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1. Mathematical Prelimlinaries

e shall begin our dlscussion by studying vectors in an
n-dimensional space, later genernlizing our results for the case of n
being infinitely large. By a vector we éhall mean an ordered array of n
comolex numbers. That 1s, a vector ¥ 1s given by giving the n numbers
Xys X2» 13, «+ee+ X, ¥which we ghall call 1ts components. We will often
write

L&': (XCIXL,' "t J;)
e define several onerations:
1. Multinlication by a constant A &
AW E (AX A4, 0, A X)
2. Addition of two vectors: Ir Y = (X, -, 4x)

and¢= /y"“"y”)
i/+¢ (X7, :*,)'..*7«)

3. Scalar nroduct of two vectors: The scalar nroduct of two

vectors 1/ and ¢ 1s denoted by (@ ¥/ and defined by

(®.¥) = g Y. r,

stun
The ##s$f indicates the complex conjusate. The scalar oroduct has the

following nronerties, at once evident from the definition:
(@ ¥+0) = (B yv)-(8w)
($,4) = (% é)7
(6,3%) = A4 Y
(A% = A¥rd, ¥
(%¥) - I rTx o 2Kl 20
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‘Therefore (1/// l/«/ 1s real ani 2 . We shall call | (YY) the norm
of the vector ’y/. Only if the vector is 1identically zero can the norm

be zero.
4, Schwartz Inequality: Consider the vector
X = ¢ “A w
(X, %) = (B7AY $=AW) = (4) 4B V)=d ") < "4 (V.o
, e (v )" e
. L EACNT7 Pl A7
Choose 1= = % d) /(,/,/ ¥ Then we obtain '
L LB

gince the norm of any vector is sreater than or equal to zero. The

2
equality can only hold if X = O, Thus we have M 7.8 ¢j 2 ¥ ¢)/ y
equality holding if Y= © l.e. i* H--) Y This is known

as Schwartz's inequality. When two vectors are proporitional to each other

we say they are parallel, and thus the equallty sign only holds when 4‘ is

parallel to 4, |
; IS 87 04

By analogy with ordlna.ry veotor analysis where the eme of the

— -
angle betwean the vectors A and B is gliven by

=5 =3
wg, = 28
SN 2
we can define
X

2z
Cﬂ‘b QV¢ — )7_
’ ( /14 ¢) 43
as the angle between the vectors 4/ and # . Schwartz's inequality then

requires that ‘w 2 o /

p
Y, o £

go that the angle 9 ¢ go defined is real. When the scalar produst of two

¥
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vectors 1s zero, 1.e., when (ﬁﬁ:o then 6\4;¢=be and we say
that the vectors are oerpendicular or orthogonal.

Unit or Baglc Vectors
Consider the set of n vectors
¢=(,98 :,9)
&= (9740 ¢ ,0)

.¢“ - ,o’o’q ] 00,,/'
Then any vector may c¢learly te written as

Y = {x.-e:

For these vectors we clearly have (&, €:) = §. J. where . J‘
18 the Xronecker symbol defined so that
¢ / (=g
J 7 ¢ #aj

We shall call any st of vectors €; which satisfy the requlrements: (1)
that any vector is a linear combination of them, and (ii) that their |
scalar oroducts (€, € )z § ‘7 a set of basic vectors or unit

vectors. Remzlrment (1) we shall call the comnleteness requirement

and requirement (11) the orthoronality requirement.

. ’
Now suppose we have two bases c. and €, , Bince €. 1is

complete we can always write

eg = %i ¢ . ,S:j

The S ,j' are civen by




an Fn

go that the 5"‘;‘ are the generalization of the notion of direction

cosines in ordinary vector analyses.

If we write

e/’ : Z e . / e have
. ' . s + 4 e
= : ] e & N T P - .
Z"/;‘J - {/6“/6!/ - ( J" ét/ - (w)faj h‘?t
Thus
e e. S
e, = 2_, . 3.
The 1§, J rust satisfy the followling condition:
Since
%
v 7 et X .
/3‘183_}:‘ 5‘ s (2, Sl-éfkasjlﬁe)
J & £
. %
— *
= é2. Seq SJI Jéé’
i
¢ - *
)t'?v = % S(é >J£

It 1s very cennvenient to introduce the notation of matrices at thlc point

wim

We ghall denote the square array of elements S;: by the letter 8, 1i.e
Sy S,, - Sim
S 5" SZZ . ) 4 S.tu
SA\, 5-)‘-‘ ’ ! S"lﬁ

Ye define also the transpose of a matrix as the matrix with rows and

columns interchanged, and denote 1t by ¥. That 1is

(s /'L-J- s S
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By the Adljoint of a matrix we shall mean the matrix obtalned by taking
the transpose of the original matrix and then the complex conjugate of

N

+
every element. If we denote the adjoint by S we have

(577‘/ = 5;‘.*.

Finally we define the product of two matrices S and U as a

matrix T wvhose elements are defined by
(SUV) - 7 = S, UL,
//(; ¢ / % L A k/

In terms of this notatlion we can write our relationship between the

elements of S
> S .5, = 25s,,(57) (s <,
< 24 Fr 2 S f )*J ( ‘7 ‘/
Or, introducing the unit matrix I definied as the matrix with elements

Z‘J = ((,(7 wve ret ARy Ts T

The matrix I nlays the same role in matrix multlovlication as the number 1

in ordinary multinlication. That is, for any matrix S we have
ZS =S = §

This is very easily nroved for the elements

, (IS)‘(/ = %—— .Z_,-e S;/ = Zf,k géJ - S‘J
(S.'Z)‘? . g "Slk [j/' d 2 ‘gl,(é.k, d 50]

Ye can use the matrix I to defline the reciprocal c¢f a matrix U, which we
- -/ - ? ~ o ar Y.
shall denote by  ° U/ is defined by o < 7

if wve can find g matrix wvhich satisfies this requirement. It is not

/

necesgsary for any arbltrary matrix U to have a recilprocal, but it is easlly

shovm that 1f the determinant of the matrix U =2 O l.e., ir

u’. : u‘*\
di (V) = ‘ t 0

ij . . . Vy &



b

then U has a recibrocale, We can restate our condition on S then by
simply saying that .f-é Jf A matrix which satisfies this condition
is said to be a unitary matrix.

Linear Transformations

Let us now consider an operation in the vector cpace which
transforms every vector into another vector. In pé.rtlcular' lst Zf‘ﬁ?’ %’
We may write this symbollcally as

Y= AY
indleating the result of this oneration--which we ¢nl1l A--annlied to the
vector ’? cives the vector W', We shall call A a linear overator 1if

it satisfles the requirements:

Adiay) - a AY

Arg+«vw = A ¢~ A (4
for any two vectors ¢  and 7./'} and any complex number a. Any
linear operator i1s c¢omnletely characterized as soon as we know its

effect on the hasis vectors, since

/4'14" /:} Z ¥ e, - ZJ’.. /'764,' by the linearity.

Fron this we see at once that a linear onerator 1s knowvn conpletely as

goon ng a certaln set of numbers d‘/' are known. By completeness we’

rust have
’qet i Z CJ 61 ¢ where the &'J‘ are given as soon as
e xnow the overator A. They are clearly civen by

Qq,e. - /(?7/ ﬂe()

'

and are called the matrix elements of the operator A.



Eftect of a c’mnge of bagls on the matrix represeniing i
’

If we use lnstead of the basis &, the basis ¢&_  the new

matrix elements will be 4‘.‘; , and will be given by

’ -/
ke J LV
on using the unitary character of S. Thus ﬂ,:d : (Sa s "//

by the rules of matrix multiplication. In terms of the matrices we have

4

, -/
a = S a §
Such a trnasformation of a matrix with a unitary matrix is called =a

unitary transformation or canonical transformation.

Returning to A'Q“ we have.

A ’¢ = Z 5 d oi é c..
!,/
. 2 ’
> . /‘ P 2 =
It is often very cnnvenient to interoret this as a matrix equation. For

this »urnose we imagine ‘I,// to be a matrix wlth one column and n rows

A,
¥ ™
X
and A = ( a. ) a matrix wlth n columng and n rows. Then the above

equation 1is Juut the equation 1/’ ,4 1,” usingr the ordinary rules of

matrix multiplication. _
Sum of two linear operators A and B: If A sends Y -2 124

B sends ’\/ - ]//" then we define A + B as that operator vhich sends

1/._)1/’;1}”, Or (4+3)W§ Ayv‘?& If we call

10

e e e s A e s E L
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A+B=C , then the matrix elements of C are

/@,’(C"j‘/ = (e,~’(;4»‘/3/e/') = (E¢'/ /95"; - 73@]]

O
"

- /(-3,.//,7:4}} ~ (e, RCj)

T Ayt by

Product of two linear overators A and B: If A sends 1/ 2 )/

and B sends %' —> W " , then the operator C = B A 1is the operator

which sends 2}-—; Vr"f The matrix elements of C are given =23 follows

C., 7 (@, Ce))= (e, 8(Acy) - 2 by e, Be)

i 2 ét'k akj.
h
vhich 13 the ordinary rule for matrlx multinlication of the matrix B
and A. So the matrix renrecenting the product o twe linear onerztors

1s just the product of theilr matrices.

Snecial Opserators.

e define the adjoint A+ of an operator A as the operater

whose nmatrlx elements are represented by the adjoint of the metrix
reoresenting A. That is, if (ﬂ}'.j : 4,_] .~ o (ﬂ’/,Jr ﬁ;k‘

we have at once that

(4,0%)s T g, x - 2045 9 % < (478 ¥)

which is a fundamental oronerty of the adjoint onerator. By means of

this we can at once find ([ 7 - ( A /3)'7‘
(6, Cw)= (&, ABY) = (A B¥) = (5479 )
- (€74, ¥
ay AbX
(an)T - KA

r

11



Similarly
(AA)7T - JTAT
A4:8)7 = AT
(AT - A

An onerator which is its own adjoint 1e sald to bhe self-adicini or

hermitian. An herniftlian onerator satisfiss:

A= A

If we have any onerator A, then the combinations A * A and iih - 4

,_}
o

are clearly always hermitian. Hermltian overators also have the
oroverty that Tfow eny vector }#V the scalar vroduct (¥, 4 14}
i1s real

7
G = (A%, 7= (LAY = (v AY

This fundamental relationship will, as we shall see, glve hermitian
oneratiors an all immortant role in quantum theory. An onerator U ig
gaid %o be unltary 1Y the natrix reovresenting 1t ie¢ o unitary matrix,

MR A LY

tafies (7 CJ 7 ’Z/‘f(_/' =/ The mosgt

3
%
(5

l.e., 1? it
fundanentsl nroperty of unltary operators is thot they have gealar
nroiduets invariant:

(vd, vy = (6, Vv s (4,¥)

They are thue the penerallization of rotatlong in ordinery vecetop
analysin.

Ohes acsnrlst ¢ valuesg and vectore.

If we have an operator A we can ask 1f there arc any veohs
vhich ere 1a?% narallel to themgelves ag a result of the transformatio:
with A. That 13, are there any vectors for which

ﬁ? W = A L!

where ;§ iz 2 complex number? If such a vector exigts it is callod
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@ characteristlc vector of A, and the corresponding A is called
‘a characteristic value of A, (We shall also use the words eigen-
vector and eigen-vslue, as both are current in the literature).

Written out in components this equation takes the form
Z ac’/ "};' = Q X
7

or

}Z (QLJ - ) &j)Xz' =0

This is a set of n homogeneous linear equations for the n unknowng
(;#%, and a solution not identically zero can only exist if the

deterninant of the coefflcients vamishes, that is Af

&@f/?V”Jbﬂ)=o

ot (A-1Z)>0

This is known as the seocular equation, and is an equation of the

ath

order for ;’ , @nd therefore we obtain n 2 s as its roots.
For each root ),‘ we obtain a corresponding 14, whioch clearly

can only be determinsd to within a multiplicative constant. The

set of all possible ); will be ocalled the spectrum of the operator

A, If A is hermitlan, then all the A . @are real. This follows
at once by considering |

(1/.-, 102/‘) - (¥, A 2/,/ = A, (¥. ¥,)



Now for an hermitian operator ( 4, A4 %, ) 1s real, while f

any vector ( 3;;, 1 ) 1s real, and therefore A, ie vrasl
The characteristle vectors of an hermitian operator A have &
Consider two characteristic wectors
I P

af, Adi)= (%, A, ) = Ay (¥, )

= ARG YY) = (A Y ) T e Y )

remarksble propsrty:

and gﬁf having characteristic values

Therefore ) . [ ¥, Ll,]j = 1 (Y U¥;) or
(:3 9‘ - l\ g‘)(u“, l)lj.) =0
Now if )l 7 Aj’ we get lmmediztely that ( @f}/ @X{ ) =
L4
- Thus the cheracteristic vectors of distinet charscterisbic wa
" are orthogonal. Tf @ll the A,‘ are distiact then all the
are orthogonsl, In this case we speak of the operator A as

non-degenerate,
secular equatlion are not distinet - several of the ;?x equal

say the cperator A is degenerate,

is d=fo0ld degensrate if ,A

equation. l-fold degeneracy 1ls the same as non-degeneracy.

or

]

“{;;Ei"g_ .

Tuag

If on the other hand some of the rcots of ithe

= W@

We say that a particulsr ,2

ig a d-fold root of the seqular

We

can also exprass d-{old degeneracy by saying that cnd different

characteristic vectors

Any linear combination of them will 8lso be & characterietics

Let J
o Z ;wx‘.
gﬁ :f:; /A
A ?5 = A '25 AR 2 X AY o~ ) 2 p ¥
) ¢

belong to the game charactsrictic value

e
e A ¢

e
WE 0T

©

14



By choosing this linear combination correctly, wa can alwaye
rrenge that the characteristlic vectors are all orthogonal,
Lz an example conslider the case of triple degeneracy with the

vectors Y, 4, VW, belonging to the same 4 . Let

¢/ = ¥
b - Yo~ (1), 4)
(.04, (&, )4

&v = E “(¢’)4,) (d‘,¢a)
(¢, 8,) = W ¥.) ~c ¢ h)=0

\!

(/¢,~ 663) /.‘V:II ?’li) - /7/:,1/’3) = 0

14 )= © «f?y oo CaZcsllaten.

This 1s not the only way of producing orthogonal cherasteristis
vectors, but 1t is one techmlque which always works, It is knoun

B

as the Gram-Schmidt crthogonallization process. We shall usuzlliy

¢

chocse the arbitrary constent which multiplies a characteristic

vector im such & way that its norm is wnity, 1.e. such that

(V,-, ¥.) = 1. Then we shall speak of the vectors as being
normalizad, We have for a normalized set of orthagomal charscteristioc

vectorse the relationshivs:
(7/‘5/ 2//!) = ch

15



Then
v, a,

r A P s

vy, - T v v,
‘d Y J

- J";’ A

Just as we saw that the characteristic values of an hermitien
opsrator are resl, w: san obtaln & property of the characterlistic

values of unitary operators, let J ¥, = A ¥

£
. 5T 7 \ _ f‘/ ’Y ) " (y' »"r"'l’j
= 2" X&- re ) a/’-! ,‘:( //} - 2 ’ 2 "”) ‘?(;j AT A

We have _
Uy, vv) = #, ¥
s (¥, 0 8) = AN (v i),
" |
AlA. =1
A1l the A; lie on the unit circle
A= ¢ e

where ¢.' is real,

Functions of an operator
We sghall define a function f’ﬂ ) of the operator A as an

operator whose matrix has the form

712,)
fra) = f1a0
o )
4(A#)
When A has the form
A,
Al O

ﬁs O ".

16
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Clearly from thiz we see that ()( (A )) = S At
Ueing this, we can express a unitary opsrator [J in terms of
an hermltlian operator H,

e e ”

ince ,
, -
="' = € LI 4
g ? - l’/'/ -4
R I
U -7 - e = &P = 0
This regresentation of 2 unitary operator will ba very common

when we come to Quantum mzsiianics,

Simultareous Diagonslizstion of Hermitian Operators

We nocw aslt the question, under what circumstances can we find
a besis 7;”, such that two hermitian operators A and B are
both in. dlagonal feorm? We shell prove that a n2cessary and sufiiclient

condition for this te be possible 1s that AB = BA,
Neossaity:
fecospity Ae Vo = € Yo

By V’.‘ = bt' (A
whepie  &;, b, are the characteristic values of A and B. Multiply
the first equation by B, the second by A and subtract giving
(BA-AB)VY. = (@ BY. - bLAY )= O
But since the 1), form a basis, we have that (BA - AB) ‘q& =0
for arbitrary '}{/ and thei'efore AB = BA,
Sufficlency: If AB = BA, Let us first choose 1//" such that B
is dlagomal, Thus BY, =@, Y, , and AB 4f. = a8 A4, Y.< LAY )=84Y)

Two camres arise:

17
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(e) B is non-degenerate, i,e. all b; ave dgstinot, If this
is 20 then to each é , there is only one '}(/, . However we rave
shown that if 1)y 1is a characteristic vector belonging to &, ,
80 18 4’#/. . Thus /?V: must be proportional to 1/" p OF
4 = @ ¥ , and A is automatically diagonsal.

(b) B is degenerate, say there are ¢f; characteristic vectors
velonging to &, . Call these vectors l/,’u (o~ -, d,.)

Then since #A V.", also belongs to 4. we rust have

4%1,«“ Z ‘/’,/, A«

, =

(v _
where the ;f’?/j q &re just numbers, Kow all we have to do 1s choose

tes
instead of the V’,‘,,‘_those combinations ¢‘_"’ s 2 G "/".',m
3

which make A diagonal, 1.e,
A ¢c‘:)’ - d‘;r d"/r

This chznge of basis leaves B dlagonal - since we nave just taken
linear combinsetions of characteristic vectors of B belonging o
the same 6(- and reduces A to dlggona2l form,

In general if we have a sequence of operstors A4,B,C, etc,
whiclhi commute they can be mede simulitsneously diagonal, If the
get A,B,C, etec, has the property that the basis necessary to
dlagonalize them slimultanecously is non-degenerste, then we say

~thet it is a complete sct of commuting variables,

Inveriance ¢f charscteristic values wnder & Canonleal transformation

If A has the charscteristic values G., then so does
1

2t = sas~t,  ws nave
A 'w : R, Wy “
A ¢ ¢ T , but A = S“’*—.A:LS, aud therefors
£} P os o 2 S - ] .
Fo=d Al ) ak. Y gl s Y e i) e
Q‘(\’ i} 3*’1 We & Gy }‘}' ) R £ R AN A S TR PV g

18




-l

% 4

BRSNS
-Since ’&,«4;- is & vasls, and S is unitary, ¢,‘ is also a basls
(/¢.', ¢,’) = (S"V,', 'n/ylj = /7;1', d,-/ = é’t';)l %
and therefore in this basis Al ic dlasgomal and has exactly the
same characteristic values as A, There is one combination of the
matrix elements of an operator which 1is mvariancg vnder a canoniscal
transformation, and which 1s of particular importance in quantum
'mecmm.cso We defines the M of the matrix of A as the sum of

the diagonal elements of A,
O
gy Ta(A) =2 3 A.

a

From this definition we see at once that
‘b.’ (’98/ = Z/ABJI',' = Z 4(‘& g“' = 2 Bﬁl ’4('& = g/gg/‘_&

= W (B4,

Thus to (A1) = tg (SAS-1) = t& (5=15A) = ta(A},

The trace of a matrix is invariant under a canoniocal transformatiom.
If in particular we shoose the representation in which A 1s diagonzl,
then we see that t& (A) = Z&; , Which, since the
characterlstic values are 1;1variant , exhiblts the invariance of

the trace explicitely.

Dirac Notation

It will sometimes be very convenlent to introduce a notation
‘due to Dirac instead of that which we have used up to the present,
If a set of basis vectors are characteristic vectors of the operator
A, then \P (a’') shall denote the vector ocorresponding to the

ocharacteristic value a' of A, If A is degenerate then we shall use

19



as our basis the characteristic vectors of a complete set of comnutlng
operstors Ay, Az, 43 , . ., and write fcr the basls vectors
@(4" g’ 5‘45' } - let us group all these indices vogether Wit
. [ s, 0t
CACY) ¢ of
, and wrlte simply « . Let the component of =an

(i)
arblirary vector "@ he denoted Ly BaES

a labsl o

¥, that is
e z. » i (‘3\ Q) ( : ')
’Q °< L] )

(A')) = ("‘;[_’(ol'), 12)
- a'l)

We shall use the empty space in EGUEH to place any label which

may be placed on the veotor ’QI . For exarmple, concider @
to be the characteristic vector of some other complete set of
commubing operators, the charscterlstie values of which we lahel

£ .
with the nunmbers /3 , b €.

4= Wip)

Then we write
wip) = T (<) (Ip)
() = (Ree), EIpY)
We cen just as well expand the @/,{’) in the W} ?'/3'/
Uty = 2 Pp)(p )
4
pris) = (@149, 3= ( T, )
= (dﬂﬂﬁ*.
Tip) s Z B pIEIE), aed

4

L
20



' therefrre Z (/217D (< "157) = J Ap Similarly
e’

T (" pp ) = Gy g

: r’

' These roiationships just express the unitary character of the

transformetion of bvasss, For the matrix elements of an operater

we shall use the notation
(A1AIA") = (‘?"ﬁ",ﬂ@(ﬁ”)/) which

is equivalent to
A @iy - 2 FIBICpap)
oo
Por the product of two operators %C we have
B Acp) = ;Z (Frrarp)picip”) .

The transformetion formula. for matrix elements on ohanging the

E basis %’“ @{f,') to Q{(.ﬂ) is easily found

(L) = (), € P

| 2 () By, (p41<9C Crp)

| i '

! Z (“"(s')( ‘\L‘{,O)‘ 6 ’\I{p.})((g#‘o{'y
T

v

"

= ) Leyp)(p ) CHpYp I u)
v .

which 1s a very symmetric formula.

21
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Gereralizatlon to vector zpaco with iafinitely many dimensions

{Hilbert Space),

Two types of generelization are possible, We mey assume simply
that /M -5 00 in all the work we have done up téll now, ‘Then,
if the various sums luvolved converge, we have a theory exactly
equivalent to our 0ld cns, This 1s the theory of a vector space
with denumerably many dimenslons, On the other hand, it is possibdle

to lmagine a space irn which we have a nen-denumsrable infinity of

‘Independent vectors or, said another way & space wrhere we have to

lebel the basic vectors with a continuous index instead of a

. desorete ome, We shell sseg that,with suitable definitions, sll

the machin®gsd of ocur finite vector space can be carried over o
this case, Clearly when we have a centinuoug index the natural
thing to do is to replaoé gumg over the index by integrals, Call

the continuous varieble x, The&g fore any vector g? we shall

Y = [«.@(wdx (x/)

where e(x) is the hasic vector belonging to the value of the

write

variable x, and the range of integration goes over the range of

eoptinnouss rariation of x. Let us consider now how we must define

i the unit operator I for continuous vector spaces, I is defined by

- LY

for any vector ?z;.c Writing out the components we have

(x'l) = / (v’ !/ Tlx)e (X))

Now for an arbitrary wvector @J) is an arvitrary function
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| FIx)
- of X, mey £ . We must have

L) = f/fr’/f/x) £rx) #oe

- for amy {{xj. This is only possible if the quantity(*?Z/X/ = §rx- s,
 wheve §/x-x) ie the so-called Dirac delte function, It has
~ the propersy that §tx~w') =0 /‘7 x st x!

’ |

{c{{x»x‘)é%’ =/

. point z., This is clearly the generallzétidn to continuous variavlies

for any interval? of x? which includes the

of Fronscher ﬂg symbol. We also sce at once Trom

(x1) = (e, )~ f(@m), 6’4“'1)6*4)&”("'{’)

(oﬁ"x),: erxi'}) = J("’"""')

The characteristle value probvlem takes the following form:

A9 -2 ¢

f Ctx Dbyt Al )b (X]) = p fe(yw{xv(x”//

| Taking the scalar product with e{x') we get
.[(x'/ﬁ/zr)a’/r(;(l) = Q(X'/}
(x|)
The quantity (¥ is now an unknown function of x, to be determined
| by the solutlon of this equation, One very often writes (x1) = Yrx)
- and calls e the wave functlion, for reasons that will become

' olear when we discuss the application of these idems to quantum

i | 23



" mecherics, Thng we have
J[/x'/ﬁ/,r) Uride = 1 Yl

“As beTore wa coun take our bhazils veectors to be the elgen- ’mrz*‘cm‘s
of 2 complete set of commuting varisbles, Wow, howsver we have
the possiblliity of the characteristic wvalusz heing continuvously
distrituted instezs of dise crecely a3 in our old work, Consider
two sets of s:xoinpl@f:@g commubting operators Ay o . o . Ay

and By . - = Bp, both of whlch have contimious spectra, labeled

- by the variables &' and /1 ' raspectlively. Then we rust have
Cip) - [ Fiws A (A

7 ,
Vict) - 20K Ap(ptat)

Fip) fy”f;fﬁ'*/»’/s"/n"/w)/w/w'//f'/

}

or j (, {5 "Iu(’)ﬁiu('(o('f/f') - J('(Af,t_(,gl)

S
simllerly

J’( w’“i{'@"g)dgﬁ,((ﬂid') = S('("' u“) , whien express
the waltary charascter of the transformation of bases. It is
straightforwvard to generalize these relationships Tor the transg-
formaticn Trom & contlauocus to a descrete spectrum, or vis versa,

The transforration rule for matrix elements is easily shown to be

o'o(:l{‘(u) - f("(’//-%’)ﬁ(/g‘{/ﬁ'/C//"}a//S”((AW/%(") ) while for



the matrix element of the product of two operators
@ (Beix") = m/a/«'")w”' ("'t Cle’),

The rule for the transformation of components of =2 wector i also

slmpls to f:ﬂataini
j@f«"lﬁ’d’(af'!} = f‘a?/ff"ia?’ﬁ’(/"l)

Taking the scalar product of this equation with 'LZ’ { /3') WEe ges
(g1 = [ (piadcent)

If one writes
() = <Y
(pr)) = Q’Sf’é'/

we obtain

P ip) = ft?”/ )t Wl

Example: TFourler transform es an example of a change of bamis
in vector space., Fourier's theorem tells us that if we have any

function ’L/‘/x) , then the quantity

Qé‘/'é) _/ € /'X’lﬂ"#’)% /{ﬁﬂ,z{v;?
-~ 0P

Yix) = f Ores

Let us define (k) x) =

'K B . !
F‘ e'* and (¥lk) = (/)
) e‘f'/cx

(x/k} = /';",.7

25



Then we may write these equations as

dw= [ et vamdy
W)= fluth) Pia) Ak

| which are just of the form of a transformation of basis in vector

| spacs, We still mmst prove that

(ki) etk = dTh-AY) and
/(X/U‘t%»("é/"(') = {/z{-x’) '. in order Lo

establich the unitary mnature of the transformation., Consider the

former:

.

Ve lh-h)x
[(éf)(j m{( ﬂ/}é‘yﬂr ‘2‘{’; f ot .

-&

Strictly epeaking thils integral is mot convergent, btub if we put
In eny "convergence fector® we obtain the same result.

. . , - y 4
For exsmple, consider the funetion ( W F & — 4 )

. eo '-
5.?}"1"‘# _éf_“f emo(/we(xxh ‘>

27
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Clearly

o ) % ¢
/J«méf’x.— if adr l/ LA J
{a V3 ” ,

-
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_: which is one requirexent for the -function. If we plot {, { 2¢)

agalnst 2 we get:
§,tx)

\ W

As  —» o , J- o —_ except at A = 0, where 1t approaches
infinity as /[ g o . Thus A< « Do J_ria)—=> {rx)
| which is the result we want,

Ag en example o% the transformation of an operator, consider

the simple op=rator f&€which is diagonal with characteristic values

2 in the original rspresentation. That is,

(x' 1 X} x") = X -

What zre the matrix elements of this operator in the k basis?

