 Consequences of the existence of tp

There are many reasons of interest in the existence of a new characteristic
timescale tp expressed by Eq. (5.3). In the first place, tp diverges in the
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Figura 5.10: The L dependence of the asymptotic overlap limt→∞ q(tw, t, L) in the 2d
IM on a square lattice with PBC, quenched from infinite to zero temperature. For each
curve, tw is chosen as reported in the key. The value of the overlap has been measured at
t ' 4 · 106 and data have been averaged over 105 − 106 samples. The asymptotic overlap
remains approximately constant for an exponent αp very close to 0.5.

thermodynamic limit, although slowly. Therefore, we are not dealing with
an irrelevant detail which only affects the dynamics of the system on a
microscopic time scale. At the same time, comparing Eqs. (5.2) and (5.3),
we see that for sufficiently large sizes – in particular in the thermodynamic
limit – tp � teq. In other words, the stable percolating cluster appears in the
early stages of the coarsening process. The presence of a such a structure,
occupying a significant portion of the lattice, will characterize the large scale
properties in the scaling regime and will determine if the system reaches the
GS or a frozen stripe state. The fate of the system is sealed very soon in its
evolution, right at tp.

Another important consequence concerns dynamical scaling. Going back
to the discussion of Sec. 1.3, we started from the fact that there is only
one relevant length in the coarsening process, given by the growing length
R(t). Indeed, this has been the commonly shared idea during more than
fifty years since the birth of this field of study. As a matter of fact, the
extra time scale tp introduces a new typical length Lp, namely the typical
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size of the domains when the first stable percolating structure forms. This
new length Lp is given by

Lp = R(tp) = Lαp/z, (5.5)

where z is the exponent of Eq. (1.11). For the case at hand, we have z = 2
and αp ' 1/2, therefore Lp = L1/4. We will mainly refer to Eq. (5.5) in
the following, since it is better to substitute time with the growing length,
meaning that we take the latter as the parameter describing the evolution of
the system. This is licit since tp and Lp are in a one-to-one correspondence.
It is also very convenient, because the central question we will address is
if and how this result can be transferred to the inhomogeneous models of
Chapter 3, whose stochastic dynamics is subject to pinning. Hence it does
not make sense to compare a pure and a disordered magnet at some time
t, because the kinetics of the latter is much slower. We must do it for
equal values of the typical domain size, i.e. when they have reached the
same stage in the phase ordering process. Accordingly, from now on we will
always reason in terms of R(t, ε).

The existence of Lp requires a generalization of the dynamical scaling
hypothesis, because in equations like (1.10) Lp plays a companion role to
R(t). Dynamical scaling is arguably the distinguishing feature of coarse-
ning. Therefore, the presence of another characteristic length associated to
percolation is a highly remarkable fact, previously ignored, which must be
taken into account in the analysis. We discuss this point considering the
correlator C(r, t) = 〈si(t)sj(t)〉 with r = |i− j|, for which dynamical scaling
implies Eq. (1.9) that we rewrite here for simplicity

C(r, t, L) = c

[
r

R(t)

]
, (5.6)

with c(x) a scaling function.
However, as we have said, the presence of tp introduces the new characteristic
length Lp. Therefore, the scaling form for C(r, t, L) should be upgraded to
a two-parameter scaling function as follows

C(r, t, L) = f

[
r

R(t)
,
Lp
R(t)

]
, (5.7)

with a new two-variable scaling function f(x, y). One way to check which
equation is correct is to collapse data for C(r, t, L) at different measurement
times t.

If Eq. (5.6) is correct, one obtains a perfect collapse by simply plotting
the curves against r/R(t), according to the usual procedure.

Instead, if the correct scaling form is Eq. (5.7), in order to obtain the
collapse we have to follow a different strategy. Indeed, plotting against
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(a) (b)

Figura 5.11: G(r, t, L) agains r/R(t) in the 2d IM quenched from infinite to zero tem-
perature. The system sizes and measuring times are given in the keys. The collapse is
much better taking into account the length Lp associated to percolation, according to Eq.
(5.7). Data have been averaged over 2 · 104 samples.

r/R(t) is not enough in this case, but we have to keep the value of the
second entry of the scaling function f constant. This means that, for two
different measurement times ti and tj we have to use two different system
sizes Li and Lj, so that

Lpi
R(ti)

=
Lpj
R(tj)

,

which using the relation Lp = L1/4 valid for the square lattice becomes

L
1/4
i

R(ti)
=

L
1/4
j

R(tj)
.

In Fig. 5.11, reported after [46], we compare the results of the two pro-
cedures. In the first panel (a) the collapse has been tested following Eq.
(5.6), by simply plotting against r/R(t) ignoring the additional length Lp.
We observe a systematic downward spreading of the curves, signaling that
the one-parameter scaling of Eq. (5.6) is not correct.

In panel (b), where system sizes and times have been chosen as indicated
in the key, namely as to keep the second entry of the scaling function f in
Eq. (5.7) constant, the quality of the collapse is much better.

We precise that in both cases times are such that we are in the scaling
regime, namely when domains are well formed but small as compared to the
system size.

Let us remark that the measurement times in Fig. 5.11 have been chosen
specifically to highlight the difference between Eq. (5.6) and (5.7). Indeed,
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when R(t) � Lp the validity of Eq. (5.6) gets progressively restored since
one expects for the two scaling functions

lim
y→0

f(x, y) ' f(x, 0) = c(x).

Instead, the measurement times ti and system sizes Li are chosen so that
Lpi >∼ R(ti)

The result contained in Fig. 5.11 not only confirms the existence of ano-
ther characteristic length Lp influencing the scaling properties of coarsening
systems, but also confirms Eq. (5.5) independently. In the next sections, we
will provide further evidences of this using other methods.

5.4 Probabilities of crossing

We now focus on the probabilities of the three types of crossings of table 5.1.
In the previous section we have seen how the new characteristic length Lp
influences the scaling functions. Another way to test it is to try to collapse
the curves associated to the crossing probabilities π(n,m) for different sy-
stem sizes by plotting them against R(t)/Lp, being Lp = L0.25 for the square
lattice. Indeed, these probabilities depend on time until they reach their
limit values and, if dynamical scaling holds we should find

π(n,m) = pnm

(
R(t)

Lp

)
, (5.8)

where pnm is another scaling function. This is the first time this method is
used to check Eq. (5.5). The results are shown in Fig. 5.12 and we do not
obtain the expected collapse. Conversely, plotting against R(t)/L0.167 the
collapse becomes very good, as it is evident in Fig. 5.13. However, when the
size increases significantly, the collapse of the curves becomes progressively
worse. For L = 640 we already see a deviation from L = 160 and including
curves for larger sizes, the collapse is globally better for a slightly larger
value of the exponent, namely ' 0.175 for L > 103 (not shown). Clearly,
this method is not the best suited to measure the values of αp. We are
currently studying this point, to understand why the exponent changes with
the sizes. The fact that by significantly increasing the size we obtain a good
collapse for a somewhat larger value of the exponent might suggest that
this quantity is very sensitive to finite size effects and that, were we able to
go to huge sizes, we could perhaps recover the value 0.25. Moreover, pre-
asymptotic effects might also play a major role, because when x = R(t)/L0.25

is small in the plot in Fig. 5.12, the value of R(t) is of the order of unity.
We know that in this situation the law R(t) = t1/2 is not obeyed, as shown
in Figs. 3.2 and 3.3 in Sec. 3.6.
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Figura 5.12: Probabilities of crossing against R(t)/Lp for the homogeneous 2d IM on
square lattice with PBC, quenched from infinite to zero temperature. Data have been
averaged over 105 samples.

Despite all the above, we regard the very good collapse obtained in Fig.
5.13, as consistent with the scaling form in Eq.( 5.8) with a value of αp still
depending on some finite-size, finite-time effects. Although, evidently, this
method is not the best suited to measure the value of αp, it turns out to be
very efficient to extend the analysis to the disordered case. We have applied
precisely the same line of reasoning to the RBIM and RFIM presented in
Chapter 3 and in Fig. 5.14, 5.15 and 5.16 we report the same plot as in Fig.
5.13 for, respectively, εRF = 1, εRF = 2, εRB = 0.8.

We see that the collapse is excellent by plotting against R(t, ε)/L0.16 for
sizes up to L = 1280. The scaling form 5.8 seems to work exactly in the
same way for the pure system and for the RFIM and RBIM.

