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PART I
-

SCATTERING PROBLEMS

CHAPTER I.CLASSIC AL THEORY OF OPTICAL DISPERSION

I
-

Introduction:1
-

INTRODUCTION: The phenomena of scattering is one of the

most direct and easily accessible effects of the interaction between

the physical agent ( in its aspect of field or particle) being scat-

tered and that serving as "obstacle" • Above all, itis essentially

a phenomenon at the atomic scale: optical scattering, e.g., depends

on the statistical fluctuations in the distribution of the atomic

scattering centres in the medium . Ithas therefore been a powerful

tool in the study of the fundamental interactions between the elemen-

tary constituents of matter and of the constitution of atomic systems.

It will be sufficient to recall that the discovery of the atomic

nucleus by Tutherford in 1911 was the direct outcome of the analysis

of >< particle scattering by atoms.

A universal feature of the scattering process is the occurrence

of resonances, i.e. of states of the system scatterer + scattered

object in which the exchange of energy between the two partners is

so enhanced that the life-time of this coupled state is considerably

increased. This results on the one hand in a selective absorption of

the impinging beam by the scatterer, on the other in an anomaly in the

dispersion of the scattering power ( i.e. its dependence on the energy

of the system). In the last few years a formal theory of scattering has

been developed to a great degree of generality, in order to bring out

these features and to trace this origin in very simple and deep-lying

properties of physical systems.

It is, however, in the study of optical dispersion, the oldest

example of scattering phenonenon, that all the essential points of the

theory have been recognized for the first time. The discussion of this

problem , which only required elementary consideration, may therefore

be regarded as the most convenient introduction to the modern aspects

of the subject.
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2
-

Optic alScattering

-
The elementary mechanism of optical scattering is quite sirople. The

electric field of the impinging light wave excites an electric polarization of the

system of electric charges constituting the scatterer, which varies in time with

the same frequency as the light wave. This oscillating dipole moment is the source

of a secondary light wave, which interferes with the incident wave, producing as a

net result a disturbance spread out in all directions with varying intensity.

To put this picture into mathematical language, a simple model of the

scatterer will suffice. We consider an electron of charge £ , bound to some equili-

brium position by an electric force : such a system is characterized by a proper

frequency of oscillation* uj , depending on the mass m of the particle and the

elastic force : the latter is expressed, for a displacement X> by-muTx» Let a

plane wave of frequency cO and wave number fe, [rz \¿}/r 'travel along the j-direction ;

its electric field has the form (J. -.(^ £
l . Under the influence of this

electric field, the motion of the electron is determined by the equation :

±L± I—4 „ 7~:
'

-Oo) t
2C tJÍ =:

- t- t -? , (i)
IIT,

which gives an oscillating dipole moment

-* -* e
1 d P s?-'*^^

f=fix
= Tf-r ssfTss"s

5fT5s" L " •
(2)

There is thus a linear relation

between dipole moment and incident wave-field. The atomic polarizability V exhibits a

resonance behaviour when the frequency (a.-- of the light tends to the proper frequency
v) of the scatterer.

O

(1)

(2)

(3)

All frequencies are meant as "circular" frequencies, i.c. 2 'TT times the inverse of

the period.

>......-i

ona7°;

—
¿

£=?>;.>f

•£
lit

a xf=

iiv0
»?

!„_XX ?
!„_

»
0 iiv

f= a x lit
£ •

f > —
¿

£=?>;. ; 7° na
-i

o

...... >
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The electromagnetic field emitted by the dipole h may be calculated from the Hertz

vector^. ,which satisfies the Dalembertian equation (generalising the Poisscn
equation) with a source density HT S"(l ):

OZ %(,?). (4)

The solution representing an outgoing wave may be expressed in terms of the
corresponding Green's function, i.c. the solution!; of the equation :

¿VU t'k'l/i - S <S) (5 )

which has the required asymptotic behaviour. Instead of intreducing a source

density represented by a distribution 5(Pj, one may speak of a solution of the
homogeneous equation ¿ilj -f* k l/r O with a pole at the origin. Itis :

representing an outgoing spherical wave. Owing to the factor ify the total inten-
sity transported by the wave remains thev same over every spherical surface. With-~* _

-£
_

r~* -¦¦•>

2* ~ (i,* 1/ * c elec-t ric field ¿- .of the scattered wave is given by (\
i. U / 0"íir<rt¿,-lr we limit ourselves to the wave-zone (i. c. neglect all terms depending

on higher powers of 1/ f" than the first ), we shall find that ¿ is in the plane

-~s>(ij tangent to the spherical wave-_
front, and that the magnetic

field of the scattered Kave

is perpendicular to C^,-^^ / •

i/ and (in our units) equal in
y S s

£
c
v magnitude to it.It is there-

Q fore sufficient to consider¿
--¦ r t^ » 0
q/ X Now, assume the incident wave

</; I to be unpolarized, i,c...

( 4 )

(5 )

( 6)

y f .
J The factor i/ ÎT arises from our use of "rationalized" units in the sense of

Heavisicie.

>

irt.
j¿-J_V

¦C?)StklV¿VÜ

);n?)
i

¦¿\ +£=-AZoz"oz" =-AZ\ +£¦¿
i

;n?) )

¿VÜ tklV S¦C?)

V -J_ j¿
t. ir

>
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¦£¦ , i,. ¦

—
-a>

the field £. to consist of two incoherent components ¿ f '

of equal amplitudes and orthogonal to each other. We may then write

they electric field of the scattered wave as follows?

I=|¡? (Z^t ?{-»c<»e)XV;? {-»c<»e)XV; (7)

in this formula e^, *e f^ are two orthogonal unit vectors in the

Pl.ane tangent to the scattered wave at the point P at which the

field is considered, "c:( '-'"being in the plane defined by P and the

direction Oz of the incident wave 5 b is the scattering angle, i.e.

the angle between the direction Oz of incidence and the direction OP

in which the scattering is observed. With regard to the connection
¦Li

between "p and the incident field ¿ , we may put eg. ( 7 ) into the

form

¿=aU ijH-t u^ 6 JL. ( 8 )

/

with

Eg. ( 8 ) expresses the direct relation between the incidan* and tho

scattered wave, by means of the scattering amplitude a, The Green's

function c
l

"" "**lO / >"' and the other factors pertaining to the
/

polarization and angular distribution of the scattered wave. Thus, in

this formula, the two stages of process, indicated by our analysis,

are clearly represented? the excitation of the scatterer.by the scat-

tering amplitudes the emission of the scattered wave by the Green's

function and the other factors.

( 7 )

( 8)

( 9 )
i!L

•i ¦••».

VJuL

a

>J
l#,Ó }} -+ÍS«>: a

>>:Jl/:
J1/Á1 /-)? (-"+7? («- J'?(6,6, '?( 7? («- J + ? (-"1 /-) Á:Jl/:
J1/ >>

: a ÍS«>
} -+ >J

l#,Ó }

VJuL

a•i ¦••».

!L i
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It is interesting to note that the scattering in genera]

affects the state of polarization ( in the present case it produces

a partial polarization of an unpolarized wave), and that this is

revealed by peculiarities of the angular distribution. Thus, we find

here two M partial waves", of indices 0 and 1, with characteristic

angular distributions and amplitudes»

The scattering amplitudes have the dimension of a. length*

Here we find as the characteristic length involved the "classical elec-

tron radius" c* > "to which the amplitude reduces ( apart

from the sign) for tO¿»> tto0o i.c» when the incident frequency is so

large that the electron can be regarded as free during the scattering

process. The differential scattering cross-section 0" (Q) cL i~]L is

obtained by calculating the Poynting vector of the scattered wave,
multiplied by V <?t \\» , and dividing it by the energy density

of the incident wave, multiplied by its velocity of propagation.

This gives

+ eo^ej, (I0)

and for the total cross-section

The first way of writing (?~ illustrates the meaning of the scatte-

ring amplitude as the order of magnitude of the effective radius of

a disc-shaped obstacle intercepting the radiation» For radiation of

very high frequency, the amplitude, as we have seen, becomes the elec-

tron radius, and we get Thomson's formula for the scattering by"free"

electrons. Por ordinary light, the second expression for n" 9
, in

which *V ( away from the resonance frequency) varies slowly with lO,
exhibits the well-known

" >^ -
law" of Eayleigh for the wave-length

dependence of the scattering of light by atoms.

( 10 )

( 11 )
i

3°
4a.1sir

/3c

yD6CoO^-f-t(a
£(0)s

'
v 1

6"'6"' (0)s
'

v 1
a

£ (-t -f CoO^ 6D y

/3c
sir a.1 4

3°
i
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3- Energy Transfer In Optical Scattering

The radiation scattered in all directions by the oscillator

is removed "by the impinging team, which accordingly undergoes an

absorption. It is instructive to follow in detail the way in. which the

energy is transferred "by the scatterer from the incident beam to the

scattered wave.

The emission of radiation "by the scattered is accompanied

"by a damping of its oscillation, due to the raction of the radiation

field upon the oscillating dipole* This radiative reaction nlay be ex-

pressed as an electric field r acting upon the moving electron. It
r

has "been calculated "by Lorentz for the model of a uniformly charged

sphere in accelerated motion i the method is quite straightforward, but

exceedingly elegant, and leads to a very remarkable result. It consists

in calculating the field produced by the motion of the sphere at any

point of its interior ( due account being taken of the retardation)
and summing the forces exerted by this field on all the elements of

the moving charge. Apart from terms explicitly depending on the radius

of the sphere, but vanishing when this radius tends to zero, on finds

that the dissipative part of the electric field produced by the sphere

is proportional to the total charge ( independently of its extension),
and for sufficiently small distances from the original of the motiop

also independent of the distances so that the total force it exerts

is again proportional to the charge only* This field has the value?

t =r -4_ (I OC , (12 )

i.e. for our oscillator

Its dissipative character is shown by the fact that itis out of phase

with the oscillation of the dipole, as indicated by the factor 4,,

( 12 )

( 13 )

—>+ -1tr

)xci»¦'¦¦I
r
I
r

i»¦'¦¦ c x )

tr
+ -1

—>
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It is easy to check that the work done on the dipole by

the radiative reaction £, _ during a period of the oscillation is

exactly equal to the energy radiated away during this time. In fact,

this amount of work is

since the integrated term takes the same value after a period; on the

other hand, the rate of emission K>r unit time of dipole radiation has

the well-known expression

(14)

This, then, is also the rate at which ( in the pure

scattering process we are considering) the dipole must absorb energy

from the incident beam in order to maintain its state of oscillation

stationary. In other words, the absorption cross-section is derived

from eg. ( 14 ) in exactly the samey/ay as the scattering cross-section,
namely by replacing pby y CL ? anc^ s nus equal to the

scattering cross-sections

a-t.- Ec 6'iT <?° (I5)

When account is taken of the radiation damping, a more

accurate expression is o]>ta
(
ined for the polarizability of the oscillator.