(&' 1 X1k") = f(/z’/x')aéu(x'/x/x")dxff(x"//e'y

"

+ 00
, (kX kxt)
L ey
P 1 ‘e

¥ Clh-AYx'
L v'e ol
2N

o

-~ %

)
f~
o
i~
4
1)
~
A
*
P

27



26w

"In terms of the effect on the coordinstes of a general vector

' these relationships become a little clearer,

r Thus the operation X on simply changes the coordinate from
_3&/‘;{} to ¥ 1/5'{’\;;? , it 18 equivalent to simple multiplication
with X in the basis where X is diagonal. In the other basis .

on the other hand

XE - JEe)Ab kI ) A" PE)

2 f”ZZ’("'}a,’é’(“;.i}ﬁ”{//z’-ﬁ'y/k?'cb(/e'y
f’?fé’)dé*d‘/r-é")a/l" - %?j—g,y P
- [ Bl (] L)

integrating by parts. Thus the operator X on "P sends
¢( k) -—§ "' —2—!') . Multiplication by the variable

"

in ome bases 18 the same as performing the operation :"‘ .D%t
in the other basis, ‘
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| I1I. Fundamental Assumptions of Mtgm Mechanics

The assumptions of quantum mechanics fall into three classes,
which we may call geometrical, kinimatical and dynamical, The |
| first consist of assumptions about how one describes a "state" of a
system in quantum mechanics, the second gives us rélationahips
between éuantities which represent a position and those which
represent motion, and the last tells us how one ’calculat':es for a

definite system its behavior in time,

A, Geometrical Assumptions
(1) Each possible physical state of a system is represented

- in some way - by a vector ﬂ.j in a Hilbert space,

(2) Each observable physical quantity (position, momentum,
angular momentum, energy, eto.) is represented by an hermitian
operatoryoperating in this space,

(3) the only numerical values which an observable can attain
are the characteristic values of the operator associated with that
observable. Because an observable is represented by an hermitian

- operator, these numbers are of course real.

(4) If a system is in a state T = ; ZZ(‘U("/)
whene '\P(a) are the normalized characteristic vectors of an
observable A, then the quantity l( al )I > gives the probability
of finding the value &  for the quantity A. (Of course, if

@  1s degenerate we must sum over all the [(al])] = belongihg
to the same . ),

Assumption (4) hae an immediate corollary: Consider any

obgervable A and state ? , ‘then the scalar product
(F,A%) = Z alla)*®
= > akl EGOLE 7% de PRYSIOUE THEORIGE
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itate which agneocifies definite values of A, Az e o o o Apo The
jeagurement of Ay and A, is compatible (that 1s, a knowledge of Ay does

ot destroy a knowledge of A,) if the corresponding operators commute.

onversely, gince two onerantors cannot be simultaneously .diagonalized
if they do not commute, we cannot assign definlte values simultaneously
o two observables whose correspondlng onerators do not commute. In
pther words, information about the state of a sysltem with resnect to
bne obgervable may destroy information with resnect to another. Later
on we shall investigate the extent of thls interference of two

- ' easurements.

’ | So far we have spoken only of dlscrete characteristlc values.
If the characterigtic values are continuous, all e have s8aid remains
ohangéd, except that now one must interpret [(&l ”z. as a
'probabillty dengity,” that is, the probability of A being between a
and a + da is /( al )/ 'alq, . With this interpretation we clearly

A= (%, A4 12/ since
(F,Ad) = [(@(a')aea-(a'/),a Y (al))

| dca-ay cat)*car) @ da'das | of(a1)] 42
= A

B. Kinematical Assumptions.

n

One can say that the essence of the new assumption in quantum
pechanlos 1s that one cannot simultaneously measure the position and

the momentum of a particle. In terms of our above assumptions this means
hat the operators representing the co-ordinate and the momentum cannot

pommute,. Denote these operators by q and p, resmectively: 4in general




\L
3
:
i
]

- ,30;

we shall use the same symbol for the operator as we do for the

observable itself. This means that K@ # Zp ov
Fr-1g =+C

wvhere ( £0 . C is clearly hermetian since

-ic”- (77’4) %‘r/fff)’L = p f'/ﬁ" - i TRt P2 “Fp T - C

c = C
The queantity ap - pq 1is called the commutator of ¢ and p, and is

often written (q, p). Exactly how to choose the operator C is something
that can only bhe given by exper;,ment--different choices of C would give

ug different nossible cuantum mechanies. The cholce of C which givesg

ug guantum mechanics as we know 1t is that C is silmply a constant

miltinle of the unit opsrator. The value of the constant depsands on

experiment and on the set of unlts used; we denote 1t by 747, Thue
C: A I where ﬁ = 1.05435 x 10’27 erg-sec  in the c.g.8. s8ystenm
of units. The quantity 27 % is known as Planck's constantg. Thus

the basic kinematical assumption of aquantum mechanics is
7p-p 7 = e # I

We ghall very often wrlte thie simly as ?ei@“f’ﬁ - g'ﬁ drovping the
explicit writing of the unlt onerator. Consider the case where ths
w-ordinate 1s say a cartesian co-ordinate of a particle. In this case,
to the best of our knowledge the co-ordinate can have any value from
-~ 00 to + o0o. Thus in the representation with q diagonal we must have
for the matrix elements of g
- Iz} - / \ s @ y)

(713137 = Z4(#-3%
where q', q" are any numbers from + cv %o - o . From this we can see
at once that » also has any value from - 0 %0 + @. As & vreliminary,
1let ue orove the lemma

‘{i"ﬁnﬂ‘g S 729 }é:{ﬁ\'} = ‘.ﬁ _?_Z-L

f ‘G‘f' l’ & 2&

.
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-there f (q) is any function of q. Consider first f = qzo et

(1'# -8 = J(3p-25)+ (FP-PYF = Z(X)2 R =2%g
PP = T Rt FAET

: 2 > , -7 \ 2g™
(if,f?)-amtkﬁ :tf;‘é’

,' Thus for any function that can be represented as a vower serles, this
'relationship 1s true for every term and thereforec

S ., 2fa

fgrp-vfp)=t 55

Similarly

: . 7 /f)
( - =
73w - gwp= o« L2

Now let ?(f"} be a characteristic function of p belonging to the

 oharacteristic walue pt, 1i.e.

PRy p )

R
Consider now the vector é T & ¢ Q( bl '}‘ vhere k 1s any real number.

Then %
rpd= retéir
but ‘f .
¢ e \ / ; (
Pe é;-e k;fr -t A 9;; /: A ke Aﬁ

Therefore if v'! is a possible value of p, g0 1ig n! + k, where k 18 any

real number, so that the nosslble values of p are all the real numbers

m- + ©
fro oo to (0] 32



In the vrenrseentsatlon with g diagonsl we can essil;y oolaonliat

the matrix elements of p. Consider
! _ Y, — ! / ’e _ ;7 o> ab
(1194-121 97 = (A (GTIGY = kY

e

= [ tr15170457 1)
= (P17 Ay (515 7

< [ 4 5159508 prpy
- JUT I S5 G f S5

S (7F) g ),

Z
. J/ o~ “”
(7'1p1g%) = ¢4 7"175’

The funiction on the right hand sgide is actually the negative of %the

derivative of the delta functlon, l.e.

Jlf'- ,q/p) D o 0o,
94" 2’ A “J’f‘i)‘-
let ue consider X§x) and A M opatine. Somce dex) #0 mﬂ,';i,
oo x=o0 K %W ¥ Srn) prvea PGlae -—-z/afj&«e-w
prlacesl “tn Aoy i Fral i Aoy gl

ﬂna«?{s@u ' W xSrx)=0. &/%Mmﬁ@fma? e
Va2 LTS

To seze thlsg,

x §e)+ §rv)= o0, av

' J,/x): - {_’_f)
X

-
(' 1prg”) = % 8557
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From these nmatrix elements we can calculate at once the effect of p

on any gtate

V= [ Eqydy g
pT= [ Bogydy (F1p18 7 g)
= [ wgyds £ f’”f"/?‘//"/ﬁ”//
- wdy £ Jr; 299 437 (9"1)

1]

[ gy dy 1525 £ 227 4y

25"
fﬂ[/(;y a4’ 'f 9._1/)

1

Ve can formulate thie result very simply by saying the effect of p on
the renresentative ( 7 Y/ ) ~of a state is found by elmply carrying out the

differentiation overatlon .E ..?. on it. For brevity one usually
¢ 94!
f £ 2
says that p is equivalent to the differential operator - 37_ ‘

In termg of these results 1t becomes very
gtralghtforwvard to find the transformation from the basis with q
diggonal to that with p diagonal.

Yir) = /?2(77 df’(f'/;vy

- 20(5°/¢)
pEp) = » Eip) - [ Riprdy 2 -327-7

[#3925 2" 5100
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‘(’0/2/ a( '/,f’) o

('," /4
(Gpy = e 7T o e comatant

N B

In order to find the conatant, we must make use of the normalization
f(f'/f’/d’f’/ﬁ’/;'/ = Jrp-5%

2 (3" 5) P/ % ry-97)k ,
C /e 479,._61#/e 7,(,(./,é~—;€_

But from our old work on g - functions we know that
‘fe9'-a")k
fe 1-9"7% 4 = 2w J57-5),
and therefore we have

ct(2w2)=1/
/

©- 24
Ww

/
( ? " ¥ ') - —. €
27Th
glves the final formula for the transformation coefficients from the

CFPK

*q" representation to the "p" representation. The former 1g usually
called the configuration space representation and the latter the
momentum gpace representation. Sinda for any state we have from our

general formulae

(p') = /F/)'/;Qo/;' (51)
S Prk

o
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=3 5=
! 3
wve see that--apart from the quantityﬂta which is necepgaary to make the
' exvonent dimensionless--the transformation from co-ordinate to momentum
- epace lg simply glven by taking the fourier transform.
In the casge of several degrees of freedom the commutation
' rules {as the rules for calculating the commutator of any two quantities

are called) are easy to find. Say we have n independent co-ordinates

Uy, 925 © ¢ o o Gn, With corresponding momenta Pys Pps o =« Ppo
Now indenendence just means that we can measure one without affecting the |

other in any way. Thus we take
G, 7i)7°
(2., #)= 0 ¢+ f
opi) e

As before, we have of course (?l'; p)=¢ ;g‘-l or we may wrlte in generval .
(?‘/ ﬁj’jr CA CY“J

Helgenberg's Uncertalnty Relationships.

, 2

Consider our expression for (?’{fh') Ve know that |(§ "Wpllldp
gives the probebllity of p having a value betwesn p! and p!' + dp? i? the
particle ig definitely at the point aqle. However

] 7/'ﬁ _ i . .
?f’) ' . = 2"‘";“ ) a constant.

Thus 17 we know q exactly, all values of p are equally probable. In
other words an exact knowledge of q means no information whatever on Do
This 18 an extreme form of Helsenberg's uncertainty pz:'anciple-_o Supposs
nov w3 have a state in which q 18 not specified, but in which we have
some knowledge of the vnositlion of the particlie. How much can we know

L

about 1te momentum? Call the state in question 7{ . Let
Ny eY)

pelg, #¥)
) 36



the exvectation values of ¢ and p resnectively, for thils states
ofine /4 = ?’* ? ) A= ?/9. 7{;‘ . Clearly the quantity A*

ves a measure of the deviation of g from ite expectatlion value, and B

L )

ves a measure of the deviation of p from its expectatlon value,
T .
t 4 = © then 7_? 1s s characteristic vector of g belonging

the value a¢. That is

L F)= (A¥, A% =
e equality only is possible if A j? Fo or ? @:‘-‘ ;’? ¥

In general

Foe (8 4 B = (F (gmagie59E)
- 77 @p”

% ézr /2)7,_;5“2'5 '/(ﬂf)z-

L:hen we have
[

Qprap)t = (EAENEEY
| - (A% AR(BY, B¥)

¥y the Schvartz lnequality though, for any two vectors A y?* and /4L

e have
(aAf, AE}ARY, ff@/ = [(AY, 5B Q/)/LJ

he equelity only holding when :4 Q 18 parallel to 8? . Thusa

Up-cap™ = ((ALBR) = | (P, 45 LN
- | (R g )

.
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AB-34 _ FP-f1 _ ¢

)

¢t . [ .
(c=xT , of course, but temporarily we will keen 1t more general

in order to obtain an uncertainty relatlonship which 1s true for any

two quantities whose commutator is given by 1 C).

@p*tap; = | (2, 7882 2)+5 (BCB)]

Since AB + BA and C are both hermitian the scalar products are

both reall and we have
- . L - co-
@p-rap)tz 4 {(12, (AB+B) Y )+ C f

> L =%
,4C

the first term being clearly positive.

Thus C e
|8§l1apl = £ C

is the most general form of the uncertainty principle. The ocondition for

equality is that
(‘2, (AB+BA) ]I) =0 and
AY = \BVY .

From the first of these we have

AE,8Y) - (RE,a¥)=0
AV(BE BE)* A(BEBE)r0 , N
A= -2 PRN/Z
vhere ar‘ 18 real. The condition for equallity is thus

(A= YBRY | 7 acat, \
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E = F'

In the coordinate representation this gilves simply

Fy?Ff@@%ﬂﬁ/
- [ Re5)dp Fg 25,)G1)

since we showed that the effect of p on a state function is the same

ag F o on a revnresentative. Thus

F (9, }‘59-7-,)(7/) = ' (51)

‘1 a differential squation which then golved wlth the condition that
(?/ } be well behaved (for example, /7/ ) must be such that QL’

normalizabla) glves the characteristic values Fi. Writing, as is usuwal,
! (?/) = Wf} we obtain
Flj, £ )Wﬂ F ' ¥g)

In particular, if F is say the Hamiltonlan of the partiole in a

‘potentizl V (q) we have
F= M= £
= = e
2 A4 V{; )

The possible values of the hamiltonian are Just the possible energles of

. the system, say E. Our equation becomes

[ fﬁj"‘; ) v v = £ oy

or Iy ;
5 = (€-Vv) Wj) =

which 1g the well known Schroedinger equation for calcuiating the
energy levels of a syetem. The normnlization requirement on '&:g*

reducee, incidsntally, to
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£, & v, &Y
Jl’gig"} = /‘Zé#/ YU . r5)
d €’ /5) £”')@/ )z"
or the dlgerete and continucue spectrum respectively.

C. Dynamlcal Assumptlons

So far we have only considered a system at a given instent of
ime. The question which dynamiecs answers 1s how this system changes
ith time. There are two points of view poasible:

(1) We can assume that a system 1s described by a fized
tate vector, but that as tlme goes on the observables are represented
y oparators which vary with time, the time varlation beling given by the
laesical equations of motion of the observables. That is, since tha
beerved values of any physlecal quantity willl vary wlth ¢time, we Just
hange the overator so that in the state of the system it has this new
alue., This point of view 1s known as the Helsenberg representatlon.

(2) We can imagine that the relationship between observables
nd operaters is fixzed, but as time goes on thé state vector changes,
hig predicting different probabllities for the valuss of the obssrvable.
hls latter point of view is known as the Schrgdinger representatioll.

e ehall see lmmedliately that they are related to each other very
imply by meansg of a unitary transformation.

Let us first take the point fo view (1) and from it investigate
he point of view (2). For simplicity we will write everything for the
agse of one degree of freedom, though everything goes through for the
wnera1~dasee For a system with the hamiltonian A2 ) the

quations of motion for q and p are Hamliltonig:

. Py
7 - ";7;
- DH

]

/é‘ "3—; 40



Bomy
which are

= A ]

nowy btaken to be the equations »f motlion of the o
well.

Since by our old work we had ﬂ
(?//‘/} = /7/7"‘/‘/7‘)? ¢ of
j ,/1‘/, f?) =

v ey g 9

(Hp-~pH = (%
ve may réwrite these equatlona as:

4
cx ZE e G

24
22 7

= (T H)

777-;9;:/1’1' ‘

Thege equetions muet be integrated bsaring in mind the relationship

When this is done we have a coumplate
golution of the dynamios rroblem in the Helsenberg representation.

Conslder

‘Ht/x ’aﬁt/ﬂ
f= e

f.

- R t/f\'
, &
where f o, /9, are independent of tinme.

éﬁt/x - (ylft/t t'ﬂ“?/x
fr-v9=c

/s € ¢

CHt/R ShLe A
- & ,09@

.t ﬁb'/x ~
< s @
e,é;;.;t

Now a formal splution of these equatione can be given in
general .

‘HE/g
.7@.-:'@

- .’ﬂt/g
P ¢

T H Y Y HE - H
(?°P°'P07a)e "l e tiie

41
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80 that 17 ?L, , //ﬁifa satisly the commutation rules, 3o will g, p. 220

that 1s left to do 1s to show that ¢ and p are solutions of the sguailons
of motion. Clearly

‘i/j _ d(e(:”#/*) - Ry (K &z_‘f@_ "Hz‘/&/
At At 70 ¢ ~ ve 7 A1
CHES & -:frf/k ¢ HTS . :'djf/k
I3
z - M € ;‘) @ “ 70 e [";;;» Mf

i

;:“E"(Nz'ﬁﬁff L (GH-Hg)

This iz Juet the equation af' motion for g. Similarly for p. Singe
7/&:0/ - ;ﬁ , We have satlisfisd the differential equations, the
comutatlion relationg and the initial conditions, and have therefors
obtained s somplete solubtion of the problem in the Helagenberg repressnio-
tion. The time dspendence of any operator wlll then elearly be given
by Yy : -4

Fo7¢) = < F G, 6)< N L o

dF
71;'* = (F, H)

From this we can at once obtain the Sohrgdinger representation. Coneidar
the expectatlion value of any observable F--1f we know how to cslculate
this for an arbitrary I' we know everything about the system. In gensoul

e will have, in the Helsenberg rerr-2entatior

(Y, Fam )

where “_-Z/o 1s the constant state vector which represents the state of

the system at time + = o) and therefore for 9.11 time in the Helsenbesrg
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representation. Using our expregseion for F, we get

— ‘4T /x ~HTfp
F=(Y,, e Fle, t.)< 3"’;:)

= (&, Fz,7)2),

vhere - ”’t/*
TE z €& @a

Thie is, however, Just what we would obtain if we treated ths opovators

ag constant but let the state vectors depend on time according to
- ﬂt/;;
Yit) = e %,

Differentiating this with respeot to time we obtain

9'@ & ""Ht/t _ o
== - T @ @0- 5 H D

1 . ,f. , f'
o, t K .‘LQZ = 4 @
2T

This 18 the famcus Schrgdingger equation for the wvariation of & state
in time, in the SGhradinger representatioria M E

Since H 1s hermitian the quantity S = e X
1s unitary, and therefore the transformation from the Helsenberg to
the Schrgdinger reprecsentation 1isg in fact simply 2 change of bagils.

We have assumed throughout that H was not an expliclt
function of the time. If 1t 1s, 1.e. if H = /-/(7/ g t)
then the entire argument poes through 1f we replace g by the operator
U which is a solution of

: (4

subjJect to the initial ocondition

Ult=0) =1




I
= Z.?:a.}m::

Becauge of the role the hamlltonlan plays in determinlig the

iemics of the system, characteristic vectors of H (that is, states with
lefinite energy) play a very smecial role in quantum mechanics. If
state has a definite snergy at time ¢t = o, say E, then at time t©

a
w

< Ht ~ (€¢
f=e " . e Y

. that a state of definite energy only has its phaas affected by the

188age of time, and therefore revresents exactly the same probability

lstribution for any observable as 1t initislly had. Thus states of

sfinlte energy are, in quantum mechanics, stationary states of the

ystem. In particular, 1f a system has energy E at £t = o, 1t will have

nergy £ at all times.

PR IR




IIT. Speclsl Systemsg

As an example of the avplication of the 1deas of the prrevicus

two mectlons, let us consider several speclal systems which can be

treated exaotly and ars of oconsiderable physical importance.

(1) The harmonio oscillator

Consider a one dimensional harmonic oscillator with nage m

and soring conetant k. The kinetic energy T = pz/ 2m, the potential

omergy Y= ARF* /2 so that the hamiltonian is
' _ z hat
| H = id + Ly
2m 2
,What energy levels can this system have?
It is convenlent to introduce instead of the operators p and

q & new opsrator A along with ite adjoint A+ » the real and inmaglnary

parts of which are connected with p and g respectively. That is

5 = (Z22)%4-4%

LR
F= () ca-ay

W
I~
3t
&
~
AN
NN
+
4
D
+
Q

vhere W = ‘/ k S J is the classloal angular frequency of ths

ogcillator. We can very easily obtain the commutation rules for A
EN

and A ¢

G p - /{—: (A4 4 A7)
LO2AAT) 5 kA AT = R,

45



-l

Thus H = -2/"' rew (2Nt ) , where N 1s the operator
defined by N = 4T 4.

We need only find the characteristic values of N. Now suppose we have a

characteristic vector of N, say Q s belonging to the characteristic

NEZ=v ¥

value V.

Consider

AN = (AAT)R= 4 ~
ANV = (we)) 4.
. ~7 AwN) = AtatA)=- AT, ~
AN = -0 A"

Multiplying by A we get -

ANF = WayAad = VAL
NCAT) = -y (APE)

Similarly multiplying by At gives
WA T) < (ve) (ATE)
This 1 ¥ has the oharacteristic value )
AY has the value ¥—/
AP v v ve2 o
4*’3_} o Ay
(47’-? N 2 ele |

or

On the other hand, it 1ls clear that the possible characteristic values
L erunl % vV
of N must be greater 1:hanA zero since any charscteristic value = 1is

given by

v (& A"48%)= A%, 4%) =0,
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The serles of values )/, 1/-// V=2, 014 mist therefore terminate.
The only way in which 1t can terminate is 1f vhen we avvly the operator
A to the last of corresponding characteristic vectors, we get nothing.
That 18, the characteristic vector corresponding to the lowest valuc 2
(say "Pa ) must satisfy

AY =0

But if this 1s so then A'AY, =0 oo N P, =0

and ther~fore
V4 120 = 0 @e

The lowest characteristic value of N is thus zero. Further, all the
Lo
positive integers are characterigtic values, since the vector (1‘) 17 @c,

V(AY" L) == (A7) &),

Lagtly, these are the only possible characteristic values, since a

glves

non-integral value, Bay A = s +& , O<e would lead (via the vector
Ny
A 'Qa ) to the characteristic value «-/ < O p which 1s

imposgible. The possible values of H (aay'En ) are therefore

. KFw =
EM- "i"‘ /2'”*,} 7‘—*0,/,2.,...
It 1a very sasy to work out the matrix elements of various operators

Involved, in this representation. We know that

AY -c, Y

A=l
vhere the factor Cn has been put in since we are assuming that the @%

are normallized. However,

ne (W, AAL): (A%, AY,)= ¢ (¢ &)
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Thb A 7{/ f ’IP -y The matrix elements of A are therefore

(1 aimn) = (L AB) s S (Y ) S

The matrix A has the form

\Q: e i Y 3

A= o c Vi o o
! 0 o Vyi o
2 o 3
3 o © o o Vg

@ - j
 Since AT 1s the adjoint of A 1t has the form g
g .

4 6 © o © ©
A = Ny o o o o
o /o o o o .-
o o V3 o o
o o o %; )

vhich ig clearly equivalent to

4
(»" 1A ") = Ymuy Jm"m".&/

wilzsh ig in turn the same as
/? . 1!1, = [/ me Zzau4, | ‘;
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From these matrix elements we can at once find the matrix elcments

for our orircinal p and q.

r g - (ﬂnét?’/«#[-/‘;‘ Y., « tan L]

¢

P ()R- R

P o= (4 ] V7 ¢ Vi o o
o Vi 9 /30 )

g 0 V3 0/%
Ty o /i o o0 o
?‘~L, } -V o ‘/:00
Ym k .-

¢ =/ e 3 o
00-;/30‘/;

- -

which are clearly both hermitiasn as they must be.

(2) Properties of Anpular Momentum

Let us now study the properties of'angular momentum in
quantum mechanics. Conslder first one partiscle. Claselcally the anguls:

momentum vector ?? is given by
--9 %
. LI et 3
where A 1a the position veector of the particle, p is its momentum

veotor. In components
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izr = 7//";}‘2@
24, - Xﬁ,

l‘i' - [ﬁ7— 7ﬂ

™~
\

Since 7/ /02 etc. commute, we obtain well defined operators for

Lr/ lv’ (e by simply replacing the classical quantities by thelr
corresponding operators in quantum mechanics. We can at once obtain
commutation rules for the L's from those of the co-ordinates and
nomenta.:

(L, L,) = (77 ~2¢3,, H 1)

~
-

7Px /ﬁz,l') *’flefi_,) = (F {’f’-—;fﬂ)
- t.t Le

Similarly (Lb Lo) = (%4,

(A‘E‘/ 4’.,):' ( & 4?

One often writes these relatlonshipe in the compact form
l-n-) . —>

Z..>>< L = ¢ % L
Now in quantum mechanics we have not only the vpossibility of angular
momentum due to orbital motion, but 1t 1s possible for a narticle to
vossess an intrinsic angular morentum (as, for example, the electron's
spin). To take into account this possibility we must broaden the
classgical definition of angular momentum in such a way that it no longer
refers to the snecific formulae expressing ? as a function of a@

-» iy
L and 4. For thls purpose it is natural to define in quantum

50



1=

\n

)

mechanice any vector J which satisfles the commutation rules

-—> —p ' ?
JxT = tHA as an anculer momentum vegtor. This is

possible because in quantum mechanice as soon as we know the commutation
rules we can determine the properties of the operator. Ve shall later

‘ — .
gee that the vector L is only one specific case of an onerator

satlefyling these commutation rules.

Possible values of an angular momentum
Since Z,J,JE do not commute it is only poegsible to

neasure one of them at a time; in other worde we can only choose a
' representation in which one of them is dlagonal, let us say .72 . Ve

:0an consgider along with the components the magnitude of the angular

‘nomentum
S

Te T Bt T

’

Eclearly

79 = (7, 0Y (4,3

(%, %) 7, + I (T, 5) (L fy = 7, (,.,3,)
AL T T 20, - T}

= O,
jand simllarly (.7:‘.'; TY= (J” ]‘) = 0 , go that we well as
one component of ? we may also slmultaneously give the magnituile

1"

of ? . We ghall now find the simultaneous characteristic values of

2
J, and  J°°, Let us write for the charaoteristic values J; and J 4’
ofmessy  the expressions

J;:’»Lx'

Jt' - F77/ S

'wvhere we have ag yet made no assertions whatever about m or j. Write

ithe charscteristlic vectors as '@(;, »mj/ that is
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Antroduce comnlex

Therefore Ty T, =7 T e B j;

fow conslder the veoter J, 7[(’;, #), Since

Fwith \7-‘L g0 does

LAY

- , 5
Uy Wl ) m Bom Yl

L.
Ty

£ 601 ) & %‘ f/f*f‘l} f(f, m)

It 1, Jus® as 1 the cage of the harmonie ogcaillater, convenient

: opsrators. Put
— 7 ‘
= J + (T
To = Gl

- . v
~j py \ - -
- = /- 7 P v,

( o— A - A ' g ‘
‘?7""/‘*’?;',) = (J“\/i_)ﬁu(‘/}/a) - Ltl{']f”j;f
(‘/'7;’/ “Zx;v;f‘; = A J;‘

or
o= Ty (ot %)

Jr and @ comnus e
Therefore
i o

J. fzi_é\/;,m/ = J, AL 3,"'223/%4,«/

((w?;s. 72/7,-»‘)) = 6,1'"//%/}&\ (f,« @(3'/?’”1,}

Further

.j; !’f,«;?; @/J’,w}) - \7; (’J; + %) ?/;,m}

V’:’ W""’j * ?{//7")
= fne)t (T, Z}(/w/,)

Fhus J 4 ?(.iﬂn) 1s again a characteristic veotor belonging to the,

Y . 4 - Y B . 1 Y . N



@n f;:%‘:ﬂ

J; 2}///%)'-‘—‘ C 12/‘,/, 7?79‘/)’

ere C is a normelization constant to insure that if the function ?[//, )

1s normalized so is ?(/, wr) We can easily calculate C '

C(EGmers, Epwrd) = (T, Zipw) , T lYm)

Ct= (ZZ(/M"}, ~7:\/: 1[(/,4"//.
n the other hand

Lde s (T-c )T ov ) s T 5T el T 3=
z Jl']:“’t“:
T L 8 m) = (fige)-at-n)d Ty a
= R ) frane) Plf )

'

t'; (/'/M/(/"'m'”)
A l/-/—/wn)/f o n;—

NN
1

T, ¥Gom) = 5 Gmigomer) Hltme)

The metrix elements of Js are

//’/M’/L//”/m‘y - A I(fimy(/z,“d")ﬁ%

(St;s‘, L] 'lﬁ

'/u

fince J- - ,7 we have for the matrix elemaents of J:__
- + ,
I

(@' 1T 1 gm) & (J*m= 1T, 4'm)

T R ANG Gy Ly S, >3



Thie iz of course equlvalent %o

va @(Ji”"/ = & /(;M«)f(/ww /lzz;/f, #-1)

S0 fer we have only investigated the effeocts of the operators, now we
consider the pogsible wvalues of j, PP themselves., Since
we have that
(Ptyny, 70, Etgms) = (5 Etms, 7. Fitas) 20
or
G-o)lgsma) 2 0 Teupre méF

gince we can elearly always take J positive. ij“‘ % nae only pogitive

characteriastic valuezz{}“ Similarly from

(Cig. o), 7, 7. Rlgm)) = (7. Eiami, . &lew) = O,

ve get
(f =) —mnss) 20 G
That meens that for a fixed § m ie bounded from above and below. =li
the highost possible value of m =M , the lowest m. Then sinve
]; @ 4 3‘;&1"“ would have m = @ + 1 we only avoid a contrediction 1T

this state vanishes, i.e., if

j; L}‘C}*{, an} = A /g";)(f—-v;; ) ZZ(%A:'H) = O

(Py"":){é”#’fz—-ﬁ!/':a i ’;‘:"'—f

Similarly

J- ?}/3’»@} = K /@#@)(gr.-ﬁ«u}} %/7,?’;;““}
met vanleh to aveid a contradlction, that is
G+m)(F-mr)=o0 = =7

n the other hand, if =] is an allowed valus of m, 80 g =/l -~ Liy,

tc. (obtalned by successive application of J, to g w))

1 series must terninate with + J since we know that +J is the highast
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possible value of m. Thus we must have (vhere p 1a some non-ncgetive

Integer) ! _77*”:; ~ 7= Zo_p '
Therefore the possible values of J and m are completely known:
} has any half integral value F=92 £,1, %, e
n has, for fixed J, the possible values =g, -7/, ++1, >y
Clearly there are 2J)*1 possible m values for a given J, so that a state
vith a definite total angular momentum Sguaaed Jfize/ A" 18 2 §+1 fold
degenerate. This 1s often called spacial degeneracy.