This is a surprising result. As we have seen in Sec. 3.3, for these values
of the parameter ε, disorder strongly affects the domain growth, drastically
modifying the form of R(t) as seen in Fig. 3.2 and 3.3 in Sec. 3.6. Nonethe-
less, percolation influences the coarsening process in the same way, meaning
that its effects are very robust. Indeed, the correspondence with the values
of table 5.1 remains equally impressive. As some kind of disorder is pre-
sent in every real system, this result are expected to be relevant for future
experimental and theoretical studies.

We have found analogous results, not reported, for smaller values of εRF
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Figura 5.13: Same as Fig. 5.12, still for the homogeneous model but plotting against
R(t)/L0.167.

and for other values of εRB. Moreover, since for all the following quantities
the results for the RBIM are precisely the same as those for the RFIM, we
will usually report data for the latter.

We conclude by stressing the main result of this Section, namely that also
in the presence of quenched randomness we find a typical length Lp = Lαp/z

separating an early stage in which there are no stable percolating structures
from a late stage in which they exist. This new characteristic length has the
same effects on the scaling function for πnm(t) in the homogeneous and in
the disordered systems.

5.5 Winding angles of hulls

Recalling the discussion of Sec. 2.4, we infer that measuring the average
squared winding angle for the hulls which form in the coarsening systems
might confirm that it is actually critical random percolation which is at
play in the early stages of the phase ordering process. As a side-result, this
measurement, which had never been performed on disordered systems, will
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Figura 5.14: Same as Fig. 5.13, for RFIM with εRF = 1 and substituting R(t) by R(t, ε).

also provide a test of dynamical scaling which is very interesting in the light
of the nature of the property considered, as we will explain.

We rewrite here Eq. (2.23) for reference :

〈θ2(x)〉 = a+
4k

8 + k
lnx, (5.9)

recalling that x is the distance between two points of a hull. We know that
k = 6 for percolation, therefore we want to measure the same parameter for
coarsening and compare. For simplicity, in the following we will refer to the
quantity 〈θ2(x)〉 as the winding angle. Measurements are performed on the
largest cluster which is the best suited to ensure the continuum limit x� 1,
necessary for Eq. (5.9) to hold, and to access large distances x.

In Fig. 5.17 we report results for the pure model of size L = 640, for
various measurement times. The dashed blue line is the analytical curve,
namely Eq. (5.9) with k = 6.

For each curve we observe two behaviors : an initial part (short distances
along the hull) in which the analytical expression is not followed, while at
large distances numerical data are very well described by Eq. (5.9). Indeed,
we fitted the slope of the purple curve corresponding to R(t) = 2.68 and
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Figura 5.15: Same as Fig. 5.13, for RFIM with εRF = 2 and substituting R(t) by R(t, ε).

t = 3.13 in the range 4 < ln(x) < 7 , and we obtained k = 5.94, in excellent
agreement with the value k = 6 for critical percolation. This signals that
over sufficiently large distances the largest cluster has the morphological
properties of percolation. Moreover, that is true for all measurement times
considered, is in agreement with the fact that percolating clusters appear
very soon in coarsening process and are stable, as said in Sec. 5.3. Intere-
stingly, we see that the crossover between the two behaviors takes place at
a distance lt which increases with the measurement time. We will provide
an interpretation of this point in the following.

This situation is confirmed in the presence of quenched randomness. In
Fig. 5.18, we report the same plot for εRF = 2, the strongest value of
disordered considered. The best fit is k = 5.91, obtained when R(t, ε) = 2.91,
which confirms the robustness of the percolative effects.

We regard this as compelling evidence that the clusters arising in the coar-
sening process are those of critical percolation, for both pure and disordered
systems.
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Figura 5.16: Same as Fig. 5.13, for RBIM with εRB = 0.8 and substituting R(t) by
R(t, ε).

5.5.1 Scaling properties of the winding angle

We have seen that in Figs. 5.17 and 5.18 there is a length lt increasing
with time such that if we look at the hull over a scale x � lt, it doest not
have the typical morphological properties of critical percolation. Conversely,
such properties are acquired for x � lt, where Eq. (5.9) with k ' 5.9 ' 6
describes numerical data very well.

In a coarsening problem there is a length growing with time, i.e. R(t).
Hence, we expect the distance lt to be identified with R(t). In order to test
it, we tried to collapse the curves in Fig.5.17 dividing x by the growing length
R(t). In Fig. 5.19 we see that the collapse is very good for the pure case;
the same is true for the disordered systems, for all the values of ε considered
(not shown).

This collapse means that for each measurement time the hulls acquire
percolative properties when we look at them over a distance x � R(t).
Indeed, we see from Fig. 5.19 that the curve becomes a straight line when
x ' 10R(t). We can interpret this fact by recalling that in percolation,
lattice sites are uncorrelated, whereas coarsening is a process driven by the
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Figura 5.17: Average squared winding angle for the hull of the largest cluster of the pure
2d IM, plotted against lnx, with x the distance along the hull. Results are relative to a
lattice L = 640. In the key we report the measurement times and the associated values of
R(t). Data have been averaged over 105 samples and error bars are omitted as they are
very small and not relevant for the analysis. The dashed lines is Eq. (5.9) with k = 6,
the value of critical percolation.

correlation between spins. Such correlation extends over larger distances
as time goes on and since R(t) represents the typical size of the correlated
regions, inside such regions we do not observe percolative effects. In other
words, coarsening and percolation coexist on the same lattice, but are also
mutually exclusive in the sense that they pertain to different length scales.
It is therefore natural to expect the morphology of the hulls to be that of
critical percolation beyond R(t). This is precisely what we see in Fig. 5.19.

The main result presented in this section is a confirmation that the mor-
phology of clusters in a system undergoing coarsening is very soon that of
critical percolation. This analysis had never been performed on inhomoge-
neous models, and the results definitively confirm the connection between
these two seemingly unrelated problems – phase-ordering and percolation –
also in presence of quenched randomness.
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Figura 5.18: Same as Fig. 5.17, but for RFIM with L = 320 and εRF = 2.
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Figura 5.19: Same as Fig. 5.17, but plotted against ln[x/R(t)] to test the dynamical
scaling hypothesis.

5.6 Pair connectivity

In Sec. 2.2.2, we have defined in 1d the pair connectivity g(r) as the probabi-
lity that two sites at distance r belong to the same cluster. The same defini-
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tion applies to higher dimensions. It is known [20] that for a two-dimensional
lattice2 at percolation threshold g(r) decays according to a power law

g(r) ' r−2∆, (5.10)

for p→ pc, with ∆ = 5/48.

Figura 5.20: Pair connectivity against the distance r measured on a lattice at perco-
lation threshold (black line) and for a coarsening homogeneous 2d IM (colored lines).
Measurement times are given in the key. The lattice size is L = 512 in both cases.

Simply following its definition, g(r) can be computed numerically on any
lattice whose sites are in one of two (or more) possible states. We have done
this for the clusters of positive and negative spins of the Ising Model under
the usual conditions of our study, in order to check how the pair connectivity
for a coarsening system compares with that of critical percolation. This is
the first time this quantity is used to study a system undergoing phase
ordering kinetics.

We performed the measurement of g(r) at different times on a system of
size L = 512. In Fig. 5.20 we report results for the pure coarsening system.

2For any lattice geometry, since it is a universal property.
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Figura 5.21: Same as Fig. 5.20 but for a RFIM with εRF = 1

The black curve is the one obtained for random percolation at pc which has
the slope −2∆ = −10/48 (at large distances this curve bends upward as
due to finite size effects). Bearing in mind that this slope is the signature of
percolation we observe the two following facts :

• For each curve except t = 2, after an initial distance which increases
with time, curves for coarsening have the same slope as that for per-
colation. This supports the interpretation of Sec. 5.5.1, relative to
the behavior of the winding angle : clusters acquire the morphologi-
cal properties of percolation beyond a certain distance, over which the
ordering system is still uncorrelated. Moreover, here we explicitly see
that this is not true for very small times, when the system is still very
close to the initial condition.

• We see that for t = 16 – corresponding to R(t) ' 5.8 – the pair con-
nectivity for the IM overlaps with that of critical percolation. This is
significant if we compare it with Fig. 5.21, where we report the same for
a system with εRF = 1 and L = 512. We see precisely the same struc-
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ture, with the coarsening curve overlapping with that of percolation for
t = 32, corresponding to R(t, ε) ' 5.6. For εRF = 2 (not shown) , the
result is analogous and the two connectivities overlap when R(t, ε) is
around 5.8. This, together with the results of Sec. 5.4, suggests that
the effects of disorder can be fully accounted for by expressing every-
thing in terms of the growing length, and no other features are added
by the quenched randomness as regards the percolation structure.

Let us also notice that the curves are shifted toward the top for increasing
times due to a renormalization factor in the definition of g(r). We are
currently looking for a way to obtain a full collapse.