•£ f~
*

Instead of j'/o 8 ~YO C* , one has to write'
C —^ —~~s \

f *l(6+6r)>

( 15 )

* We shall hoar and in the following omit the specification that in
such formulae the fields are taken for z = o»

"y1

ó o
k1

íir
6~

v

1I0ReI
6TTc Jt\lAfolar -á-JfteAfolar -á-Jfte t\l 6TTc J

IRe 0 I1
v

6~ 1
íir

k "y1

ó o
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v/hich gives

f'=y^ with Xr'í iJt (I6)

or

The absolute value of V/ ,

shows the rosonance response of the oscil-
X lator in a domain of frequencies ofwidth

/ I \ J .-» around the proper frequency o)^

} i \ Moreover, there is a phase-shift between

j/ | \ the oscillation of the impinging field. and that of the dipole, and therefore also

M
—, 4 <& — that of the scattered waves in our case,

I O i ithe phase of "V 'passes from 0 to -~7!^as
the frequency increases from oto c 6.o

I
jProm another angle, eg ( 17 ) illustrates the anomalous

dispersion in the a&conance region and its connexion with the absorption.
Weakly dispersive medium containing IT scatterers of our simple oscil-
lator type per unit volume, willhave a polarizability *v ffV'
and a complex refractive index defined by the approximate relation

The real part of this relation gives the law of anomalous dispersion

n-i
- H'J¿ iá -

i^ (of- md1;1+<5m7 (i9)

( 16)

(1
7)

(1 8)

( 19 )
.A1

£~7
¿¿c0o.N"-ic

*

7,£1IV

cnr*.**. .¦¦

1 .«,»l•r

)
-..c)

'1r-

!
¦ mm

1
mm

JL
h

with¦r«MMii«MM¦r with JL
h

mm

1
¦ mm

!

r- '1
)..c •r

)
- »l1 .«,

cnr*.**. .¦¦

IV 1 £ 7,

*

c -i .N" c0o
¿¿

£~7
.A1
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¡vi
In the resonance region, we may regard

"\ f the imaginary part of "3/ y 'in eq( 16 )

as small compared with *j'Y 9 and write

accordingly
1

• _! _ „ r^P^át.- (2o)

/ From (20) and ( 18 ) we derive the appro-

it / ximate expressions, valid in the resonance

i \ I regionj

„ -I^4 N7N7
-

t u fN4- Í
% {Z1)

0 1 1,0 > 1 l ÍT §0

for the real and imaginary parts n 0
, n^ of the refractive index.

The imaginary part & is related to the absorption coefficient

From (22) and (21) we find again for the absorption cross-section tho

expression <V 0 3- -^i-.•'k "Y identital v/ith that for the scatte-

ring cross-section j of. eq. ( 15 ) I • To make t^iis formula ( 15) valid

at the resonance u3» t00 as well, we have just to replace in'
/ Í"^ Yo "Y / * e Qn

°^^ain a representation of the resonance

peak of the absorption line, with its natural v/i&th given by J, v

( 20 )

( 21 )

( 22)«k1

¦i:46ir
-f'lJ'~ it

) w

val

0

( 18
ions,

A
fir

v

>0) and

express:

( 2

te o

on¿

0
From

ximai

regie

Of
*^

-
2

¦ ¡o in
0

1i

I
111

1

!".-!!".-!

I
111

1

i 1

n
0

Of
*^

-
2

¦ ¡o i

0
From

ximai

regie

( 2

te o

on¿

v

>0) and

express:

0

( 18
ions,

A
fir

it

) w

val

J'~ -f'l46iri:¦

1 k «
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4- Scattering Am plitude andScattering Cross-Section

When we take account of the radiation damping, the scattering

amplitude defined by eg. ( 19) also becomes conplexo.Tho imaginary part,asis

formally obvious by the definition, is related to the mechanism of

absorption and re-emission which, as we have seen, produces the scatte-

ring. In fact, from ( 9), (22) and ( 15) one finds for tbc imaginary

part a1a 1 of a t

(X
A s A 6-. =— 6~ . • (23 ) ...".

This is a very remarkable relation and it is instructive to look for

its physical meaning.

( 23 )

Considered alone the scattered wave would give rise to an

outward flux of radiation through every spherical surface centred on

the scatterer. But under stationary conditions there cannot be any not

flux through such a surface. The incoming wave, on the other hand,

has of course by itself no net flux through the sphere. There must

therefore be some interference between the incoming and the scattered

wave, which has the effect of cancelling the total flux of the scatte-

red wave. This will lead to a relation between the scattering cross
-

section and the scattering amplitude, and it turns out that this is

just equation (23)»

In ordor +o express the radial flux of the plane incoming

wave in a convenient way, let us decompose it into spherical Bessel

functions:

. ih^ZJ{¿Í^)^icooS)-y c {-kr)
y (24)

r

wKere

(24)

(25)

* The sign ""V" moans M has asymptotic form" •

*<xH£
r

>(.kr)(cocd)p\I

6"+-**mm
6~,±

11
± 6~,

+-**mm 6"

I \ (cocd)p (.kr) >
r

*<xH£

233



11

Tho formula ( 8 ) for the scattered wave is of the form

obviously j owing to the orthogonality of the zonal harmonics, the condi-

tion of no radial flux must hold for each partial wave separately» Thus,

in general, letting r
— -> *o*o ,we have to consider the radial flux of

a v/ave of the form

flr)*Aiti)&n(*<CiJJ&+a. S^f
(X( K J > kr i r

This flux is equal to

( where it suffices to retain the terms in "3/y* in "the derivative).

To see this, one has only to replace in the Poynting vector the magnetic

field "by its value -r^-r rot ¿Ü an<^ observe that only the term

4- ¿£í A£' *-
( where T^ is the unit vector

in the radial direction) contributes to the radial component of

C Kp[t A "rr YG'Í ¿ J . The last factor in *b arises from

the integration over angles. Computation gives

-m X' °-1) ¦
••'

The first term in is just c times the scattering cross-section

SIT of the partial wave. The second term is the result of the interfe
-

rence between the incident and the scattered wavej the condition O =? 0

shows how it cancels the outward flux of the scattered waves

(26)

(27)X

t +1
*•«
I

•ka
iA#TV <k

,1

0

I
j°~li^vn-vÚll

k
m*+[4— hJÍSz.

Mm
¦6

i c lkr

/ r
(coo 6píaa.

I
a.
I
pía (coo 6 i c lkr

/ r

¦6 — hJÍSz.
Mm[4m*+ Úll

k
i^vn-v °~l

I
j

0

,1
<kA#TV a

i k •

I

*•«
t +1

X
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For the total scattering cross-section ono gets from ( 27 )

<T -
JÜL cl -r J{£ Z Jm. o. ; (28 }

for a scalar field, the amplitude of which would be represented by

¿L* Clj, r\ UoOvJj the quantity a^ is just the imaginary part of

the forward amplitude, i.e. of its value for (j = 0. In the optical

case, we arrive, as expected, at the relation ( 23 ).

( 28 )

Bq. ( 26 ) suggests an extension of the fundamental rolatior

(28) to the more general situation when true absorption processes are

also possible. In this case, there is a net inward flux— cJwhich ( foi

the partial wave -CJ is equal to the number Cb/-. of

corresponding true absorption processes taking place inside the sphere

per unit time. This gives

-iiLki^=s-f t^ 5= «¡ ( 29 )

and
,^- ~to-^e

er¿ressing the most general relation between the imaginary -part of the

forward scattering amplitude and the total absorption cross-section»

( 29 )

( 30 )

From eg.( 27 )it is easy to derive the usual expression for

the scattering cross-section in terras of the phase-shift characteris-
tic of each partial scattered wave* This phase-shift I],-."being introduced

one obtains from ( 27) r

and therefore 4; * £

( 31 )
«

Sl{S1{X *t1ji1i 1UTTh

;SOa
iA"

3JAVI47T

>a
í

- AIL
4<*c

Og = la^|-e t<le
}

( 27) ,

*c

- AIL
4<

a
í >

47T JAVI 3

A"
a
i

SO ;

h UTT i1i 1X *t1j Sl{S1{ «
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CHAPTER II.- THEORY OF OPTICAL DISPERSION

I
-

The Correspondance Argume nt

The study of optical phenomena has been of decisive importance

for the discovery of the fundament 1 laws of quantum theory. Not only

was the existence of the quantum of action recognised by Piano! "i,i %]:

course of his investigation of the equilibrium energy distribution of

a radiation fieldj brought about the interaction with a system of

oscillators of given temperature 5 not only were the regularities of the

optical spectrum of hydrogen the crucial test of iohr's quantum postula-

tes j but in the hands of Kramers and Heisenberg, the theory of optical

dispersion supplied the clue to the definition oí proper quintals va-

riables and the establishments of the commutation laws governing their

algebra .
The oscillator model treated in the chapter is not

sufficiently refinsd to serve as a basis for establishing the corres-

pondence between classical and quintal variables. For this purpose , one

ought to develop the theory for a system of couplad oscillators, or
more generally for a system of charged particles of a multiply .periodic

character, ¿'or such a system, there exists a set of canonical^ conju-

gate angle and action variables, in terms of which all physical quanti-

ties pertaining to the system can be expressed. The action variables

J. are constants of the motion, and the angle variables are of the

form s, CO X t , where the proper frequencies w^ are obtained from
the energy £(j

f/
... J.)as 5 E / bIfc .One may write any

quantity
( for example the dipole moment of the system, as a multiple

Fourier series s

%-ni ly ir
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The rate of emission of radiation of frequency CJ^, __
h »T7

is then k

fl « |p? ,* (I)(1)

According to the quantum p». # tulates, such an emission process

is actually a transition "between two stationary states , the frequency

of the emitted radiation being given in terms of the energy difference

of the two states by the quantal relation»

"frwAE.
Now, if we define the stationary states by assigning to the action

variables values which are integral multiples of h ? the transition

is characterized by the difference between .two sets of integers?

The general, relation 8 E « T ix), ST. then leads for the

frequency to an exoression 4

h

v/hich is readily comparable to the classical one. The correspondence

thus established is between the classical set of integers t> ísr .-rj )
and the difference of two sets -tv» -m

' . Accordingly, the

quantal variable corresponding to the i\urier coefficient p ,
must be a function of the two sets \^Ti' ..i^^ |p Irr

*
4
-- 1nt/ anA -Ug

quantal formula for the emission rate is

the emission probability per unit time of a photon "RO^^1 is

therefore
J

P_ I /
, |-> i SÍ

—
*• j^tlí |<-'IpH>l •

(2)(2)im -fr-m
' |<w|?|-»«>| 1

!
1

i

31? x J
' '

««.•••*
'

¦•>v «i

"^ui.AE.