Some special cases are of considerable interest. .

() =0 . Thenclearly 7 '= 0O, s =0 : the only
poseible state 1s 72{0,0) . 72 (0,0) = © and therefore J, o, 0)=0

and ..7;', ?f@p} =9D. Thus we can slmiltaneously <%
dlagonalize ‘7;’\7'7, Ta in this cmse: they can all have only the -vede

zero.
(v) Zf._f_ ] Then J''= ’Hf){i"")’—;}g‘/ and s = £ 7
The matrix elements of Z. and J- are easlly seen to he
(3:507:14,-4) ¢ = % /(-,“-,f)(;’--i’u/ = %,
a1l others vanishing. Simllarly
(3,°41714,4) = %
2ll others vanishing, %

o I\
J, = & ( )

0 o /-

6 o
J X [,o))

the labeling telling the m values of the matrix element
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(-
)(
]
N)~
’\
N
>
4
~
N
]
Mt
N
~Q
NI
N

Y

\7:;1. ibw(/o/):i"
‘ « o /[ &

Jr. At
7 %
T
T A
VAR
4 - 1 - L “' .1
aotha.t JI4J7,¢];,733 ; as 1t must,
One often introduces the matrices
. - . I o
P 4 S s _ /,94) =~ = )
‘y & ( IO y c‘;; - L_( o ) C; ( v =/

vhich are known as the Paull spin metrices. In $arws of them

- T - X ‘ T e O
J‘_.’_{_c} s My T '{6\133:‘{0‘; s 7 1,0.‘

7 PR |
The Paull matrices have the properties

ot = R et

¥ U} O; = /

' R / (o} N

T - 0 1) g=c) . / = ¢ O,
,,O} (ro({o) ([0" ®
%0 T oo
0~2 6‘; = ¢ O—

/
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5,0 = ("’"'/)("‘/ _ .yt e , ~57=
17 () i (L5) neag

ch follow at onde from the general commutation mies for angular
ments o

This case 418 realized in practice. It 1g a well known fact that in
er %0 explein the propertlies of the electron one must agsoolats with 1¢
t only an orbitael angular momentum but also an intringlc anguler
mentum  f = S, which 1s present always. This ig known ac the

gotron epin.

80 far we have dealt with the moet goneral case of the angular
mentum of a particle, whether it be due %to orbital metlen, Intrinelc spin,

a combination of Loeth. Let ue now digeuss the ocase of orbital angular

mentum alone. We shall see that in this case the situation eimpliies

pnewvhat a&nd we get only integral values of the total anguler momentvi.
We have L= R w ? . We shall diagonalize [p, LY as

fore. Pu% é,é' =mai LY = '(/-(-m)ﬁt'L . It ie convenlent to uas o

pregantation in which the coordinates (x,9,2) are diagonals

,Q;{I,w) - j g/(xg-z) d«aﬂvdz(xﬁauw)

m our previous work we know that

Ly Wihm) = mt Flha)
LY Ylhm) = Lldwr) Ul 4, m) e

ulvalent %o

SRRSO Rl el .
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La (242l fym)= Shk(4192/8am)
L*? (173/,//,,,,) = L) K (XY 2 Ilm),

vhere we revnlace Aj 7/'2 by simple multiplication with ¥,2 and

2, 7, % with E:‘-ﬁ , 7“_;;’; (ﬁ —52} respectively.
/ Vs - [4

Thus

by = B (2 J 5% ) e,
It is much more convenient to work with spherical coordinates instead of
érec‘i;an,rmlm* coordinates. Put
A= Son 0G0
b = n wmd Senp \ |
2= M Cen &

(learly the omerator
.\ , 3

2, ® 2, P2 2

d¢ = 2% X 2¢ 3

>
RIS ot A D

. 5 2
/_ < l,.' o 5&

Th an exaetly ginllear manner we may verify that

: . 2
/i,w,”"'“é!_ = Z..;. = % @ <’(” *l’/””ﬁlg Jge

-

~p g 3
. - e - w— e {v ?“ [ -
{ = L is e {JE > &Co*,) ,

‘ -
Sl A A
/S

(7 b to cetablish this is by directly cheoling the commuviatlon

O e gy ey gy A7 I S T 5 L s -

Cievr pomenta.) Let un welée (N DS ) e Sy & i

3 P e ALY B 7 s R R P2

o ‘ Tl A . !
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é 52(, Vu(269) = ma Y, , (16¢g) a
97/‘14.‘ = ¢Mm V.(,m-
J¢

Therefore the ¢ dependence of ’lk(’ w 18 given by

WI,“ ~ ccmv

w/;m- - C/on P-(-w /1) @‘:"{gj 6

e =
vhere @ P 1s 8%i11l to be determined by the requirsment that ’I’,M ig

Put

m

also & state with definite L2, From our previous work with an arbitrary

angular momentum we know that

(Lo~ ‘[7) TZ)(/,* = A ;///-on)(lfmvuj %wu

(i) By = 4 flmrmg Cums .

7 2 . ' 2 —
4 /09 + (GE o L’e’“ = /Z/—M)(/MM»I) %mﬁ

.“;9' 9 -, »
- € (5‘9 ¢ Me.)%/i/:’,"‘ = /é"/n-){/mu/ ¢4*-/

This relationship holds for normalized '1{(/“ , The normalization

condition in terms of 4, = 1is clearly

(4,,, Y) = [Irgertm] tcyots

//%JL AR Sumb A EA

\p

"

© . 2 »
¢ IR, 1 _/;;@J"/’;.,‘a/a [}/e“%p

H
—~
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A /
we take C = ——

EXa
///e-’ﬁ/z,l’ ‘da =/

/;/@xw/z-mﬂa/ﬁ =/

o

¢ have clearly normalized 72 2 o Substituting now in the above

elations we get

d *
(a;; - &vfﬁ/ @z //I—m///whvl/ @* ,

(_-— .J./MMQ)O

[ Utmy(t-msn) @

M
or the normalized @4 .

hege functions are easy to construct. Consider the flrst of these

quationg. We may rewrite it as

[/"mé)” 4 {(’“"ﬁl.h@ } /—'")//Muvl/ @WH

utting m N we obtaln
E~ ™ P,
/ 4 ”~
s:; ﬁ.;@ P( = ﬁ/'m)//f*,/) P‘(ﬁﬁ o e
iff: - - P lnhad
y; /‘30 &) V(J-m)(/#m 41) Y,
ke m > -4£, Then P
P- L41 _ / d p;
4 Vo)) dler8)
-~y
3«4*2 / d p4 ’ / A 3“'/3,’(
P - _ (—
A Ves-1)02) (e & /Cu)/z/.,)/u(;) "'"{/44"/ <,
/ -
C . ~, 2

e S5 e e ¥ ﬂ"y y
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~{ F & / ,;( )klz)_l

P ’
’/(21)/21-1/--- (ﬂ'—bn}(/l/;)...(k) dfdaﬂ)

ere ¥ 1is any positive integer £ 2.4, P

 can eagily calculate P ;t and p 2 , Since

(Q%-ng) f::a ol

(g8 —€&16) ®, =0
' obtain

@l )t | P

a4

an

£
@, - o (e’
L

, can easlly be determined from the normalization. Before we do this,
wever, we may use the relatlonshlps obtalned here to show that 2 mst be
IT we put o= X @ in our previous equatiocn, was obtain

| integer,
24

4 2
pj g WC’T%;}) s’

< V4
WM = d{@a}) (/-% &/

wirt £ 1s an integer thls equation 1s clearly satisfled, since then

may expand by the binomial theorem; the highest term we obtain is

24 differentiations with respect to cos ©
is not integral the serles

For example, for €= 7

2 8
g & and on we

/
tain a constant. On the other hand, 1f

e8 not terminate and we get a contradiction.

would have
"o = - T B

o
%zz = ———— (- Gy =
(o) Vs-4,20
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eh is lmpeasible. Thue ,{V may only have integral walues Tox v hrh i
ular monentumo o
'{

s S

To obtain finsl formulae we now need the normallzation: L

Lo

| 7 X z ' ' 7 7
= / / @j/ Aen B O = C‘z1 fanblé’ﬁné’da - C;,[Wz%'rj
o > $)

c" ; 2441 /J‘//L
RA+1)!

]

(2 4+1) ./
2«?.@ *! [j,) 2

4 A

~A+rR k. T ) ¢ (/99! 2¢

A R S el R e B o~
Vi (24) '+ k! Al 08) <)

: #*
-) A //.?/-Ae).’ (24+7)! _il,_
201/ 2 k! | Al &)

rout ~ 8 * R = am,  jo= £+m, Then we have finally

»
i
\

]

£
(1- 48/

-(4-4,‘
o™ w [ 24rr [l-m)! ! fé...-- . <
/Lj = (=) - 22 47 C'{/Qﬁ)) (€n*O ""/)

2 (£+ ™)
Tn n P : “:'
£ . ‘:f
» can show very easily, by Just expanding ( Ceo *6 '/) -~ that ‘ ,-'-‘.,'

“ e »n ’
@j = (-4 @4 | A




L]
wn ) G

P

Combination of Anpular Momentum

Supmose we have two aystems, one with angular momentum vestor

— —_
Jﬁ and the other with J. 2. . We take the aystems independent , so Thab
~ : —p
Lty p—
£1l components of .77 commute with all comvonents of ./, - Then we can
. 2 L — !
similtancously dlagonalize J, 7, ) 7/‘2 , Tz and a state is

gpecified by
@( g'/ f:—; M',’M'») '

The total number of states with a glven 1, and 5L,_ is obviously

(2% +4/’/ZJ,_*I} . This 1s, however, not the only representation cof
—p
interest. If we defins the total angular momentum J by
—3 = ?
J = J,7 a

-—

T

Then J  commutes with 7 * 7

o~ L F = =

7Y = (7,9 R TR GRS ) =0
-

since (J""J’t):a

' 7 .

Ve, 7Y = (52099 7 (7,,7% = o

Further O - ~

and so doss A .

+ZX
> - -~ \ - L, =2
= T3, » LR LR(T) =XV
-

g0 that as could be expected J also has the commutation rules of an
angular momentum. Therefore < = and J, commute, and we oan take the

by * i T
sot \7,’ J; p .7, ‘/z as the quantities to be simultaneously

-3

dlagonalized. Since 7  has the commutatlion rules of an angular
momentum the characteristic values of J = will be of the form gféf«,/zé‘
and those of \7;_ of the form » X p -‘7 :‘%s/ , e shall investipgate the
 traneformation from one representation to the other now in some detail.

Call a state with fixed 7, 7, 7, ™ é (7, 7 o) . Ve may

certalnly write
\ 63
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Lipfesim = L Vs mm) (ffemml gy go)

J; (zg/fufz/‘j’m) = o & fl/’/i /'f,"“)

- Z (_7,2 4\1‘2_;) @/ﬁ,jg/'-*ﬁ,,m;)(a’l,/,w,o@.&j@ézwg‘m}

ﬁ,,m's

= Z_ % (m, '.‘4#',) ? (/p/;/ , 41,) (/,6/; M, e/ f’/ﬂ‘&;ﬁk/"

‘h""'t

Therefore only those terms in the sum contribute if

M, - B, = o (. @, f/,}L'h,«-,//,/;/'ﬁt/="’ sitleas My T My F

Ve may then write

é(//ﬁfﬁn) = Z @////z,"’""’”“)//0/1"'""*//’/z04"”} .

Ty, w00

.

Ty, s 4y = An
From thie we have that the largest possible value of m ig

MGy, (ﬂ'n) = gy (m,) * A a1 )

Y

However, each 1 will alwaye mean a state with 7/ = ‘7 is posaible, s2
that we obtain at once the result that

749-\4.,,'7 ;lrft. !

For thie state we have

Pt gitamta) = 21000,

since there is only one state with -a = // M, = /: . Now consider
those states with =/ -/, There are two ways to obtain this, 1.e.
(1) '4"/ :/, M, = /x_ -/

(2) 4”/ =fl" M, = ;1.



o
£
- e

One of these states must certalnly belong to fx/m‘_y , s8ince 5t nse
all m's from ~'1~30 +j*.w. Therefore the other must belong to / :ﬂ?;af&w -/
gince we need this high an ancular momentum to obtailn o <= o o= /.

Thus we have ~stablished that a state with7 =7 +7 -/  exists for the
composite system. We can continue the oprocess 1ln exactly the same wey:
Congider those states with 7n = Zame, "4 = &, +f -2, There are
three ways of obtaining this

1) =, =%, My, 27t
(2) o = £, My = ot
(3) ml”/l“l e = 11. .

But one of these must belong to ¥ = ¢, A , another to ;c(/, A
and therefore we have that a state with 7 = 7, ,-"‘-z_ also exists.
We can continue in this fashion tl1ll we get a state with

F=5 4~ et Fi-n=-%

(vhere we have assumed f, £ #, ) , since for n greater than this we
) mecol
would e an am, < —1‘ . Thug "N = 2'/, y, /m =[/,_-/,/, The vnossible

values of J are therefore

P lrdes firtats o 12l

vhere we have droonmed the restrictlon that [, "’f‘!— , We can very eazily
gee that the total number of states is Just correct
7 e ,
Number of states = % /2/*1} ) the factor 7—]+I being jJust
P LR

the number of states with a given J and different m. This is an

arithmetical series and is easily summed:

himn g Sl = 2 (P2 O ) o :31)  (fuy foz 1)

=

= [/,,,,‘y 4/4““' "”)//Am,, = fawn + 1/
' S (2/,7*/)(2/,-;//) | 65
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which 1ig Just the original value for the number of states.

The expliclt calculation of the transformation coeffliclents is
in general very tedlous. To 1llustrate the general techniqué, hovever,
ve give it for a very simple case. Consider the case of 7, -r/,, = A .
Then = [/, 0 ., Denote the states ‘@( %,% .4 m) /‘7 f(/,an/

the states @(7,/ Hh)m,, .m.,) —l-7 \f (,)"',4“,,) , Since we shall
hold ?) , /‘» fixed throughout the calculation. There are four nossible

. states:
4’1 i 41‘ % 1 ?::; -
,/1_, '/1« / I
] o
72 A o
) -
~ia Ya /
- //?V - ,/'b B D (2]
By our vnrevious work we know
@[/, Y= Yrau,l), since this ie the only
gtate with m= 1.
But

éfjf”/’ /(/'""‘/(/‘«H} d-(/, n =1)
T @) = JSi Lol

E o) = o T B =L (T T ) Bl
T Tt L) Vb)) = E(PLY it
J. Ble) = VT Plh-y

l‘-/L~ (.- ,/—'(4’"“2/,,/ }.Zw“)
( @{/ 7/ L} o~ QE("W ;{-; \ e ’E?:?(;“‘i ‘,:aﬁx 4

} T4 J
\ 4

My
~
N
'
N
i

£
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ag of course it must.

There 1s only one atate left, 5[:0 , Since for this state w1 =0
1t mst be a linear combination of Y(-L, 4 ) ang. E (£ -4,
and (since it has a different J ) 1%t must be orthogonal to @ (4 /.
(learly the only vossibility te

S0 = = ( Y i K)ot k),

vhich eatisfies all reculrements and ig normalized. Exactly the teshniqus
uged here will work in all ceses, but it gets very cumbersome when #, and
1.‘, become at all large. General formulae have been gilven by Wigner.

{(3) The Hydroren Atom

As a final examnle, let ues consider the snectrum of s hydrogen
like atom. The model we take is that of a charge - € moving in a
potential 2e ; vwhere /L 1is the distance from the (fixed) nucleus
to the elesctron. The hamiltonlan is clearly
H: /'(g"'l"’f?%f;__ f...e,l’

) p R N L
and we ghall ask after this characteristic values of this H. I% is

/1__:- % IS
] */I #7 -ti?'?’ J

convenlent to rewrite the expression for £ = #, l*/;,l-f,&; , To do %this

let us consider first the expression for the total anpuler momentum:
L =L L L = Yu 2y xS (AP - +
x "y 2 = (G4 -2#) G A le) AT )

= Al ?1 - 4-.)7;.)(4.':/0-—>~ cA) )

Define +£= 5 {/?'F~¢' z).
b L A et k) Lra i)
% - A 7’ A L :
) ' - ey
However, (/7/7 - k)L . % (25 ) ) and therefore
st JRCSY

’ - =) , .
‘p, = j—n(”‘f)('qfo "t/, 8o that 67
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The quantity ﬂ," 1s the momentum conjugate to /7,/ since

(pn) = (2, 15'(’?‘/“7/ = L (N /7/,/~ --cx(kw-,; L:j_.: %

as 1t must for conjugate momentum and coordinate. Further we would expect

/ / 2
= A< = m - n, H =T - ‘ 2’-./.

21 %
z A
/fﬁ’/"’): T P
e P o
- 2 -’—?--f-ﬁ-.) - 1 2 4 -2k
7 s (7 3 ﬂ7’)'2(4f"}:’)
. AL, it
= oA f A !
Just ag it muste. -
I
Classloally we would have 2, = % 7 , but this 1s not

hermitian. If we symmetrize (add the adjoint and divide by two) we again

come back to exectly this same definition. We may therefore write

/z"f”‘: LT+ 5t p "

- L L -
= P - J or finally
' L
L o= Lk opr. L LT BE
2mn A 2mAt o=
Now dlrect ccomputation shows that [/ commutes with 4% and .

{in fast 1t commutes with any observable which 1s rotationally invariant).

2 _ 2 .
)= ( gtetp,al=F (o8 -25 )= KLkt )0

é

Sinilavly Tor Ly, Lz and for the commutators with # , Thus we get
oy

that .Z;, and therefore L.= ecommutes with H and can therefore be

AR *

slmaltonsously diagonalized. Taking [ © diagonal then gives ag nossible
kN e Lo o

i . A /ﬁfﬂ/(/f"""/f/ LG8 Lot s state with

P

dorinite f

68
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be 'Q e Then the characteristic value problem
H @4 = E‘_ ?)(

reducee to

H, €, ~ E Yo

L. AT ey - Be

Imar

) where

1
J

m

""/.c 2‘&; 704'

and (’t ) = ‘ 7.‘, vhich 1s a problem with one degree of freedom, and

must in principle be solved for each £= ¢/, 2, . If we solve thig
oroblem we will et a set of states each belonglng to a certaln energy

snd £ value. Let us label these states wlth an index n, which can

. be either diaci‘ete or continuous. That is
#J @4‘4 = Eq’l‘e @“_‘ Py

One way <to solve thie problem would be to go into the basis with 2
and try to solve the resulting

’

dlagonal. Then we put 4 = X %:.
ordinary differential equation: This 1s the standard method used in wave
nechanice, and 1s found in all the text books. We shall, however, give an
alternate treatment which ls more closely related to the methods used for
the ha,rmonic oscilllator and the angular momentum. Define an operator B ¢
by the equation
B = A | ( (I-H)t i 2e" Vom
£ G A (A

. 1
B+ = el N *\—w((f)x 2e m)
4 V3 m Vi A L& (40

A
Then ke
-+ 26’ L,
Z),E g{ - H( 7 ?7-( / 77-( - a,ﬁ 1(!#!)‘
a8 may be seen by Airect computation. The Bx; ?i: have a simple



7y W
commutaticon rules

6.8)- = %

2 o VR o

By means of thls we see at once a very important result

+ + AL 2440 _ AT 20e) 4
343123,,?4“;; = *%Wﬁ— eer* Ve

Further we have

BYU, = 4.8 < (B, 4,)
4B+ (B BB = [4.+8%8)]8."
[,

=
BIH!" Hes) B 41.

By taking the adjoint we get H,e 34 = B‘ //1,, or B,, /(lfl = ’4/4 8/'

Now consider the characterlistic value problem:
Y, B, = Ens Fus

Multviply by B ’;
+ *
B,e H., 7’-2»\4 = fas Bx @«l
T
H, (8*%.,) = €., (87 %)

= £ ("2
‘UI+I @4”-0/ - At M, L4

Therefore we must take

B ! @ = C @«,1-91

L ~, L

|+
z/./ﬂ/ g‘
Tav J

But

o

& 4 (the energy 1s independent of _

p—

and
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Pt Mot/ = o then 2 = ¢ %, -

2, o —EnEed

24> w+ !

vhich 18 the famous Bohr formula for the hydrogen levels. Lach of these

evels is degeneratse in AL ;) l.e., there are states with =G4, M~/

be ~
ving the same energy. Since & 2 can also/simultaneously diagonalized,
there are to each of these ¢ states 2.£#/ states with
= A, A, - g respectively.

We oan easily, if we wish, obtain expresslons for the radlal

unctions by first solving the equation

81, @4‘_(0 =0 )

[

hick is first order and very simple, and then obtalning the others by
owvering with the B 2 .+ 1t is also very easy to obtaln the matrix
lements of £,  and Z’ gince we have thoge for &, and 341’
ovever we sghall not po into these questions here.

For (2) £, >¢ and therefore C = E,n y, is always
ater than zero. This means that no matter what £ we take there 1is a
llution, and therefore we have no restriction onthe value of the energy.
t 1s, dll positive values of the energy are allowed.

vy _Avoroximation Methods

There are only very few problems in quantum mechanics for which
pact solutions can be given, and one 1s generally driven to some form of
‘proximationo We shall conslder three types of apﬁroxlmation, useful in
fferent connections:

(A) Perturbation method

(B} Variational method

(C) W.X.B. method




(A) Porturbation Theory
In pertur'bation theory we envisage a situation llke this: The
hamiltonian H (though it could be any other operator) consists of two
parts

H = Mo+ H,

1 o represents an overator for which we can golve the characteristic

value oroblem, H represents an onerator which isg in some sense small

]
sompared to H , ) that 1s, we lmapine the states of the system do not
1iffer too much from those of H 5 , An example would be the wnharmonlc
ysclllator; fhat i, 1f we try to correct the motlon of an oscillator for
amell nonquadratic terms, say ) ?,3 terms, in the potential energy.

We shall call the term A, "the perturbation," and shall
iigcuss three cases:

(1) A1l the levels of /A, are nondegenerate.

(2) Degeneracy 1s present in the levels of H,

(3) Transitions ‘caused by a perturbation.

(1) Nondegenerste perturbation theo

The characteristic value problem Las the form

(HorH,) ¥ = E£EP

) o
low let us choose a basis with H , diagonal, and let 'B_D be some state

Ho@ = E°YP°

o
'hen the true state '7{7 and the state 72; will in general be connected

lf HD ) 1039

)y & unitary transformation U
o
= vy

ince all that 1ls involved is a change of basis. Then

(Host,) U P°= EVE"  a
U (Mot t, ) B = € D°

|
i

A

s o T

i
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That i, we must £ind U such that U7 /4, +4,) &7 is diagonal in
the X/,, representation. The dlagonal elements wlll then be the allowed
enorgles. Call this dlagonal matrix W.

U™ (HotH,) ¥ = W
Mo+ 4) v = U W.

The unitary condition on 1T is of course
' +
v U =1,

We now try to solve these equations by an appxoximate method. IT Al were

or

zero clearly we would take [J= / Ther~fore it is natural to write for

!»j

U'—‘/'f'ul-f'lfl-#'w-f-vm-'", {i
where -/  involves 4/, 1linearly ,
"?’Jz " /6 quadratically, ete, "

Similarly put
W = Wot W, 3 We=+ it W, +.000
Wu  being the dlagonal metrix of the unperturbed levels, W, Iinvolving
# linearly, etc. Substituting we get

(/qg-f”,/(/"u,v‘ut‘%alp) = (/"(«{,1‘ UL*"!)(W‘J?‘“/’"‘ WZ""'}

(I* C’,f-l- (/z*-fu.)(/‘;‘ &, + uqu.) = /

lquating 211 the terms of the same order in M, we get

Ho= Wy
/ ) zeroth order

Pd
e

HitHol, = oyt U w,
firset order

t};’*l};:o

Hy U + MUy = Wy« Yy +U W,
second order

UTu+ur+1, = o

2
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j‘/ ot b0 order, wish
g Y=o U=z0,
Thegse squations can be solved guccesgsively. The zeroth order ssf iz
trivial, since A/, 1is diagonal by cholce of bagée, and W, is just
the dlagonal matrix of the unperturbed levels. The Tirst order set give
H, + WU = W, * U W,

It we take the diagonal matrix elements we get
| (mIH, [ m)= (%/M/mj-r/%/o;%-%"%/fm)

But (Y, w,~w, i )= (E,. - £ _Nmivgm) = o, where £,
1s the characteristic value of the mth unperturbed level. Rff/w-;rimwf..,
gy (m/ib/m) = (i lHidm) , which is the first order enavyy

correction.

The nondlagonal slements give:

(m/H,In) = [ m/ i u- Wi /n) n F

- ‘%i; "’j',,,, /(/ﬁr/f%/ oT
W 1Yin) o - ) ot
» /504,.“ Ea»n)

ry condition gives
WU, [m) ¢ (m [T, m) = O

nondiagonal elements thls 1s identlcelly satisfled by the above.
‘dlagenal elements

' *

/U o )T 2 (m (U [ om)




-6

erefore we may take for the numbers (4w /i /m) any purely imaginary
t of numbers (different ocholces correspond to different phases for %thea
ate vectors). For simplicity we choose them zero, i.e. (m/U,(wm) =0.
s we have a complete correction both to the energy and the state veotor
ch 1g accurate to the first order. For the second order we get, taking
agongl elements,

(m/H, Uyfom) = (/W) om) + (] 4 )n)

% (nfH, | LNl 1L, ) = (/W lon) + (on [V )¢ om (W) |4) ,

= Qe

(# W5 lm) = = 3 (m IH, (L)) 4 /D)
L Eo‘("’éo“ /

ich 1s the second order energy correction. Taking nondiagonal elements

(”"//'//U,-U,n/,/m/: (”"/Uz%-%u,/""/ m

Z (mIH LN Im) = (wlpim)im b)) = (Eg,- Eo, /G 12)
£

(»% IH 2L 1H, [ 2) (miH ) m)(al H, I m)
I ’ (
(f}n /"U;_ Iw) = — - Z ; * z p: l

on” Com

- E,,- €,
(Eom‘fa@) LZn o4

' { Z (wn (H1LNLIH ] +) , (:.,./n,{m)(w‘m.m)-/mm.m))}

Eal‘fom EOM— Eoﬂ"

)

th.' Eom lt ”m,n
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ne unitary condition gives:

(m ) U TIm) +(m (T )m) + 3 (012 )€1V, )m) < ¢
AL

&

@Ay o) (€1H, 19)
{50 =€ )(Eo[’ @04\)

)
Q

,’MFUL//M,)* + (rm /Z/;/m,) ot Z

L7 iy
he nondisgonal eloments automatically satisfy thls, as thsey muet since
hey are determined independently of it. For the diagonal elements wa
Ve

+
%/M/ﬁ/ﬁt#fﬂn/l{_/dh} = - Z /(4"///,/(}/
47w (Eu~fF, )%

O 7en

hus only the real part of ('4" 1T m ) is determined. ¥Weo can
nooge the imeginary part zero if we wish and then we have

;'
(U fm) = - £ T [Cm14,14)]

AL Fan {504"504&)L

hich completes the calculation to the second order. Clearly we can
terate the method and obtain--though the fermulae get very complexe—-

e correction to any order.
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(2) Degenerate Perturbation Theory

Cle=rly the method we have used in the nrevious sectlon bresks
down if %o two different states m and n have identical unperturbed
energles, l.e., If £, = &, gince then some of the energy

demomilnators vanish and the corrections come out fmfinitfo In this

cage we must oroceed differently. Since we can have different states

| vith the same energy we need to label states wlth two indices, say, 7, A ,

Different n mean different energy, different X mean different states

with same energy. That 1is, the states are denoted by ?,,.,, , with the

corresponding energy belng &,,  We wleh to solve

(/‘/0‘7‘ /4/,/@ = & Z_Z

As before this is equivalent to finding a unitary matrix U in the H,

representation such that.