Finally, we mention that the value of the critical exponent ∆ = 5/48
corresponds biunivocally [22] to the fractal dimension D of the percolating
cluster at pc, being D = d−∆ = 91/48 (Sec. 2.2.4). Therefore, we have also
checked that the clusters of the coarsening system and of critical percolation
have the same fractal dimension.

These results further support the precise, quantitative correspondence
between a coarsening system and a lattice at critical percolation.

5.7 The superuniversality hypothesis

From our results it seems that describing the coarsening process in terms
of the growth of R(t, ε) allows for a unified description of percolative effects
in models with different strengths ε of disorder, including the homogeneous
case (ε = 0). This surely true at a semi-quantitative, or approximate level.
Our aim now is to check more precisely if this fact can be fully validated.
In order to do that, we must before discuss the concept of superuniversality
(SU) [49].

We introduce it by a simple example. Let us reconsider the equal-
time spin-spin correlator C(r, t) of Sec. 1.3 and the associated scaling law
involving the scaling function c(x) :

C(r, t) = c

[
r

R(t)

]
. (5.11)

According to a conjecture, the SU hypotheses, Eq. (5.11) should remains
valid for a disordered system, provided that we replace R(t) by the corre-
sponding R(t, ε). In other words, we should have

C(r, t, ε) = c

[
r

R(t, ε)

]
, (5.12)

with the same scaling function c(x), now being x = r/R(t, ε). Accordingly, it
would be possible to collapse curves for different values of ε by plotting again-
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st r/R(t, ε), i.e. keeping the variable x fixed (we neglect in this discussion
the corrections introduced by Lp discussed in Sec. 5.3.2).

Instead, if SU does not hold, we expect a different scaling function which
depends on the strength of disorder. To see how, let us recall that in Sec. 3.3
we have discussed how quenched randomness introduces a crossover length
λ(ε) separating two different regimes in the growth of R(t). In order to
incorporate this in a scaling framework [35] one should have the form

C(r, t, ε) = C
[

r

R(t, ε)
,
λ(ε)

R(t, ε)

]
, (5.13)

where C(x, y) is the generalized scaling function with two entries. This is
analogous to what we did in Sec. 5.3.2 to introduce Lp in the scaling pattern.

Now we have a two-variable scaling function, therefore we cannot expect
to have C(x, y) = c(x) identically for any value of the disorder ε. Therefore,
we should not be able to collapse curves for C(r, t, ε) for different values of
ε by plotting against r/R(t, ε). Indeed by doing that, despite the fact that
we keep x fixed, y varies.

Although the previous discussion focused for simplicity on the correlator
C, SU is expected to be property of the system, and therefore to be mirrored
in any observable quantity, not only of correlators. Therefore, we can check
if it holds in our system by considering, e.g., the crossing probabilites.

In order to do that, we refer to the scaling form in Eq. (5.8), which seems
confirmed by the results of Sec. 5.4 also in presence of quenched randomness.
Let us hypothesize that SU holds. We would have

π(n,m) = pnm

[
R(t, ε)

Lp

]
. (5.14)

We limit the discussion to the RFIM and we choose εRF = 0, 0.5, 1, 2. We
fix the system size at L = 1280. Since the system size is fixed, the same is
true also for Lp, hence we keep the entry of the scaling function in Eq. (5.14)
fixed by simply plotting against R(t, ε), whereas we let the disorder strength
vary. If we obtain a collapse, the SU hypothesis is actually correct.

We report the results of this procedure in Fig. 5.22. We observe increasing
deviations from the homogeneous case as εRF increases. The fact that this
deviations, although rather small, are systematic suggests that the actual
scaling function might be of the same kind as C(x, y) in Eq. (5.13), with
a second variable y depending on disorder. In that case, superuniversality
would be in principle violated. As a consequence Eq. (5.14) would be wrong
and could only be used to collapse curves for a single value of ε. This result
would not be surprising since analogous small deviations were already found
in the same models and using the same Monte Carlo algorithm [29]. Indeed,
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Figura 5.22: Probabilities of crossing against R(t, ε) for RFIM and pure IM. The lattice
size is fixed to L = 1280 and the strength εRF of the external random field varies, as
indicated in the key.

superuniversality remains a hypothesis which has received confirmation only
in some specific cases and for some specific quantities [47] [32].

The data presented in Fig. 5.22 might suggest that weak violations of SU
are observed. However this evidence is not compelling and such deviations,
if present, are so small to make SU at least a valid approximation framework
to describe the system. In fact, apart from fine effects, all the results we have
presented point in the same direction : the presence of quenched randomness
does not alter the essential fact that there exists a length Lp diverging with,
but slower than, the size of the system. Considering also the results for
the winding angle and for the pair connectivity, it is beyond doubt that
this length is associated to critical percolation, both for pure and disordered
models. Disorder does not alter these main features. Accordingly, we can
conclude that for the purpose of our study the SU hypothesis holds at least
at a semi-quantitative level for the strengths of disorder considered.

In order to disprove (or prove) the SU hypothesis, one usually need to
embark on too demanding numerical simulations. For instance, in our case
referring to Fig. 5.22, we expect increasing deviations for higher values of
ε. This can be tested, but the curves for εRF = 2 in Fig. 5.22 have already
required 103 hours of CPU time and we know from Sec. 4.4 that this time
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would increase very rapidly for larger ε.
Finally, in Sec. 3.4 we have discussed that, with our protocol, for the

RBIM and RFIM we have a crossover from a pre-asymptotic algebraic gro-
wth law of R(t, ε) to an asymptotic algorithmic growth. In Figs. 3.2 and 3.3
we have shown that with our simulations we do not enter the logarithmic
growth, whereas the most evident violations of SU have been reported in
this asymptotic regime. In order to make a stringent test on SU, therefore,
one should test Eq. (5.14) for values of Lp as large as to fall beyond the
crossover length λ(ε). This would require much larger system sizes for larger
values of ε, making the computational effort presently unaffordable.



Capitolo 6

Conclusions and Perspectives

In this work we have studied, through large-scale numerical simulations, the
coarsening process of the homogeneous and inhomogeneous 2d IM evolving
with Glauber dynamics after a quench from infinite to zero temperature.
Our original results can be divided into two categories.

To the first one belongs new independent evidence of percolation on the
coarsening process of the homogeneous IM. Presently this connection has
only been observed in numerical simulations of specific observables, therefore
its confirmation through the analysis of new quantities is important. The
methods allows us to obtain impressive quantitative correspondences.

In particular, by measuring the slope 4k/(8 + k) in Eq. (5.9) for the win-
ding angle of the hull of the largest cluster, we found values of k close to the
one k = 6 known for critical percolation (see Fig. 5.17) as k ' 5.94. To the
best of our knowledge, this has been never been shown for a zero-temperature
quench. Moreover, we computed for the first time the pair connectivity for
a coarsening system and in Fig. 5.20 we showed that for sufficiently large
distances it follows the characteristic behavior of critical percolation. These
two results provide compelling evidence that the domain morphology of the
ordering system in the early stages of its evolution is precisely that of critical
percolation. This is a relevant fact, since its validity is assumed in one of
the very few available proofs of dynamical scaling (Section 1.4 and [11]) for
2d models.

Concerning the scaling hypothesis, our results on the crossing probabili-
ties independently confirm that a percolative cluster forms in the early stages
of the evolution of the coarsening system. This implies the existence of a
second characteristic length Lp which plays a role in the dynamical scaling
framework beside R(t).

The second category of results amounts to the extension of the above
analysis to inhomogeneous models, in particular the RBIM and RFIM. This
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was never attempted before. For these two types of quenched randomness,
we found that the morphology of clusters is still that of critical percolation
and that a cluster with percolative properties forms in the system when
R(tp) is the same as in the pure case. Perhaps, the most important con-
sequence is the robustness of the influence of the associated length Lp on
dynamical scaling. All this is shown through the analysis of the crossing
probabilities, the winding angles and the pair connectivity. This represents
a first important step toward an extension of the proof of dynamical scaling
to inhomogeneous systems, which would be welcome in this complex and
debated field.

These results raise many questions which should be addressed in future
research. First, it would be relevant to repeat the analysis for different
lattice geometries, for example for kagome, hexagonal and bow-tie lattices.
This would inform us on the universality character of the properties we have
found studying the square lattice. Then, one might also consider to extend
the study to higher dimensions.

Furthermore, different types of disorder might be included. In particular,
one might consider the Site Diluted Ising Model in which a given fraction of
spins is removed. Besides the relevance of this kind of disorder in its own,
since dilution is commonly observed in most systems, this model could also
help shed light on another point. Indeed, according to a conjecture proposed
in [46], the exponent αp of Eq. (5.5) depends on the geometry of the lattice
considered, more precisely on its coordination number. Since site dilution
lowers the average coordination number, determining the value of αp for this
model could help establish the validity of this hypothesis.