AI
fe«l ĥ-nrrh -nrr.fc.)Í7 ( h- 4,1,...^ )

SE «Z**\Sl*

•>v «i 31? x J
' '

««.•••*
'

¦

i
1 |<w|?|-»«>| 1

!
im -fr-m

'
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In the first applications of this correspondence argument, the quantal

variables were
-

faute de mieux -identified with the classical Fouxitr

coefficients. Moreover, the quantum conditions w ssirn Ir '"fe were

soon found to be generally incorrect and no rational way of improving

them suggested itself •

The double problem of finding the right definition of the quan-

tum numbers Tn and the rules of computation of the quantal variables
the

was only solved when, in dealing withdispersion theory of multiply

periodic systems, Heisenberg realized that one could set up a simple

rule for the multiplication of quantal variables, and that, once this

quantal algebra was introduced, all formal relations of classical me-

chanics could be taksi over into quantum theory and provided,, in parti-

cular, a general method for setting up the quantum conditions fixing

the stationary states.

We shall not retrace these steps, but rather than rescussitf^te

the once famous theory of multiply periodic systems, directly use the

quantal expressions now more familiar.

2
-

Natural Width of Emission Lines.

The notion of stationary state of definite energy introduced

by the quantum postulates is (except for the ground state) an ideali-

zation, inasmuch as the lack of definition of the energy arising from

the finite lijPe-time of the state is neglected. This neglect is justi-

fied by the smallness of the fine structure constant which gives the

strength of the interaction of the atomic system with the radiation

field.

In the next approximati on, the finite life-time of the state,

determined by the total probability of emission H. to other, lower-

lying states, gives rise to an effective distribution of the energy

around the ideal value E ,of the type

as may be seen by studying the time dependence of a general wave
-

(3)
de:4£ mML

JLTT
U»«(e)dE«U»«(e)dE« ML

JLTT
4£ m
de:
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function of energy EL , when the time factors of the eigenfunctions

<*is are taken of the form

The parameter £"*X is then found to have the expected value

the sum over the emission probabilities being extended over all the

lower lying levels.

The energy distribution (3) of the stationary state is thus of

the "dispersion" type, quite similar to the classical line shape 5 "but

in quantum theory we must attach a width to each state rather than to

each line {when only the ever 3. resent effect of radiation is conside-

red, it is called the "natural" width). However, the energy spread

of the states "between v/hich quantum transition occurs implies a s3; read

\\f (00) ¿to °^ '

the frequency of the emitted photon around the

frequency CO. 0
* which is immediately given by the "convolution" of

the energy distributions of the initial and final states
«MS

\fvM
-

} % (E) dE \áA E-* <*>) •

Wow, the distribution law (3) has the remarkable property of reprodu-

cing itself by convolution" 2 the shape of the emission line is there-

fore of the same type as in classical theory,, tiae line width being

simply the sum of the widths of the two status involved in the transi-

tions

y, , , i><T diuj (5)
Wi, w ttu>= -2—32—3 ¦-

— — (5)

x The formula

T (b/y)d*_ (t>Vir)
m

_ iM*')fa

on which this statement is based, is easily proved "by completing the
integration path Toy a semi-circle of infinite radius and applying th(

theorem of residues.

dv:
11* a~i

-i<e fc -iv*rjt

r =7 a

\fv (,0)
-

] % (E) ciE \^(E-* ol)
* 00

11* a~i

dv:
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3
-

Dispersion and Absorption

The polarizability of an atomic system in the ground state

(or any other stationary state) X is found to be given by the formula

*• V u>¿-( -w*' (6)

With
*M«Í»WmIU|*!*>!*

in which the summation extends over all stationary states £ «ex-

cepting the state X itself. This formula holds for any atomic system ,
in particular also for a single bound electron. If we compara it in

this case with the classical formula, we see that the, bound electron

is equivalent, in its reaction to an external electric field, with a

whole set of "virtual" classical oscillators of proprer frequencies

U)^« f
-

¿ach of these contributes with an oscillator strength

-f 9 such, however, that the total strength

Sq.(7) is the expression for the spectnescopic sum rule of Thomas and

Kuhn* Historically, it was this empirical relation which enabled

Heisenberg to set up the fundamental commutation rule between a posi-

tion coordinate X and its conjugate momentum m* • The left hand-

side is indeed identical with the diagonal element Sk \ state •fe of

the matrix
—

• [wx , )(J , as is immediately verified if one

observes that
'

<^|^|{> = -¿^fc, <M?lf>.

(6)

(7)

There is an obvious connexion "between the oscillator strength

pertaining to a given transition and the corresponding transition pro-

bability per unit time due to absorption or stimulated emission of
radiation of frequency cj>^. .In fact, the latter quantity is given

* TVia sum Tiilfl irsvp nnlv t.hfi riiafl-nn^l ñlflmfint nf thfi r.ommntatnr. Thfi

(8)

se The sum rule gaye only the diagonal element of the commutator. The
commutation law in its full operator form was soon found, however, by
Dirac and by Born and Jordan.

|j?li>!x
«is *u

hi'Lzl

UJ¿", -
U.)X

1
fr»

nti!"i!" nt
fr»

1 UJ¿", -
U.)X

zlhi'L

s *u «i |j?li>!x
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and Q(uS)di<jJ represents the density of radiation energy in the

frequency interval (cO
f

CO -f duj) .Therefore,

2™ MU oF^i^fef (9)

Now , we may formally write the formula (6) for the polarizability

as a Stieltjes integral instead of a sum over the stationary states*

this is indeed generally required to take account of the continuous

part of the spectrum» Instead of the oscillator strengths f ,
there appear distributions of the form""* ¿ (uS) da) s

CO

Of -¿ V { r(co>) c%— . (10)

The symbol \P indicates that the principal value of the integral is

meant? this corresponds to the fact that A* is the real part of

the complex polarizability

when the width i is sufficiently small. In fact, if we extend the

definition of -^(vjo')to negative values of o^
1 by

we may write approximately

which, in the limit 1,^0" , becomes

<}
~
I u>'-uj -3 '(12)

(9)

(10)

(11)

(12)
x Strictly speaking, we have a different distribution ffe

tu») for each
state. In the following, we shall only consider the ground state and
drop the index I? •

v/- vi

ICw'ldw'Auj1-t ( tC^)<Ju)'/W

iiu-i(i
" , becomes

~«« IJo*

limitthewhich, in

ííu»'),4(~oj') a

1(10') aro1
CO

6<o

"*«*%'-i-B**.3.rr\3.rr\ **. -i-B "*«*%'

6<o

CO

1(10') aro1

4(~oj') a ííu»'),

which, in the limit

-t ( tC^)<Ju)'/W

iiu-i(i
" , becomes

~«« IJo*

ICw'ldw'Auj1

v/- vi
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From eg.(9) w© can now derive a relation between the distribution of

oscillator strength ~J (uV) and the absorption cross-section CTfuj1) ,

For any transition frequency tow^-A* > "fc^e latter quantity is, by

definition, connected with the .q coefficient by the identity

aico^c-a-— 5. bM9Cto fcL)

whence, by

We notice that this relation gives to tha imaginary part of in eg*

(12) the expected value O (^>)/h. • c cLQe P significance of the rela-

tion (13) appears , however, from the following considerations, original-

ly put forward by Kramers in 1J27.
Consider the complex function

FM*™(^)-i 5: FoM+i^M (I4)

for a weakly dispersive medium. One has

r.M-ttftM , F4M-SS^. • (15)

Therefore, if we transform the integral (IO) for
Q

as we did that

for *t , making use of(ll), we soe from eq.(l3) that the following

relation holds between the real and the imaginary part of P (l-j) s

(cv/ *r'1 'fai'^to
"" (I6)—

00

This equation is strongly suggestive of a familiar property of analy-

tic functions. Assume that I*Yuí) is analytic and regular in the

upper half-plane of the complex variable UJ .

(13)

(14)

(15)

(16)—
»x>

ixJ
•- jjJ

«so

J
«tar

T
atF.M

X u>
F4 M*T*MH

1Fotu^ a»

F* (u»)^l(^M5m(iS) ~iFM*FM* m(iS) ~i 5 F* (u»)^l(^M

Fotu^ a» H
1T*M * F4 M X u>

F.M at
J

«tar

T

«so

ixJ
•- jjJ—

»x>
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The integral of F(co') ftjuj
—

cj) along the real' axis, avoiding the

point O by a small half-circle in the upper plane ? which is just

is then equal to that taken along any other line going from
—

©a

to -4- o¿> in the upper half-plane, and the latter may be made to

vanish by imposing suitable conditions on |MlO)I , e.g. that the

integral of Jr(u)M along any parallel to the real axis be bounded.

From the vanishing of the expression (17)? there follows not only eg.

(16), but also
oO

h^M *
Tf- i J—^qj (18)

(17)

(18)

The dispersion relations (16), (l8) may have important practical

applications ? inasmuch as they allow conclusions about either the

dispersion or the absorption of a medium at ai?.y .frequency whenever the

other property- is known over the whole frequency range. In particular

the dispersion relations may also be written in terms of the scatte-

ring amplitude

a ((( (oN
)« a o ( a>) 4c aA

(J)

related to F(w); according to eg.(9) of Chapter I, by

Combined with the relation(3o) of Ch-I between tho imaginary part a.

and the total absorption cross-section , they yield the complex ampli-

tude a } in terms of the cross-sections for .scattering ancl a"bf»orp-

tions , v iff /, \

CO

n Ti^ - "P f °*c C^'^
arc i u3 t:k^co

'

dU>'FAFAM
oO

—
O3

tü'-tj FM.-
i?¦¦i mininw hw^n ¦

Í. "»

~J TTCT

CK>

a (toN
)« q o (u>) 4ia. (u>)

n r(o\ --^ V f t C^'^
arc i u3 t:k^co

'

CK>

~J TTCT¦¦i mininw hw^n ¦

Í. "»

-
i? FM.tü'-tj—

O3

oO

FAFAM
dU>'
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and therefore the differential scattering cross-section in the forward

direction —- =
Q
-
fiai

A

in terms of these integrated cross-sections.