(4, ~+ H)U = U W,
where W is the dlagonal matrix of the energy values of H. The unitary

condition is of course (J 'L = |/ @as before. Now we put
U=z Use ¢ + Upre
W = W, W »...
and obt&in_
A Uo = U, w,

. Hy Uyt HoUy = Ul + Uy, | e

Ho is just Wo’ so our first equation is

W, U, = U, w, .

If W, were no‘n—degenerate/ the only solution of this equatlon would be U=/

“which is what we used previously. However, if W, is degenerate this 1ia

'not at all the case. Since

77
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:
p

L (A ) TN LT ) <= T 114 )20 1) _75-

A7 L)
and (/Wi Ld)= &, &‘/ f“r J this reduces to
(Eam - Eo“)(dmo(/uo /mﬂ) =
Stnee £, # £,, , (m«lY,/7p)=0 for on Amn but the
quantities (/»1 L IX 2T E™ /s) are completely (apart from the unitary

E condition) undetermined. We shall determine them in such a way as to
eliminate the difficulties we had with vanishing energy denominators.

Consider now the second equation,

’L//-Uo"/“/ozj'z oW, +U, W, -
| HUe-Uyt, = TUho~#l)

: Taking matrix elements we get:

Z{( WRIB) ) n U i) = (mm o A Ul tmd) (s 1)) mp) S, M.,Z

= (e, - £ ) {/m«/u,/,n/_:,) .

The dlagonal components of this (with respect to m, n ) enable us to

. determine the first order energy corrections:

2 { matit Ima) = 8y, mplW,1mp) | (m 2 1mp) =

?This glves ue for each m a characteristic value problem with the sub-

matrix (ma JH,Im)y) of H, to be dlagonalized. Solution gives us
the matrix ( mnd (Vo] A»,é/ and the c/,,. numbers (where C/m is the
degeneraoy of the mth 1evel) (] W, | o Y ) which are the first

_order corrections to the d,. 1levels £

%
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By taking the nondlagonal components we get

L (ma | hnd)(m 0l fm g) = (€, -Eon)J(ma)tf inp) wdn
14

(m kU, (mp) = - 5 (om XY, Jmd N gy O P/

“n Fn
L4 éom-Eo"" ' ‘
The unitary condition ~ives
. 7 _ o 1, 7. 14 _
U Uy Uiy oy e =S
Uy =
7 9+

’ &

e

U « v‘;"q o

That 1s, the matrix Uo must be chosen unitary,which is always pogsible.

The seocnd equation gives

S A I LN ytnp) + om0 LK p)f = 0
Ak

OI“

72 zj(’"‘ ) m g )l I tmp) + (m o) U, ") )’j/”")’/l{/m/s)/ =0

Finally,

# S
y {(m ?IU:/A;)MJ/D;W«)* e (mr | Udamet) MHW«,B)} =0,
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If we take M 7( #» we see that the above definition of U; satisfies
, thisc For m = n, on the other hand, we get

% { (ﬁn)/%'ﬁuﬂ)’%?lqlhﬂ)"—f- (YU pm ,4)1'/4")‘/0,'/4’\/3)} = o

 A11 we need do 1s take (m /U, Imal = o to satisfy
this. ‘
It 1s a straightforward matter to push this apnroximation

to the second order, but we shall not go into it here.
(3) Time dependent perturbation theory
‘Supmose we have a system with hamiltonian M = Mo* #7,

At time t = O (say) the system is in some definite state ¥, of H,

with energy E, . That is, H, 72.‘ = £ ’-E; , where, for the purposes of thls
section,we shall drop the subsoript o on the unperturbed energy and state.
We can ask the question, what 1s the state at some later time % 2 We

s shall work in the Schroedlnger representation. Then, at any ilnstant

of time,

It 18 convenlient to make a transformation of basis. Put

@ = e ‘.%t/t Q T4
—"Ho’t
F - e /% F

Then oF et 9@
' — ,'/o + L'K e /
and therefore LY. /120 % 4
x
L (e " He T )&
‘ t at ’

. Thls 1s often called the "interaction' reoresentation, since the entire
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time devendence of denends on the size of the "lnteraction § H, g

we assume that Hy 1s in some sense small, we ocan hove to solve this
equation by a perturbation method. Since 12 = ‘2 ;. att =0
we algo have é = ".Pi at t = 0. Put

. é - ; (fi1vidd ’#,; ) where the sum extends

over all the s:ates ?4 of the unperturbed system. H, ¥ = Eg Q;. .

The equation for U then becomes:
o A

ol Lot
(£ ;-5 (Flure) = (¢, e T M e ".ﬁZ/j/v/dQ})
rl€yg- € )t/x
= Z (f/y,/g)(g/u/(')g 7
7

Now nut
(gruii)= &« (GIuid) 7 (giv i) ,
i
where Uy 1s of the first order, U, of the second ordsr,etc. in Hl
Equating orders on the right and left hand slde will give a series of

simnle equationg for determining Ul’ Uz, etco
. (g ~E)
. 4 - « £ @7
4 — ‘) = z
2 = (Fyy) - JZ /f//my}og, e

4 s ,,
kL k) - 5_ (FrHuig)gigii)e %

Let us consider the first equation: [(E€ ,5‘,)1‘/t

[ A& ;‘5 (F1U1 ) = (£IH1i) &
€y ~&,.) T
x

14
(F1v10) L [ G419 Az,
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nce TJ,:? © at t=0O The revuirement & é be normalized

«€s, that U be a unitary matrix) only requires U; to be anti-hermitlan

{{U,,") = ~( Y I £) ¥ ) which 1t clearly is. We can
8ily substitute this in the second equation and obtailn resulte accurate
the seocond order, but we shall not go into this here. If we are
terested in the probability Pf of finding tha system in the state f

ter a time t we oclearly need

p R
Po = | (fluyc)]
congider two cases:
) Hl independent of time.

) Hy dependent on time.

(a) In this case we have L'(E*-e,.).:?
. M ' f ) t ~/~]
—— ‘ .
f 1vie) = i*( LR Y
or
54'5",
- ————— t
e~ 2 | (FIHIC)T = Gl
(E_;-E")L

- w- = 2 P'F
joe, =~ -;Tt' .
a transition from 1 to f.

# consider This i1s the probability per unit time

QEI
Atn €“-.._.-‘"é
R

Weeo T '2:' ,('HH,H)IL
. 54 - &,

v congider the situation after a very long time t. The time factor will

general oscillate very much, sometimes belng zero, but never having

e than a 1imited value, unless £, & £, Unless this is the

je there willl clearly be no permanent transitions tothe state f.

\lytically we can formulate the sltuation as follows: We assert that
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/ : A 6..4_‘_:_5.&2."
Gy ﬂ'
. = T fEL-E,) where E, 1s in
‘ t S £4-€ o/

. +
4

the continuum. (For E, not in the continuum we have a problem in

T
degenerate perturbation theory, which must be handled in a differsnt
fashion.) To see this, consgider
&, -E,
, dem ( Vi : ALaw X
‘(b-\, IF{E;) L ) O/E‘ = /Aw‘ /"‘;"‘"F/E,-“;'X)éé/
£ ,

tyo z -&E, {>rw

o2

= / ek FlE ) = 7T F/Eo‘), wAhne A = (:‘i“"""""“. L2

-w x * .

This 1s, however, exactly equivalent to the above assertion. Thus 1f we
walt long enough we will only find transitions to those states which
congerve energy.

27 D) e o
; w,_ .= 5 [ (F1HA1c)] §(€-E)

.

- It 18 usual to write the formula in a different way, since we are

‘ usually lnterested in the number of transitlons into any of a whole

clases of final states. This would be, for example, if we were interested
in 211 transitions which emlt a particle into a certaln solid angle

] with an energy between Ef and Er + d Epo Say the number of states

 having the desired property and with energy between E, and Ep + 4 Eg

T
is f‘ (5-; )JE; , Then the total probability per unit time of achiev-

4

i ing one of these gtates 1is

| .




>

Jor £ ce0) 1 k10100178 ey -2

L&

277 2
= [ (Frmac)] FerEd,
A similar formula is easlily obtained when the initial states of interss?
form a continuum, but we shell not go into this here.

We shall make use of this formula when we come to discuse the
theory of scattering,

(v) It H) 18 a menatomic slowly varylng function of time

(elowly varying with respect to the time */E,; -&, then clearly

y
the situation is unchanged from the time indevendent case, and one ounly
gets transitions to states of the same energy. <This 1s often called the |

Varsitqr
adlabatic theorem. On the other hand 1f H, swwhse rapldly, the above

results are seriously altsred. One cannot discuss this ovroblem in

ocomplete generality, but can only discuss eveclal cases. Ons special case
of considerable intereast 1s that whilch obtaing when Hl depends psricdicslly
on the time, say with frequenoy ¢<¢. This would occur,for exempls,

if an atom were placed in an oscillating electric field. et us writs

=

. -dw + vy
H,= Ve *V e
/
ag 1s necsagary if H‘l is to be hermitlian. Then
4 ' . C(E)EL)E
] . -t . e w
(£11¢) = & / feeme) e " wiviige e 2 Ly
¢ F)
. Ef'f{‘t‘\“t : 55‘;:,.4;%
_ X [’ klvid(e ~1) (£1viii)(e ~/)/
= . +
4. E,-E;-kw E -6 +Rw .
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The same analyse‘a we used in the time independent case can be applled
to each of thes=e terms separately, which means that.we get two posgsible
results. Either the first term 1s lmportant &, = &, K w or the
gecond &, £ £, -tew , The first case corresvonds to absorption of
'energy by the system, the latter corresponde to induced emisglon.

The corresponding formulae are

Wep = ?‘/(4/u/e')/lﬁ(6;4tw/ (Choarporr)

and

e T 3; [CFIv I P (e -ru)  ( Tmsbccst

B. The Variational Method.

Supnose we oconsider the expectation value of the energy of a
systen 1n any state 1} whlch is not necessarlly a statlonary state.

T‘“Allowing for the possibility of ‘4; not being normelized, we have

— [, H
7. (¥, H &

| (¥, ¥ )

%Now consider the expansion of 17 1in states of H. Let H ’@, XX y/,;
and

v o= 3 Y. )
/—/@ = Z @i E. (L)
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(g/ H?} = Z F,»/(L'/)/L

)
¢

(%.¥%) = Siccint.

7 .
- z £deer)

Hoo= N
2 i)l

Now assume that the snergy values Ei have been listed in order of thelir

inerease, 1.e. £, ¢ &, & &, ' , Then

— E, j ’(l'i)I"'.J. {EL-E')/(Z,)ll*(Eg"f;}/(f/‘)/l’,*.”

/- =

ZNce)|

: -

{211

- E'4{E1_£') /~ x#—vo.
216501
However . E,-& £,"E, Je 2o , and therefore
H = £,

Thus 1f there is a lowest energy state for a system, the expectation
value of the energy for any state 1s always greater than or equal to 1%t.

Clearly it - = £ 80 that the equallty can be
/ j H fi »
J

attalned. Further, 1t 1s only attalned if 1:£ = "LP. J since from the

above formula equality 1s present only if (2/) = (3/)- .. .:p (wdf’}&m&a}y}‘
Not only does 4  have this property for the lowest
characteristic value, but it is actually stationary for the other

characterietic values. Consider

@=7[‘-+é. 86
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where @ 1s a vector having no comoonent in the i direction. That is
(@, Z:)=0.

7 = (2, é H(Z +P))
(F.+3, T.+@)

E B W)« (F HE)~ (T HE) + (8, HP)
(B, &)+ (T, 8)=(E 2:) +12,&)

h

Fovever MJ (’ZZ,‘, é) = (d. 7£‘} = 0 an o
(é’ /4 .‘I‘) = :L‘ ( é/ \Zt) = O
(¥, 74P) = E. (¥, &) = o 7> 4

g -

This meang that § differs from Ei by somethl;gﬂguadratic ir "I differs
from '% by something linear. This means, that a relatively poor guess
for the state vector will give a much better answer for the energy.

This is the practical use of the variational method. One guesses a ZZ
vhich seems physically reasonable, and computes ’H with it. As a very
gimple example of the technique, conslder the followling problem:

A particle nof mass m 1 places in a 1
one dimenglonal box of length 2a, with

infinitely high potential walle. What

s the lowest possible energy value?

| 87
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Clearly the probabllity of finding the



pvarticle out of the box 1z zero, and for the ground state 1t should be

a mgximum at the center, Agsume the slmplest curve whilch will it the

boundary conditions, a marabola. That 1s, vutb

@)= Yox) = (r-a)yfr+a) = «-4&° X1 %a
For |X/ £ oo y H (operating on the representative) 1s

P T e Axt ; and thercfore

_ (2 HE) [:‘w /';;ﬁ"l) Y

la
A (1) lilklavd% I's A*
Yy q()fia')ﬂly 24 «

Thls problem can easlly be solved exactly, and if we do we find for the

lowest state

(.?_’I) - 2.¥67¢
§:- .‘-«’.’205‘001

80 that we gsee even with a very crude apnroximation we get an 2lmost

1% accuracy.
- 1
It is sometimes possible to compute “§  ,&and when this 1s so

the varlational method can become a more systematic wvariational-

iteration method. To see how thls works, consider a state vector 2}

~———

which gives us avproximately the lowest energy value. Let us imagine 'lf

expanded in etationary states of H: 88
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However £+ £ Y so that the stats L 77
e’ &' ’ oo

contains less of states with higher energy than ’g’ does, amnd

| therefore H for this state wlll be closer to El then H for Q‘ ,
| -1
By applying H often enough/ we can in principle come arbitrurlly closse &

E . In prectice 1t becomes very difficult to iterate more than conce ov

1

ftwice.

-t e CEHAY T e .

A lower bound

Suppose ;} is any real number. Consider the expressiocn

2 (&E.-A)

/f/ 12} i }/{4‘/)/" -

where En is the characteristic value of H closest to 2 X Now the re

are two cases to consider:

() N 2€.  Rew mm P I

) < £, £ A+ CH-M)
R

A> e,z A- ST
| * g

For the ground state problem (1) is never interesting since

,\.;/;-;‘_‘-:—n;_ > H , 80 that the sirple varlational principle é: < A
+ .

is

89



always sharper. On the other hand, if we know a 7} > £, buet eloser
to El thean to E,, we may use (2) to obtaein a lower bound for #y;. Thic
will be the case If £ < J = £,7€&x $hoose
: z '
£, €&
1= £ %
[N
- (- 222
7
/ > £-£
" z
(/f . E;‘ffL 2z E;"El 2 ~
2 ) - - /

Thus if we know something about the position of the secomd level we can
glve a lower bound for E; by the varlatlonal methed.
) A simpler formula, though not as general a one, may bes obtalned gas
/follows: If the trial vector ? builds a reasonably good approximation
to 1;" , and we know (elther experimentally or by other wcrlg} that B

is closer to E, than to Ez, we may put j = I? Then we obtain

1

H Z‘k’ Z ”‘ /-;/L/-/?)t

Write A-4)* JE- A= (AW a measure of the

/7
"goodness" of 1/ as a characteristic vector of H. Then

Y

—

H z & 2

T, K

- AH , for A4 A not too large.
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This method 1s applicable to those problems which are eithsr
inherently one dimsnsional in nature or which by sultable treatment
(such as the hydrogen atom problem) may be reduced to one dimensional
tproblemso Let us imagine then thet we have a hamiltonian

H= 274 vw)

2
V/,r) 1s the effective protential of the problem, in the hydrogsn case
it would be

-2et  lir) A?
> Sm— / &>
V/‘Y ) y + for example

2o ™

It is convenient to work in the coordinate representation. Put (x1)= tfrx),

_tfe.. the Schroedinger equation reads

2 d/x ¢ or

| oAx
|
Lot us write fx) = 25 (€° vix)) ) so that the differential

f*e_quation reads

WYy £Lew) Y =0,

Yow 1f J//X) 1s a "slowly" varylng function--a notion which will be made
‘precise as we go on-=tlen so is {(x) . Jt is to this situation that the

‘W.K.B, method applles. We may write
| (-¢
W = Ae

.where A and ¢ are real. Then

¢
Y= (A'4cg'A)e

[}

Yo (A2l PIAE AP e

#

"

[4
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The differential equation becomes:

A~ AP w284 A8Y) L4 =0,

Equating real and imaglnary parts we get

A4"- AP +£A=zp
} Erac?

.2 "4/‘1‘ﬁ@""’ - O
¢ ‘ Bulslobor

Now if f were constant, A would be constant, so that a slowly varying

f must give rise to a slowly verying A. Therefore we would expect that

e (€A Assuming this,the first equation tecomss
A . 4
P = f |
3 ¢/ - x f
X
(? - ¥ f) a3 @ ,

where X is some fixed wvalus

of x.

- From the second equation we may at once calculate A.

2/)/ 4//

24?‘)-‘ /Aﬁ%’-‘—‘WM

Az¢':c it‘fﬁ—ﬂﬁx
o *u
A- £ - < . Y s — e

‘/ d: 7{”‘/ / . )‘ e ' ‘
In order for our approximations to be valid, we must have (4 '/ << IAf],
To see what thls means, it 1s best to introduce the "de Proglie' wavelength

2 of the particle 277 4
I
p 27 X -

= 2, T Yamre-y), 92




= = - . We shall lcosely reior

27 "—"MIW(E-V)

to X as the de Broglle wavelength also. We say that the condition
n Bhe

for validlty of the ¥,K.B. method 1s that the change, amplitude A of Woin

. o4 A
¥ -

one wavelength 2 is small compared to A.

(ﬁ fC‘) / /_'1 7] "

._..__.’?‘ Py ﬁ._.;.): L4 44 )77 g ./_’_._f.e'_ < ¢ |/
A A ’ AT A

Fon
Wap, 1f this 1s so, then

-ﬁi:ﬂii((”‘*‘_t{
A A A

Therefore the conditlon of vallidity of the W.K.B. approximation is that

_{ 3
AxX e — < <
o4 i . ’
ra ‘ 44 I l or finally
W
oAy
£ < |

— 3/
2 m ( £~ V(x)) g

This 1s certalnly true when V («) varies slowly enough and

E ~ tx}) ={ o, However, when E~ YV = o the method always bresks
down. The W,K.B. method may never be used in the neighborhood of @
classleal twrning point. We have assumed throughcut the dissussion

8o far that f was = O . If 4§ <o 1t isclearthat we will have

Lo J;u';/-.,c Ao

solutions of the form

/
Y- S e
(- #)"¢

Now In wave mechanics we need one solution which Jolns continucusly to
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itself throughout the range of x, and therefore 1f ths potentisl

such that there are regions of { greater than zero and less than zexo

ve must find a way of Joining our two types of solutions continucualy

to each other, It is clear that the W,K.B. method itself cannot bs
used, since it breaks down at a turning point,. * =0, where f changes
slgn. The treatment 1s straightforward but rather involved, and we omit
i1t here. What 1s necessary 1s to find an approximate solution in the
neighborhood of 1C= o , and Join 1t smoothly to the W.K.B. sclution
in the ‘7‘)0 region and -F < ¢ reglon, which gives a connection between
their coefficlents. Wo may, however, state the results very simply:

(1) BRarrier to the right.

Let & be turning point, fra)= o,
such that
fix)» 0 ¥ta
firyeo x>a x
'hen
7
e [ L “
L [ [ V2
X ¢ & x> a
(2) Barrier to the left. vV 4
.t b be a turning point, f(b)=0,
juch that ‘F‘x)“’ X« | E---ﬁ-g----
|
4 (x)>0 x>} N \
‘hen b X
L e Ib‘ * o 2
[/
(-4)* “— ij Cm[f J
+f x
4 X ! -7
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These formulae mey be used for many purposes, we consider two of the
simplest.

(1) Approximate energy states

Suppose we have a situation in which the potential energy has

e minimum, and ask what the allowed
energy states are for a partlicle

"trapped" in this well. We

must clearly have

X,
4 - [, F A
= -——-—-—l/ e
I (-f9™ ’

the other solution increasing exponentleally.

Using the connection formula we have (x1 1s & type b point)

V’T - (7(/'/4 [ VF Ay - %_7

LA

¥ Xy
S e LA I] A
Y —
.‘E—-)-f/u %[[f&‘(“*lﬁpé‘ ::]

Now this must go over into a decaying exponential in III, which we see

from the connection formulae is only possible if

/l/a'\' ?/&C”[[”Z‘F‘éf"%],

since )(.L is a type a tuming point. Therefore we must have

',7_ (fh alxvz) ~ T M= G,
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' L% - o
™ j; e = n-4)7, e

This 1s a condition for obtaining the possible encrgy values., Ve may

put it In a more famliliar form, using the sxpression for the classical

momentum % .
2, . ;
V=T P2 Vs s fFA

Thus Xq

Pode = (n-1)2T = (ar {2

299

However, 2 the integral cver one

o

complete cycle of motion, so that

f¢6A= @‘{)A’,

' which are the famous Bohr-Sommerfeld quantum rules,

(2) Penetration through a barrier.
‘ Suppose we send a stream of particles against a potential
%barrier. Classlically all the v
":'particles would be reflected at X, -
It 1s well known however that

‘this is not the case in quantum

mechanics, and we shall now
investigate this quantitatively by means of the W.K.B. approximation.
In general to the left of X, there will be transmitted and reflected

g
i

waves. Lowever for X > X, we get only transmitted waves, that 1s,
only waves moving to the right. This means that for X > X, the I

solution must have the form




X mgg%
4 (AL -F)
Y (#)%
7 8
the phase factor - ¢é being inwented tc make application of the

connection formulae simpler. In order to apply these formulas write
'
Y% = b ( /‘:4( 7’/)*2%\ s -_f?:‘}
7/ (7‘/”“{ A ([ 7 w),

so that (since X, is a turning point of type b)
. x

[/ e S ‘/—Tf/x/(
- L e ’
z V/;)mlj -

- Let us write

X~ x X, X
L[5S, =) 6

x X,
PN &%
Gz [
Y ¥
A , ?'/; /q; A -6 . ‘.L:/:?‘JV v G
%~(—-/—}~% z € e ~e¢ < /.

To obtaln the wave function in reglon I we must use the connsction

formulae for a typs a turming polnt.

% 4 ~s‘e“»-M"’/f -7

“"
-2 e*g Cs [‘ JE}

- <A (€i4¢'6/e"7/4"/7'*‘g)
()" . (/y",/;h-g)/

+/e6*fe ,)c

tf
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The first term reprcsents the reflected wgve, che second ths incident

wave, DBy the transmission coeffliclent T we ususlly mean the ratioc

 of transmitted particles / unit time to incident particles / unit time.

For a high, wide barrier G > 2 / , end T = e

a widely used formula.
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V. Spin and Identical Particles

Many experimental facts have led to the result that in order
to desoribe the behavior of an electron one must introduce not only 1lts
gnace coordinates but also must assion to it an intrinsie angular
momentum or spin. The most prominent of these effects are the
gyromagnetic effect, the anomalous Zeeman effect, the existence of
doublets in the alkall metal snectra and finally the Stern-Gerlach
experiment. e shall only discuss the last one. Conslder an atom, say
hydrogen, which has for 1ts ground state an S5 state, thét 18 to say, a
gtate with angular momentus. £ = 0O . Then we know that eince the
degeneracy of a state ig 2./+/ thaﬁ faﬁbtate should be nondegenerate.
However, 1f one passes a beam of such atoms through a homogeneous
magnetic field followed by an lnhomogeneous one, WR@A one finds that
the beam splits into two beams, indicating that the ground state is
actually doubly degenerate. The Interpretation of this, borne out by
all the other experiments mentioned,is ths following: The electron has

an intrinslc angular moment«e £=7, associated with i1t. Since ths

degeneracy is 2/ +/ we get a degeneracy of 2/%/)+/ = 2 |

which i1s the observed. Further, we mugt associate with the angular
momentum a magnetic moment of magnitude i%%;% (which 1s known as the
Bohr mapneton). Then a homogeneous magnetic field snlits the two
degenerate levels, adding to one zfag- H and subtracting from the

other the same amount: this corresvonding to spin being oriented
varallel and antiparallel to the field respectlively. The inhomogeneous
field then will exerciese a force on the magnetic moment, the sign of the
force dspending on how it 1s oriented. Thus we get the observed
;nliﬁting of the beam. The ratio of magnetic moment in Bohr magnetons
tc the ansular momentum of a system is called its gyromagnetic ratio.

For electrons we see that for the spin the gyromagnetic ratioc isg 2.
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It is an easy matter to show that for magnetic moments arising from
orbltal effects the ratic 1is one.

Since we then need this extra coordinate, the state of o systen
will have to have some soin varlable as well as others td describe it.
For the sake of definiteness , congider the coordinate renresentation,
wvhere of y' 2z are dlagonal. To speclfy the spin gstate of the
gyetem we need to gilve an additlonal quantum number which spscifies
the orientation of the spin. Since JV,, v, Ja do not commute
we can only specify one of these, and conventionally one takss Iz . S
takes on the values * £ & , YWe shall write 7; TSR, 8T
Then a wave function is a function of four variables

CAGTAIEY
where .; =7 Y% . The interpretation of this wave function ig ths
following '
[Wirye, {)ILMAV@
is the orobability of the electron being at the point A, g, 2 within

the volume element h,ly Ad 2 and with 1ts angular momentum

/
parallel to the direotion 2  Yr vy -% ) 18 the same with the spin
direotion reversed. One very often combines these two functions into a
column matrix Y and writes
v - ( Yirye 4)
] Yrryge-4)
If we do thls then we may think of all operators in coordinate space as

now represented by <~ 2 matrices

x‘_?_: p)
pte ( r‘q,‘&,l) , efe., An trampd.

© ¢y Ja
not necessarily be multinles of the unit matrix

= k2)) 5 400))

<€ o
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8 we saw in the sectlion on anmular momentum. An electron nlaced in a
magnetic field (say in the 2£- direction) would then have a term
J /lts H 5; added to its hamiltonian. This type of formalism was first
introduced by Paull and Darwin. We often write this in a slightly

different way. Define
0

Ye)=(3) | Yr-$)=(,/.

Then

Y Wiy, L) xed) + Voryz o) Yoot

The quantities }'/f ﬂ,} are often called ¢he splin fuactions of the

i

electron, and we say that the most general wave function of a system 1g a
e

linear combinatlon--the coefficlents depending on X’ 22 alonz2--of the

spin functions.

Psuli wave equation for an electron with spin

Suvvoge we consider for a moment an electron in an external
electromagnetic field, and 1lgnore spin. Then the hamlltonlan, as we

know from classical meg_)hanics, is
re )T
# - (40 = /?’ - e ¢

2 M

-
wvhere A4 and ¢ are the scalnr and vector potentlals resvectively.

Now supvose we include spln. Spin gives rise to extra terms in the
hamiltonlan due to the intrinsic mapgnetic moment it slves the electron.
—

Call thle magnetic moment - /A« / the minue since the eléctronic charge

ig negative. Then classically {(neglecting terms in % ) the extra

eneegy is / - =2
B = g H

where A s the magnetic field. Now M  has in generasl the

megnitude /L@ﬂ and the direction of the apin, so we may write

- -
/u = /LLB 33 where ¢ is the matrix vector preoviously
introduced: o _ O ~-¢ o = ( [ D)
Ox = (4 o Oy = [ ¢ o ) 2 o -
> ,

b # - /“30-:)'*/
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The total hamilﬁgnian _,‘beeomes
# _ P~ %A

LAn

-y ™D
—-e¢'ﬁ/1,36"ﬁ,

If we wvant an equatlon correct to terme in 'g: Thomeg has ghown that
wve musgt add the term
- -3 ] g
Ay [T (prEA)E ]
dm e 8 < '

This term consists of two contributlons, one arising becauss cf the
that a nartlicle moving in an electric fleld sees a magnetic fleld which

s OF %—) as large, and the second because another relativistic

€.T g
T e
VG

effect concerning a moving spin and known as the Thomas precesslon.
cannot go 1nto the detalls of thls here.
In the svpeclial case where there is only a gcentral fia=ld

ﬁ
vresent 4 = O | ¢= ?51%) , the Thomas term becomes

— - - g /
B R pavg) = L Fp 22

ﬁ*/?x-’
, L F 7

vhich is just #EB8&T of the form of a spin-orbit coupling.