Finally, it would be interesting to repeat the analysis for higher strength
of disorder, to shed more light on the validity of the SU hypothesis discussed
in Sec. 5.7. In particular, referring to Fig. 5.22 one would like to see if the
deviations between the curves for the pure and the inhomogeneous systems
increase for larger values of ε. However, this requires a computational effort
which is unaffordable with our algorithm, due to severe pinning effects which
would slow down the dynamics to the point that huge simulation times would
be necessary. One way out could be the use of an algorithm inspired to that
introduced by Bortz, Kalos and Lebowitz [50], which could deal with these
pinning effects more efficiently.



Appendice A

Appendix: Numerical code

We include the FORTRAN source code we have used to obtain all our
numerical data.
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program relax_2d
!     *************************************************************
!     * MonteCarlo for Ising in d=2 with NCOP Glauber             *
!     * Random Field and Random Bond                              *
!     * Last revision  27 June 2016                               *
!     *************************************************************
!     (Now Adapted to measuring pair connectivity at many measurement times
!     to find when it starts to resemble the percolation curve.)

implicit none
!     ----------------------------------------------------- 
!     First Variables Declaration

integer L,realtot,maxnn,nprint, mL, n2
real*8 amp,T,factime,Hamp,final_time,first_time

!........input parameters.......................................

parameter (L=512, n2=512*512) !System size
parameter ( nprint = 500) !Number of realizations before printing 
parameter (mL=16 ) !Measurement distances for pair connectivity
parameter(T=0.01) ! Temperature
parameter(first_time=1) ! First measurement time
parameter(realtot=10000000) ! Number of realizations
parameter(maxnn=80) ! Max number of times it will write
parameter(Hamp=0*T) ! Amplitude of Random External Field
parameter(amp=0.0*T) ! Amplitude of Random Bonds 
parameter(final_time=50000) ! Total time

!...............................................................

!     Second Variables declaration
integer hloc,dir,pbc(0:L+1),jjj,Ene
integer i,j,k,ii,q,p,loop,counts,grnd,iv,jv
integer sum1,inv_list(L,L),num_list,inv_listc(L,L),num_listc
integer m,realiz,seed1,direz,chose_num,posiz
integer L2,num_tempi,index
real*8 tempo(0:maxnn)

integer dist(1:24)
real*8 ccor(1:30,1:mL)
real*8 cor(1:30,1:mL)
real*8 avccor(1:30,1:mL), savccor(1:30,1:mL)
real*8 avcor(1:30,1:mL), savcor(1:30,1:mL)
real*8 rlz
real ran2,defect(maxnn), avc
integer s(L,L)
integer SS(0:n2-1)
real JJ(0:L+1,0:L+1,4),DeltaE
real Hfield(L,L)
real*8 invL2
integer nn_i(L,0:4),nn_j(L,0:4)
integer kk,comp,conts,i_list((L+2)**2),j_list((L+2)**2)
real*8 Boltz,time, dt
integer mfile,ijk,ikj,nn,h
integer nucr,ntime,hloc2,stored
integer ppcr(1:maxnn,0:16),nncr
integer n1(1:L*L),largest
integer na(1:maxnn,1:L*L),nlargest(1:maxnn,1:L*L)
integer flag_or
integer n4,n0,nm4,al1,al2,lcluster
real*8 alc(1:maxnn),an4(1:maxnn),an0(1:maxnn),anm4(1:maxnn)
real*8 aal1(1:maxnn),aal2(1:maxnn)
integer ntheta1(1:2*L),ntheta2(1:2*L)
real*8 atheta1(1:2*L),atheta2(1:2*L)
integer nntheta1(1:maxnn,1:2*L),nntheta2(1:maxnn,1:2*L)
real*8 aatheta1(1:maxnn,1:2*L),aatheta2(1:maxnn,1:2*L),pi

c
common/an/n4,n0,nm4,al1,al2,lcluster
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common/an2/atheta1,atheta2,ntheta1,ntheta2
common/na/cor,ccor

c
!     -----------------------------------------------------

seed1=-7763337
L2=L**2
pi=3.14159265358979323846264538328d0
invL2=1./L2
avc=0

c
!.......initial settings......................................

open(unit=1,file="2ptcor_G_L512")
open(unit=2,file="Largest_G_L512")

open (70,file='Lchar_L512.dat')
open (90,file='PCR_L512.dat')
open (91,file='NA_L512.dat')
open (92,file='B_L512.dat')
open (93,file='Ang0_L512.dat')
open (94,file='Ang4_L512.dat')
write (70,*) '#Temperature = ',T
write (70,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (70,*) '#Total number of realizations = ',realtot
write (70,*) '#System size = ',L,' nprint = ',nprint
write (90,*) '#Temperature = ',T
write (90,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (90,*) '#Total number of realizations = ',realtot
write (90,*) '#System size = ',L,' nprint = ',nprint
write (91,*) '#Temperature = ',T
write (91,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (91,*) '#Total number of realizations = ',realtot
write (91,*) '#System size = ',L,' nprint = ',nprint
write (92,*) '#Temperature = ',T
write (92,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (92,*) '#Total number of realizations = ',realtot
write (92,*) '#System size = ',L,' nprint = ',nprint
write (93,*) '#Temperature = ',T
write (93,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (93,*) '#Total number of realizations = ',realtot
write (93,*) '#System size = ',L,' nprint = ',nprint
write (94,*) '#Temperature = ',T
write (94,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (94,*) '#Total number of realizations = ',realtot
write (94,*) '#System size = ',L,' nprint = ',nprint

do i=1,24
if(i.eq.1) dist(i)=1
if(i.eq.2) dist(i)=2
if(i.eq.3) dist(i)=3
if(i.eq.4) dist(i)=4
if(i.eq.5) dist(i)=6
if(i.eq.6) dist(i)=8
if(i.eq.7) dist(i)=12
if(i.eq.8) dist(i)=16
if(i.eq.9) dist(i)=24
if(i.eq.10) dist(i)=32
if(i.eq.11) dist(i)=48
if(i.eq.12) dist(i)=64
if(i.eq.13) dist(i)=96
if(i.eq.14) dist(i)=128
if(i.eq.15) dist(i)=192
if(i.eq.16) dist(i)=256
if(i.eq.17) dist(i)=384
if(i.eq.18) dist(i)=512
if(i.eq.19) dist(i)=768
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if(i.eq.20) dist(i)=1024
if(i.eq.21) dist(i)=1536
if(i.eq.22) dist(i)=2048
if(i.eq.23) dist(i)=3072
if(i.eq.24) dist(i)=4096

enddo

do i=1,maxnn
alc(i)=0.d0
an4(i)=0.d0
an0(i)=0.d0
anm4(i)=0.d0
aal1(i)=0.d0
aal2(i)=0.d0
do j=0,16

ppcr(i,j)=0
enddo
do j=1,2*L

nntheta1(i,j)=0
nntheta2(i,j)=0
aatheta1(i,j)=0.d0
aatheta2(i,j)=0.d0

enddo
do k=1,L*L

na(i,k)=0
enddo
do k=1,L*L

nlargest(i,k)=0
enddo

enddo
c
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
!
!         Construction of tempo arrays 

print*,final_time
tempo(0)=0
tempo(1)=first_time
!factime=dexp(dlog(1d0*final_time/first_time)/(maxnn))
h=0
do m=2,maxnn

tempo(m)=tempo(m-1)*1.1 !Change according to the quantity
print*, tempo(m)

enddo
do i=1,L

pbc(i)=i
enddo
pbc(L+1)=1
pbc(0)=L
do i=1,L

do j=1,L
nn_i(i,0)=i
nn_j(j,0)=j
nn_i(i,1)=pbc(i+1)
nn_j(j,1)=j
nn_i(i,2)=i
nn_j(j,2)=pbc(j+1)
nn_i(i,3)=pbc(i-1)
nn_j(j,3)=j
nn_i(i,4)=i
nn_j(j,4)=pbc(j-1)

enddo
enddo
do i=1,maxnn

defect(i)=0.
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enddo

do j=1,ml
do i=1,30

cor(i,j)=0.d0
ccor(i,j)=0.d0
avcor(i,j)=0.d0
avccor(i,j)=0.d0
savcor(i,j)=0.d0
savccor(i,j)=0.d0