4
- Time Directedness of Propagation

In view of the importance of the dispersion relations, it is

desirable that they should "be founded on a less abstract principle

than the regularity of the analytic continuation of the dispersion

function t-"(Ui) into the upper half-plane» This mathematical property

has indeed a surprisingly simple and deep-lying physical interpretation,

which was stressed especially by Kronig. It is based on the remark that

a function satisfying the dispersion relations

fMe -^Pj {
(i9)

is the Fourier transform of a function of TTwhich vanishes, for "b <1T .
This may be seen by noting, that the Fourier transform of the step

function

O +or t> f

is

IT . . i ft

£ being a non-negative infinitesimal quantity. Hence, if ír |i-)
is any function with Fourier transform -j(uj} , the Fourier transform

of the function F^- (4.) * -f (i) CL^ (x) is given
by

"IL^^i Z3CI3
+íf-)£ J

(19)—
ey»

dio
0*

PiAcIM

«{a.+^a,! 42$»OoL^sc

O |or t> T

rr . . J ft

r" (u>; <2L sr
—

rr4 V i., ¦" i

—

-
-4ÍJ pf (w'> c

""'
t du3

'
.V' íp"0*!

oL^sc $»O2 «{a.+^a,! 4

IMc A
0*

Pi dio
—

ey»

244



22

The condition (19) is therefore necessary and sufficient for the equality

Nowy any quantity \ ("2.,"^) propagated along the jt direction

in our dispersive medium has a Fourier transform

= fo
(cv) c J c * .

if tho quantity fU,t)is such that (o.iVo for "t>O

transform i^fwjiSy in virtue of th¿ disporsion relations (l9) j regular

in the upper half-piano \ tho same is true of tho factor oxp i-i.l/^(w)-4j

"because of the dispersion relations(l6), (1^)? therefore? the form

of the function íuj) shows that the quantity ffí(4) vanishes for X^^ .
The argument can "be made in the opposite direction, and we thus conclude

that the dispersion relations are equivalent to the time— direct odne3B

of the phenomenon of propagation of the fields a wave-front (O, W

does not arrive at 3L > O "before a definite positive time 12,/b .
The universal character of tho last statement leads us to

expect that its direct connexion with disparsiofc relations, which we

have recognieed "by explicit derivation in electro-magnetic phenomena,

may also "be extended to other fields. The assumed existence of disper-

sion relations for a field whose structure is still imperfectly -'mown,

leads to consequences susceptible of experimental test, which may throw-

light on the theoretical formulation of the fundamental properties of

this field. The investigation of this aspect of scattering theory has

already proved its fruitfulness in some important cases and is still

actively pursued.

The rigorous formulation of the universal conditions of time-

directedness we have "boon discussing, and of the conditions under which

it is equivalent to the existence of dispersion relations, raises deli-
cate mathematical problems which are outside the scape of this elementary

ím»e;m °r |(+) = f^(í).
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Introduction,- TfcfJN is,-ihowever on- general point of -pis tamo logy in

connexion with it to v/hioh attention u&y be callad.

The condition which we havo denoted as that of "tim3-directedness"is

usually called the "causality" condition» This name was already

used, in the early days of relativity theory, in discussions of the

way in which a given succession of physical events, implying- motion

of particles or propagation of fields, is judged by different obser-

vers? it was then pointed out that the Lorentz transformation, since

it includes the principle of maximum velocity, satisfies the so-called

"causality" requirement. Yet, in spite of Einstein's authority, it

must be pointed out that the concept of causality is not appropriate

to the situation we are envisaging. Causality, as usually understood,

refers to the knowledge about a system at a certain time which can

be derived from the knowledge we have of it at some other time§ but

it applies to retrodictions as well as to predictions. At the atomic

scale at least, causal relations ar^ essentially reversible in times

the problem is rather how determinate our predictions or retrodictions

can be.

The question of the dircctodness of time is a different

ones what is the origin of the irreversible element inherent in our

conception of the "course" of any physicalero cess? 'That is the physi-

cal basis of our definition of "earlier" and "later"? An answer which

is still widely favoured was given by Boltzmann: according to him

the "arrow of time" is a thermodynamical effect. The direction from

earlier to later is that of increasing entropy of the part of the

universe we observe» Boltzmann, true to his mechanistic view of the

world, imagined that large parts of the universe may have "been brought

by some statistical fluctuation into states far removed from thermal
equilibrium; to an observer living in any one of these regions, there

willbo a trend towards equilibrium which will define the direction
of time 5 the observed lower limits for the time-scale of the evolution

and the size of the region taking part in it give an idea of the

importance of the "initial" fluctuation which has to be assumed. The
difficulty of this conception is that, if at any time a large
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fluctuation is present, it is overwhelmingly probable that it has

arisen from a still larger one.

In fact, it seems that timo-directe&ness is a much moro

fundamental feature of our description of the physical world, since

it already occurs at the scale of individual atomic processes. If,

following Bohr, we realize that physical concepts essentially refer

to the interaction "between some process in the external world and

some "observer" (which may be an appropriate material system under

our control), the question of time-directedness is seen in a new

light. Indeed, it is inherent in the very process of observation that

the perception or registration of any uvent, owing to the finite velo-

city of propagation of any interaction, has a definite time-rolation

to the event, which offers a natural basis for the definition of the

concepts of lfearlier" and "later". In other words, we say "by definition
(or convention) that a photon has buen emitted "by the object seen

at an earlier time than that at which it strikes our retina. From

this point of view, any statement of some definite time sequence of

events of the external world(e.g. the statement that the entropy of

the final state in any process is larger than that of the initial

state) is a physical law. The definition of the words
"

initial M and'"
final !1 in such statements of physical laws is sought at a deeper

levels it is immediately related to the general conception of physics

as a description of our interaction with the external world.
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CHAPTER III
-

SCATTERING OF PARTICLES BY

SHORT
-

RANGE POTENTIAL

1.- Introduction.

In nuclear physics, the scattering problem
-

and

its extension to the study of more complicated nuclear reactions-
occupies a central position. Bombardment of nuclei by suitable

nuclear projectiles has been and remains one of the most powerful

and versatile tools for the determination of tho properties of

the ground states and various states of excitation of tho nuclei
and the resulting elucidation of the principles governing nuclear
structure.

To gain an orientation into the methods by which

this problem may be treated, we shall first discuss the simplest

case of scattering of neutral scalar particle by a fixed poten
-

tial of limited range. This finds direct application to those

cases in which the interaction between a neutron and a scatterer

may be approximated by a short-range potential, as the neutron
-

proton scattering at not too high energy for each definite spin

configuration of the stystemj it also provides a starting point,
as we shall see, for the investigation of the o lastic scattering

of unpolarised neutrons by randomly oriented nuclei.

tte are looking for a stationary solution of th© wavo
-

equation

belonging to tho- energy £ E> k2k2 ,determined by the wave number
U of the incident plane wave. This solution is specified Ly the
condition that its asymptotic form, at large distances from the
centre of the scattering potential, must represent the superposi-
tion of an incoming plane wave and outgoing spherical waves

& Here and in the following, we take the quantity "h/ f 1~ H
(where M is the reduced mass of the neutron) as the unit of energy.

¦¿-oE--HE--H ¦¿-o
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Decomposition in partial waves of definite angular momentum,

with eigen functions PPp fcos^? , reduces the problem to one dimen-

sion. Having regard to the expansion of the plane wave

e
u'.L^iz^oTa^bju^) , (3)

it is convenient to write for our solution

i's £ íe (¿e*»j B(ti««t.(f) (4)

The radial components r 'fi?.. "^/v are determined

by the differential equation

í!A fv - gfe»u - v (»• )1% « o (5)

where "Wf»") represents, in our units, the scattering potentials

and they asymptotically reduce to outgoing sperical waves.

(2)

(3)

(4)

(5)

The short-range property of the potential allows us

to define an "outside" region *? > \\ in which the scattered

waves are essentially solutions of the field-free radial equation ,
i.e. linear conbinations of spherical Bessel functions. The com-

bination having the required asjrmptotic form is the spk¿.3?ss4i

Hankel function of the first kind

k, c*> »•»• /JL Hft cxi «. c
t

(6)

In the outside region, the total radial component is therefore

In the"scattering region" r*< \rQ , the wave T^1")/!is distorted
by the potential; it must be finite at the origin?

fe(o)fe (o) =O , (8)

(6)

(7)

(8)1o%(°)

#(kr)a
i

+¦(kr;kTas"4r«~t

I
c. -te**/

i*''VC^}<C*J w IjL
Y2r

o]?,v (^ )Ü£±ti.k*
r

4-

J^ (<**9Í%{*•)¦i?

*
}?t i«»*)Í¿kr>;; e hz+>)ctsr

IHz
c

tt (6)+t iki
leí\/"f"f í\/
t iki
le + tt (6)

IHz
c tsr c ;; e hz+>) ?t i«»*)Í¿kr>

}

*
¦i? J^ (<**9Í%{*•)

4-
r

k* Ü£±ti. v (^ ) ]?, o

C*J w IjL
Y2r

< C^} ''V
. -te**/
i* c

I

"4r«~t as T k (kr; +¦ a
i

(kr) #

%(°) o 1
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and go smoothly over into the outside solution "^o^t- <*t r«r^
These boundary conditions, with the notation

may be written

(10)

the accent denotes the derivative with respect to V* * Using the

relation

we may obtain from the conditions ( 10 )

(9)

(10)

(11)

(12)

The second of these equations may be regarded as fixing

the normalization of the interior solution (A in terms of the inci-

dent amplitude, or alternatively, giving the value of the latter

quantity which corresponds to any normalization of <ptf «

I=IWp nh ) ?t)^/t<r'o>- »fein,;i*) fi-s.^ruj

O^-^^kj^K)- f¿ckre >J

iv
fa ¿

1X «Pj^ojM+

)kf¿ (r;¡>)¦+•

C»)»2(X)i'X^(X)
•

fX
AA

Xf

•

'X^(X) i (X) 2 » C»)

¦+• kf¿ (r;¡>) )

+ X «Pj^ojM 1

fa ¿ v i

O^-^^kj^K)- f¿ckre >J
I=IWp nh ) ?t)^/t<r'o>- »fein,;i*) fi-s.^ruj
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The scattering phenomenon is essentially determined by the ratio

of the scattering and incident amplitudes Ci^ A, i.e., by the

value of the logarithmic derivative. <-p /; /*fá oí> Q interior

solution at the boundary of the scattering region. The differen
-

tial scattering cross-section ¿Tlßjdíí iis given by

<T (6) -I.!C (iCti)P ftos 0] at I*. (13)
kle t [

-

The total cross-section is directly expressadj as we have seen,

by the imaginary part of the forward scattering amplitude OM*f^^)

with our normalization, we get

(14)

(13)

(14)

At this stage, the discussion may "be pursued in two different

directions. Either one endeavours to compute the interior solution

<p£ ,or at least its logarithmic derivative, in order to

obtain numerical values for the cross-sections corresponding

to a given form of potential: various methods of approximation

have been devised for this purpose. Or one tries to study the

general properties of the scattering amplitudes CX-n /] ,without

specifying the form of the potential, with a view to understanding

the salient features of the scattering cross-sections, especially

as

V

1 Ik t c
cr(e)cr(e)

k t c 1 I

V

as
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c resonances they exhibit in their variation with the energy

of the incident particle. It is this last aspect of the problem

which willoccupy us in the follováng»

2.
-

Scattering by an Impenetrable Sphere.

Before entering into the subject,howevor f we shall treat

the singular case of scattering "by an impenetrable sphere, which

would correspond to a potential infinitely repulsive within a

sphere of radius K. This may serve as a crude picture of the be-

haviour of a nucleus for slow neutrons \ but the chief reason for

considering this problem is that in the general analysis of the

scattering amplitude for any short-rauge potential, a term .formality

identical to the scattering amplitude for an impenetrable sphere

plays an important part»

In this case the interior solution r) reduces to

zero, and the boundary conditions (12) therefore yield(provided

only that the derivative <£> Í v~
% k } does not vanish at r-R )

This formula contains the full solution of the profcleo» It is not

necessary for our purpose to develop its implications^ "but for the

sake of illustrating the usual type of argument in the discussion

of scattering problems, as well as for their own interest, we shall

consider in some detail the limiting cases of small and large

values of i< R •

(15)(l»f?)¦Jfe.i
i-!":1

3.c
I

/»,/»,

3.c
I i-!":1

¦Jfe.i (l»f?)