The onerators in this hamiltonian are of course of the form
Z 1o ! o '
" z‘-o%c (o1 ) ,4: ﬂ,flyif/(dl), ele . acting on the %wo

comuwonent wave function.

The same formalism glven here ocan be used to treat vrotons

and neutrons, which aleo have an intrinsic sovin of 1/2, al #re _

"o T @ A gpitor for e praficle
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fdentical Partiocles

By ldentical particles we mean particles which cannot he

dietinguisind by any inherent pronerty. That 1s, they have the same mass,
charge, spin, etco. The quantum theory of syatems of identlcal vartlcles
differe very wildely from the classical theory for the following reasons.
In olagasical mechanies each particle has a definite trajectory, and
therefore one can in principls dilsginguish between par%icleé whl@n’ag@
identical in everything but path by simply following them along é;%%%?
pathe, being careful never to lose trace. In quantum mechanics, cn the
other hand, it is impossible exactly to locallze partlcles, and thus when
two 1dentical particles are present it 1s impoesible to say which of them
is the one that a measurement has been made on. Thus identity or
{indistinguishability of pgrticles is a much more significant thing in
quantum mechanics. ‘

Let us consider the Schrgdinger equation for a system of n

identical particles

LA —9.1{/_’._2_’__._’:—)- -_-_-7///,2,‘.-,7;)’;&//,2,...,—»)_
cha

vhere each of the numbers revoresents all of the coordinates (positional
snd spin) of one of the particlss. The hamiltonian H 4is symmetrical in
its arguments, since the identlity of the narticles Jjust means that they
¢an be substituted for each other without changing H. Now conslder an
overator P which oroduces some permutation of the numbers o0, ne

If we avoly thils verrmitation tn the Schrgdinger equation we obt%ain:

% 2P, )) = P [ Hhy3-) 1////,2,3,.».)‘]
it ~

= W12, ) (PWIL200))
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squation Z// /- ~-,4«); we can obialn another by simvly permuting the
indlces (/- - m) _ In pvarticular, if we are interested in the staticnnry
states, then the Sehrddinger equation reads

Hf = EW |
and of course if ’1/’ is a solution so 1s /97/ . Since for n particliee
 there are in general N / nermutations, we see that for n i1dentlcal
particles there would annear to be an _# /-fold degeneracy. Now the
1nterest1ng,and at filrst sight rather surprising result is that actually
only one of these solutlons--wvhich one devending on the nature of the
particles~--occurs 1in nature.

Since any linear combination of solutions is a solutlion, the most

general solution 1s of the form:

/y‘ = 2 d4a PQI&(//Z/"')/
e F

vhere the sum is over all’ m.l permutations. Two of these are of particular

interest.

(1) Symmetrical solutions. These are the solutions whlch are

invariant under any vermutation of the indices., Clearly they are obtalned

if we put Ct’;,, =/
Y= 2 PWUz. )
P

If we apply a permutation to this we get the same terms in different order.

(2) Anti-symmetric solutions. These are the solutions which change

sigh on having a palr of varticles interchanged. If we wrlite <, = E'p
 vhere Ef, =+/ for an even permutation (a vermutation which can be

'made up of an even nunber of interchanges of palrs) and €P = -/ for an
odd vermutation (a permutatloh made up of an odd number of palr interchanges)
then

’% - Pz g;pzb(//,%“').
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If we sonly any interchange of a palr to this then Ppair (Podd)z Peven

Phair (Poven)™ Yoaa
so that we get the same thing with reversed sign.

In the case of two particles we would have, for example
'1/5 = Y1,2)+ Yul)
#ﬁ = 1/’{//1') - 1/{2',//
wvhlle for three particles
Y= YlL2,3) + Y(231) + Wi3rz) ~ ¥(213) + ¥(132) +¥(3y)

Y, > Yrre3) Y30 < Yl) ~ ¥(u3) - 2f32) - ¥(33),

as may be verified by direct ocalculation.

It 1s an experimental fact that only symmetric or antisymmetric
wave functions occur in nature. Electrons, protons, neutrons are all '
fouﬁd to have antisymmetrlic wave functions, systems of alpha narticles, il.e.
016 nuclel, etc. to have symmetric ones. In the former case we often say
that the particles are Fermi-Dirac, in the latter we call them Einstein-
Bogse., One can easily understand that the alpha particle (say) 1s an
| Tinstein-Bose partiocle, since 1t 1s made uo of two vrotons and two neutrons.
Thus interchange of two A 's is the interchange of two pairs of protons
and two pairs of neutrons, end the sign of the wave function must be
unchanged.

If the narticles in question can be treated as each having its
ovn hamiltonian and not interacting wlth each other, then the requirement
of antisymmetry takes on a very simple form.

Yrite

_ 7/(//&,“-, ) = Her)+Fr) 4 -0+ Him),

and let the stationary states of H(1) De
e Uga) = £ U ),
Then the state YW(/,2,.vvm) = U (/) z(l) v Un)  will be a stationary

105




=107=

gtate with energy & = &, + 5/, ++r £, The corresponding
antisymmetric function is
1,/:} = % Fp.f’ Vot Vora) o V()
U Verr)  -- - Yo
= 77/-. W /U;(‘b) - V)
v, ) | V(v | 7{,(«) ,

by the definition of a determinant. We see at once that if any two states
(say o€ and ;3) making up thls state are the same, then two rows are
equal. Two equal rows though mean that a determinant vanishes, and theres-
fore 1t 1s'1mpossible to have a state in which two particles are in the
game one particle states. This is the original form of the exclusilon
principle of Pauli, which orovided the key to the understanding of

atomic structure.

¥ Seattering Problems

The nroblems which we conslder in this section are of the
followring type. A beam of incident particles (electrons, neutrons,
) 4 -rays, etc. ) are incident onr;tomo or nucleus or any other scattering
center. e ask: what 1s the number of varticles scattered out of the
beam in a given direction, ner unit time? Clearly this number will be
proportional to the incldent flux J (the number which arrive per unit
area, ver unit time) and to the size of the solid angle AL about the
direction 6,9’ into whlch we consider the scattering as going. The

proportionality faotor is called the gl_;fferent)ifal.séattering crogg section

a7(s, (/) : In other words, the differential soattering cross section
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is the number of particles scattered in a given direotion per unit solid

angle, per unit incident flux. We also define a total scattering cross

gection O-  as the total number ofvpa.rtlcles scattered per unlit time

(regardlese of angle) per unit incident flux. Clearly

i

[07®V%%ﬂ“jnﬁgfdpdvﬁypana
We shall first consider the simplest situation, scattering by a central
force which is fixed. We wlll characterize this interaction by a

potentlial energy function [/m) . For electrons scattered on protons it
would be V/ , - el
) = — )
2

- or for eleotrons on an atom it would in pgeneral be a screened coulomb
votantial *23," - ?4‘-
ver) = o €
%) 3
In dealing with thls problem it is usually most convenient %o
: work in the revresentation with the coordinate dlaponal, and in polar
coordinates. Write (X g 2l ) = '%//z, 4 ) . We may always write our

. solution as a sum of states of different angular momentum

M 174 N
W 6g) = 5 A Y, (v @ (gy) =~,Zz Ao == @ 16 ¢,

. Then from our previous work with the hydrogen atom we know that

must satisfy (8ince they give the probability of being between 72 and 2-+da

£t At £rere
[““‘ — *”-VpQ]h = £ U,

2k Ap™ 2MAar /

where M 1s the mass of the particle. Introduce the notation
- T . LHE
U(’?) = ﬁ . V/Q) /€ < —;—:-
| Then thils equation takes the form

? L1441
AU, - (kY= U - 7 ))”‘l
an’
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Clearly k 1s real, since if a particle can come from o 1ltg
3 o
energy must be 20 ('U’ 0 a0 N-H®), In general, the function @-e

?ae the form

@ = P g 2
A

AL Jr—
f27

L}

‘o

» rom thie we see at once that if we identify the polar axls ( Z-axis)
11:h the direction of propagation of the incident beam, we can restrict
purselves to the m = o values alone. This is becausge for a symmetricel

potential and propagation alons the Z axis no angle < is distinguished .

and therefore the wave function must be independent of ¢, We need only

toke
- 6

®, =
¥ 4

/ o
- P = < 2/4/ ( ) b P -
V2 < - Ve Z 2001 (A e (46-)

Z 4 £
( 4, » L G -
p" ¢) 2 (/‘/ C/%FJ) / e )

hese polynomiale are known as the Legendre Polynomials.
grom the ortho-normalization of the @: we obtaln at once that

4 Y
[) £lte) P.l4e) un6dé = 2 4#) Sear -

the most general solution of our oroblem will then clearly be

- u
7/(/26’7/: Z :4_, —-:: ijéoa}
<=0
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whera the 4 < are still to be determined. Now if the incident wave
‘e R

is a plane wave moving in the + Z direction we have ’Zﬂ

The scattered wave we denote by 7/J, . We must have

W= Y+ U,
However, we know that the scattered wave must revnresent a radlally out-

golng wave in any direction O . Therefore as 72 —> @
‘A

Y, — e " Lre),

/i
In order to Ainvestigate the asymptotic behavior of the waves in question,

let us Took at differential equations for (L, . Ir U -—>0
more rapldly than ’/ * (the coulomb field requires special investigation)

then for very large 7. this equation becomes approximately

/ gso that

(A
An”

U, ~ %/é/&"'?_z) Ao "7.-—360/ where 74 is
some constant determined "by the conditlon that &4, = © at 2 =0,

4

On the other hand, the plane 1ncidént.wave may also be written

f &2 ‘ha Go P
e . ef = 2 € ke B (%e),

the 7(1 corresponding to the o /4,,' for T =¢ , the quantlties
Cz determined by the coniition that these elementary solutions add up
to a plane wave. Now 1t 1s actually very easy to obtain the -[ y: by

golving

A ("’[c} ,(/Iw/
PE— A= i
s ( )l o and taking

) M
the golution which is as®e at = 0.

7o) ' &
These are 764 = (2";;/) u/,(.u//b/é"—), C, = ratv) ¢ where J, 1s
the Bessel function of order V., However, for our purposes these

explicit solutlions are unnecessary. We can conceive of the expression

‘k Ceo O -
e - T o f Plawe)
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ks an expansion of ¢ in Legendre polynomlals. To
¢
?ind the coefficientes we simply multipky by siné 7 /(4 s) and
integrate:
‘ i Cha @26
P R /"
c, £, — = [ e P, (Go)n b8
2/*1 %)
, L‘ é&/‘,
= / e P '
A 4 (1) |
' l
| 2 441 et 1h | e-—-;“ﬁpl
f
C -— - ————— P ( )] - 1 4(’4) o 100 »
2 e 2 PERERS Giha) | y

on reveated integration by narts. Clearly the first term s O(4 )

the seoond 0(,1‘; ) ete. Therefore asymntotically
2_, cha -k 4( <
Cf—> P e e )T,
2 Char
since '/'.3((,) </ Pz (1) = (- ”l‘ We may write this

C’{'( _Q(‘?/*,)‘l/d‘m—/éd“{(”)
, kN

(]

For ourposes of comparison it is therefore convenient to wrlte

[ - =t -
')]I = -5l +d§, . The quantities & = o Af there is no

gscattering notential »nresent. Now the condition that we must have, 1g that
ek oo
(/5 = Y- ?ﬁ‘ —_— = fre) a9 N 2 .

® T
- v, — 2{4 ain (k12" "()-/zzn)”.‘."_/ﬁ'____ P/@ej

220 ,p- ke n e

N7,
/ 7) 4
Z )D “we) {(A! e B /2/’(,// e 2

2:&0.

- /f-.! e ~cka |
~(A, e t 4)-(211119”- ¢ j

110;  ?§



~~ oA

-(ha
The coefficlent of c must vanish, giving
,z?l = (244) ¢ Ce’ J ) which leaves for
the scattered wave
ha 4 2'.{1
Y — £ L D (24)(e -//8/%6/ ,
n 2ik P :

 This means that
| 2[‘1
Lio) = 2.;4/‘ J (ate)(e 1) B (w08,

Aeg soon as we know ')(( 6/ however, we know the differential scattering

¢ross sectlion. The incident wave € ke revresents (since (Y| =/1)
a beam with one narticle/unit volume in it. The velocity of thig beam is
glven by SfAMy’: € = 2—%1 /{'" ) so that ¥V = % :

Thus the incident flux J = (1) -;t-‘; ‘ On the other hand

'R
b -2
(‘«/}/ = "Ef_{f_{_ ( as 4—3w) 1s equal to the number of scatterad
n
particles per unit volume at a distance /2 from the origin. Thesa
particles are also moving with a velocity v, so that the number of them

' Incident on an area A in a unit time is
v |f(8)) A
4 ~
A= /L*J.Q however, for the number incident on an area which the

solid angle d-ﬂ_ intercepts, so that the number scattered into G[‘-ﬂ- is

| fear|t AL

simply

and the incident flux is U~ ) 80 that

G (8, ¢)~ | f(o)"

' The entire problem of calculating the scattering due to a center of force

is just reduced to the problem of calculating the phase shifts 5{ . In
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neral this can only be done numerlically, but we shall come to speak of
approximation method valid at high energles later.
Using the expression just obtalned wse may obtaln a very simple

pression for the total cross section

— 3"!& -u'{'.
g - /d.n. /{/5)/" —— 2 (2tt)frevidfe -, )le - 1) ’Zf_@,ﬂﬁ;,
22y Joe e

JAdeZon s 2L S awd Bheuge

A1
oo
o —_—
C = T (2leyemtd,
AL=o

Soms remarks on the phase shilfts ;.e .

(1) The lower the energy, the less the highest 4 necessary

produce a good approximatlion 1s. This statemert is trus only vif the

tentlial 1is significantly different from zero in a region of\radius R

ound the origin. Classically the argument goes as follows: Only

ose particles which approach within a distance R of the nucleus will
A rnir Hecon.

t scattered. That means that the highest angularn of a particle
ith velocity U~ which gets scattered is

L = MUR= KRR | A Lna ~ AR
us for very low energy only the /= © scattering will be important,
d since 73 (Coa 6): / , the scattering at low energles will be
pherically symmetric, the criterion being & << ";é , or the
gvelength ) >> K .

(2) An attractive potential Jf4) tends to bring the wave
unctions in closer to the origin, and therefore J;( will be positive
same value of sin (&2 - -’-:—77-# ) will occur for smaller /2 ) while

repulsive potential will push the wave function out and glve a negative{e'
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Trls provides a very simple qualitative description of the

!

Ramsauer-Townsend effect. If the energy 1s low enough we need consider

o1y L= 0. on the other hand, if the attraction is strong enough
'we can
o n
,
| W“M
/ hnnk
o— "’-‘\‘\\ / ,""\\\/
\\\ ”.’ \\‘~__ .

—

pull the wave function so far in that Jo= /Fo ° (see figure).
Then sin 1{0 = O and O & o, perfect transmission. This is
actually found for electrons on rare gas atoms, and 1s known as the
Ramsaue r-Townsend effect. For a repulsive potential it 1s easy to see

that the wave function can never be pushed cut so far that J; = -~180°.

The Born Approximatlon

We shall now conslider a method of approxiratlion which 1s valid

'when the incident particle has very high energy. Suppose the hamiltonlan

%; the incident particle is Zf = iﬁ; ] Let the energy of

o

Interactlion with the scatterer be L, (for a center of force this will
- be V{Jz,))_ Now the incident wave 1s a particle with momentum 7;::)

%and energy & = ’b"?/z M, while the final particle after the
‘scattering has momentum 4":? and of course the same energy. We can
ask,what ‘1s the probabllity per unit time of a particle appearing in a
state »/:: for a given incident flux? Now if the incident particles
sre very energetic, they will in general not be deviated very much, and

therefore we may treat /~/, as a perturbation. This is known as the

Born approximation. If we do that, however, we can make use of our time
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depsndent perturbation theory to glve us the answer at once.

W, . < E; | (£ 4,1 ")/1ﬁ¢ (€)

The calculation ¢f the matrix element of H, 1s stralghtforward, but
the density of states requires some care. To see thls most clearly, let
us take 1lnstead of an Infinlte space, a very large cublic volume of

side [ (V= /_'7‘ We can take as boundary }cenditions on (173// =Y
that 1t be periodic of period Z ;hﬁ 1?,’70:1?15 clear thatsince V—> o2
Just what boundary conditlons we use are unimportant. If we do this, then

for the 1nitial wave function we take

-
- / ¢ fﬂ";)/x
%o- A e /
4 -
a state with definite momentum f’, and one particle present, since
a -
/"M’j/-z /7/;/ Y= /, The mornients //’; are now restricted by the

boundary condition

%(r-;(/ 9,2) = Y, ix 9, %), e, , etc. which give

“ l'k‘/k .27 t n
=/ f.’,r s L ’ ) where
M, = G E1 21 e,
Similarl
" v PELA I
‘77 4L 7
Ak
. - —————— 3
ﬁl} - L ]
Clearly as [ - @ . these approach the continuum of possible values,

. a8 they must. The final state must also be a state of this type

e N
’(é - L C( —P.I'/L/a 27t
VV f{x: T""IIJC,

Now we have discrete states, and we can ask how many are there with an =

>
energy between & and E + AE and with 4 in a given solid

)
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/f’g between /f?,) and /’7, - Af‘? lPa between /F% and /p_t./ AP
8 glven by

(177; ap,) (Znt\ f’o)(;,-,‘ fe) |
ince -I:—'EAP" tells us by how much we must increase 2, to get

2R
) change A fo, . This expression becomes

L3
44,49, 0 A, Y, b,
(27 k) ? O 81, X)’ ?

8 we make the volume larger and A/a infinitesimal and equal a§b .
ntroducing polar coordinates we have Cl/’,o(/, //g = f/"/f/-ﬂ,

so that the density of

tates becomes:

Vo |
Gey= 5 Pdrda /e WHMERE ¢ = /ine
Mlpless  p'Ap = Mpde

_ YMpdAQ
- L% peto~te

(27 %)°
»n the other hand, the matrix elgmg)nt is -~
e~"/$r"‘/x (Bnfp
(¢11) = [ HE ey de
Vv Vv

]

zle 4 ~.Q . Certalinly the number with /l’x between 'f"x and f,.-,« A{’,j
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C27g)?

7 "k
. = L [ H rea] AL

fed

/ 1
= Ty T;—- Mp | Horeil 42

1s the number of transitions going into /ﬂ - per unit time, so that

the number per unit solid angle W,;C_p‘ is

- / / ’ N
Wew: = Goyome v M1 Hreeol

Now the differential scattering cross section is given by
We .
X
(6, ¢) = L —
where J 1s the incident flux. As before

J = (incident particle density)(incident particle velocity)
- LE _ £
V V'~ y M

a (6, ¢) - (2;;‘?“ MY A (Fe DT

In this flnal formula the volume V dropped out, as 1t of course

Y

Thus

must. This is the Born approximation expression for the scattering cross

section. Ir ,L/' 1s a simple potentlal V/ry;) we have

| .(":“" >
#, (~f&() = / e P H ) Viryz) ddy dz,

- ~
This is just the % ’ﬁ. /)‘— fourier component of l/( A’y-}) so that
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' in the Born approxiwation the scattering cross sectlion gives us direct

Information on the fourler transform of the potential. If the potential

' 1s a function of /2 alone [rtyz) = V//Z// we cen simplify
 this further

‘ , KNGy b
H, (£ e ) :/e Vir) 2 dn s L AL A
— . - 49.)
 where /€ 1s the vector e f /t ana ¥ 1s the engle
- -
vetween A& and A . Integration over 1% and ¢ gl ve

H (feé) = gz / yir) "’“k/"/;,va,

(5] )

so that

the expression for &~( @, (,/ Lecormnea

0 (6 ¢)-= (%)L[[%”/‘) 7:44‘4&]2—

The quantlty K 1s related to the scattering angle and incldent momentum

as follows:

k-

('/;?’ 'f:)" _ ﬁ?* Or - 288 pp G2 8

——— Y

x* >

- D

‘where & 1s the scattering angle, that is, the angle betwsen /% and /

¢

‘However p‘, - /t" - 14 , so that

X 1 &
klz 2L I~G0) | ¥
i B i
2{’%—3

K =

A .
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8 a very slimple example of ths method, let us conslder the case of a

hielded coulomb potential

. Zebt ~Fn
l/eh) = = ¢

——— A

Ka <

o0
e S V) b Ka Ze”

593‘7&9—% Ka An
ze"
K™ g+

U]

Av Uax

)

T ¢
2 1 Zz €
6-(6? VI = (fln)
) k\- 3 19 L ¢
E 4p pm g < L]
.Rt- ?
f we let ?-——9 o (no shielding)} we get the scattering in a

ouiombilan fleld:

M2et vy
(8 el= ( )

—
2 f" Sen “'ZQ. / which happens to
gree with the exact Rutherford scattering formula.

If the potential is not so strongly repulsive that there would
e classically a reflectlon of the particle, one canv glve a simple and
cugh criterion for the validity of the %ﬁapproximtion. The Born
pproximation should be valid 1f the phases SJ are not too great.
ow we xnow that if the potential 1s not too rapidly varying then we can

ssoclate with a particle the wavelen:th f} > t/f or

' ’ 7
— = E -V if \/ is the effective potential
1 K™ V )

L the pa-ticle. Thils means that the phase change in golng from o0 to

’ o .
he origin is § = ( % £-v d ) which for a free particle 118 -
o \, J



O~
=10

%)
it would tbe S” = / [/_i-’? VE d’a” The phase shift
[

a3 a result of the potential 1s therefore
/ - by
- - "o 2/
f=5-0"= [ JE [aw )
o

The condition for validity of the Born approximation 1s therefore, very

[ EAmm - yejan <o

As en example of the use of this, consider the potential [/¢a)= =

$- (F [ E
) /_’gﬁ‘(?)iﬁ Wk -1} am s

roughly,

&
/Q "
Then

.

The integral 1s a dimensionless pure number and generally of the

: /
order of unity. Therefore gx /Lﬂ /Z.-( EL{/ 7a p (/ as ths
z 19

criterion for the Born Approximation. Strictly speaking this integral
diverges for L <M £/, (amw because plane waves are not the

valid solutions at infinity.) However, we can obtaln an estimate simply by

putting M=/ and o = Re' for how good the Born approximation 1is

in the coulomb case:

§ % Py or

5
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Another criterion which 1s often used is the following !

(5) | S vmce

p 1s the momentum of the particle, k= /‘/ﬁ . This 1s usually obtained

1 ha L

-—1)00", “"/

J

by studylng the change in the wave function near the origin, and requiring

that it be small. As an example of 1ts use consider again the coulomdb

potential, then

) ][40

Liha

"}dQ/ << |/ Put 24a=x

T (L)L e

The integral is once more a pure number, and roughly unity, so that we
A

have (__/_4_ Ze < |/

or 2Ze'M e < < ) hich

! 44/ or ) wnic
£ p A v

1s the same as our previous result.

Coulomb Scattering
We now consider the exact treatment of scattering in a coulomb
fleld. If we consider the 1nitial beam as 'moving along the Z# axis,

then the problem has cylindrical symmetry, and the wave functlon cannot

depenid on ® . Since ”’; & may be expressed in terms of /2 and &
we may wrlte /l/: ’W //z/ 2.} , It turns out to be convenient to use
so-called parabolic coordinates ‘3’ and 7] . ;7 =z n-2 = 2,

/

1
The Schaedinger equation has the form
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- £ vzwfu ey

2. m
r = Z,ZLC ) Z,/ Z, being the charge (in units of
e ) on the scattered particle and scatterer respectively. Using
2 o 2 ¢ Y
vy - = [ 503 )~ 1 2
foy & 00 51) < 50 P 75
A = '57‘7
-1
we Obtain

Wy, 2, WL/ 10y 2 T RV
;‘523_(2 5’{) 07)/"9:,) ('EY e t‘)w ¢

We now assert that the solution of the scattering problem may be written

in the form

/ 2 S /

k2 (4 (1Y 4240
’Zpe < 7[(}’) I 7[/?) £ = 2.

since we shall show that with solution we can satlsfy the dif ferential
equation and the boundary condltions at the origin and at infinity.
Inserting this solution we obtailn

Z {,/4(/— (h3)L ~nbkf =

/ where
7. Ps
m - Y -— s—
£ AV " U~ being the velocity

of the 1incomling nartlcle. Now this equation 1ls exactly of the form of the

confluent hypergeometric equation

2F" «(b-2)F'- a F=

the only solution of whilch that 1s finite at the origin belng

2 [rary) ) ZF

F= Fea,pz)= g ey F i) S
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]'7 belng the well known gamma function. Thus

| fe5)= C F(-inm, r, ¢ k%) |
e rust show that this has the proper asymptotic¢ behavior for large 2
hat is, for large ? ( et g A e B Axea)

"4 gl ¥ x
Fl-cm,1,0k1) > = ge’ 4 [/-},};]

w [}
i (i im) + f. (e) e':(ka—mloarzbn))}
IL : 2
here
[ Ao M%
D1+im T J
£‘ (9) =Mm ( ‘) c - ‘
EMeim) 24 an® £
n terms of ‘\// thls gives’
| C e 2 (k2 —m«éjém—z)l m
V N {e [/-. Zl(ll't)]

4—"5‘; f(1+ca)

+ 1(‘.(9) o ('(/?4'41,117(2&4))}

1

us we see that the coulomb wave function does not approach asymptotically

he form k2 .[(9) /é,,
‘ /L/ J— e - €
N A /
t there 1s a modification of each term by a factor. Thls simply means

A———

hat the coulomb force l1s so long ranged that no matter how far out you
o the wave 1s still distorted. It 1s easlly shown that no physically
bservable effects, such as the current, are effected by the presence of
hese extra factors, and so we can ignore them 1n calculating cross
ections. The incident current then has the magnitude

thk [C)T

—_— et

SR ¥ (AT 9Y
122
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and the outgolng current per unit solid angle 1is

i@ /C/l /fc(a)/l

/0 = Are
[ MCi+ia)tt

Thus the differential scattering oross seotlon 1is

s

ocre)= |f ()] =

(Zéldaatéijx' 2an V

vhich is Just the Rutherford formula.

Exchange effects in scattering
If we scatter two ldentical particles against each other then

there will arise effects--due to the symmetry ocharacter of the wave
function--which have no analog in classical physics. Lset us consider,
for example, the scatterling of alpha particles by alpha partlcles. Here
the wave function must be symmetric. Let A7 /?, P /;9 . } be any solution
to the problem. Then the symmetrized solution will be

w:— /T(/??, /[:)) ¥ 2’/;3/";/’)

If we introduce relative coordinates and the coordinate of the center of

nass: —

) -
/2 = /71—41
~
e = J’/"‘R
2 /

this function takes the form :
( PR /e - o~
Y = e [ Fc2)<£0-2)]
-—7
vhere P  1ls the momentum of the center of gravity andxfkais the solution
| of the Schrddinger equation corresponding to the "reduced mass" /46'%F7

' and the energy left over when the center of mass energy is subtracted

off. TFor the center of mass at rest we get

-3 .
2& = 7(//L) + FER) , 123



Now esymptotically
bz )C/G) ('léé
(5) —> ¢ 4+ — &
| 7£ 3 —> o . for the
scattering nroblem. Thus

hp k2 fre)+ F(mr-g) ka
1// —_— e -+ € ~ — e
N~ 00 v

We do not divide by [/,  when constructing the symmetric function,
since we want two particles to be present in the original state. Thus

the differentlal scattering oross section for symmetric states is
N
O c0) = [Fco)+ firm-0)]

The same analysis for states which are spacially antisymmetric gives
L
oat0) = [ Fre)- fem-of

For electrons which are unpolarized being scattered by electrons which
'are unpolarized we have 3 states with parallel spin (epin symmetrio,
therefore spaclally antisymmetric) to each state with antiparallel spin
(spin antisymmetric, therefore space symmetric). The scattering oross
is thus

o- (%) = —5— | £ce)- frma)/.l* 4_'L [ fre) « fr-a)"

- Heol T 1fm-eut~ S ( Fior 7m0 = £77) fer-e)

The first two terme are Jjust the oclassical result, the last is the effect
of exchange. If we apply this formula to coulomb scattering of two

electrons we obtain

2,2,ev\ [ < L - %/""Ait’”"g)
o () ‘-‘( — ) 7 IRT BT R
2p vt “ * ’ * |
*
£ - uf n = 2.5 C y) o= -t-—é'
2per Ktk [~ 124
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thich is the famous Mottt formula.