enddo
enddo

!     ----- Beginning of loop on realizations
do realiz=1,realtot

stored=0
do i=1,L

do j=1,L
do dir=1,2

JJ(i,j,dir)=1-amp+2*amp*ran2(seed1)
enddo

enddo
enddo

!     initial condition
do i=1,L

do j=1,L
s(i,j)=sign(1.,ran2(seed1)-.5)
Hfield(i,j)= Hamp*sign(1.,ran2(seed1)-.5)

enddo
enddo

!     .........create list of boundary sites ........................
num_list=0
do i=1,L

do j=1,L
inv_list(i,j)=0
hloc=0
do dir=1,4

hloc=hloc+s(nn_i(i,dir),nn_j(j,dir))
enddo
if (hloc*s(i,j).le.0)then

num_list=num_list+1
i_list(num_list)=i
j_list(num_list)=j
inv_list(i,j)=num_list

endif
enddo

enddo
!     ---------------------------------------------------------
!initialization of variables

flag_or=0
time=0
m=0
ntime=1
h=1
rlz = 0

dt=1D0/num_list
121 continue

if(time+dt.gt.tempo(ntime)) then
do i=1,L

do j=1,L
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SS((i-1)*L + j-1) = s(i,j)
enddo

enddo

call analysisf (SS,ntime,largest)

if (mod(realiz,nprint).eq.0) then

do i=1,30
if(cor(i,1).gt.0) then

stored=i
do j=1,mL

if(cor(i,j).lt.0) print*, cor(i,j)
write(1,141)realiz,i,tempo(i),dist(j),cor(i,j)/nprint,

c ccor(i,j)/nprint

avcor(i,j) = avcor(i,j) +cor(i,j)
avccor(i,j) = avccor(i,j) +ccor(i,j)
savcor(i,j) =savcor(i,j) + cor(i,j)*cor(i,j)
savccor(i,j) =savccor(i,j) + ccor(i,j)*ccor(i,j)

cor(i,j)=0.d0
ccor(i,j)=0.d0

enddo
endif

141 format(i10,i8,f10.3,i8,2(f15.10))

enddo
endif
call analysis0(s,nucr,n1,largest)

if(nucr.eq.0) ppcr(ntime,0)=ppcr(ntime,0)+1
if(nucr.eq.2) ppcr(ntime,1)=ppcr(ntime,1)+1
if(nucr.eq.1) then
call analysis1(s,nncr)
ppcr(ntime,nncr)=ppcr(ntime,nncr)+1

endif
call analysis2(s)

alc(ntime)=alc(ntime)+lcluster
an4(ntime)=an4(ntime)+n4
an0(ntime)=an0(ntime)+n0
anm4(ntime)=anm4(ntime)+nm4
aal1(ntime)=aal1(ntime)+al1
aal2(ntime)=aal2(ntime)+al2
do i=1,L*L

na(ntime,i)=na(ntime,i)+n1(i)
enddo
nlargest(ntime,largest)=nlargest(ntime,largest)+1
do k=1,2*L

if(ntheta1(k).ne.0) then
nntheta1(ntime,k)=nntheta1(ntime,k)+ntheta1(k)
aatheta1(ntime,k)=aatheta1(ntime,k)+atheta1(k)

endif
if(ntheta2(k).ne.0) then

nntheta2(ntime,k)=nntheta2(ntime,k)+ntheta2(k)
aatheta2(ntime,k)=aatheta2(ntime,k)+atheta2(k)

endif
enddo
Ene=0
do j=1,L

do i=1,L
Ene=Ene-(s(i,j)*s(nn_i(i,1),j)-1)

enddo
enddo
defect(ntime)=defect(ntime)+Ene*invL2
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ntime=ntime+1
if(ntime.gt.maxnn) goto 130

endif
chose_num=num_list*ran2(seed1)+1
i=i_list(chose_num)
j=j_list(chose_num)
DeltaE=2*s(i,j)*(JJ(nn_i(i,3),j,1)*s(nn_i(i,3),j)+

& JJ(i,j,1)*s(nn_i(i,1),j)+
& JJ(i,nn_j(j,4),2)*s(i,nn_j(j,4))+
& JJ(i,j,2)*s(i,nn_j(j,2))+Hfield(i,j))

Boltz=.5*(1.-tanh(DeltaE/2./T))
if(ran2(seed1).le.Boltz)then

s(i,j)=-s(i,j)

do direz=0,4
iv=nn_i(i,direz)
jv=nn_j(j,direz)
hloc=0
do dir=1,4

hloc=hloc+s(nn_i(iv,dir),nn_j(jv,dir))
enddo
if (hloc*s(iv,jv).le.0)then

if(inv_list(iv,jv).eq.0)then
num_list=num_list+1
i_list(num_list)=iv
j_list(num_list)=jv
inv_list(iv,jv)=num_list

endif
else

posiz=inv_list(iv,jv)
if(posiz.ne.0)then

i_list(posiz)=i_list(num_list)
j_list(posiz)=j_list(num_list)
inv_list(i_list(posiz),j_list(posiz))

& =posiz
inv_list(iv,jv)=0
num_list=num_list-1

endif
endif

enddo
endif
time=time+dt
dt=1D0/num_list
goto 121

130 continue

if (mod(realiz,nprint).eq.0) then
rlz = realiz
open(unit=74,file="av_corr_L512")
write (74,*) '#Temperature = ',T
write (74,*) '#RF Amp = ',Hamp,'#RB Amp = ',amp
write (74,*) '#Current number of realizations = ',realiz
write (74,*) '#System size = ',L

do i=1,stored
do j=1,mL
write(74,139)i,tempo(i),dist(j),avcor(i,j)/rlz,

c avccor(i,j)/rlz,
c sqrt((savcor(i,j)/rlz-(avcor(i,j)/rlz)**2)/rlz),
c sqrt((savccor(i,j)/rlz-(avccor(i,j)/rlz)**2)/rlz)

enddo
139 format(i10,f10.3,i8,4(f15.10) )

enddo
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close(74)

do i=1,maxnn
if(defect(i).ne.0) then

write(70,*)tempo(i), 1d0/(defect(i)/nprint)
endif

enddo
c            close(70)

do i=1,maxnn
write(90,204)i,tempo(i),1d0/(defect(i)/nprint),

c (ppcr(i,j),j=0,16),nprint
do j=0,16

ppcr(i,j)=0
enddo

204 format(i8,f15.5,f25.5,18(i8))
enddo

c     close(90)
do i=1,maxnn

do j=1,L*L
if(na(i,j).ne.0) write(91,205)i,j,nprint,na(i,j),

c nlargest(i,j)
na(i,j)=0
nlargest(i,j)=0

enddo
205 format(i8,i8,i10,i12,i10)

enddo
c     close(91)

do i=1,maxnn
write(92,206)i,tempo(i),1d0/(defect(i)/nprint),

c alc(i)/nprint,an4(i)/nprint,an0(i)/nprint,
c anm4(i)/nprint,aal1(i)/nprint,aal2(i)/nprint

alc(i)=0.d0
an4(i)=0.d0
an0(i)=0.d0
anm4(i)=0.d0
aal1(i)=0.d0
aal2(i)=0.d0
defect(i)=0.d0

206 format(i8,f25.5,f15.5,f12.4,f10.6,f10.6,f12.4,2(f15.4))
enddo

c     close(92)
do i=1,maxnn

do k=1,2*L
if(nntheta1(i,k).ne.0) then

write(93,207)i,tempo(i),k,aatheta1(i,k)
c /nntheta1(i,k)*pi*pi/4.d0,nntheta1(i,k)

endif
if(nntheta2(i,k).ne.0) then

write(94,207)i,tempo(i),k,aatheta2(i,k)
c /nntheta2(i,k)*pi*pi/4.d0,nntheta2(i,k)

endif
nntheta1(i,k)=0
nntheta2(i,k)=0
aatheta1(i,k)=0.d0
aatheta2(i,k)=0.d0

enddo
207 format(i8,f25.5,i8,f15.6,i12)

enddo
c     close(93)
c     close(94)

endif
enddo !loop over realizations

!     ------------------------------------------------------------
444 stop

end
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FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

*IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,IR2=3791,
*NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.0) then

idum=max(-idum,1)
idum2=idum
do 11 j=NTAB+8,1,-1

k=idum/IQ1
idum=IA1*(idum-k*IQ1)-k*IR1
if (idum.lt.0) idum=idum+IM1
if (j.le.NTAB) iv(j)=idum

11 continue
iy=iv(1)

endif
k=idum/IQ1
idum=IA1*(idum-k*IQ1)-k*IR1
if (idum.lt.0) idum=idum+IM1
k=idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2
if (idum2.lt.0) idum2=idum2+IM2
j=1+iy/NDIV
iy=iv(j)-idum2
iv(j)=idum
if(iy.lt.1)iy=iy+IMM1
ran2=min(AM*iy,RNMX)
return
END