252



30

Por small values of its argument, the Besse. function Xf*)

varies a 8 X,! .Using the expression

Ht#J <«)*.Jf^ix» -+<">*J.(e,l)UJ (16)

for the Hankel function of index ( 6 + ¿ ), we therefor see that
the real part ( with negative sign) of the scattering aoplitudz

&-g/i reduces approximately to IJg+L <*3/-JL(fct4'*OC)l
which is proportional to .x: IUI . Tho contributions

~
P

to the scattering cross-section from the successive partial waves
thus decrease rapidly as t increases, and only the S

-
wave scat-

tering ( <!*o ) is important. For it, the scattering amplitude

is

a, ¦

-ikP •
i—«a31 sr ~ ¦'¦ t: psin kP (17)

and the scattering cross- section accordingly

**$•*•** (18)

In the limit of very small energies of the scattered particles,
this "been™»*» &~ v.. u*r h2h 2

-p^,^. 4> ji.°
» tovr iac:es **3 ¿-eometrical cross-

section of the sDhe-pft-

(16)

(17)

(18)k f, s!r>aí',"1J<£

r

PAkcu.

-V (-1X)) ,4í(3X)HH X)) ,4í(3X) -V (-1

cu. AkP
r

<£ J ',"1, s!r>aík f
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If XX»1, the main contribution to the scattering

process will come from the partial waves for which <- CX X :

for the other partial waves correspond to classical trajectories

remaining outside the scattering sphere -(their distance of nearest

approach to the centre is given "by V
'''^ ty k )• For the partial

waves of low angular momentum, we may use the asymptotic form of

the Bessel and Hankel functions, valid wh?n the modulus of the

argument is much larger than that of the index ( itself » \ )s

4 (X) sinix -££ ) , ft r (x)?
a+f)~'1^ (-19)

We thus get for the total cross-section tb.o estimate

¦ífcKJ

This can be written

' ~
T* L J »

where <-' denote the sums ¿_. {- ¿ • + '/ extended over

the even and odd values of f' , respectively, from 0 to the

nearest integer (kfcj to \<li .For the large values of kR ,
these two sums are approximately equal, and their common value is

JL U3'
% therefore.

2.
' '

<T ** ¿TT R2R 2 ( Í<^ >> Í) (20)

(l9)

(20)1)»kV.R2R 2
TT*£•»

J]cos'-kR¿w
¦h¿"W.wi[HE

k1
a

(26+j)c
1?Wfcí<T

¦LkKÍ

A,,-,

Jsi»(x-£? )si»(x-£? ) J

A,,-,

¦LkKÍ

<T Wfcí 1?
c (26+j)

a HE
k1[¿"W.wi ¦h

¿w cos'-kR ] J

*£•» TT R2R 2 kV. » 1)

254



32

It is at first sight surprising that one should get twice

the geometrical cross-section in the limit in which one expects

to find the classical particle behaviour. Ure are dealing, however,

with one of the exceptional cases of "optical" phenomena in which

diffraction effects modify the geometrical shadow even in the limit of

variehingly . small wave-length» The diffraction cross-section, which

has to ba added to the geometrical cross-section of the "opaque"

sphere, is immediately found in this case by an application of Ba-

binet's principle. The latter tells us that the intensity of

Fraunhofer diffraction by an opaque disk is th9same as that by the

complementary circular opening in an infinite opaque diaphragm.

But since all the waves passing through the opening aro diffracted,

the corresponding cross-section is just the geometrical one.' 1

its This simple argument is restricted to the case of large values
of kR, like Babinet's principle on which it rests. In fact the
derivation of this principle requires the &ügumptions, approximate-
ly fulfilled only if WR*fcl, that on the surface alternatively cove-
red "by the two complementary scatterers, the amplitudes of the wa-
ves vanish at any point occupied by scattering matter and keep their
undisturbed values at every point where no such matter is present»
Consider, then,tha jgenaral relation, expressed by Huygens'princi

-
pie, between the amplitude a(-P ) at any point P and the values
a(P f) of the amplitude on any surface £ dividing space into an"

external M region containing ? and an
"

internal
"

region? by
means of the Green's function G ( P'P ) which vanishes everywhere
on £ , this relation may be written as

rx(F) =/'<*<!?•) gro-ip, Q CP',P >. fTp. J £?, ,
—

y
where Hy, denotes the unit vector of the ezbmel normal at P''
This relation is rigorously satisfied*, i..i the absence of an;?: scat-
terer on L ,by the undisturbed amplitude :1O. On the above assum-
ptions we have also for the amplitudes ai ya2 corresponding to the
two complementary scatterers on Xl

«.(?) sía^^Gí^^.V d 3 t
, (U«^)

«• see page 33
-

n.(p), fa(v') r,r,if) qd?',r>.F?;.d£ pf
,

¿j

«• see page 33
-
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It is true that the angles of deflexion of the rays

diffracted near the surface of the sphere are of the order (kR)

and thus tend to zero in the limit of vanishing wave-length. But

at the same time the diffracted flux contained in a cone with

this aperture increases in such a way that it gives a finite

contribution to the cross-section, approximately the sane as that

of the classically reflected part of the incident beam* This may

be seen by analyzing the contribution of smell-angle deflections

to the scattering by means of the expression (l.3) for the differen-

tial cross-section. To the same approximation as above, this

expression becomes

where the functions p (()). O i*)o.re defined as the sums

¿j^lX+l)lrD
(cxis-^) extended over the eren and odd values of t ,

respectively, from O \o |k?tj . Por ¿mall angles 6 ,
and large values of kH , one may again disregard the difference

between O and O and take them both equal to l/2the sum O{s)

extended over all values of ¿ • Then

Now, for small (? , the function ¿)**?can be put into a simple

closed form, first indicated by Verge lc.nd,± One has

... nzv

where )']t , £ L axe the uncovered parts of D in eaoh case. Therefore
to that approximation,

which is the general form of Babinet's principle. In the special
case of Fraunhofer diffraction, when a collecting lens is placed
behind the scatterer, we have in its local plane (excluding the
focus itself) táQ ss 0 and, therefore, equality at every point of the
intensities U"} 2̂ . !a* f5f5,¿ H.Wergeland, Dan.Mat.fys.Medd. 23 (1945) N°l4

k"\ i

críe) o ii1'* -
4k5k

5
-
iti, c J

Te (c^t).2l!(-2sinlJ)-pf(i.)

a., *• a a » A¿
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10/
with p

f (1)
-
1

i w* pe ~

(as one readily finds by using a recurrence formula for Legendre

polynomials and their derivatives), kn estimate of the sums over

C for large fe; v will "be obtained "by replacing all factors of the

form|££p)by t • This gives

which is V/ergeland's formula. The total contribution to the

scattering cross-section from a cone of aperture 6, is accordingly

ff; = J ff-(e) dLil = v a £j2:
f J^lJ

1
dL(z 4)

The integral in eq.(2l) is easily evaluated, using recurrence
formula,© for Bessel functions and their derivatives: one get3

Por 2#2#
, one may take, for instance, the value corresponding to the

t

first zero of the function SiF), ¿». -' c*G,;S 3. S3 f kR)

The value of the coefficient of 17 R in ecL.(22) is then & 0% $

it is insensitive to the choice of 2.,, and actually tends to unity

as ¿*, increases indefinitely.

(21)

(22)

ú H.Wergeland, Dan Mat.fys Medd.23(1945) If014.

|

j
2-

z.)(
5.

J.iLsttß*c.

2:¿kH Sin—'

,1 J]]
l

«r;

10/"P, (i)
--
i

Cibi rJL(- 3, 5-.-X 9
_-l-l!^

*•• r- > ('a + 1)1

• \ X )
—

:
—

g

«r; ]
l

,1 J]

2:¿kH Sin—'

c. sttß* Li
5.

J. ( z.)
2- |

j
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3.- Green's Function and Integral Equation for the
Scattering Problem.

After this digression let us return to our scattering

problem. As a preparation to our main task
-

the analysis of the
resonances

-
let us first derive, on the general lines of the

well-known theory of Sturm
-

Lionville problems, the integral

equation for scattering, which is equivalent to the differential
equation-(5)« The latter, written as

A.%
'[£« ?k"- ]?z* '*<">% i (23)

may formally be regarded as an inhomogeneous equation with the

"source function" 1.7" (r) t(\\x*)*V.\t;gena:Wfcl solution of this

equation is obtained by constructing a particular solution and
adding to it any solution of the homogeneous equation, i.e. any
linear combination of our functions A \kr) } n« (kr) *

We want the solution tp corresponding to the superposition of
the incoming plane wave, represented by its radial component

J'(kr), and the scattered wave, characterized by the conditions
that it vanish at the origin and behave asymptotically as an

outgoing wave.

(23)

To find this scattered wave, we first construct the Green's
function satisfying the same "boundary conditions. The Green's
function. Q^TyT 1) is, therefore, a linear combination of the

solutions of the homogeneous equation $J kr)a.nd h¿>(kp), which
satisfy the first and second condition, respectively. Itmust
"be such that the solution representing the scattered wave is

connected with the source function F(r) by

J-*-.I'Pe!<*-4
Ldr?

"3A-feA-fe "3
Ldr?

4 !<*- I'Pe -*-. J

258



36

This means that D G, (r, r1)r 1 ) must behave like the distribution

d (r-r1 ) ( i.e«that G^ryr1 ) is the solution for a point source

at r1)»r 1 )» Again, by a simple application of Green's theorem, this

behaviour implies that the first derivative dG,,( r, r1)/r 1 )/ dr. is

discontinuous at r=r' like the step function B(r-r!)> defined

as

í 1 fo»~ X>O ;

E(X)= (24)

( o [for Ki<^ *

Now, for any two solutions v, v of D v = 0, one has vvf-uf v¦

const. eg..(11) is an example of this, for which the constant

is just ik. It is clear, therefore, that the required behaviour

of GAG A (r, r1)r 1) willbe secured by putting

We may now write down the required solution of eg.(23) in the

form

%(r>)=llM WG^Vi^fH^', (26)

which is the integral eque^tion of the scattering problem» It gets

a somewhat simpler form ifwe specify the normalization of <¿ (r),'
i."

and thereby, fix the constant IoIo It is convenient to normalise

(£> (r) by the condition independent of X that for r-*'J it reduces

to k v v
'
j^(krj, i.e.
I

?u> Jfklll - i , (¿7)
v~>o r-+n

"
1.3 (¿f>-O

'

This gives

í .£+. _L í£ {í)
{kr')'V(rf) cp ívM d*'

(24)

(25)

(26)

(27)
{¿í>-|"j

i9:

+.TíM
if

CD (y) =

)

< o

joy

I

1

O

JE(3C) s

í 9l+.X. j£i0(kt"!) "V(rf) LP (VM( VM dr
'

E(3C) s J
1

O

joy

I
< o

)

CD (y) = TíM
if

+.