VI Relativistic theory of the electron
A free varticle in the special theory of relatlvity has an

nergy which is glven by
£= C [/M”C"-l P

there - 1s 1ts momentum. _The natural thing to do to obtain a relativ-

stic quantum mechanics would be to use for ¢9 the operator which

represents it, and write

(E- c/moap )Y, P F

8 the wave equation of free particle states. Thls equation 1s however

ompletely unsymmetrical in & and £ , vhereas we know that these

jogether actually bulld a four vector in relativity. This leads, among
yther thinge, to the impossibility of generalizing it relatlvistically
then an external electromagnetlic fleld 1s present. We can improve this
11tuation if we multiply by &+ € m . Then we obtain . ‘

[ £~ cwmep)] ¥ =0,
thich 18 a relativistically invariant form. This 1is known a8 the Klein-
lordon equation, and with the proper interpretation ocan be used as the
rasle for a quantum theory of particles without spin. We shall not go
nto thie here, because this equation does not describe electrons. We
lan at the same time find a relativistic equation and obtaln one moxre
‘losely related to ordinary quantum mechanics if we proceed in the
'ollowing fashion. We made the above equation relativistically
nvariant by arranging things so .that the squares of E and p ocome in
ymmetrically. It was Dirac's brilllant 1dea to arrange things so that

»and p ocour linearly. Let us write

y/bllc'--ff‘— - {o(x Po °(7/¢,-fc(& ft +m«(/5)/ 125
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where the A 'S and p are to be determined in such a way that the
squaresof both sides are equal. That is, we are finding an overator

extraction of the square root. Squaring we get
GV A Ay i+ W ACTRY A Pety (Aedy 7 4, 8)
+ @ﬂ_(a{,a{,u{;d’)
TH LAk )
+(p,,(o(,,/s "Bex) t Ay (yprpay) < F (4 p phe)) mmc
+ amer AT

From this 1t follows at once that

A S

Ay L:O(;-.- Ay = (S7=)
0(,,0(7+ 0(;0(" - o

‘(x(g 4/;9(,, = 0,
e

That is, the square of each operator is unity, but they all anti-
commute with each othere
We shall take

(E = C (Xufps¥yfy=ds pyemep))¥ = O
as our relativistlic wave equation. Before we go on to prove the
invarisnce let us give a representation of the a('S and [)’ . Others
are possible, but this one 1s in coinmon use. It 1is straightforward to
show that unless we take o, (3 to be at least 4 x 4 matrices we
cannot satisfy the above relatlionshlps, and further that any matrices
larger than 4 x 4 which satisfy them ars equivalent to direct preducts

of four by four matrices. One possibllity is
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o -~/ © 0o

o 0 o | g g0 -t
Jd e ©O ‘
o | © g :
oy = © «y = : |
X o | 0 o ? (7'-1 g o
| O 0 o ¢ ¢ 0o O g
6.0 I © I © 0 o ]
= 9 o 0 =} o 1 0o
o 2 p O O -1 © ERTR
o o o=/
Y]

ag may be verified by direct calculation. One may wrlte these in

another way:
o 0,
| o ( x‘)
ﬂ: (O‘-l) ’ O(X} ¢, © ’JC,’

where all the elements are two by two matrices. Of course if the
& 's and fp are bk x 4 matrices, the wave function " must be

represented by a column veotor of four rows:
Y
v- [ %
%
Vo

We notlico from this representation that i1t ie possible to choose the
X 's and ﬂ to be hermitian.
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Jelativigtic Invarignce

To put space and time on the same footing let us consider
not Jjust the stationary solutions corresponding to a given energy, but
those whlich vary with time. We Xnow that for a stationary state with
energy E we have

' ??Z -
b .
LA or V; so that our

sugatlon is equivalent to:
2 - A S —m 72/ = 0

Put - -
%o I cié ¢

Then this equation takes the form
. =0 ,
(dofa -* Nyfx*Oﬂ';/’-r d’i’oé +M¢'/$) w
Further, let us write c{,,'., Ayfe * X9fl~ A2 f= o(’e fk

implying the summetion convention for repeated indices, £=- 2442 ,

We have then

(0('@7”"‘4""/)2/ =0 . This is known as the
Dirac Equatione.
Now what do we mean by Lorentz invariance? We mean that if
we write down the wave equation in a different Lorentz frame (i.e.,
jranaform the 79* ), then the solutions of the new equation can be put
in one to one correspondence with the solutions of the original equation
in such a way that corresvonding solution may be assumed to renresent
the same state. Now the most general Lorentz transformation consists
of two parts, a translation with velocity v, and a rotation of
coordinates. We shall show that the above is true for both. Congider
first a rotatlon of coordinates, say about the:;.xie through an angle &

Call the new coordinates X,  the old X, . . 128
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- ¢’ N X, =X,
x’X’ ;:‘7,%’1"2,%9'/ 2:-7’%&1‘2’%@
Then, sinoce £ - x 2 : we have oy
3 s - " O’Yk / 4“-.

£ =4
A
70} = 4@’%94»%'%9
i =~y mb Py G 8

The new wave equatioxi is
(Moﬂ’* q/xﬂr/.,_(q/i &oﬂw(.;dm&//; ,f /V,“ﬂa*‘@‘”’//g'.fmcyf) y = O .

Now can we find a new wave function "-/” which satisfles the same
equation for the new system as 7// for the 0ld? That ie, can we {ind
a matrix §  such that

'l//’;‘ )'% and
(o(kﬁ,“””‘ﬁ) Y’ = o

where 4 depends only on the Lorentz transformation and not on the state? .

We agsert that § = J—/,a (—-;:- e «, o(,,) does this.
For if we put this in we have (after multiplying with 27 )
. ’ R
g (’{D ?o"f‘ o(, ‘f,".',(f’%o-«‘ma)fyi-p(#,%a*fe%a)éimcp)e w’:ﬁ :
-
8«1‘ T o(o J = oo ’ A==
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}’ d) V4 = xx Adsn Ce ‘(",/’ MW el af) m/dt
7/3 );":/3 “n A % WM‘\',O(Q.

T -
Finally since @’7 Kg) =(«, K-t)(a(,' ;) = - %7,(;- = =) , we get

]
-36% " P
-/ 4;’_9'(,-(1 &
y - € = 40; + Wy Mng

/ - o
V(4664 ime) s (6204 i 2)(% 045t 505 2)
. G 'L (%, @00 - <3 % b)

. &agﬁg[- ('q’*( 0(7@0- o3 %9)
#('/,446' ’(}f""’) “y ‘/*J

-l ( «yta (<, Gs0 - X2 5n6) er?.(’,)

o8 ( Ayt <y 8) + b (i ¢ 4 420

-/
Similarly ).(q,’% B+ 408) = q/?n go that we have

(o/k &’.,4,, e Y ) , vhich was to be proven.

Now consider a translation :
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e

of
oS

z' =2

1

These are the well known equations for a Lorentz transformation due
to a translation along the

X oxmx with Velooity -v. If we define
. | Ve
Coh Y = - , et F =
¢t~ Vo 057:737327» g

then Copadl  f ~Sanptth =/

as they should,
and our relationships have the form
X‘—’ w‘}'x"m ‘I/‘Xo/

X, = — A Ly and L x,
g >y
1= 2

=3

A =

Making this Lorentz transformation we obtain for the 5, .
P o= I Anadh S p At S

43’.447w4.10‘4 /Q, Coo o £
fs ::7%’

(% '12’

Gonéequently we have
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(q/ﬂw‘;"’“xw‘//{-,’4(0(04&»“/4(,44.(1}//’1

YAyt G cmep) Y=o
low put Y= ¥ (4 vhere

? = ewp(-fPN) ~ (k7 = Y ek 5
——y
Substituting for ¥ and multiplying the resultant equation by 2~

we obtain

r” . -—d ]
[ o ok ¥+ ek )p, 4 (ty nh o, ok BB oy g rmep] F =0

lowever,
7{'!’0(’ r;"b‘fi '%u" -{ Loy

ince O(J anticommutes with &, . Similarly

ad

YT s p
inslly L L« £ L4
e /Q’o (044‘-7} -‘e(,M 1/'}6
U,
= € (Ao ok F *’(,,Mb‘/

rilo, 2

= - € e , i ch o = =/

= -/ = «,

bl |

1325f
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§ U YL
e ( «, Bk F 1o, Gk /2

4 o
e (- menk £ 4 -(,Ml//

(leak ¥ + o, Renk V(- ok & + A, bak %)

1]

oA (kS - and k) = oty

geo that once agaln we have

’, ’ _
it (G B s mep) Y=
Thus since the most general lLorentz transformation can be bullt up
out of translations and rotations, we have proved lorentz invariance

in general. It 1s sometimes rather convenient to have another

notation for the Dira:c equation. Let us put

2; = - Py
7. = -L'/ﬁo(y
o= —(pd,

Yy = A

These matrices are hermitian if the and /5 are. From the

commutation rules of the latter we obtaln at once the very symmetric

ones for the 7

I 0,0 K T~ 24, (A =023%)

Now suppose we return to the Dirac equation and multiply it by - L'/5 .

Then we have
X D X 4
- (‘““’*v(....“(-—:z “«, > =
/’ Lc ot XCJX 7{3"’ f‘:’e -fmc/i)l,ﬁ_o/m.

B 2 2 ) 2 :
{z (%3 ’7"57 thr vy ) e ¥ =0, 133
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Put
X =X
7= Xy
2‘ 1 XS
‘et

Then we have

A J ‘ zo.
{-.— W&,)”’“é‘f‘* °

[

or
m

( ;ii* 4-)@)'@& =0 =z
the reciprocal compton wavelength of the particle. It proves useful
to introduce an 4“4%42?2419 wave fungtion i;_ which 1g
defined by _ . PR
W = 7/’*,3/ ¢;(¢,,%,s@,z@)

* g
V/ being the transpose complex conjugate of @/ , By taking the
transpoge complex conjugate of the Dirac equation and mmltiplying on
the right by /3 we obtain

X2 -
Oxka;* XY =0.

Physical Interpretation of the Dirac Equation

As 1s well known, in quantum mechanlcs we need not only a
Schrgdinger eauation, but also a definition of the probabllity density,
l.e., the probability that a particle wlll be in a certaln volume
ser unlt volume. In ordinary nonrelativistlc quantum mechanics this
vag Just yﬁ*ij The questlion 18, what do we take in Dirac theory? Ve
shall show that the following definition

- »
P-2 w0 Y= il (YY)

t=v
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~ (the scalar produet notation will only be used in this sense from

now on) 1is gatisfactory. For a probability density to be satisfactory,

we must have that

;/';9‘4& Ae =/ ,
U apace '
2
[ bttty =g = /-——é% Uy oz,
Further it must be positive. The latter is from the definition

obvious; we now prove the former. Taking the Dirac equation in the form

2

K g . ht‘ l
ot *C(“’ax oAy 5y "% aa,—) f ];& g, we get
Iy bV oy ,MCL
/[ e (5%t oy W 55 Y=)° wrj=0.

*
Take the soalar product of the first with 7,0 of the second with
‘7‘/ and add. We get

. ¢#
2 vty 3 ¢ [(V"oq %;?p( i y) +—u‘a.] = o

It
g} (v*¥) + ¢ [ 533, (Y% i | =0

>
Write :S? = +C /711"( 1'///
P": (V* V)/

then

[

..__/?—f V? :0

.
o~
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This is the differential form of the law of conservation of

probability. S 1s the probabllity current density.

f%’;/’xa@/e=/ﬂ5”;&nf7/& = / f—{a’?~—90

a0

-

1f the particle is conflned to a finlte reglon of space (i.e. if 1t

does not have infinite probgbility of being found at infinity).

Thus 77 1s e satisfactory probability density.

These relationships may be written in a fom which 1s a

little more clearly invariant.

p = /?/*1/) = ("7/’7’}’“ (7/-:9’410
S ro(y* Y =+ (Y p¥)

If we multiply this by the electric charge -&€
vector -
= -(e 7, //
56* (¥ /*’yé /

which satlisfles the equation of continuity

..2——/[':0
24

Td}show that 5&* (or .%;

W C(FFY

Then

CGurrend

we getthe four

) really transform as four vectors under

Lorentz transformations, we can proceed as follows:

Write the Dirac equation in the form

2% _
2/; ZA + kY=o

N
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Then ¥ Lorentz invariance means that when we make a transformation

X ,f = Q) Xy w L Y
= 4 / ’
a}“f d,‘,. 2 g&, - (which 1g the most general lLorentz |

transformation)‘ we get
2% - , W P
2; a*# + X UY=0 <3

k24 p
7//«. ;;', +xY'zo0 , where /= S¥  and
r- .

S depends only on the coefficients Q/« , .+ Since

2
9 9”’ a d’ . .
= =z = 5= T Ay g4
O,\;‘ ) Xy o, ron ) this implies that

LA 2}3& +HY =0
&0 ox) 4 o
| 2 ¥ -
-/ Y e X / _
Tp @, ST 53t S ¥ =0
Multiplying this by 8 we obtain
1Y '

Sr s )a = +uy' =o
( I*S)’/* 2%, v

'This is only vossible if

W

-
-)
< r,, s - 4, »” Yf" .
That meana that under the transformation S the X': transform

like four vectors. _
137
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Consider the equation
?t/' ~—
A =
P) X T 1/‘ 2 / which must take
the form
AV =
Ew™r Y- nY¥'= after a
Lorentz transformation.

Then ¥’/ : ¥ S | What 1s S 2
i, Y% . =
)'/‘, Qx' 2;4 71-?'0
4
QY T - R
.9.;:7(5 ;;,a,,,) xY'S o p
Y’

Therefore we must have

(50, 5) 4, = %

— —_ _ -t
S s ' - );‘ = 5 2 S
By comparison we see that S = S -! so that
1;/ - zzs-',
Now congider the quantitles
T=(y¥¥
T = (Y unnp) parig e oBheriras .
%r,)f: (¢ 3,; 77}“’) VAR TEET)

¥ Pt adee e Kave & omee Aoy Ty iy ST . P T
Coma s S~ »Lwc,«lé alf Ake 7, and "'7«%' A Ligieat 208l 2



and how they change under a Lorentz transformation. Yhe first is Jjust

a scalar ginoce

T'e (F'u) = (F S5y = W ~=

The second is a four vector, since

7. - (F'h¥)= (ESThsd) =
Ty

N

¥ - 4,

V4

which is Jjust the transformation rule for a four veotor. Thus we
have proved that the current really does bulld a four vector.
Similarly J;.y’ is an antlisymmetric tensor of the second

rank, J,

v 2 1s an antisymmetric tensor of the third rank (it

therefore has U4 independent components, and is equlvalent to a pseudg

vector) and finally J; P is an antisymmetric tensor of the
fourth rank and has only one independent component. Thile latter 1is

actually a pseudoscalar. Conslder this component, call it amy¢ N
V= (V46 ty)
or v = (1/7 7?2,0) ) where ?} = ooy

This follows at once since

v's (v nw) = (¥ sTis ¥

— - -7
(y s77,s s7¢s 585 3 0,S IP)

C Gy, Gy (TG 5 Y)

139



. 1 P
The terms which do not satisfy rwpmu #1 7 p are 1dentically
. _
zero. If A=f say, then 7, 7p=7"=/ end @;,4,,% 4, =0

Now the terms satisfying this condltion are all equal, apart from a
gign. This is +1 1if Vurp 1s an even permutation of 2 2 9’!

-1 if an odd permutatlion., Thus

W' = Dt (@, (W 2h575¥) = 276N

Lt (4/,,)':—. +/ for a proper Lorentz transformation

¥ an improper " "
M(ﬂ',,,) =~/ y

g0 that we have establighed the pseudosocalarlty of N,
Inoidentally 2:( aleo has the property

s

Vs = )'1’1,75 Jy.l ¥a 73 ry =1
?’ = 0
TREN? ~
80 that there are actually five matrices J, , Js which satisfy

( 7,“ )/y'f)/y ),f‘) = 2‘*‘)/.

Free Particle Solutions

Let us find the solutions corresponding to the free particle

Dirac equation. If we write the equation in the form
- - 2 _
(f Co(-/o'wc/)T/—O/
Py 4
we can immedlately separate out the space, dependence by writing
z'; oy 7 ‘e

—
where “ 1s a column matrix independent of X g2 or Z _ and 4o’

is the vector giving the momentum of the free particle. This reduces our

equation to

(E _ ¢ :(’.;’f.-m#c‘}g)u =0,
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Since this 1s a 4 x 4 matrix equation we should be able to find four
1 ¢

solutions. Call these ‘o', b oat a”, Since each has U components,

ve may bulld a matrix

’ 2 14

H.' L, n; “n

. 1 3 y
h A,L “‘L Ay

'
¢
) n y
hy u 14)3 by
' 3 [4
“y Mt«f Uy H¢

Since each column satlsfies the above equation, so will UJ, i.e.,
(£ - (:,';'-Mc’/’/'(/‘ -
U hovever may easlly be glven. Consider
U= (€« C?‘f’+mc‘/3)”

where N 1s a constant ™ to provide normalization.

(g - Co? /:,:_,.‘c’/g)v = (€ ¢’ /;?;’[-MC/S)L/”

([1(— Ctrf"“ A‘(‘))/V - 0/ /‘7

& =2 CYp'tamre” ,
If we take the upper sign we get the usual relativistic energy momentum
relationshlp, if we take the lower we get negative energles for free
particles. To oktaln all four solutions, however, one mugt take both
signs. Thls difficulty is not so prominent here, but when we come to
discuss external flelds it becomes so, since we cannot simply exclude
the negative energy states as the external flelds cause transitions
between them and states of positive energy. We wlll return to this
question later. lLet us call *Cm =C{l(p/) Then we may

clearly write

“p s (Gl e

. u":s (Eé“I*C'/-(f-um"ﬂ} )/U
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‘.
Taking the representation we had previously we see
m ey @ [
' 0 [ 2 an €+
u - A/. ’ ¢ . a’ - N ' ,“- ’
* '8P
’ () , - ]
% “f7 ‘ xS
~ ‘o
3 . Fx -1
w = N A+t u? = N Y
4
- L-mc o
o -4 -—M [4

The first two solutions ocorresponding to a positive energy, €2 the

second two to negative energy ~ C 2., If we choose

N = — (3 Aol s o~ B A
7%%;?/1

/71*044} 2y 44"’

*
then the solutlons are normalized in the sense that (a, ©w) = /, This
may all be verified by direct calculation. If we go to the limit of

vanishing veloclty we have

y o
/ o ".__) (')
w! —5 [oo) w 2
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g0 that we might imagine that at low velocltles Dirac theory goee
over to Paull gpin theory, the first two solutions corresponding
(since their energy i1s positive) to the spin "up" and spin "down"
cages. We shall verify this in detall latér.

External Forces

Ve shall now consider how the Dirac equation is modified
byvtho pressure of an external electromagnetic field. Let thls fisld
be given by its four potential A4 [ A =4, LA /47/ Ay = Aa,
Ay= ¢ , /-99 and ¢ Dbelng the ordinary vector and
scalar potentials of the eleotromagnetic field. It is well known from
Maxwell theory that this bullds a four veotor{} Now in oclassical
mechanics to obtain the metion in an electromagnetic field we Just
replace /;‘, by (ror. an eleoctron with charge ~& ) f}t - -g- 4/_‘

This makee sense, since they are both four vectors. We shall do the

game for the Dirac case. The field free equation 1s

¥ b ¥ ey

Therefore when a fleld 1s present we take as our equation:

SR EA) Y ray =0

*
J- / _
[ a./g)—,r*;%ﬁk)fx]w%a,

This we ghall take as the baslc equation for a particle of charge -e

or

in a glven electromagnetioc field A po One important property which
this equation must possess, in addition to that of Lorentz invariance ,“

is that of gauge invariance. Since the eleotromagnetic fields are
'\ given by the curl of the 4-vector potential

#The Lorentz invariance 1s of course trivial, since and

transform identically. 143
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/';‘ y '57:‘ 21y -145-
4 ”i = ”’ - E’

e ’/e o Ha - “£’
F,‘y) = ‘/; ~Hr lo) 't‘fi
LE, té, (Ey o p
the L potential is only determined to within a 4 gradient. That 1s,
9f
1f we add to ,4,‘ the quantity 3 A where £ 1g any scalar,

we get the same fields , 8ince

2E)560 5 o,
m— -~ —— - ————- -
ax )~ o, (Sxy MKy %, e

Therefore if we replace /4 by /4,, - 59-4.7{ = /)ﬁ' , the solutions of
/A

our equation (¥ j should be 1n one to one correspondence with those

of our original equation. The transformed equatlon is:

2 e pt).x]y = / )]+ 2f#'=0

[Jr(%“"‘;‘;ﬂ,,/*]v L & A A, ax)

Now put 1/’ = € ’ 1/’ then we see at once that
V4

[1,( 5« EA)«x]v=0

8o that the required one to one correspondence exlsts )and we have

obtained our original equation. All physical propertles of the system

must be the same if we use either ¥ or 1/, As an example

('9 f - E.C'

%e e

: £ -
I = ie (Yo, y7)= ie€™ e Xy ) = F

L4

Taking the complex conjugate as before, and multiplying with ﬁ we

can easlly prove that '~  satisfies
AT
QXPXP- -kcql/ /4,/:" =0,

<I:i’" we wlgh to write our equatlion in terms of a hamiltonlan we have

to multiply by /3 and find H esuch that , 4 .9_?4 = MY
5F =

14
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This 1s easily seen to be
~> - e D €¢
Ho=c[alprsg)mep]- :

Incidentally, the equation we have given 1s not the only one which

satisfies the conditions of Lorentz and gauge invariance. Ve could

D F Bl Y

The resulting equation describes a particle which (we shall not prove

add a term

it here) has an intrinsic magnetic moment depending on A . 1%t 1s
poseible that the oroton or neutron satisfy such an equation, but for
the eleoctron (if we heglect very small terms due to interaction with

the radiation field) we need not consider terms of this type.

Non-Relativistic Spin Theory as First Apvproximation
In performing this reductlion it 1s convenlent to use the

representation which has ,B (or a; ) dlagonal. In thils representation
we shall find that the first two components of % (in the non-
relativiastic 1imit) are large, while the other two are small. Let us

write i;aq;
2

%
Y = %
Ve

In the non-relativistic case the energy differs only slightly from »nctl

Let us put
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.
e may write the Dirac equation as?

LA g-.- { ¢ [ o?.(,;;%/?)-wncﬁ_]' e‘l’}%

’ ?/)t)

/mc‘(:) * "t(”'/?t
e[ (85).(paga)smels -7 ()

-
-

b= (g) 7= ()

Or
- 9 ->
0 2 = (C(p-EA)Tx -t )

Ime® ) + (% .;.;( ( C(/u_,q)o*q~e¢2')

Now since A comes in the second equation multiplied by
Rmc' while % oomes multiplied at most by terme ~ cp this
equation is only possible 1f the components of 2’ are much less
than those of . M Zeroth approximation would be to put ¥ = o,
excent in the term which is multiplied by 2 mc® . That 1is

2anet ¥ & C'/f?# 9—,9.9).5‘" ¢

/
\
~
Substituting this in the first equation we obtain

L-*_a_f: [(o*?’)/o' 7r) ¢}?
I . 2
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= 1, 5—:; =

i ; - e ™
wviere = ¥ —_
ﬁ fod A '

To evaluate this we make use of the followlng ldentity:

- -5 - oy .
(O'.B)(G‘.:c)_— O‘;"B‘(*......pm-ﬁ Q"O(}Bz(bd-(fjé‘*ayckq,,.
= (Bx e)v *%67‘(8,‘(.&) ~f t.o;. {B"C] ”ngy)-‘loo
o ., -
- - -_—
Nowput R = € = 77T

= ;5 ( (Prd)f +«PF)r A + 4 *(V'F))
kY 2
= 7 (PrA)f = - H £
~) ~ - - 9
Y(//k‘ﬂ')r ‘Ce 5—’3
—5
where # 1s the magnetic fleld.
Thus
! (f* z A) er = 5
& ¢ # { o j?

This ig exactly the Paull equation for a particle of spin 1/2, magnetic

moment /48 = za % in a given electromagnetic fleld. Thue we see
mC

that the Dirac equatlon glves us the spln and magnetic moment of the 147 |
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electron without any assumptions at all. It is very easy to push

this approximation further, and obtain relativistic corrections. To

push it one astep further we have

- ) !
X = J >~ (A2 +e¢}/7] =
24ﬁc1’ ¢ i
-3 -) » x
~ O (tt +e¢)__ A -537-)? |
2 ¢ 2m¢r  2me
N
= 24 - L (¢x~+e¢}(o~ﬂjga
2me 4a*c3

Substituting in the first equation ylelds:

. e o = > ;5" A -24e¢)(0.:?77.))9>}

- L 222 .L___._.a~1r(¢d—-4e¢)0‘lr?
= s (emem) e ebdy - by

The last term ylelds the first relativistic correction. It is a

gtraightforvard matter to multiply it out. If we dlvide the terms as we

i M I
aid with (0. 8yv.C" ) , we find on a little reduction

- (/ 4«"6» 7 } ( t ¢?/
> e

/
:{2-—7; + Ha O H 4+ 3 c
op L B

- e— °
/‘&2”6' 9
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The factor multiplying (% e +:¢9, in brackets is jumt

the result of the mass change of the particle with veloclty. Ths
term /4,, 2—4’;: (> ”7)~ & 1s the celebrated Thomas correcilon,
which we have already discussed. The final term was first dlscoversd
by Darwin and had no place in the original Paull spin theory. It is
purely lmaginary, and therefore means that the hamiltonlan which we
use is not hermitian. Thlg 1s, however, not a contrediction since
this 1s only for a two component function & , while all averages
must actually be ocmputed with the correct 4 rowed 1,11 , When the
latter is done, all averages do turn out real as they must, and the
Darwin term makes a significant contribution. It actually 1s possible
to write down an equiva.l.em: hamiltonian which requires only 2 x 2
matrices for all averages. This has been done by R. Becker (Gdttingen
Nachtrichten, 1944) and by Foldy and Wouthuyser (Phys.Rev. 78, 29
(1950)) but we shall not go into it here.

The Relativigtic Theory of the Hydrogen Atom
We shall now consider the predictions which the Dirac theory

makes with respect to the energy levels of an electron placed in a “%4.

sexdpedt fleld of a nucleus. That 1s, we shall discuss the Dirac eguation
-—,

for the case of 4 =& , ¢ = 25/4 = @ra), We will look for the

stationary states, that 1s, we put

4 2¥
5~ £ ¥
The Dirac equation becomes

r3 2/:' ( C(%-avﬁ-!’-f-zmcp) ~e¢/4))'// .

Now Just as in the nonrelativistic case it is convenient to go over to

- spherical coordinates, since we have a central field. This may be done

in the following way. Define a quantity o, by ‘149 .
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o
o = z ~151-
7 >
Z | .
Then clearly, since I~ 1s a unit vector 4, =7,

Thus we may write

(o-("v/.?) = dat /;;) = G/a (0(4 (‘?'/?})

- - - 5
= oA, }':‘ (G"/L)(“"f‘)

-

However, for any two vectore B and C

9
commute with each other, but whioh do commute with o ) we have

(02‘2,/{0(?/ = dxt ﬁ,(’,"’“
* °(X‘(y B,’C) -fﬂ”o(x Q)CX*”'

(which do not necesgarily

- -

= B« * Ux oy WURY (B, Cy-B,Cx) v
.‘_;
Define a matrix vector given by
2 = -iL ( +.) etc. Then
x )

( )(«c) Bc +cZ(BxC)

f 1s clearly Just the 4xU4 generalization of the 2x2 spin matrix

-9
vector O . Applying this to our case we obtain
- BN -9 ->

(O(/L)(v( f;)~ f;’.p ‘¢ Fof;;x;j.

However, we also have that the orbital angular momentum L 1s given

-

by )—; X F so that finally

-~y -
(0( /1)(“ r) ’)lf 'F(. E.L
Using thie we have

°('1-;= An ;(';'?'