!ccccccccccccccccccccccccccccccccccccccccccc
!     
!     SUBROUTINE analysis
!     
!ccccccccccccccccccccccccccccccccccccccccccc

subroutine analysis0(s,ncr,n1,largest)
implicit none
integer L,n2,k,indice_c
parameter (L=512,n2=512*512)
integer s(0:n2-1)
integer touched(0:n2-1)
integer i,ncr,nb,np,ncross,nc,dx,dy,dir,kdir
integer touched2(0:n2-1),touched3(0:n2-1),touched4(0:n2-1)
integer ncluster,v1,v2,v3,v4,c6,index,lpos
integer cluster(1:n2),x1,x2,itime
integer crossx(1:L),crossy(1:L),ncrossx,ncrossy
integer largest
integer pile(1:4*n2),pos
integer n1(1:n2)

largest=0
c

nb=0
ncr=-1
do k=1,n2

n1(k)=0
enddo
do k=0,n2-1

v1=k+1
if(mod(k+1,L).eq.0) v1=v1-L
v2=k+L
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if(v2.ge.n2) v2=v2-n2
if(S(k).eq.S(v1)) nb=nb+1
if(S(k).eq.S(v2)) nb=nb+1

enddo
!
!     Now compute the number of clusters
!     

do k=0,n2-1
touched(k)=0

enddo
nc=0
do k=0,n2-1

if(touched(k).ne.0) goto 12
pile(1)=k
nc=nc+1
touched(k)=1
indice_c=1
do index=1,n2

if(index.gt.indice_c) goto 10
lpos=pile(index)
v1=lpos+1
v2=lpos-1
v3=lpos+L
v4=lpos-L
if(mod(lpos+1,L).eq.0) v1=v1-L
if(mod(lpos,L).eq.0) v2=v2+L
if(v3.ge.n2) v3=v3-n2
if(v4.lt.0) v4=v4+n2
if(touched(v1).eq.0) then

if(S(v1).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v1
touched(v1)=1

endif
endif
if(touched(v2).eq.0) then

if(S(v2).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v2
touched(v2)=1

endif
endif
if(touched(v3).eq.0) then

if(S(v3).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v3
touched(v3)=1

endif
endif
if(touched(v4).eq.0) then

if(S(v4).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v4
touched(v4)=1

endif
endif

enddo
10 continue

n1(indice_c)=n1(indice_c)+1
if (indice_c.gt.largest) largest=indice_c

12 continue
enddo

c      nam(itime,largest)=nam(itime,largest)+1
!
!     Now we compute the number of polygons.
!
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!        2     1
!           X
!        3     4

ncross=0
np=0
do i=0,n2-1

touched(i)=0
touched2(i)=0
touched3(i)=0
touched4(i)=0

enddo
do i=0,n2-1

50 continue
dx=0
dy=0
if(touched(i).eq.0) then

np=np+1
kdir=1
pos=i
goto 110

endif
if(touched2(i).eq.0) then

np=np+1
kdir=2
pos=i
goto 120

endif
if(touched3(i).eq.0) then

np=np+1
kdir=3
pos=i
goto 130

endif
if(touched4(i).eq.0) then

np=np+1
kdir=4
pos=i
goto 140

endif
goto 200

100 continue
if((pos.eq.i).and.(dir.eq.kdir)) then

!     the loop is finished
if(dx.ne.0) then

ncross=ncross+1
else

if(dy.ne.0) ncross=ncross+1
endif
goto 50

endif
if(dir.eq.2) goto 120
if(dir.eq.3) goto 130
if(dir.eq.4) goto 140

110 v1=pos+1
if(mod(pos+1,L).eq.0) v1=v1-L
if(S(v1).eq.S(pos)) then

if(mod(pos+1,L).eq.0) dx=dx+1
pos=v1
dir=2
touched2(v1)=1
goto 100

else
dir=4
touched4(pos)=1
goto 100

endif
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120 v1=pos+L
if(v1.ge.n2) v1=v1-n2
if(S(v1).eq.S(pos)) then

if(pos+L.ge.n2) dy=dy+1
pos=v1
dir=3
touched3(v1)=1
goto 100

else
dir=1
touched(pos)=1
goto 100

endif
130 v1=pos-1

if(mod(pos,L).eq.0) v1=v1+L
if(S(v1).eq.S(pos)) then

if(mod(pos,L).eq.0) dx=dx-1
pos=v1
dir=4
touched4(v1)=1
goto 100

else
dir=2
touched2(pos)=1
goto 100

endif
140 v1=pos-L

if(v1.lt.0) v1=v1+n2
if(S(v1).eq.S(pos)) then

if(pos-L.lt.0) dy=dy-1
pos=v1
dir=1
touched(v1)=1
goto 100

else
dir=3
touched3(pos)=1
goto 100

endif
200 continue

enddo

565 format(i8,i4,i12,i12,i12,i12,i6)
if(nb+2*nc-n2-np.eq.2) then

ncr=2
else

if(nb+2*nc-n2-np.eq.0) then
if(ncross.eq.0) then

ncr=0
else

ncr=1
endif

else
print*,"BUG",nb+2*nc-n2-np,nb,nc,n2,np,ncross

!            stop
endif

endif
return
end

c#############################################################
c     
c     SUBROUTINE analysis1
c     

subroutine analysis1(S,nncr)
implicit none
integer L,n2
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parameter (L=512,n2=L*L)
integer s(0:n2-1),ttouched(0:n2-1)
integer touched(0:n2-1),s0
integer ncluster
integer pile(1:n2),pos,nc
integer i,ii,ni,j,k,j0
integer n,indice_c,lpos,index,v1,v2,v3,v4
integer start,dir,dir0,length
integer npile(1:n2)
integer i1,i2,pos1,pos2,ki
integer ncr(-5:5,-5:5),nncr,incr,jncr

c
do i=-5,5

do ii=-5,5
ncr(i,ii)=0

enddo
enddo
do k=0,n2-1

touched(k)=0
enddo
ncluster=0
do k=0,n2-1

if(touched(k).eq.0) then
ncluster=ncluster+1
indice_c=1
pile(1)=k
touched(k)=ncluster
do i=1,n2

if(i.gt.indice_c) goto 99
pos=pile(i)
v1=pos+1
v2=pos-1
v3=pos+L
v4=pos-L
if(mod(pos+1,L).eq.0) v1=v1-L
if(mod(pos,L).eq.0) v2=v2+L
if(v3.ge.n2) v3=v3-n2
if(v4.lt.0) v4=v4+n2
if(s(v1).eq.s(k)) then

if(touched(v1).eq.0) then
touched(v1)=ncluster
indice_c=indice_c+1
pile(indice_c)=v1

endif
endif
if(s(v2).eq.s(k)) then

if(touched(v2).eq.0) then
touched(v2)=ncluster
indice_c=indice_c+1
pile(indice_c)=v2

endif
endif
if(s(v3).eq.s(k)) then

if(touched(v3).eq.0) then
touched(v3)=ncluster
indice_c=indice_c+1
pile(indice_c)=v3

endif
endif
if(s(v4).eq.s(k)) then

if(touched(v4).eq.0) then
touched(v4)=ncluster
indice_c=indice_c+1
pile(indice_c)=v4

endif
endif
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enddo
99 continue

endif
enddo

!     I put to zero all the spin which are not in the largest cluster and 1 otherwise
!     New version which computes all the loops.
!!!!!!!!!!!!!!!!
!!!  I first take a startig point such that   1 | 0 

k=0
ki=0
do i=0,n2-1

ttouched(i)=1
enddo

100 continue
do i=ki,n2-1

if(ttouched(i).ne.0) then
if(touched(i).gt.0) then

s0=touched(i)
j=i+1
if(mod(j,L).eq.0) j=j-L
if(touched(j).ne.s0) then

start=i
dir=1
goto 101

endif
j=i+L
if(j.ge.n2) j=j-n2
if(touched(j).ne.s0) then

start=i
dir=2
goto 101

endif
j=i-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).ne.s0) then

start=i
dir=3
goto 101

endif
j=i-L
if(j.lt.0) j=j+n2
if(touched(j).ne.s0) then

start=i
dir=4
goto 101

endif
endif

endif
enddo
goto 160

101 continue
length=0
pos1=0
pos2=0
dir0=dir
i=start
ki=i+1

!!  I will start computing at start=i,dir=1
goto 103

c
102 continue

if((i.eq.start).and.(dir.eq.dir0)) then
if((pos1.ne.0).or.(pos2.ne.0)) then

if(mod(pos1,L).ne.0) then
print*,"Strange",pos1
stop
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endif
pos1=pos1/L
if(mod(pos2,L).ne.0) then