9: i
{¿í>-|"j
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and eg.(26) may be rewritten as

f"
% {f)=T^ tcM+jW™lr<i%lr>)**'

i (28)
o

with

Qgt^.r'),i.¡^(k^Jtkr'J - iijj(fcr')JV)J (29)

¿t.k [ t ? t i- J

since

j(x}«4-fVi*» » (3o)

«

Using the expression (28) for one readily derives from the

conditions (12) the following formula for the scattering amplitude»

The formulae (2B),(3l) might form the basis of an iteration

procedure for the explicit computation of the scattering cross-

dactions; in our discussion, however, they willbe helpful in

showing explicitly how the scattering amplitude depends on the

spatial extension of the scattering potential.

(28)

(29)

(30)

(31)

Before we leave this aspect of the prot3oai, let us

observe that also the bound states of the system can be determined

by an integral equation similar to eg.(26). These states ct rrespond

to negative values of the energy B, i.e. to purely imaginary

values of k(« i<)• c eigenfunctions <Í\St 9 X Jsatisfy, by the

same argument as above, the integral equation

4»1
O.t d*-'/Üt^vlf)^')ÍU*

jf

¿t.k t ' r t i- J
«V

f2W) A <M») A )
QQíi*>r')=

J
in (?) r

*
. Zjkr) +in (?) r

*
. Zjkr) +

J

QQíi*>r')= f2W) A <M») A )

«V

¿t.k t ' r t i- J

f j

ÍU*'/Üt^vlf)^')d*-O.t

1 4»
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in which the potential v(r) has been written as the product

Vw(r) of a suitably normalized function w(r) with a"strength

parameter" V$ the Green's function i^ (r,r') is obtained from

G^TjT*)» ecL»(2s)> by the substitution Ik*i>* . The boundary

condition at infinity, that the eigenfunctions vanish, is

satisfied provided that is specified to be non-negative. The

function Ip (r,r f ) is then negative definite; on the other hand ,
if the potential has the same sign for all r, we may always take

w(r) positive, the attractive or repulsive character of the fore©

being indicated by the sign of V»

(32)

According to the theory of integral equations of Fredhola

type, the equation(32), for any fixed X , has in general an
infinite sequence of eigensolutions, "belonging to oigenvalues

V.(ikl,2,....) of the potential strength V, which are necessa-
rily negative (or zero). In other words, we have a bound state

2of energy
- X only if the potential is attractive and has a

definite strength V. ( X) (i¦I, 2,•••».)• This way of looking

at the eigenvalue problem is of practical interest when one knowß,

empirically, the values of the binding energy, but not the strength

of the potential! a famous example is that of the ground state

of the deuteron.

Ifthe V. ( X ) have "been determined for all x , one may-

reverse the question and ask for the eigenvalues of >c "belonging

to a given potential strength V* In this respect, an essor.tial t.

difference arises according as the potential has a finite or

infinite range. In the first case y there corresponds to the

limiting value X.= 0 a sequence of distinct eigenvalues V. (0),
the so-called"critical streng¿hs". In a graphical representation,

the curves V.( X ) start from a sequence of points on the V-azis
and, obviously, increase monotonicálly withitfdrbasing X •

{r,t)w^r)e^'-X)^:
,©a»

v&cv***&cv***v
,©a»

{r,t)w^r)e^'-X)^:
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Fig.l

Fig.2
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A parallel to the X
-

axis, corresponding to a given strength

V, willaccordingly only cut a finite number &f, V ( 3C )-curves:

thus, to any potential strength V there is only a finite number

of bound states. To study the influence of increasing range f>
of the potential, the only interesting case to consider is that

of a potential w ( r/f> ) varying as 1/r for small r ( a potential

finite at r = 0 would just be flattened out when J3
—* <2iO ).

From simple considerations of dimensions, it is clear from the

form of eg..(23) or (32) that in/ case just stated the critical

strengths vary as 1/p : when the range becomes infinite, they

all collapse to the value 0. All curves V.( x ) accordingly

start from the origin, and every parallel to the 0C -axis outs

them alls for every strength there is an i:x4.':lnite sequence of

"hmind states»

The situation is well illustrated "by
(
the case .of the

Hulthén potential

for which one finds

The figure (page 39) shows ho<" the case of finite r goes over,

when P—f «o , into the "Balmer formula".

± See L.Eosenfeld, Nuclear Forces (Amsterdam, l94B) 22,

w(2~\ -. 4—¦
-

, v
_ Ivi.Si
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4.- Characterization of the Resonances.

The occurrence of a maximum of the scattering

cross-section for a certain value of the energy of the incident

particle is an indication that at this energy there is a state of

the system of the scatterer plus parricle which-while not being

stationary like the true bound states-partakes to some extent

of the character of the latter; the particle impinging with this

energy has an appreciable probability, before being scattered,

of remaining quasibound within the range of the (attractive)

potential during a time much longer than that required for just

moving across the scattering region. The ultimate aim of our

analysis is to derive a "dispersion formule," for the scattering

cross-section, in which the contributions from the various quasi-

stationary or virtual states of the system appear explicitly

and exhibit the expected resonance behaviour»

Por a first orientation it is natural to

follow the analogy of optical dispersion, although it must "be

realized at the outset that the sniallness of the electromagnetic

coupling confers to the optical scattering problem a simplicity

which is
-
entirely lacking in the nuclear case. The virtual

states which produce the optical resonances are the "excited

states" of the atomic scatterer in which the impinging photon

has been absorbed. Owing to the smallness of the interaction

between the atomic scatterer and the radiation field, these

excited states of the atom may be treated, to a first approxima-

tion, as stationary, and then define a complete orthoncrmal set

of eigenfunctions |r£> , with eigenvalues R_-, which form a

basis for the description of the soatterer in the absence cf free

photons. Moreover, the calculation of the scattered amplitude

may be carried out» by perturbation methods. It is thus found,

in the usual way x, that the scattering amplitude a ( 0 ), is

proportional to the matrix element, between initial and final

state, of the operator

-4 See J^.Dirae, The principles of quantum mechanics, (Oxford,1930
59.50 (2nd 8d1(Í935)" 54-55. 3rd.3d.

H + Z H»t n><M.Ü»
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where EL is the interaction operator, and E a EgE
q

+ ¿^ is the

total energy of the scattering state, given by the sum of the

initial energy E of the scatterer and the energy f^of the

impinging photon. A more refined approximation, when E ie very

close to one of the excited states B , leads to the replacement,

in this formula, of E by the complex quantity Er
-

1/2 In, with

Pn >o ( we disregard the shift of the real part). Thus account

is taken of the finite life-time of the excited states s

fho ©igenfunction )«*£> is multiplied "by a factor

decavini: exponentially in the course of time.

The transposition of this theory to our case of scattering

by a short range potential of the nuclear type is by no means

straighiforwasd.ln view of the large interactions involved, we

must expect the widths of the resonances to be much larger,

in relation to the resonance energies, than in the optical case:

the whole framework of optical dispersion theory collapses, and

to begin with, the very definition of the virtual states raises

a delicate problem.

We may observe that the bound states appear as solutions

of an extension of the general eg.(26) to purely imaginary values
of the parameter k with the added condition I¦0, which means
that in these states there is no freo particle. The above consi—

rations about the character of the virtual states suggest a

further extension of the interpretation of the scattering equation

(26) to include solutions corresponding to complex values of the
parameter fc; and the same condition I=o seems quite appropriate

to characterize the virtual states as well as the true bound
states.

In its exiplicit form, given by eg»( 12) the equation

I» O appears as a boundary condition imposed on the logarithmi

doi<íva+.ivñ n-f +.hR solutions
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This determines a set of solutions iP {r. to

complex values of k, k so( +ifn
, and therefore also, in

general, to complex values of

In fact, the only stationary states of the system, i.e. those
p

for which k". is real, are those already mentioned, which corres-

pond to k' either real ( scattering states, IÚ 0) or purely

imaginary (bound states).

(33)

2 its
Since the wave equation (23) only depends on k

'

solutions are even functions of the variable k« The solutions

of eg.(26), with the normalization (27) ? have this property,

since the equation then takes the equivalent form ( 28), which

is invariant for a change of sign of fe« The eigenfunctions of

the "bound states, solutions of eg. (32), are likewise independent

of the sign of X > since the equation, combined with the condition

Is 0, may be put into the same form as eq.-(2§). Moreover, the

non-stationary states occur in pairs corresponding to values

ÍC and k".. of k, since the solution
n Vi

also satisfies the condition (33), as is easily verified by using

simple properties of the Hankel functions. As a result, one finds

that the imaginery part V of k (and -k; is necessarily nega-
tn n n

tive(provided that the real part 0( n is $0- )• For, by a familiar

procedure, starting from

(fHIIi&n('.ft

ft*g)'fiitloj(
f

)A(•",ft

[cf? (r,^)3* -
<f* < rr**)

ft (•", A )
f

('fiitlojft*g)

ft ('. i&nI fHI
(
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and taking account of boundary condition ( 33) > one getss

and one can show that the factor between brackets has the form

with positive coefficients Mfj N* ,

The "eigenvalues" of
**

defined by the condition X
— O

thus consist of the set of pairs of complex valúas it&t^¿ir " Pn
withFn^-^ ? and a number, finite as we have seen, of purely-

imaginary values 4 M^,^Íy*f&*}Of» c non-stationary states with

a positive real part of the eigenvalue K^ decay in time at the

rate **% *> , with J^ s. 4 J "their "eigenfunctions"

accordingly behave at large distance like outgoing waves of

increasing amplitude ¿ ntn tp
* **'

« The associated solutions,
with eigenvalues «. k , have exactly the same behaviour, since

their time factor is the complex conjugate of the original one»
The exponential increase of the amplitude with distance, which

contrasts so strikingly with the behaviour? of the be ¦v.id Piste,

seems at first sight surprising, but id e&eily understood. This

is an old paradox, well known from Gamow f & theory of til-radioactivi-
ty, where it was encountered for the first times since particles

are continually emitted from the centre and move aw&y with the

radial velocity v = oC/r»/ , the density at any distance r

(!>.-<•. ) *•= W'-MIwm "{fiSi

N f
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will be determined at any time t by the value which the

central density had at time {•- £ j and this was larger than

that at time tby factor exp.r*P ft
-^ pO ¦ exp O l^nlrlI »" '— « *»? I Nil/-

The set of virtual states defined by the». condition
I» 0 has the drawback, however, that the corresponding eigen-

functions are not orthogonal in the interval ( o,r )$ in fact,

one finds in the usual way-
-'J T.T- X *> 1% <fn,J

r.r
(We have put for brevity t£> tr

{{VJ «í# •j • ihe factor

within square brackets does not vanish because the boundary

condition (33) gives to the logarithmic derivative CP /¿n
at r m r a value depending on k • This remark suggests a possi

ble remedy í would itbe possible to modify the boundary condi-*
tion? in such a way that it fixes the logarithmic derivative

independently of k , without altering too much the essential

features of the virtual states?