"
-}
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-
where p, = ;ﬁ (~. ; -l R) , vwhich 1s our old definltion of the

radial momentum, and

bk = A LK),
The reason for choosing the factor /3 in the definition of £ 1is
that the resulting quantity 1s a constant of the motion. To see this

we must show that (7// k) o
M= c (Q’.;,«.mc/;)-e;‘(a}

- -2

Since L p and /5 commute with. cfm)} we have
(#,4) = ¢ (< ,p(z L)
. ¢ {@F pGD) 2 k(L]
= C [[{77‘5{2—) Z}*(I L){“ /’jjﬁ +2 K (« f}/S}
e ]

>
since ﬁ anticommutes with o a.nd of course commutes with 5~
But by direct calculation (since /a 1. = 0)
(- f) ($L) = i & (F+Z)
-

(F )< ) =i

and therefore

IR

v /°(‘;°)(i‘ L) /S?ai Notp) = (prl T4

- - => |
But prlL L P = 7—_25 » y , ag 1s easily verified

by wrliting out the components. Therefore
-) = - -
(4 k) . ¢ [-2% (.(.F)p+z-k(¢-1,)/s‘]_g o
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In order to see the physical significance and the characteristic
values of this constant, 1t 1s necessary to conslder the total angular

momentum of our system. S3ince the particle has spin 1/2 we would

, -
expect that not the orbital angular momentum / but the orbital
plus spin angular momentum will be conserved. Define

- - , - , |
J = L+t F 422, F

We shall now show that thls 1s a conastant of the motion.
. -y -
[H, 5] = [ c(LpIemep -ed, Lx+ i1, ]
—’
= C [(“'1-:}, Ly 352, [

- . [:(.7.;// Ly] + AS [, ]

-~ #Ae
- T[“y/”e'“}fy]* 5?'[4”;“2»"“';’&] = O,

and similarly for the other two components. Thus J 1is a constant,
L

and of oourse so is J
9 > / > 4\ 2 -":j ..'?.kt
T= (3 %3) = LT RE2 73
- , .= 0 ) - 2
But (S.L) = L~ (T (exe) = -7 2L , 8o that
2 ~» - - x
J = (bi)%zx(?-z)n*k‘-j
= 9 - T
> @47 - FrY = [pcs. )] - 2%
- Atk’-“ xz

Thus A 1s, apart from conetants, essentially the megnitude of the
5 Ane
total engular momentum. Since 7//,,)4 Bes the characteristlc values

v 4 T { vwhere g:/“’/“%,---) ) we obtain for # the

values
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Aok - /71//)(/‘”/"4-"S = f.‘(/‘f/:,;'/.— z:‘//q%;z ~15b
k= Rl 5 2, xa, 23,

In terms of ,/e the hamiltonian now takes the form

Z[: 6(0(,,7%4('»f',{‘dqf/é"/hc/j-c¢’¢).

Since we have T
Xy =/ P o=
@’,l/o(,,,)-_- 0 = (h,a) (direct calculation)/
we may choose o and (s to be any two numerical matrices

whose squares are one and which anticommute. ILet us take

)] ©

6= (.75
0 = (17.)
Tapp = (0;)
me'-ep  c(-ip- 24

c(c‘ﬁ'-_ﬁk) ~4nc‘—¢¢

7

, frv) Lo,
Put .
: Y= (jla) b ™ T on s

then the Schrddinger equation 7‘/ ¥ = g% becomes
(k2 2 k)y ~ (€ -mereed) =0

(,“{d‘ p fkjf_{[¢ﬁae‘¢e¢/j=0
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v - ne — & _ Meia
Pus V/ AC ) 4 o- *c
. .
4= £ = L #- ==
kc 137 )

(2, 50 fro Aocnd Holli, cmee £ <med Frr o),

(3 * 209 - (5 F)f =0

Z -
5_/7_-%)"6-{?1*?7:")}’0'

n
To solve these euqations, first consider » very large. Then

approximately
f,"),{.ea
;V-?3;?:=a
z —-—
J-vt'=0, gromng=0 , » FTT7TS

’

. I 1
vhere 0 = /¥y w ~neef . Similarly £ ¥*# =0,

-7 e
j = A e + Ve
- - ~ ra
‘F - /~ e ' 4 fL+ ;e
YA
The solutions € are unlnteresting, since they are non-
normallzable, so that avproximately for very large r
- N
i~ e
-Th
F~e
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Let us therefore put 02 = P and
? = e,—fG;(f)

£- e rg
This glves us

4
4F ke (2, B = 0
L N2 A

Now let us look for power serles golutions in the form

F=F'(a,«ap+apy...) Goo
G= P bovbp+br~.) b, #0
S*m =~

Substituting, and putting the coefficient of 5 equal to

zerc we obtaln
| b7
bylwnrs+4) - b, + 2 4, - }-’ G, <o
a }1’”7/0
A, (mes5-4) - @, = B< 4 - =

bo (S+4) + 2« ao - o
} o
Q’a(.f-k) - 2‘( bo = 0

Therefore we must have
S+ & 2«

- & S-k

St ek 4+ 2= o

R D e e
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o -
é” ST 4/V . Substitution in the relationship between

Apn snd b, Wl Firee
- );/A/*_’f-/g/— 2 )

’E ( Ylwes+4)+ 2 ?,) =
RE | 22X (s £59)

-

Ry(W+S) = 2x (¥ -0%) =z 2« s —

Squaring we obtain (since ) . ;LZ (e £)% )

(ney™~E) We9® = (2)*E*

L (%c"‘j"(,{/.,‘g)""

E =
Wl_f)z'-‘ ( 2s)"
C'L
£ =
//+ (fV-r.r
%c"
£ - =
T

Here N =0, 2,
K= =2/, z2, ...

valves, for N = o, however,

For ell WA 4 0O , takes on *
To see why this is s0 we notlce that

takes on only positive values.
and 4, when

there are two sets of relationships connecting @,

# = ( | The ordlnary ones for determining § .

5, (’S?k}ﬁ-%wﬁ’o:o
ﬁa(’S‘U"‘ %6(50 =
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and that coming from termination

- &

b, = T 5 4

From the first we have
bo - Zv(

4o Stk /

fron the second

bo 7
Qo s

since S < /k/ , the first ratio 1s positive for negative K,
negative for positive & , while the second ratio 1s alweys negative.
Therefore we must (_f'or N =0 )choose £ >0 . We can see the
meaning of thls and the connection with the nonrelativigtic theory if
. - “ _L L ™ ¢
we expand our energy (&) is small ( 127 } gl 4‘(70"—“}@\) .

’ 2o
E ;’ A)\_ 1 - -—/~ S ——
h er (1 2 (welk))™
- et M2'e’

22 c wrlp))”

The nonrelativistic formulae is

- mze

EA T 1\_:/’21100
2r m?Y

These certainly agree (apart from the rest energy #wc' ) if we take

iy
0

m = &g (k] 4 ,

k'éﬁllil’-

Now we can see what happens to the degenerate lsvels with a glven m

wvhen relativiaetic effects are taken into account

M=) N+ fll= 1 , A Rl =y

ii:czzd.’\.a;)ﬂ;{rg% ’W =g k = %/ f - /k/ e 7’& = I/l
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That 1s, the state m =/ which corresponds to { =¢o is
originally nondegenerate and now acquires the spin degeneracy. Since
there is only one way to add spin 1/2 to/‘w = to glve F = 1/2,
we gee why for / = ©  we only get one of the two possible # values.

This is a 28% state in the nonrelativistic limit.

=2 2= WM+ ki o &tk NTO, k=z2 /=7

- M=), f=-2y 2= "N
Tﬁe dsgeneracy for 7« = 1/2 ocomes because there are two ways of
making 4# = 1/23 elther we can add 1/2 to ¢/ = ©  or subtract 1/2
from £ =/ , On the other hand, there 1s only one way of making
7, = 3/2, by adding 1/2 to ¢ = 1. These states ars respectively

N k 4 £
0 2 3/’: ! ' p’/ +
! -/ I/‘_ / * PI/,_
/ “/ /

' 0 2 5,/‘

The 1dentification of £ for the last two states proceeds as follows:

ir 0 is avproximately a good quantum number these (nonrelativiatic-
-
ally /3:?[, S - 0?),
~> 14
A = L~3+*= ;’Z(L-t-itf)
= ) = bt + <L
k 7//# ) 'y P

= A#+~) "7 7””’/&.

> -4 17 7= AL
Thus when ;’: 2 rR=~f A=/
- = 0 ,
‘:i:: %‘, éo"/ ‘/
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Since for the last two states zP,/_L , 2S',/‘_ , 7=2 we have the sane
V ana //al, the relativistic energy will be the same, and therefore
the Dirac theory vpredicts that these levels will be exactly degenerate.
Very recently (1947) Lamb and Retherford have found that these levels
are actually spllt by about 1000 megacycles. The explanation of this
phenomenon lies outside the scope of these lectures, but we simply
mention that 1ts origin lies in the interaction of the electron with
the fluctuating electromagnetic fileld which is always present in

the wvacuum.

The Kleln Paradox, Negative Energy States

.‘.
If we consider a Dirac electron which is rg‘lected from a
potential discontinulity, the presence of negative energy states
produces some very startling results. Tmagine the following situation:

An electron 1s incident on a potential

energy jJump of \/ " The electron

has kinetic energy £ -mc™ < V), _E-mct 3

Then in classical mechanlocs and in T l i
non-relativistic quantum mechanics we < Xx0 T

would exmect the electron to be totally reflected. This is 80 also
for the Dirac electron, as long as is not too great. For
V> FEo+m C" transmission begins to take place. We ghall not

treat the problem in full detall, but indleate how the solutlon goes.

The solution in region JZ  must be of the form

Y-y -
(-,fg/k \[fx/x)e /£
Y - (A u, ¢ + 287 e

i 1
1

v tolond rane ' WM
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In IT it must have the form
"»f‘"‘/z -ift),

Y, = Cdp e e

The quantities uI,V 24

7, z are normalized Dirac vectors which

must be solutlons of
(co(x/,,«/;ncz/)aI:euJ
-
(—C"(,:fd-fth/s)‘z;: Ev;_

(cx,.,a'-ma/s) Uy = E-Vug

Put mc™ - £, Then AC

P’

"

[e~&,r

YE-*- £

Since only the matrices & x, e apnear we can satisfy the

"

commutation rules with 2 x 2 matrices and we need only 2 component

functions (the others would just glve the same results again).

Take
o {)
- /I o -
/S - {a -/ ) ae ( d
Then direct solution pives

w, - /W/(f_:*.) /

EvE, /// s 141
- [ o
/ ) éF’fo)

v = ﬂ//;)( ~cp
EVE,

/
!

p= Wipy | < T T
E-¥1F» (c-v+Ey)™

Matehineg boundary conditlons we have

et B
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ELI - %Aﬁ Q/( X=0 J and therefare

A1) wip) = € #'1py

“A-p LMD . PN
€& E~V7E,

Dividing, we obtain

A‘*E ﬁ E‘V"é-o Py
A-B = P’ £rE,
E’y'fé-o
B ",“‘—"—;—-——"" -/
v—— - ﬁ, z-fE.,
A P E-rs+g )

T ——
+’ Ere, v/

The reflectlon coefficient may be defined as the ratio of reflected

to incident intensity, that 1s
Re (2)
A .
Thls expresslion 1s in general a very compllicated function of y but

to show the essential property we want, let us consider the extreme

limit of V— @ | Then cf’—-a. -V (Closer
1nvest1gation*shows we must take the negative root) p and
c
B Le #c -~ €E-E,
— —2 _£+g, -
A re |, e~ & r€o
Ere, g
- /8.1 £ -pc
E -+ ¢ )

. N PR 162
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Thus we see that 1f the potential barrler 1s infinite we still get
transmission! This is the famous Kleln paradox. A closer
investigation shows that as soon as & V > F4E, transmission
.takes place. Thils can easily be understood in terms of the negative
energy states., Consider first the case of no barrier. Then electrons

will be transmitted if FE > £, or if E <-f_, . The shaded

/i
2E,

region gives posslible states

which allow transmisslon. Now

wovone ut V= e.ee A T

Then the lower band 1s ralsed

go that £>0 lies 1n 1t, and o - 2E, b€

once agaln we get transmissilon, A

but via an electron in a negative A‘K//?C‘/ X=e
energy state. Thus the negative

energy states produce’in fields which are strong enough, effects which
are certainly in contradiction with exmerience.

Another effect, which has been calculated by Opvenheimer,
ie that a hyirogen atom would exlst for only about 10710 seconds, the
decay taking place by the electron dropving into a negative energy
state and emltting a light quantum. This 18 also in contradiction
with experiment. The question arises, what can we do about these
negative energy states, since clearly they are not real physically?
Dirac has glven an extremely beautlful interpretatlion, which we sketch
very roughly here.

Suopose we consider the Dirac equation

A 4 = 2 =
L&‘-;;:. ¢S oL (P gitg,)+—4ncyé;7 -c:gzz Y = £ yﬁ.
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Let us take a reoresentation in which < 18 real 63 purely

imaginary. Thils can clearly be done by Just taking our previous
representation and interchanging and N, . Now take the

*
complex conjugate of this equation

E y*- {c[aT).(-F+§Z}*MC/5J'€¢/ ¥ oa

- £ 1**'=_ { c/ ;?'1’}7;.§EAC>"’” qﬁ[] 4-e7{; ?9*

Now 1f we consider a solution 'Qﬁ corresponding to a negative

energy £ we see that (in this representation) y*

corresvonds to the same absolute value of the energy but with a plus
sign, ;;;dfor a particle with the same mass and opposite charge.

Thus the states assoclated with negative energy really correspond

to states of positive energy for particles with the opposite charge.
Such particies are found in nature and are known as positrons. We

are 8till not out of the difficulty, because we would s8till have to
find a way for electrons to be prevented from goling over to vositron
states. Dirac solved this very simnly, by saying that normally all
vositron states are filled up and therefore by the exclusion princilple
we cannot make transitions tb them. Positrons then aprear when an
electron has been knocked out of one of these states. We see that to
obtain a conslstent plcture of the Dirac equation, we have heen driven
to a many body theory. This 1s characteristic of all relativistic
auantum mechanlies, and cén really be well formulated only if we uge
the quantum theory of wave fields. If we do, 1t 1s possible to build

un a theory of electrons and positrons which is very natural and in

complete agresenent with experiment.

&
# WMere W& rcasea

P R tims ' P s g e
A AR ‘%}?@w@% ‘%’W&é A?" BB =T
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INTRODUCTION

1l.- Aim and scope of statistical thermodynamics.,

The aim of "statistical thermodynamics" is to give an ato-
mistic interpretation of heat phenomena. In the first phase of its
historical development, the atomic conception was restricted to the
structure of ponderable matter and the atomistic treatment of thermal
propertics of matter accordingly became known as “statistical mochanics",
Later on, however, the phenouwenological concepts and laws of thermody-
namics were extended to radiqtion phenomena, and the interpretation
of these¢ phenomena in terms of electromagnetic fields provided the
basis for a s%atistical treatment of the thermodynamics of radiation
on quit: the same lines of that of matter., It scems therafore adwisable
to replace the traditional denomination of "statistical mechanics" by

a name which indicates more correctly the~ wider scop: of the theory.

In its broadest aspect, tho atomistic view of matter and
radiation congists in regurding these physical agencies as composed
of c¢lements - tho atoms (or molecules) of matter and the monochromatic
waves of electromagnetic radiation - obeying well-defined laws of
motion or propagation. The physical quantities describing the properties
of macroscopic obzervation are then interpreted as average values of

corresponding atomic, or elementary, quantities, taken over large

numbers of constituent elements, Macroscopic relations between physical ~

quantities can then in principle be derived, by suitable averaging
processes, from the clementary laws of motion or propagation. In itself,
the taking of aversges involves only a trivial use of statistical con-
ceptions. But just in the analysis of heat phenomena such conceptions
are found to play & quite essential part and their introduction into
the atomistic picturc thus appears as a deep-lying feature of the

whole theory.

2.~ Statistical aspect of the second law of thermodynamics.

The central problem is the interpretation of the second

law of thermodynamics. This law can be convenientiy ~nalysed into two
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stetements, relating to controlled (quasi-statisc) and spontaneous
transformations respectively : )

(a) there is a quantity called ontropy which belongs to each state
of thermal equilibrium state of the system in a controlled way is a
well defined function of the thermal parameters characterizing the transe
formation ;

(b) if a thermelly isolated system undergoes a spontaneous transfore
mation from one state of equilibrium to another, its entropy increases,
thus indicating the irreversible character of the tronsformation.

Now, the essentially statistical aspect of entropy and ther-
modynamical irreversibility is well illustrated by such processes as the
mixing of two gases., For the inerease of entropy in this case, when
congidered from the atomistic point of view, can ouly appear as a func-
tion of the numbers of atoms involved In the mixing processes : in fact,
it is simply related to the greater probability of the disordered state
represented by the mixture, as compared with that of th: separated gases,
But more generally, it is found that heat in its various manifestations
must be regarded as the resuvlt of some disordered form of motion or
propogation of the elementary constituente. Entropy is o statistical
measure of this disorder, and its increase expresses a transition to a

state of greater probability.

However, it is important to realize that entropy is a sta-
tistical concept of a2 very specific kind : it expresses @ definite rela-
tion between statistical and thoermal characteristics of the system, In
other words, the statistical «lem:nt is introduccd into the definition
of entropy by the fnct that one considers only thsrmal transformations
of the system performed in a quasi-static, i.e. macroscopically control-
led, way. This physical aspect of the entropy concedt is not always
properly appreciated in the so-called theory of information, Entropy is
indeed a measurc of z certain type of "information" pertaining to the
microscopic state of the system ; but it only refers to that information
which can be obtained or loust by operations involving exchanges of heat
between the systom and other bodies (or, in particular, keeping the
system thermally isolated). The stntistical aspect of thermodynamics
thus arises from the fact that the definition of the macroscopic states

of the system entails a limitation of our control of the microscopic
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behaviour of its elementary constituents.

It is just this circumstancc which leads to the irreversible
thermal evolution of an isolated system when its atomistic elements are
left to follow the course determined by their own laws. The derivation
of this fundamental property is the oblect of the " ergodic theorems"
which forms the backbone of statistical thermodynamics., Asymptotic
irreversibility is & very general feature of statisticsl "chains" of
events : it is exhibited by results of lotteries just as well as by
agsemblies of atoms. It is especially rcmarkable in the latter case,
however, in view of the reversible character of the elementary laws
of motion : the conciliation (in a statistical sanse) of macroscopic
irreversibility with microscopic reversibility is the essential achieve-
ment of the statistical analysis of the second law of thermodynamics
by means of the crgodic theorems.

3. Statistical thermodynamics and guantum theory.

In the rreceding general outline of statistical thermody-
namics, the exact nature of the atomic systems and radiation fields
considered has been left open. IT is well~-known that, when ore attempted
to describe them in terms of ordinary mechanics and electromagnetic
theory, the resulting thermodymamics led to serious inconsigtencies @
this wag in fact the origin of the discovery of the quantun of action
and of the ensuing development of the quantum theory of both radiation

fields and atomic systems.

I+ is clear, therefore, that irn order to obtain a consistent
forrmlation, we must take as basic assumption the quantal description
of the elementary constituents. But it should be equally elear that
this does not make the least difference for the fundamental argument
of statistical theory, outlined above. Since the quantal laws, just as
the classical ones, are essentially reversible with respect to time,
the problem of deriving the macroscopic irreversibility by introdueing
a suitable statistical elemert into the theory remains unchanged and
is again solved by ergodic theorems.

The present course will take as its leit-motiv the complete

parallelism, in regard of the general structure of the theory, between
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classical and quantal statistics of atomistic systems. A special empha-
sis on this aspect of the subject is needed, because it has not always
been clearly recongized. The issue has been obscured by the fact that
quantum theory itself, in contrast to classical theory, introduces a
statistical element at the misecroscopic level ; and tt has sometimes
been confusendly argued that it is the elementary quantal statistics
vwhich provides the basis of macroscopic irreversibility. In reality,
we have here two completely distinct statistical features, which are
not only logically independent of each other, but also without physical
influence upon each other. The question whether the elementary haw of
change is deterministic (as in classical physies) or statistical ( as
in quantum theory) is entirely irrelevant for the validity of the ergodic
theorems.

The thermodynamical irreversibility is thus related, not to
any statistical feature of the elementary systems, but to another,
quite independcnt, statistical feature, which specifies the point of
view of the macroscopic pbserver. It is interesting to note that the
logical relatiopship between the macroscopic snd microscopic modes of
description of the system is one of compiementarity, in the sense
that the two poinss of view are mutually exclusive : a complete know-
ledge of the microscopic state of the elerentary constituents precludes
the use of such macroscopic concepts as temperalure and entropy ; con-
versely, the macroscopic description implies a statistical indeterminacy
in the knowledge of the microscopic state. But this complementarity must
be carefully distingmished from *the similar relation between conjugate

quantities pertaining to the elementary quantal cystems.

While it is important to realize the essential identity of
structure of classicel and quantal thermodynamics, it is no less neces-
sary to keep in mind the main points of difference between the two
theories :

(a) as already stated, the cuncrete consequences of quantal thermo-
dynamics, while containing those of classical theory as limiting cases,
are free from the inconsistencies of the latter. The law of equipartition
of energy, which is the source of these inconsistencies, is in fact redu-

ced to a law of asymptotic validity. There are well=known examples of
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systems whose behaviour even under ordinary experimental conditions illus-
trates extreme cases of quantal statistics : the pure radiation field on
the one hand, the metallic state of matter on the other. ‘

(b) There is in quantum theory a type of irreversible process unknown
to classical theory : the measuring procesa. The measurement of a certain
quantity pertaining to a system may involve an irreversible change of
atate of the system, with a corresponding increase of entropy.

(¢) From a more formal point of view, the development of statistiecal
thermodynamics on the basis of the quantal laws is neater than on the
assumptions of claseical theory for the slementary systems. The proof of
the ergodic theorems, in particular, 1s somewhat easier. But the main
advantege of quantvm theory is that it makes poussible, in a much more
compendious way than classical theory, a unified treatment of both matter
and rediation (and in fact of any physical system whatsoever), This is,
of course, a consequence of the elimination of the duelism between mattér
and force and its replacement by the conception of the complementary
manifestations of particle and field for every constituent of the physi-
eal world.

to= Outline of the fundamental argument.

In order to bring out the similarities and differences just
enumerated between classical and quantal thermodynamics, it will be neces-
sary to present the fundamentcl argument successively from each point of
view, This we shall try to do with a minimum of repetition by first giving
a full treatment of classical theory and then going more rapidly over
tho argument again on the basis of quantum theory, just stressing the
points of agreement and difference,

The argument may be eonveniently divided into three parts @

(1) : The first part, which is of a preparotory character, is concer-
ned with isclated systems. The systems of actual interest are usually
not isolated, but they can always be conceived es embedded in a larger
system, which may be treated as isolated to any desired approximation
(just by meking it large enough), Once the statistical treatment of isola-
ted systems is developped, that of actual physical systemns in inter=otion
with their surroundings can be derived from it by studying the behaviour
of & small part of an isolated system.
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The interactions of a physical system composed of a large
nunber of elementary constituents with its surroundings are of two
kinds ; there are dynamical interactions, involving exchange of energy,
nomentum and angular momentum; there is also a flow of the atomic constie
tuents themselves into and out of the system, with an accompanying
exchange of mass apd perhaps electric charge or other substantial proper
ties, Strictly speaking, the two types of exchange cannot be separated;
in particular, according to quantum theory, no physical system in interas~
tion with others can be regarded as chosed, i.e. as having a fixed
number of elementary constituents. However, the concept of closed system
is, of course, quite a useful approxilation in many cases, and it is
convenient to study sush systems first.

(2) The second part of the theory will accordingly be devoted %o

closed systems in dynamical interaction with their susroundings., It will

be sufficient to restrict the analysis to the exchange of energy, which

is the only one of interest for the theory of heat, and which is typieal
of the kind of treatment to be applied to other dynamical processes when
necessary. It is, in fact; by considering energy exchanges that the cone
cept of temperature can be defined : if we want to give any system a
definite temperature, we must bring it in thermalcontact with a
“"thermostat", i.e. allow it to exchange energy with a system of suffiecientw
ly large heat capacity to maintain its temperature constant to any desired
approximation. We may then regard the total system formed by our elosed
system and the thermostat as an isolated system. From the statisties

of the total system that of the closed system is then derived by elimie
nating the ntog °tlc variables pertaining to the thermostat and reducing
the representation of the latter to a single macroscopic jv.rameter, whiech
plays the part of the temperature,

(3) The method just oulined for taking account of the dynamie
cel interactions of closed systems with the surroundings cap immediatly be
extended totgﬁchanges of elementary constituents between the system and
its surroundings.. This is the third and last stage of the theory; it is
concerned with open systems, i.e. systems with an indefinite mumber

of elements. The procedure consists in treating an open system as a small
part of a closed system, which forms so to speak a reservoir of clements
of all kinds taking part in the exchange. The elimination of the variiae
bles pertaining to the reservoir yields a statistical distribution
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funation for open systems, containing macroscopic parameters related
to the average numbers of clementary constituents present in the systems,

Let us know take up in succession the three stages of the
theory and consider the argument a little more closely in each of them.

5. = Isolated systems ¢ the ergodie theorems.

Consider the evelution of an isolated system in the course

of time from a certain instent at which all connections with the surroun-
dings have been severed, We know that after a period of adjustment, or
"relaxation", it will tend to a stationary state in which it will persist
indefinitely. Fron the atomistic point of view, the value of any macros-
copic quantity pertaining to the system will be interpreted as the avera-
ge of a definite microscopic qiantity over the interval of time necessary

for the measurement, Such a time interval may be extremely short in the
macroscopic scale and yet cover the passage of the system Through a
larg: number of successive nicrogcopic configurations : it is then called
"physically infinitesiaml!", In the present case, the time average will
be the same over any interval, except perhaps during the period of rela-
xation : the macroscopic value pertaining to the stationary state of the
system may thus be represented by an average extending over =an infinite
time, an idealized concept which turns cut to be mere amenable to -~
general smalysis., In faet, this averege over infinite time embodies
all the microuscopic configurations mctually taken by the system but is
obviously independent of the urder in which they have been successively
taken : it is theretore equivalent to o definite statistical average,
i.e. an average cdefined by a distribution law indicating the relative
frequencies of occurence of the various configurations of the system
in the coursc of its evolution. Such a statistical distribution law,
fromwhieh the time has disappeared completely, characterizes the
stationnary state of the isolated system. The derivation of the distri-
bution law for the isolated system is thus the fundamental problem of

statistical thermodynamics.

The above argurment, however, is incomplete in as nmuch as it
takes for granted the empirically observed irreversible tendency of the

isclated system to a stationnary state. This behaviour, as already
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pointed out, is by no means obvious in view of the reversibility of the
elementary law governing the change of configuration of the system with
time., The first task is therefore to define the precise neaning of the
macroscopic irreversibility, i,e. to find the conditions under which
the time average of any quantity pertaining to the system exists indepen-
dently of its initial state. This 1s the object of the srgodic theorems.
It then turns out that the solution of the second problem, viz, the deter-

mination of tho statistical average equivalent to the time aversage, is an
immediate consequence of these theorems.

At this stage, it will be necessary for the first time to
make a distinction between classical and quantal systems, We must first
describe more accurately in each cuse what we have hitherto loosely called
a “"eonfiguration" of the system.

A configuration or phasg of t= A configuration or gtate ¥ of a
a classical system at any fime is gquantal system at any time t is
glven by a set of values (pt, qt) described by a wave-function
of the 2f canocnical variables S?f(q,t) dopending on a set of
describing the systam., Such a set variables q. This wave-function
corresponds to a point in a corresponds to a vector in a funce
Cartesian 2f-dimensional phase i tionnal Hilbert space.
space.

The temporal evolution of the The temporal evolution of the ‘
system from any given initial phase | system from any given initial state L
is represented by a well-defined i3 represented by a well-defined £
trajectory in phase space, corres- precession of the state vector in \\
ponding to a unique solution of the | Hilbert space, corresponding to a
Hamiltonian cquatio & of motion. unique solution of the Schrodinger

| wave equation,
This trajectory remains on a - Owing to themperturbation in-
surface of constant energy in phase E volved in the operation of isolating
space ¢ this expresses the conditionl¥the system, the initial state -

that the system be isolated. Morever

we shall make the essentisl assump- [ﬁ+ To avoid confusion with the macros-
| copic states of the system we shall

* when necessary speak of atomistic

L states.

ion that all the phascs of our
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system are confined to a finite ‘

region of phase spacs.