print*,"Strange",pos2
stop

endif
pos2=pos2/L
if(pos1.eq.0) then

ncr(0,abs(pos2))=ncr(0,abs(pos2))+1
else

if(pos2.eq.0) then
ncr(abs(pos1),0)=ncr(abs(pos1),0)+1

else
if(pos1*pos2.gt.0) then

ncr(abs(pos1),abs(pos2))=ncr(abs(pos1),abs(pos2))+1
else

ncr(abs(pos1),-abs(pos2))=
c ncr(abs(pos1),-abs(pos2))+1

endif
endif

endif
endif

c            do i2=9,0,-1
c               write(*,4421)(touched(i2*10+i1),i1=0,9)
c            enddo
c         endif
c 4421    format(10(i4))

goto 150
endif

103 length=length+1
npile(length)=i
j0=j
if(dir.eq.1) goto 110
if(dir.eq.2) goto 120
if(dir.eq.3) goto 130
goto 140

c
c        Y  | Z
c        -    -
c        X  | 0 
c
c
110 j=i+L

if(j.ge.n2) j=j-n2
if(touched(j).ne.s0) then

dir=2
else

i=j
j=j+1
if(mod(j,L).eq.0) j=j-L
if(touched(j).eq.s0) then

i=j
j=j0
dir=4
pos1=pos1+1
pos2=pos2+1

else
pos2=pos2+1

endif
endif
goto 102

120 j=i-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).ne.s0) then

dir=3
else
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i=j
j=j+L
if(j.ge.n2) j=j-n2
if(touched(j).eq.s0) then

i=j
j=j0
dir=1
pos1=pos1-1
pos2=pos2+1

else
pos1=pos1-1

endif
endif
goto 102

130 j=i-L
if(j.lt.0) j=j+n2
if(touched(j).ne.s0) then

dir=4
else

i=j
j=j-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).eq.s0) then

i=j
j=j0
dir=2
pos1=pos1-1
pos2=pos2-1

else
pos2=pos2-1

endif
endif
goto 102

140 j=i+1
if(mod(j,L).eq.0) j=j-L
if(touched(j).ne.s0) then

dir=1
else

i=j
j=j-L
if(j.lt.0) j=j+n2
if(touched(j).eq.s0) then

i=j
j=j0
dir=3
pos1=pos1+1
pos2=pos2-1

else
pos1=pos1+1

endif
endif
goto 102

150 continue
do i=1,length

ttouched(npile(i))=0
enddo
goto 100

160 continue
!!!!!!!!!!!!!!!!!!!
! Sanity check. Checking that only one type of crossing exists.

nncr=0
do i=-5,5

do ii=-5,5
if(ncr(i,ii).ne.0) then

nncr=nncr+1
incr=i
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jncr=ii
endif

enddo
enddo
if(nncr.gt.1) then

print*,"Strange, more than one type of crossing"
do i=-5,5

do ii=-5,5
if(ncr(i,ii).ne.0) print*,i,ii,ncr(i,ii)

enddo
enddo
stop

endif

!    Now I check the type of crossings. 
!    Produces incr,jncr. (0,1) = one vertical , (0,2) = two verticals et cetera
!    One vertical means really one.

nncr=0
if(jncr.eq.0) then

if(incr.eq.1) then
if(ncr(incr,jncr).eq.2) then

nncr=2
goto 199

endif
if(ncr(incr,jncr).le.4) then

nncr=4
goto 199

endif
if(ncr(incr,jncr).ge.5) then

nncr=6
goto 199

endif
goto 200

endif
goto 200

endif
if(incr.eq.0) then

if(jncr.eq.1) then
if(ncr(incr,jncr).eq.2) then

nncr=3
goto 199

endif
if(ncr(incr,jncr).le.4) then

nncr=5
goto 199

endif
if(ncr(incr,jncr).ge.5) then

nncr=7
goto 199

endif
goto 200

endif
goto 200

endif
if((incr.eq.1).and.(jncr.eq.1)) then

if(ncr(incr,jncr).eq.2) then
nncr=8
goto 199

endif
if(ncr(incr,jncr).ge.4) then

nncr=10
goto 199

endif
goto 200

endif
if((incr.eq.1).and.(jncr.eq.-1)) then
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if(ncr(incr,jncr).eq.2) then
nncr=9
goto 199

endif
if(ncr(incr,jncr).ge.4) then

nncr=11
goto 199

endif
goto 200

endif
if((incr.eq.1).and.(jncr.eq.2)) then

nncr=12
goto 199

endif
if((incr.eq.1).and.(jncr.eq.-2)) then

nncr=13
goto 199

endif
if((incr.eq.2).and.(jncr.eq.1)) then

nncr=14
goto 199

endif
if((incr.eq.2).and.(jncr.eq.-1)) then

nncr=15
goto 199

endif
cccccc Only exotic cases remain. 

nncr=16
199 continue

goto 201
200 continue

print*,"Strange2",incr,jncr,ncr(incr,jncr)
do i2=9,0,-1

write(*,4421)(S(i2*10+i1),i1=0,9)
enddo

4421 format(10(i3))
stop

201 continue
return
end

c#############################################################
c     
c     SUBROUTINE analysis2
c     

subroutine analysis2(S)
implicit none
integer L,n2
parameter (L=512,n2=L*L)
integer s(0:n2-1),theta(0:n2-1)
integer touched(0:n2-1),itime
integer it,ncluster,lcluster,pcluster
integer pile(1:n2),maxs,pos,nc
integer i,ii,ni,j,k,wrapping
integer lh,n,indice_c,lpos,index,v1,v2,v3,v4
integer start,dir,dir0,length,angle,j0,n0,n4,nm4
integer store(1:20*L),storea(1:20*L),al1,al2
integer ntheta1(1:2*L),ntheta2(1:2*L)
real*8 atheta1(1:2*L),atheta2(1:2*L)
integer i1,i2,pos1,pos2,ki

c
common/an/n4,n0,nm4,al1,al2,lcluster
common/an2/atheta1,atheta2,ntheta1,ntheta2

c
c     We will store the value of the largest cluster.
c     Next we will compute the winding of this cluster

Page 17



C:\Users\utente\Fortran_source_code\Source_code.F

do i=1,2*L
ntheta1(i)=0
ntheta2(i)=0
atheta1(i)=0.d0
atheta2(i)=0.d0

enddo
c

do k=0,n2-1
touched(k)=0

enddo
maxs=0
ncluster=0
lcluster=0
do k=0,n2-1

if(touched(k).eq.0) then
ncluster=ncluster+1
indice_c=1
wrapping=0
pile(1)=k
touched(k)=ncluster
do i=1,n2

if(i.gt.indice_c) goto 99
pos=pile(i)
v1=pos+1
v2=pos-1
v3=pos+L
v4=pos-L
if(mod(pos+1,L).eq.0) v1=v1-L
if(mod(pos,L).eq.0) v2=v2+L
if(v3.ge.n2) v3=v3-n2
if(v4.lt.0) v4=v4+n2
if(s(v1).eq.s(k)) then

if(touched(v1).eq.0) then
touched(v1)=ncluster
indice_c=indice_c+1
pile(indice_c)=v1

endif
endif
if(s(v2).eq.s(k)) then

if(touched(v2).eq.0) then
touched(v2)=ncluster
indice_c=indice_c+1
pile(indice_c)=v2

endif
endif
if(s(v3).eq.s(k)) then

if(touched(v3).eq.0) then
touched(v3)=ncluster
indice_c=indice_c+1
pile(indice_c)=v3

endif
endif
if(s(v4).eq.s(k)) then

if(touched(v4).eq.0) then
touched(v4)=ncluster
indice_c=indice_c+1
pile(indice_c)=v4

endif
endif

enddo
99 continue

if(indice_c.gt.maxs) then
lcluster=indice_c
pcluster=k

endif
maxs=max(maxs,indice_c)
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endif
enddo

c     I put to zero all the spin which are not in the largest cluster and 1 otherwise
k=touched(pcluster)
j=0
do i=0,n2-1