The answer proposed by Kapur and Peierls consists

in taking, in the right-hand side of the eg.(33) the Hankel

functions for a constant argument kr instead of k r , k being
a real parameter: of course, when the corresponding set of

virtual states will"be applied to the solution of the scatte-

ring problem, the parameter k willbe identified with the wave
number of the incident wave* The virtual states defined by the
Kapur-Peierls form an orthogonal set, at least in the sence*

*fL*f r 9 rather than the usual

| <J> W dr> 9 vanishes for Ky^**»No attempt has

ever been made to investigate under what conditions this set

may also be completes it will simply be assumed that it has

this essential property. The price to pay for this advantage,

á P.L.Kapur and R.Peierls, Proc.Roy Soc# A 166(1938) 277»

-
"']T.T- V T- L<frt <fMJ
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however, is that the definition of the set of virtual states

determining the resonances now depends on the ernergy of the

impinging particle: each scattering state has its own set of

virtual states, whose energies and widths willvary with the

energy of the scattering process. It is worth while, neverthe-

less, to examine Kapur and Peierl !s treatment in some detail,

so as to assess more prec isely its advantages and shortcomings.

We shall then come back to the more satisfactory boundary con-

dition (33) and develop on its basis an appropriate method of

discussion of the resonance properties.
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CHAPTER IV. SCATTERING OF PARTICLES BYSHORT RANGE POTENTIAL
(continued)

I.
-

Dispersion Theory of Kapur and Peierls.

jAn exposition of the paper "by these authors quoted

above. This theory has the following short comings;

(a) it gives a simple dispersion formula only for

narrow levels of low energy,

(b) the position of the resonances, as well as the

magnitude of their contribution, compared with that asoribed to

resonance scattering, depends sensitively on the choice of the

limit r¿ of the scattering region.*

2.
-

Dispersion Theory of Humblet.

J.Humblet, Mémoires in -8° de la Soc.Roy. des Sciencae

de Liége, 12 (1952) N° 4
fThis theory is "based on boundary condition (33)» The

resonance behaviour is obtained as a Hittag-. Leffler expansion

of the scattering amplitude* The drawbacks (a) and (b) are

eliminated. The contribution from potential scattering is much

reduced* The interference between itand the resonances is
incorporated in the latter, where it appears in the asymmetrical

form of the numerators of the resonance terms.]
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PART II- ELEMENTARY PARTICLES

CHAPTER I. FERMIONS AND BOSONS.

I.- Introduction.*•" INTRODUCTION« Quantum theory has brought a new conception

of matter. The old dualism of matter and force is eliminated,

since it is recognised that every
"

agent M can occur under two
a

aspects: as "particle", in which it is//source of other agents

and acted upon by them, and as "field" transmitting force between

other agents. The electromagnetic agent is known classically

as field created by charged particles and acting jtpon themj in its

particle aspect, as photon, it is the source of pair fields and

is acted upon by such fields. Electrons are observed in the clas*-

sical limit as charged partidas. They appear in their field

aspect either as pair fields or in producing chemical forces.

The two aspects are complementarity^:»..* *.mutually

exclusive s if an agent acts as a field in some situation, it

cannot "be isolated as particle without destroying the situation.

Prom this complementarity, there follows an important relation

between the mass of the particle and the range of the force

transmitted "by the associated field: the range is of the order
of the "Compton wave-length" , where M is the mass»

This relation led Yukawa to the prediction of the existence of

mesons as the particle aspect of the nuclear field»

All the agents are coupled together; the fundamental

problem is thus again twofold: we must try to determine the

characteristics of the "elementary" agents and define their

mutual couplings.

The concept "elementary" at the present stage is used

in the same pragmatic sense as by the chemists. The eventual

reduction of the number of elementary agents is a matter to be

decided by experience. Speculative"principles" of structure may

inspire nerc experiments 5 but they may just as well lead us astray.

271



49

Lavoisier of structure for acids prevented for some
time the recognition of "dephlogisticated muriatic acid

"
as the

element chlorine. The early principle of structure according to

which nuclei are composed of protons and electrons created the

"paradox of the N spin", which could only be solved, after
the discovery of the neutron, by discarding the principle and

replacing it by a better founded one.

2.- Fermions and Bosons.2.- EEBMONS _ AND BOSONS. The most important distinction enabling

a classification of the elementary agents is that between fermirons*

and bosons, i.e. agents obeying the exclusion principle and

those forming entirely symmetrical configurations.

Intermediate configurations are "by no means oxcludedj

they occur for instance in atomic and molecular systems when the

spin- orbit coupling may be neglected. There is no decisive ar-
ti

gument to exclude such configurations at the level of 'Elementary

agents. One argument against their occurrence is that they contain

an essential degeneracy. The symmetrical and the antisymmot:cical

configuration are the only non degenerate ones.

Boson fields , as observable .. are quantized in the
canonical way. It is the©possible to define non-nermitian creation

and annihilation operators in terms of the field variables, and

they are found to obey commutation rules of the type

[a; ,a k J _= [a-i,ak]» o , [a.-. ,aj= Slk

with the minus sign.

For Fermi ont fields, the quantization is not canonical,

since the field variables are not observables, Formally, one may

imitate the procedure developed for Bosons, with the difference
that the commutatoi^v. eure(arbitrarily replaced by antioommutators.
The operators O, , Ct are then seen to have the properties v*

creation and annihilation operators in harmony with the exclusion

ir Charged.bosons are described by pairs of harndtian variables»

[a; ,akJ_ =[a.i,a*],c , [a.; ,ak]• SIMSlM
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principié. This is often called "second quantization" because

the Fermi on > field itself is (rightly) regarded as the product

of a first (legitimate) quantization of classical dynamics. This

is unneccessarily confusing. The introduction of the operators

Of* OL is not a quantization * but just a definition of convenient

operators related to the number variables N » <% Cbin a way

compatible with the exclusion principle. The latter is indepen-

dent of the rules of quantization.

The construction of the operators C¿í> O is easily-

affected by the technique of dichotomy c variables. For this

technique, see Fuelear Forces 4*l» Every time there is a dis
-

tinction between two alternatives, a "dichotomy", it can be

expressed by a specific dichotomic variable. This entails the

introduction of a "dichotomic space", characterized by 3 matrices

CT CH 5
¡XT * such that the most g-r*\~*ldichotomic varia-

ble in this space is . u•n , where n is ansr. it'ra^r "mit

vector. The group of unitary transformations of dichotomic space

is isomorphous with the rotation group in 3 dimensional space.

Thus, owing to the exclusion principle, the number
variable N for any state of the Fermi on field is associated

with a dichotomic variable \)
? :

The annihilation operator

w./ \°l

\ o 1. /
¿

W./ \°i
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is thus

¦ loo; z ' ¿/

and the creation'
'
ioperator accordingly

One verifies immediately the anti commutation rule

as well as CI uai ( «- T '
1 ¿ '—| l- o >

For a set of Fermiont' states, enumerai;ed in a definite order,

one builds up direct products of operators O. , 1 and

>L , the last being the same as (—1) thus:
«^

<X; -
vl.,v

1., x v- x x.a; a 1 X 1 x— v 0 ;^

OL. s xilx X <Xi xlxix.,,.:,

We have "Vn a.*v
"- Cti. <md Cl; V^ a~ Gl

One can then check all anticommutation rules.

3.
- Fermion families3.
- Fermi on families. The question arises, whether the

operators belonging to different Fermion fields should be

assumed to anticommute or to commute. In fact, one may even

¦ loo; ¿ J ¿/

o>^±(^ ~'U)

a (X-+- Ct
+

0L ar 1

<X; -
vl.,v

1., x v- x x.a; a 1 X 1 x— v 0 ;^

OL. s xilx X <Xi xlxix.,,.:,
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ask the question when considering different states of the same

Fermi on field. The question was raised with respect to electrons

with spin up and spin down: in this case (assuming only direct,

non relativistic interactions of the type ]L> CL: CX» CL»a\*\,\L\t )

one can show that it is immaterial which alternative one chooses;

the exclusion principle may be formulated for the two"species"

separately, or for the one species differenciated by the spin

variable, \vit'b - exactly the same result. If the operators

pertaining to the two states. Q. , CX^ are assumed to

anticommute, then the equivalent operators

Jq -~ Q, (the sum pertains to the

possibility of a sot of

by , \
'
-, states defined by other

2*( > 2 ... vvariables)

will commute: j kjjtXiJj^.O cíhis transformation

was given by Klein.

However, it has "ce en pointed out by Umezawa,

Podolanski and Oneda ( Proc.Phys.Soc. A.6_B (1955) 503) that the

possibility of such an indifferent choice is severely limited.

In general the Klein transformation introduces a non-local

element in the interactions if one requires that the interaction
shall be local, the choice between commutator or anticommutator

can be unequivocally decided. The argument is based on the

very simple remark that in any interaction term containing a

product of creation or annihilation operators, only an even

number of such operators anti commuting with a giver, field

operator can occur.

From the examination of known processes involving

various types of elementary agents, it is possibly "by appli-

cation of this principle, to draw the following conclusions s

b.1= ai
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lo.TheI o.The neutral agents, TT°}Q ) T and the photon,

commute with any field and are according:?- bosons,
- • "

2°. The pairs ( TT^ IT"*), (B*,6~ ),( X*, C ) have

all the same commutation rules With any field. Hence the charged

mesons are either all fermions or all "bosons.

3°. Each of the groups (A"" P ), (A° N ) has the same

commutation rules with any field. Thus, if one assumes [P|PJ +

and |JN, N]+ , one has aleo ItC,A%,[A*A*]+,[p,A±J«.
and (*N jAo]^ (the symbol means "anti—commuj^tim rulas" )•

4°. Allbaryons have the same commutation rales with the

charged pions. Thus

either [P,N]+ and [?N jTT4]^

[P,nl_ and [PN ,IT*]v

s°* For the leptons, one finds that U" and S
"

have

the same commutation rules with any field. Therefore, since the

6* anticommute, so do the m~ and [ j6 J+

The alternative 4° cannot "be resolved without a further

assumption. Kinoshita proposes the^ assu^/ii-zn that "bosons commute

with all fields s this removes the last alternative and leads to

the conclusion that all baryons antioomnute. Umezawa et a!,

introduce the concept of fermiort familia .fcmily is a s^v cf

anticommuting fields, commuting with all &$h9S fields- The

assumption of the existence of families among the fermions is

somewhat more restrictive than Kinoshita !s assumption (because

it imposes commutativity also on the fermions of different

families)» If the baryons form a family, one qgain gets the first
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alternative» Since the only known interaction between baryons

and leptons ( the A
— interaction) involves even numbers of

each type, one cannot decide whether cr not the leptons form

a distinct family*
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CHAPTER II

-
TRANSFORMATION PROPERTIES OF

SPINOR FIELDS.

1.
-

Introduction.

Invariance requirements with respect to certain

groups of transformation are one of the most powerful helps

in setting up tentative expressions for the interaction

Lagrangians between various types of fields, in order to confront

their consequences with experience and so reduce the number

of possibilities, and ultimately, perhaps, arrive at the actual

expression for the interaction*

Boson fields are represented "by usual observables,

which have tensor properties with respect to the (restricted)

Lorentz group and have an even or odd parity with respect

to space reflexions. They need no special discussion, except
on

as regards their isobaric properties,//(vhich we shall comment

later. The fermion fields, on the other hand, are rept?e? wonted

by spinors and it is necessary to specify their transformation

properties; this will now be done by the technique of dichoto-
mic variables. This method has the drawback of not being

"manifestly" covariant, but it allows one to write down ( in

a special representation, it is true) explicit expressions for

the transformation operators, which can be found quite easily

by simple inspection.

2.- Continuous Transformations.

The linoarisation of the energy-momentum relation

EE 2 = fU*»1 Í--D
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is effected by two dichotomic variables <jT. p . This is

based on the product relation

<T(fT) <r(rf) s r*lf? +¿ <r ( ifyvv)

Thus,

and a further linearisation is effected by another variable p ;
the i

here one has only two of/3 components P/R ;f* appearing

explicitly. The usual choice is

The variable G\ discriminates between the two
"

spin" states P3
between the two signs of the mass.

Por a continuous group, the infinitesimal transforma-

tion dq' of the variable ci/ , defined as

(transformation of the frame of reference )corresponde for the
state vectors to a unitary operator

The operator p must "be hermitian ( and thereto»*, p unitary)
in order to ensure invariance of the scalar product.

Alternatively» ons may leave the state vectors unchanged and

apply the transformation to the quantal variables» Then, H;hQ

new variable A is given in terras of the old A by

(T(íT) o~(r?)
- TT. y? +i<r ( «T/\ vv)

;~»2 /-? ?t\Z

E =; p
(
?.p ?• p?>

m

T^ -d
-

d q'. P
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>

This shows (1) that the operator b is canonically conjugate

to d (since one must have a = cj^ +• d c.^' )

(2) that if the Hamiltonian is invariant for the trans-

formations in question, p is an integral.

The finite transformation is expressed "by

The relation "between invariance for a continuous group and

conservation law> being expressible in terms of Poisson brackets

remains valid in the classical limit so long as it concerns

observables with classical correspondence* We have full corres-

pondance with classical theory. The physioally important cases

are:

A non-classical example is that of the electromagnetic

gauge-group, which, when the gaasge transformation is combined

with a transformation of the phase of the (complex) charged

field, yields the law of conservation of electric charge.

The rotation in spin space around axis 1 "by en. utifrlQ 9

is effected "by the transformation

momentum

energy-

angular momentum

centre of mass

space translation

time translation :

space rotation :

Galilean relativity( translation;

in momentum space)

lawconservationgroupgroup conservation law

space translation

time translation :

space rotation :

Galilean relativity( translation;

in momentum space)

momentum

energy-

angular momentum

centre of mass
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from which it is apparent that the spin contributes an angular

momentum Ü en* • The argument leading to this result is typical
"2.

for all the following?

First apply to all tensor variables the usual transformation

g» -R
*

(L *x
-

component of "orbital"angular

momentum) .
This transforms <T * p into cr(0,p ,where cFi0 is a

linear combination of the fixed matrices 01 .OJ; CH *We must

now introduce a transformation in spin space to restore the G"^'1

to the fixed f©rm G~ :

3. Discontinous Transformation s

The discontinuous transformations suchas spatial

roflesionr or charge conjugation are entirely unclassical in

character. In classical physics, one may exclude them because they

would imply • transitions of a type which cannot "be described in

classical terms. Thus, the transition from levogyre to dextrogyre

configuration of a molecule involves a "tunnel effect" through

a potential barrier; the creation of an electron pair involves

a transition from negative to positive mass over a "gap", i.e.

a region in which the energy is not defined classically. Hsnce,
tho associated conservation laws concern things wi*;h ro classical

correspondence, such as "parity" or
"

number of partiólas minus

antiparticles" •
The spinor transformation for space reflexion is

33 o^D."*- :^ -

D = £ p3p3
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with a phase factor 6 «On repeated reflexion, one may either

restore the original spinor or its opposite: c rit .
Hence, there are two classes of spinors according as *L

-
1

or i( the double sign is immaterial, since the two signs occur

in P- ). The transformation p. means that if one analyses the
4-component wave-function into two two-component spinors ,n

belonging to p¿ = 1 and - 1 , respectively, these two

spinors behave in opposite ways under space reflexion:

The two kinds of spinors are irreducible to each other.

To discuss time reflexion, one usually considers the

reflexion in all 4 coordinates. Then, the unitary transformation

P1 will do, provided one also changes the sign of the charge:

this is the Schwinger or strong reflexion» Cancelling space

reflexion one gets

One may avoid the change of sign of the charge, "but at the

price of sssoriflp'ir^g unitarity (Wigner) by passing to the complex

conjugate (or transposed) equa&ion. Without space reflexion, the

Wigner transformation is

X 1= z. cr -vi*

The matrix 0% is in our representation the "B matrix" of

Pauli, which transforms in any representation cr
*

into ~&" »

The anticonjugation is effected "by

p (l> v CO

o,
-

x
*

X 1= z. <n "is*

Y á e'p. tr
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Hence, it is obvious that the product of any two of SH, WR

and C is equivalent to the third. The Lüders theorem states

that S R invarianee is implied by Lorontz invariance ( and

local character) of a Lagrangian involving all types of fermions

and bosons. Hence , one has always invariance for combined P

(space reflexion), T ( time reversal) and C( anticonjugation).

4.- Isobaric Spin.

Besides the charge spume try expressed by anticonju-

gation invariance, one has more extended charge

properties when one includecg neutral pairfóales (whivu ¿nay or

may not have distinct anticonjugatfcs) » The distinction "between

charged and neutral particles of a certain type is effected
by a dichotomic variable T called iscbaric sjgir.sPor a ptable

system of nucleons, we have from the first only to o::pect

conservation of a 3-component ¿Lj T^ s this, combined with the

constancy of the total number of nucleons, expresses the

constancy of the number of protons and is thus, in this case,
identical with the conservation of charge. The invariance for

rotations around the 3-axis inisobaric space implies for the

nuclear forces, the property known as
"

charge symmetry" sthe

forces between protons are the same as those between neutrons.

This is less than the "charge independence", which also asserts

equality of the proton-neutron forces with the others: "charge

independence" is a consequence of the wider requirement of

invariance for all rotations in isóbara z spaco. V?. f-ho* have

as a f3ts-';¿ ¦:> invariant the isobaric spin rp.ancuut member, defined

by-r(r-hi) * (tt XT*). These is strong evidence, in some

light nuclei, fox* the existence of states forming an isobaric

triplet T a= 1, with binding energies very close to each other.

The concept of isobaric spin may be extended in such a way

that the conservation law applies to interactions involving

other types of particles than the nucleons. The Ao
-

baryon ,
e.g., existing only in the neutral state, willbe assigned

the isobaric spin 0, The2 -baryon and the IT -meson, on the ofcner
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hand, exist in three charged states , which are conveniently-

treated as corresponding to isobaric spin 1.

One may ask whether reflexions in tsobaric space should
also be considered» á&'Espagnat and Prentki have shown that this

leads to a further quantum number equivalent to Gell-Mann'e

strangeness. One has to characterize each particle by the

factor by which it becomes multiplied on inversion in iiobaric
space. For the isobosoowß ( T • 0, 1 ) thia can only be *.A }

for the isofermions, it is necessary to consider the two

irreducible possibilities £. & and it is most convenient to

take £~ Á. • Thus, we have a factor \^ , with 11:11
for the isofermions (of Ist. and 2nd*kind), and v O

for the isobosétts; "U"s- fc¿, # which would indicate

odd parity, does not occurs it is perhaps significant that

in contrast with the other oases odd parity would not be unambi-

guously defined by U. For anti
-

isofermions, the isoparity

is -U. The invariance of ¿L V expresses the conservation

of isofermions ( minus anti-isofermions) •

The electric charge Q is connected with isobaric

spin and isoparity "by the remarkable relation

¦ Q = t3t3 í± y

This allows a geometrical interpretation of the operator

Consider the transformation

0 = Vtu
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_

3. 1/2^-1
'

A* 0
°

N ¡ -1/2 1
__J I I I

TT j 1 0

IS- i, — —
i

it represents a reflexion, followed by a rotation by TT

around the 3-axis, i.e. a reflexion by the plane perpendicular

to the 3-axis. This mirroring has the effect of multiplying

the field variable by the factor (0 •

5.
- TheNeutrino.

The equation for the n<mtrino

(Pl <?.p--E)Y *O

can "be split into two twtf-component equations, corresponding

to the eigenvalues £iof/0 -) .This can be done, without

changing the representation, by applying the projection operators

(One has PS P, P'"-?' , P P
' '° < P +"'-')•

Put s Py if
'= P' y

One has

(pi^.f.e)y »o

(One has P.S P, P#l*P' , P PI '°IP + P§ ) '

\f ~ Py y f - p '
y

La,a
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They represent the two types of longitudinal polarisation,

/other They go over into each/by space reflexion and by anticonjugation»

J.Serpe (Physica 18 (1952), 295) has shown that the

restriction to one type of longitudinal neutrino, say cp ,
is equivalent to imposing a Magoram* representation. To define

the latter, it is convenient to use a representation in terms

of annihilation and creation operators

(the U.jj is what we had -hitherto called Cp )« One must then

carefully define, for any V> 2 ( ) "k*16 transposed CP s( • •},
the complex conjugate CD* -(-j \ and the adjoint <c*/,*.*).
With these definitions, split Cp into its real and imaginary

parts:

and build up the 4-component spinor

It satisfies the equation

Ifwe introduce the real operators TT,£ "by - |5,í r"ic

we have an equation

which is entirely real.

H-^ (*f
R V¿ 1

3 rfi /

(E,f-t)f «o S*^,.^^)
tt ;¿; ¿ hy TT-i^tr-t^

(S ,t?^i) f O
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Any electromagnetic coupling, say a magnetic one ll?,H

f^L <r , r"l ibecomes in the new equation

.ip z v £.H* ; i
-
c
-

also rsal *

This scheme i£ invariant for space reflexions. The
transformation operator is

i

with an arbitrary phase factor
-

« .This gives for

4 !

Time reflexion and anticonjugation are effected "by

operating in the same way ( with independent phase factors)on
the spinor variables.

It is therefore a matter of taste to say that the

neutrino carries a "chirality". One has an equivalent description

by a Majorana representation, which is invariant for bothP and

Cs the lack of invariance is then shifted to the interactions»

/Li. <r ,r( i

? w»iKV
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