if(touched(i).eq.k) then
touched(i)=1
j=j+1

else
touched(i)=0

endif
enddo

ccccccccccccccccccccccccccc
cccc  I first take a startig point such that   1 | 0 

k=0
ki=0

100 continue
do i=ki,n2-1

if(touched(i).eq.1) then
j=i+1
if(mod(j,L).eq.0) j=j-L
if(touched(j).eq.0) then

start=i
dir=1
goto 101

endif
j=i+L
if(j.ge.n2) j=j-n2
if(touched(j).eq.0) then

start=i
dir=2
goto 101

endif
j=i-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).eq.0) then

start=i
dir=3
goto 101

endif
j=i-L
if(j.lt.0) j=j+n2
if(touched(j).eq.0) then

start=i
dir=4
goto 101

endif
endif

enddo
goto 160

101 continue
k=k+1
length=0
angle=0
theta(0)=0
dir0=dir
i=start
ki=i+1

ccc   I will start computing at start=i,dir=1
goto 103

c
102 continue

if((i.eq.start).and.(dir.eq.dir0)) then
goto 150

endif
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103 length=length+1
theta(length)=angle
touched(j)=-1
j0=j
if(dir.eq.1) goto 110
if(dir.eq.2) goto 120
if(dir.eq.3) goto 130
goto 140

c
c        Y  | Z
c        -    -
c        X  | 0 
c
c
110 j=i+L

if(j.ge.n2) j=j-n2
if(touched(j).le.0) then

dir=2
angle=angle+1

else
i=j
j=j+1
if(mod(j,L).eq.0) j=j-L
if(touched(j).eq.1) then

i=j
j=j0
dir=4
angle=angle-1

endif
endif
goto 102

120 j=i-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).le.0) then

dir=3
angle=angle+1

else
i=j
j=j+L
if(j.ge.n2) j=j-n2
if(touched(j).eq.1) then

i=j
j=j0
dir=1
angle=angle-1

endif
endif
goto 102

130 j=i-L
if(j.lt.0) j=j+n2
if(touched(j).le.0) then

dir=4
angle=angle+1

else
i=j
j=j-1
if(mod(i,L).eq.0) j=j+L
if(touched(j).eq.1) then

i=j
j=j0
dir=2
angle=angle-1

endif
endif
goto 102

140 j=i+1
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if(mod(j,L).eq.0) j=j-L
if(touched(j).le.0) then

dir=1
angle=angle+1

else
i=j
j=j-L
if(j.lt.0) j=j+n2
if(touched(j).eq.1) then

i=j
j=j0
dir=3
angle=angle-1

endif
endif
goto 102

150 continue
c      print*,"loop is done and lenght = ",length,angle,s0,s00

store(k)=length
storea(k)=angle
if(angle.eq.0) then

ccc   compute the average square angle for wrapping clusters
do i=1,length

do j=1,min(2*L,length/2)
ii=i+j
if(ii.gt.length) ii=ii-length
atheta1(j)=atheta1(j)+(theta(i)

c -theta(ii))**2
ntheta1(j)=ntheta1(j)+1

enddo
enddo

endif
if(angle.eq.4) then

ccc   compute the average square angle for wrapping clusters
do i=1,length

do j=1,min(2*L,length/2)
ii=i+j
if(ii.gt.length) then

ii=ii-length
atheta2(j)=atheta2(j)+(theta(i)-4

c -theta(ii))**2
ntheta2(j)=ntheta2(j)+1

else
atheta2(j)=atheta2(j)+(theta(i)

c -theta(ii))**2
ntheta2(j)=ntheta2(j)+1

endif
enddo

enddo
endif

159 continue
goto 100

160 continue
cccccccccccccccccccccc
ccc   We analyse the output

n0=0
n4=0
nm4=0
al1=0
al2=0
do i=1,k

if(storea(i).eq.-4) then
nm4=nm4+1
al2=al2+store(i)

else
if(storea(i).eq.0) then
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n0=n0+1
al1=al1+store(i)

else
if(storea(i).eq.4) then

n4=n4+1
al1=al1+store(i)
if(n4.gt.1) then

print*,"Second angle 4",n4
do j=1,k

print*,store(j),storea(j)
enddo
stop

endif
else

print*,"Strange angle"
print*,(store(j),storea(j),j=1,k)

endif
endif

endif
enddo
return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine analysisf(s,itime,largest)
implicit none
integer L,n2,k,indice_c,mL
parameter (L=512,n2=512*512)
parameter (mL=16)
integer s(0:n2-1)
integer touched(0:n2-1)
integer i,nc
integer v1,v2,v3,v4,c1,c2,Index,lpos
integer ix,iy,ixp,iyp,delta,itime
integer largest,slargest,il,isl
integer pile(1:n2)
real*8 cor(1:30,1:mL)
real*8 ccor(1:30,1:mL)
common/na/cor,ccor

largest=0
slargest=0

!     Now compute the number of clusters
!     

do k=0,n2-1
touched(k)=0

enddo
nc=0
do k=0,n2-1

if(touched(k).ne.0) goto 12
pile(1)=k
nc=nc+1
touched(k)=1
indice_c=1
do index=1,n2

if(index.gt.indice_c) goto 10
lpos=pile(index)
v1=lpos+1
v2=lpos-1
v3=lpos+L
v4=lpos-L
if(mod(lpos+1,L).eq.0) v1=v1-L
if(mod(lpos,L).eq.0) v2=v2+L

Page 22



C:\Users\utente\Fortran_source_code\Source_code.F

if(v3.ge.n2) v3=v3-n2
if(v4.lt.0) v4=v4+n2
if(touched(v1).eq.0) then

if(S(v1).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v1
touched(v1)=nc

endif
endif
if(touched(v2).eq.0) then

if(S(v2).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v2
touched(v2)=nc

endif
endif
if(touched(v3).eq.0) then

if(S(v3).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v3
touched(v3)=nc

endif
endif
if(touched(v4).eq.0) then

if(S(v4).eq.S(lpos)) then
indice_c=indice_c+1
pile(indice_c)=v4
touched(v4)=nc

endif
endif

enddo
10 continue

if (indice_c.gt.largest) then
slargest=largest
isl=il
largest=indice_c
il=nc

else
if(indice_c.gt.slargest) then

slargest=indice_c
isl=nc

endif
endif

12 continue
enddo
write(2,13)itime,largest,il,slargest,isl,nc

13 format(i8,5(i12))
ccccccccccccccc Compute the Cor. Functions ccccccccccccccccc

do i=1,mL
if(i.eq.1) delta=1
if(i.eq.2) delta=2
if(i.eq.3) delta=3
if(i.eq.4) delta=4
if(i.eq.5) delta=6
if(i.eq.6) delta=8
if(i.eq.7) delta=12
if(i.eq.8) delta=16
if(i.eq.9) delta=24
if(i.eq.10) delta=32
if(i.eq.11) delta=48
if(i.eq.12) delta=64
if(i.eq.13) delta=96
if(i.eq.14) delta=128
if(i.eq.15) delta=192
if(i.eq.16) delta=256
if(i.eq.17) delta=384
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if(i.eq.18) delta=512
if(i.eq.19) delta=768
if(i.eq.20) delta=1024
if(i.eq.21) delta=1536
if(i.eq.22) delta=2048
if(i.eq.23) delta=3072
if(i.eq.24) delta=4096
c1=0
c2=0
do iy=0,L-1

iyp=iy+delta
if(iyp.ge.L) iyp=iyp-L
do ix=0,L-1

ixp=ix+delta
if(ixp.ge.L) ixp=ixp-L
if(touched(iy*L+ix).eq.touched(iyp*L+ix)) c1=c1+1
if(touched(iy*L+ix).eq.touched(iy*L+ixp)) c1=c1+1
c2=c2+S(iy*L+ix)*S(iyp*L+ix)
c2=c2+S(iy*L+ix)*S(iy*L+ixp)

!    print*, c2
enddo

enddo
cor(itime,i)=cor(itime,i)+dfloat(c1)/2.d0/n2
ccor(itime,i)=ccor(itime,i)+dfloat(c2)/2.d0/n2

enddo

return
end

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
!cc   Prints the configuration needed
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine config(spin,field)
parameter (L=512,n2=L*L)
integer s(0:L*L-1)
real rf(0:L*L-1),field(1:L,1:L)
character*1 signe(0:L*L-1),signe2(0:L*L-1)
integer j,k,index
integer spin(1:L,1:L)

do i=1,L
do j=1,L
s(i-1+(j-1)*L)=spin(i,j)
rf(i-1+(j-1)*L)=field(i,j)
enddo

enddo
do k=0,L-1

do j=0,L-1
index=k*L+j
if(s(index).eq.1) then

signe(index)='+'
signe2(index)='+'
if(rf(index).gt.0.d0) signe2(index)='x'

else if (s(index).eq.-1) then
signe(index)='-'
signe2(index)='-'
if (rf(index).lt.0.d0) signe2(index)='='

else
signe(index)='o'

endif

enddo
enddo

do k=0,L-1
print*,signe(L*(L-1)-k*L:(L*L-1)-k*L),"           "

c ,signe2(L*(L-1)-k*L:(L*L-1)-k*L)
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enddo
print*,"  "

end
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