Biz Mhopp's fundamental ergodic
theorem states that the tine avera-|
ge of any quantity exists for
almost all trajectories on any
energy surface, The condition for
the time-average to be independent
of the initial phase is expressed
by a certain topological property
of the trajectory, which can be
very roughly described by saying
that the trajectory is not confi-
ned to a part of the energy surface
but in a certain sense covers the

whole of its surface.

vector will in general not coincide
witl any of the eigen-vectors of.
the energy of the isolated system,
but will be expressed as a superpo-
gition of these eigen-vectors with
definitearplitudes and phases.

It is easy to see that the
time~-averasge of any quantity exists
in any state of the system, The
condition for the time-average
to be independent of the initial
phases is that there be no degenera~
cy of the energy of the system.

This canditibn mainly cxcludes the existence of other uniform

integr:ils of the motion of the aystor than the energy

A system, for which the ahove
condition is fulfilled for almost
all trajectorics will therefuore
exhibit the characteristic irrever-|
sible behaviour of macroscopic
experience, provided that the
determination of the initial state
in which it is isolated from its
surroundings, is sufficiently
inaccurate to prevent the excep-
tional trajectorices from "showing

up". In other words, we are not

A systen for which tﬁe above
condition is fulfilled will there-
fcre asymptotically exhibit the
behaviour of a statistical mixture
of its statiuvnary states (i.e.
gigenstates of its energy). The
coefficients of the mixture are
the squares of the amplitudes of
the cerresponding ecigenvectors in
the initial state : the statistical
mixture is thus seen to arise from
the act of isolating the system
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interested in following up the sys-
tem along any particular trojectory,
but as part of the definition of
the macroscopic (initial) state of

the system we introduce 2 statistica}l

uncertzinty in the initial phases.
The maoroscopic $ime-ovVerage is
obtained as a result of this addi-
tional averaging over the initial
phase, which has the effect of
wiping out the possibility of fin-
ding the system just on an excep-
ional trajectory.

Since any phase ean of course
be regarded as a possible initial
one, wec must extend the statistical
uncertainty of phase determination
to the whole region of phasc-~space
oceupied by the trajectories. We
thus sce that the statistical ave-
rage equivalent to the time~average
must not be conceived as taken over ¢
the energy surface as a mathematical
ly continuous multiplicity::of phases
but over a coarse subdivision of
this surface into finite "cells",
representing the physiecally infini-
tesiaml domains allowing for the une;
certainty of phase determination.
The ergodis law of distribution
which characterizes the jsolated
system, and which is immediately

derived from Birkhoff's theorem,
actually refers to this coarse
distribution on the energy surface.

- 10 ~-

' from its surroundings, and thus to

introduce the macroscopic element
in the definition of the isolated
systen,

One may say that this corres-
ponds to a certain "coarseness' in
the determination of the energzy of
the isolated system. The ergodic

law of distribution of an isolated

quantal system, which is direcetly
given by the above statistical
mixture, actually refers to this
coarse digtribution over the energy
of system,
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Of course, the particular way ‘F
in which the coarseness is introdu-
ced (the mode of subdivision of the
energy surface into "cells") is lar-
gely arbitrary. For purposes of cal-
culation, it will even be allowed
to ignore it, i.e. to treat the
cells as nmathematically infinitesi-
malj but it is essential to remember
that one is actually dealing with
a coarse distribution in order to
cope successfiully with all paradoxess:
fa

]

raised by the concept of irreversibj
lity.

]

&= 1] =

Of course, the particular way
in which the coarseness in introdue
ced (the choice of the amplitudes
of the energy eigenvectors in the
expression for the initial state
vector) is largely arbitrary. It
will not enter into any actual cal=-
cualtion, but though purely formal
its introduction is quite essential

for the consistency of the argument.

A convenient way of expressing
the coarseness of the energy deter-
mination is to divide the succession
of eigenvalues of the energy into
neighbouring groups, or "shells"
all members of which are attributed
the same weight (i.e? amplitude.)

The ergodic theorem just discussed is so to speak the core
of statistical mechanies. As already stated, the distribution laws for
¢losed systems (and open) are ultimately based upon it, But as it stands,

it does not quite cover all cases of isolated systems which may be of

interest and it needs an extension for this purpose both in the ¢lassical

and in the quantal case. It will be noticed that although the argument

in the two cases run quite parallel to each other, there is in the final

step a certain discrepancy.

The classical treatment of the ;
isolated system leads to a '‘coarse"
but detailed distribution among
the phases ef a sharply defined

energy surface.,

Wi ooyt

in the quantal treatment of the
isolated system, a statistical dise
tribution over the energies is obe
tained, which gives no information
whatever over any distribution over
"phases" defined by the dynamical

variables of the system.
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It is possible, however, to restore the parallelism comple-

tely and to establish a second ergodic thegrem which has now the same

form in the two cases . To this end,

lot us, in the classical ecase,
extend the definition of a (macros-
copically) isolated system by allo-
wing a certain '"coarseness'" in the
definition of its energy also.
Instead of considering a 'cell" of
initial phases on an energy surface
this amounts to considering such a
cell in an energy '"shell", i.e. in
a domain of phase space comprised
between two neighbouring energy

surfaces, The second ergodic theorem

due to Hopf, states the conditions
for the existence of a time-average
under these more general circums-
tances. For almost all pairs of
energy surfaccs within the shell

we must have ergodicity not only on
each of them, but also on the compo-
site surface formed by them in the
4f-dimensional phase space obtained
by taking together two identical
sets of variables (q*1,pt'h q‘ﬁ,xiLh

Morcover, the existence of the asymp4
totic time average must now be A
understood in the sense of convergeni
ce in the mean : what we can prove i
only that the time average of the
fluctuations tends to zero as the
time interval over which it is
taken increases indefinitely.

we must try, in the guantal
case, to define an analogue to the
cell subdivision of phase space of
the classical theory. The notion of
phase space has of course no meaning
in quantum theory, since the q's
and p's are not commutable. But it
is always possible to construct some
set of quantities Q, P which do com~-
mute between themselves and also
with the energy, and which can thus
be used to define a subdivision of
the energy shells already introduced
into smaller'"gelles". We may then
study the fluctuations in the course
of time of the expectation values
of the quantities Q,P (or any func-
tion of them), As shown by Von Neuw-
mann, en ergodic theorem entirely
similar to Hopf's can be enunciated
for these fluctuations : their time
average over increasingly large
intervals tends asymptotically to

Zero.
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The value around whieh the fluctuations occur, and which
thus represents the asymptotic time average of the quantity considered,
appears in the form of a very simple atatistical average : it corres-
ponds to a uniform ecoarse distribution over the cells of an energy
shell ; i.,e. the relative statistical weights of these cells are given
by

their volumes in phase spave. their degrees of degeneracy
with respect to the energy.

We thus arrive at the following gemeral picture of the
statistical behaviour of isolated systems., The macroscopic concept of
isolating the system from its surroundings is represented by the intro-
duction of a "coarse" subdivision of “phase space" into cells. The.pre-
cise mode of subdivision is irrelevant ; the only charactéristic-of
the celis entering into the fianl result is their weight, defined either
by their classical phese space volume or their quantal energy degeneracy.
The second ergodic theorem then asserts the equivalence (in the sense
just explained) of the asymptotic time average with a statistical avera-
ge, corresponding to a uniform coerse distribution over the cells of
an energy shell.

It is clear that the distribution law derived from the first

ergodie theorem is a limiting cage of the law just enunciated. Although
the latter is both simpler and more general, the former nevertheless
finds a more direct application in important cases, and it is essential
to keep in mind the distinction, sometimes not clearly realised,
‘between the first and second ergodic theorems,

6.- Closed systems : the canonical distribution.

A closed system, interacting with a "thermostat" is not
limited to any energy shell ; its statistical distribution law will
extend over the whule domain of its possible atomistic states, and will
in particular assign definite statistical weights to the different
energy shells. The mechanism by which the closed system iadistributed
in energy is its exchange of energy with the thermostat, and the resul-
ting distribution law will thus depend in some way on quantities des~
cribing the state of the thermostoat. Onr aim will now be to show that
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the thermostat is represented in the statistical law for the closed system

by just cne parameter, whoce physical significance is directly related
to the concept of temperature.

The argument, due to Boltzmann, is quite straightforward : the total
system consisting of the closed system and the thermostat is regarded as
isolated and its ergodic law of distribution, as given by the first
ergodic theorem, is considered. Although it is quite essential for the
whole argument that there should exist an interaction between the closed
system and the thermostat, it is immaterial how large this interaction is;
it is therefore permissible to assume it to be infinitesiaml in compari-
son with the energy content of both the closed system and the thermostat.
The energy of the total system is thus the sum of the energies of the
two component parts; the ergodic distribution of the total syatem accor-
dingly takes the form of an integral over all divisions of the total ener-
gy into two parts, and to each such division corresponds a statistical
distribution which is a product of two factors, pertaining to the closed
system and the thermostat, respectively. The form of the"law of composi-
tion" of the distribution in energy of the two components of our system
allows a direct application of the central limit theorem of the oalculus
of probabilities, which yields the asymptotuc form of the distribution
of energy of any small part of the total system, This has the well-known
expression called the Boltzmann or canonical distribution ; the thermos-
tat is represented in it only by a parameter, called the modulus of the
distribution; which is related to the energy of *the total system and is
interpreted as the absolute temperature (in dynamical measure) . Moreover,
the distribution depends on the macroscopic parameters defining the exter-
nal conditions to which the closed system is subjocted (e.g. the volume

of the container if it is a gas).

- The knowledge of the distribution law suffices, in principle
to derive all the mécroscopic properties of the closed system in terms
of its temperature and external parameters. In fact, it is a well-known
consequence of the two laws of thermodynamics that there exists a

characteristic function of any set of macroscopic cariables, representing

the varicus physical aspecls of the system from which all the other

quantities can be derived, If the set of variables consists of the tempe- °
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rature and external parameicrs of the catensive type (such as the
VOlume), the characteristic function is the free emergy of the ayqtem.
Its expression in terms of the canonical distribution law is readily
catablished; the procedure being to verify that the proposed statisti-
cal expression has the characteristic properties of the free energy,

i,e, that its variation in a quasi static transformation of the sytem

has the expected relation to the work done and heat exchanged in the
transformation. In isothermal transformations, the variationssof free
energy gives directly the amount of work yielded by the system, a quanti-
ty which can be immediately expressed in terms of statistical averages,
The case of a diasbatic transformations is more delicate, since it invol-
ves the isolation of the system from its environment ; the effect of a
change of the external parameters cn the statistical distribution of sueh
an isolated system requires careful investigation. It can be shown,
however, that the distribution remainrs Canonicai, with an appropriate
variation of its medulus. It then becomes appsrent that the correspon-
ding variation ~f the free energy with respect to the modulus is that
given by Helmholtz:formula. This completes the identification of the
statistical expression dor the free energy. i.e. the statistical founda-

tion of thermodynamics, so far as reversible processes are concerned.

Owing to the choice of temperature as the fundamental thermal
pvarameters, the entropy does not enter explicitly into the preceding -
considerations. It can be derived in the usval way from the free energy,
and its statisticael expression is found to Ve very simply related to the
canonical distribution deneity : it is, apart from the sign, the canoni-
cal average o. the lozarithm of this density. If now the system under-
goes an irreversible transformation, the initial distribution density
will differ in an arbitrary way from the canonical form corresponding
to the final values of the parameters, and the initial entropy, with the
mimus sign, wi.l appear as the average logarithm of this arbitrary
distribution densitf. By taking account of the monotonic charaeter of
the hogarithm funection, it can be shown that such z2n average logarithm
of a distribution density is alwavs larger than that corresponding to
the canonical distribuiion in the fisnl ,t3%s of the system, The law of
increase of entropy is thve - “a'n-7 as a conaemmence of the statistieal
expression for the entropy. :
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1.~ Open systems : the chemical potentials,
It will be seen that the argument leading to the canonical

distribution law for closed systems is essentially concerned with the
statistical distribution, between the various parts of a large systenm,

of a quantity, the energy, which satisfiea a law of conservation and a
law of additivity. These two properties are all that is needed for the
application of the central limit theorem which directly gives the asymp-
totic distribution law. It is clear, therefore, that the same argument
can be immediatly extended to open systems, since the quantities whose
distributions have to be considered in this case ; the numbers of consti-
tuent elements of various kinds, have the two required properties. More-
over, just as in the case of energy exchanges for closed systems, the

abstract argument is exactly adapted to a clear physical situation, viz.
the exchange of elementary constituents between the system considered
and its surroundings, which play the part of an arbitrarily large reser~
voir of such constituents.

The distribution law for the number of elements of any
kind has thus a form very similar to the canonicel distribution law for
the energy ; in fact, it arises from a Poisson distribution arcund an
average value of this number of elements. For each kind of element, a
new macroscopic parameter thus appears, related to the average number
of elements in much the same way as the modulua of the canonical distri-
bution is related to the average energy; it is readily interpreted as
the chemical potential introduced by Gibbs in the thermodynemics of open
sy+tems.

In dealing with systems of identical elements, one must
observe that a microscopic state of the systems is physically determined
by the set of values of the variables pertaining to all the constituént
elements, irrespective of the individuality of these elements. Thus, two
microscopic states differing only by some permutation of the groups of
variables belonging to the various elements are phyesically indistingui-
shable. To express this fact, Gibbs introduced a distinction between
specific and generic phases : a specific phase is defined by the assign-
ment of the values of the variables for each individual element ; a
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generic phase is the set of specific phases corresponding to the same

values of all the variables, In classical statistics, it is quite essen-
t ial to take into account the distinction between specific and generic
phases in all questions in which the numbers of elements of the sysicms
occur eeplicitely, as in the thermodynamics of open systems or in the
estimate of the time of relaxation neccessary for the establishment of
statistical equilibriul, Many confuse and inconclusive discussions

arose from the failure to pay sufficient regard to this point. In
quantal statistica, on the other hand, all such difficulties vanish,
since qunatim theory only deals with generic phases,

The quantization of the numbers of elemrnts gives rise to
novel aspects of the statistics of open systems. It is well-known that
this quantization obeys very different rules according as the elements
in question are fermions, subject to the exclusion principle, or bosons
satisfying a principle of symmetry. The general distribution law for open
systems accordingly predicts very different behaviours for systems of
fermions or bosons. The corresponding theories are usuelly called
Fermi-Dirac and Bose-Einstein"statistics"; it should be clear that the
statistical basis of these theories is the same, the difference arising
from the specific properties of the elementary constituents in each case.
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CLASSICAL STATISTICS

I,« Gene r .perties of Me :hanieal systems

1.~ Ngtion as i somorphism in phase-spaee. We consider a mechanical
system, the statec of which is described by f generalised ccordinates,

q; end their conjugate momenta p . The set (qi, pi) "

= 1’onoh't
dofines a point P in a 2f-dimensional phase space, to which we assign
for a reason soon to become apparent, a euelidean metrie. The measure
of an element of phase-space i8 accordingly defined as its euclidean

The succes8ion of states occupied by the system in the
course of time form & eurve or trajeetory in phase space, whose para-
metric equations can be written in Hamiltonimn form

2y ._..‘?_:‘i t;.-_-- .?._H_. (1)
T=om 2 M7 5y
with the help of the Hamiltoniaen H(q;p). The system is assumed to dbe
canservative, i. e. H(q;p) v E ie a constant of the motion, In other
words, the trajectory determined by the initial phase Po is coptained

in the snergy surface H(P) = E = H(Po) passing through Po’ We e

aasume that all the energy surfaces of our system are oontained within
a finite domain of phase space : physically, this simply means that
ne 8ingle soardinate or momrtum Svew hecomes infinite. This assumption
therefore, is a quite natueal one to make : it is fyndamantal for the
validity of the whola ergodic theery.

It is conveniont to vizualize the motion, i.e. the pasaage
from a phase Po to a phase Ptas a transformation of phase space into
itself. The transformetions Po Pt obviously form a econtinuous group,
of parameter t, whose infinitesimal transformation is just given by
the Hamiltonian equations (1). In other words, the motion is an
automorphism of phase spaee. Integrals, like the Hamiltonian, are
invariants of this group; the corresponding surfaces, like the energy
surface, are invariant domains.
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2.= Liouville's theorem TFor = statistizal description of a
stationary state of the system, we want a measure in phase-space
which is invariant for the motion grcoup. The measure deintroduced
above has this property : this is the statement of Li- .ville's theorem.
The m st striking way of proving this theorem makes use of an anlogy
between the motion in phase-space regarded as a euclidean space and
a hydro dynamical of flow, whose velocity v is directly given at
any point by the Hamiltcnian equations (1). The theorem follows from
the observation that this flc satisfies the condition of incompressi-
; .- :

bility div v = o, i.e.

¢ 7 .

E (_;Zif. 4 .?.'.ﬂs-..):o .

‘;:;“ € "L ():’Ji
™is means in fact that any domain D0 of phase space will be transfor-
med by the motion into a domain Dt c¢f perhaps quite different shape,

but of the same volume.

From the invariant measuvre dfe in the 2f-dimensional
phase space it is easy to derive an invariant measure on the (2f-1)
dimensional energy surface, To this end, consicer an . gv-shell
i.e. the space between two ncighbowring energy suirface E, E + dE,
Let d 3 be the Euclidean measure of an clement of the surface
H(P) = E, and dn an element of lenght alcng the direction normal to
the surface element d Y. . The invariant measwre d oeoon the energy
surface is then : ¢ '

= A

:/i AN S ll L e
e : v

(ai - 4 "_f-
i.e. the euclidean element d 2. 1s weighted with the factor dn/dE. The

= A IR R ‘ -4
is J T \“' = > ! el ¢ Voor
latter is just ‘g;ad H(P‘. i"" Pyt v o ) ) 2.
it is numerically equal to - .. 782 of the mecdulus ot the velo-ity

;aat point P, In the following, we shall always use the invariant
measure “f‘F , and we shall drop the index E when no confusion is to
be feared,

3. Physicalty equivalent phases and uniform phase functions. In

the preceding sections we have singled out the energy integral as
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defining in 2f-dimensional space a manifold of (2f-1) dimensions
which completely contains a given trajectory. It is necessary to
explain the physical reason for doing so and not purs;ing the redue
tion of the number of dimcnsions of this manifold any further with
the help of the other time-independent integrals, For this purpose,
a closer consideration of the physical interpretation of the forma-
lism is needed.

It generally occurs that the same physical state of the
system 1s represented by more that one phase. An example is offered
by angulay variables : phases in which the values of some angular
variables differ by 2 -.describe the same physical state. Another
case, of less formal character and of fundamental importance in
atomistic physics, is that of systems consisting of identical
olements. A phase is then defined by the sets of canonical coordi-
nates pertaining to all the elements, enumerated in a certain
order; two phases differing only by this order of enumeration
are indistinguishable from the physical point of view.

To express this situation, one calls the phases as just defined
specific phases, and one denotes by generic phase the set of ell
specific phases corresponding to the same values of all coordinates,
taken in any order. A physical state of the system is thus descri-
bed by a gencric pm«e:.

Phase functions representing physical quantities must
have the same value for all phascs corraesponding to the same
physical state of the system. Thus must be periodic with respect to
any angular variable +, and if tney refer to a system of identiecal
olements they must be symctrical with rospect to permutations of
the sets of variables pertaining to different elements. Phase

functions possessing this property will be called uniform.

¥ Strictly speaking, angul~r variables do mot satisfy the
finiteness dondition emurci-.ted above (§1), But they nevertheless
ocan be used just on account of the pericdicity property of all phase
functions of physical significance. See the cxample discussed in

gection 4 below.
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Now, if we consider a set of (2f-1) independent integrals
not containi ng the time, which fix the shape of a trajectory, they
will not in general be all uniform, We can assign the value of any
uwniform fntegra} which means that we can control it by physical means;
but it has no physiecal meaning to assign a value to a non-uniform
integral, The latter ean therefore in any case not be used to reduce
the manifold containing the trajectery. As regards the uniform inte-
grals, the assignment of a definite value to any one of them is
purely a matter of fixing the conditions under which we wish to consie
der the systen under investigation,

Thus, we define an isolated system by fixing the value
¢of the energy integral, We might wish to fix the value of the momentum
and angular momentum integrals : this would mean that we consider
the aystem as free to move in empty space, In this case, the number
of dimensions of the surface on which the trajectory is contained
would be reduced by 6§ more units, It will be more in accordanee
with usual conditions, however, to leave these integrals indetermined
by imagining the system in contact with an infintely heavy body,
with vhich the elements of the system interact elajrtically. We shall
therefore base the following argument on the comsideration of the
energy surface; nothing essenticl. would be changed, of course, by
the assumption of a "surface" of a somewhat smaller number of dimene
sions, corresponding to the agsignment of fixed values to other uni-
form integrals as well,

4.~ Example, The above considerations may be illustrated by
the simple example of a system of two uncoupled rotations around
fixed axes. Let us take as coordinates the asimuths G4 9 and assume
for simplicity the two moments of inertia equal to unity; tha conju-
gate momenta P1r Poy which represent the angular nmomenta around
the axes are wniform integrals, to which we assign the values
2, (numerically equal, in our esse, to the angular velocities
of rotation); this also fixes the emermyi = e ""f) » The
nanifold contzining the trajectory thus reduces to the plane 9 9
and the trajeotory is a straight line in this plane,

TR U 4. e o y”
( ¥ | . i
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The plane is divided by the lines q; =m. 2
g, = n. 2°1(m, n integers) into a chequer of
squares all containing phases physically
equivalent to each other. For all computation
¢ of aversges of physically significant phases-

functions, we may accordingly restrict the
w} -- manifold containing the trajectory to a single
; square, by transferring to this square all
the segments of the trajectory contained in the
other squares. The equivalent trajectory thus
obtained consists of a set of parallel segments withi. the single
square; this set is finite or infinite accordin. as the quantity
',Q:fh;(' is rational or irrational.

Row, we may choose as a third time-independent integral

the function

Yor the initial phase one may write M = < _@} W, q:" , but this
integral ia not uniform. In fact, it takes a different value on

each of the finite or infinite set of segments composing the trajec-
tory : for omn the segment originally in the square containing the
phase (qg +m 20, qg +n. 217 ), the vaiue of M differs from

1 7 R €. .
M, by 2T (ney - ® 2)

5. Metrical indecomposability of energy surface. A question
of primary importance for the establishment of a statistical

distribution on the energy surface is to characterize from the
metrical point of view the set of phases occupied by the system in
the course of time, i. e. to know the measure of this set on the
energy surface. Qur simple example (§ 4) suggests that; apart
from exceptionnal cases arising from some "degeneracy" (‘v'»~1,’3-ﬂ2
rational), any trajectory will in a certain senne "fill" the whole
energy surface., We must try to give to this intuitive descript”

of the physical situation a rigorous mathemstir~ (_ 7 L_un.
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Boltemenn and Maxwell assumed that the trajectory actually
passes through every point of the energy surface : this is the
famous ergodic hypothesis., It is easy, however, by the modern methods
of the theory of sets, to disprove this hypothesis (Rosenthal and
Plancherel). Consider a peighbourhood S of a phase occupied at some
time by the system; it can be choosen sufficiently small to prevent
the trajectory from remaining inside it at all times. Then it is clear
that the part of the trajectory inside the neighbourhood will consist
of a set of separate segments, Moreover, the time intervals during
vhich the system is inside S will form a succession of separate
finite segments of the time axis, According to a well-known property
of sets of points, the set of such time intervals is enumerable, The
segments of the trajectory inside S thus form an onumerable set,
vhose measure on the energy surface is zero.

A correct formulation of the "ergodic' situation is
obtained from the consideration of the automorphism defined by the
motion of the system. The set of phases through which a trajectory
passes is clearly an invariant set with respect to this group, and
we are ooncerned with its measure on the energy surface. Let us eall
the energy surface metricelly indecomposable (and the group metrically
transitive) if it cannot be expressed as the sum of two invariant sets

both of positive measure, This means, then, that the set of phases
forming a trajectory either is of measure zero (this is or exceptional
case, such as that of a periodic motion; with a closed trajectory),

or has the same measure as the whole energy surface.,

At first sight, the condition of metrical indecomposabi-
1lity of the energy surface would seem impossible to fulfil, Let us
in fact consider any time-independent integral I(P), differesrt¥-from
the Hamiltonian; the phase-function 1(P) therefore cannot have the
same value over the whole energy surface. But then it is always posede
ble to find a number I such that the invariant sets of phases for
which I(P) > I and 1(P) ¢ I, respectively, are both of positive measue-
rer At this point it is necessary to remember that there may be

+ For the proof, see Khinchin, p. 30, footnote.
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different phases corresponding to the same physical state of the systam;
we might then have an invariant subdivision of the energy surface into
parts of positive measure, such that no two phases of any part are
physically equivalent (o.g., the chequer of squarcs in our example, §4)
such a subdivieion, while formally violating the condition of metrical
indecomposability as formulated above, would nevertheless represent,
physically, anergodic'situation, A

Wo must accordingly modify the definition of metrically
indecomposable sets 80 as to cope with this case, We call an invariant
subdivision of the energy surface into two parts of positive measure
gssential when all physieally equivalent phases belong to the same
part, The surface will thon be metrically indecomposable in the
physical senge when it does not allow of any essential subdivision.
This mod ifi ation will not effect the above apgument in respeet of
unifgrm integrals : these will bring about an essential subdivision
of the energy surface, But we eannot say anything about the effact of
non-uniform integrals; in fact, in the example of § 4, 1t can be shown
that the non-uniform integral M in the general case ( e .“Zirrational)
does not disturb the metrical indecomposability of the (reduced) enere
gy surface.

The next question would be, how from the struature of
the Hamiltonian could one drav sonclusions regarding the metrieal
indecomposability of the corresponding reduced manifold. This prodlem
is not solved, however; in this sense, the assumption of the metrieal
indecomposability of the reduced manifold remains an hypothesis. The
progress with respect to the original ergodie hypothesis lies in its
precise nathematical formulation,

As we have just seen, we can only assume metrical indecome
posability for the manifold reduced by taking account of all uniform
integrals, In practice, hovever, the uniform integrals distinct from
the energy will usually have the same value over a very large part of
the energy surface, and it will be possible to neglect the domains
of very small measure in which they differ from this dominant valuse.

We may therefore still restrict ourselves to the consideration of the
energy surface and speak, in this approximate sense, of ita metrieal
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8,~ Poincaré's theorem., From the discussion of the "shape" of

the trajectories we now pass to the consideration of the way in which
they are followed by the system in the course of time., This question

is dominated by a theorem enunciated by Poincaré and proved rigorously
much later by Caratheodory : for almost all trajectories, the system
returns after a sufficlently long time arbitrarily near to its initial
phase. An essential condition for the validity of Poincaré's theorem-
is the finiteness of the energy surface containing the trajectories.

The proof con:i.:ts in showing that the set of axeaptiomil’
trajectories, i,e. the set of those phases near which the system newver-
returns, is of measure zero. We muét first formulgte in a precise wey
what we mean by the "return" of the system near some phasekgo;Jkﬂwu§> -
choose some time ;nterval'c and consider the sequence (P) of phases

Po’ Pl' PZ, vi5d &ccessively occupied by the system at«time&_;t,v,. tlf?_'

$,+27T , «eeee. o We shall then say that the system returns near P

if every neighbowhood % of P , however small, contains at least a
point of the sequence (P) The exceptzonal phases will thus be those
for which a neighbour!® .dcan be found containing no point of the sequen-
ce (P). We must prove-that the set-of exceptional phases ia of measure _
zero.

To this end, we cover the energy surface with a net,

dividing it into intervals Q%, and so fine-meshed that for every point
P and every neighbourh. .d Sff P, there is at leest one interval U
containing P and caontained within SP ¢ this means that we must actually . \\\\
have an infinitely fine mesh, and an enumerable infinity of intervals

(}e + Let now D; be the set of phases of {s whose time-sequence
(?) never returns to L.)‘or its boundary; the set D, is therefore open
and accordingly measurable. Moreover, the sum D -§:D is the set of ' .
exceptional phases : in fact, every point of D is clearly an exceptional '
phese, and conversely, it will readily be seen that any exceptional
phase must belong to one of the sets Di'

190



- 26 =

Consider now one of the Di's and the sequence of sets

Di(e ), 3 =1,2,... into which Di is successively transformed at

times to+?,' » tH 2% 00 t 40Tl Mo two setspf this sequence
can have common f?ints, otherwise Di would have some phase. in

common with a Dy * /, i.e. there would be a point of Dy whose sequence
(P) would return to 1315 in contradiction to the definition of this set.
The sequence Di’ Di " 7 is thus an enumerable infinity of distinct
sets, all of the same measure, (according to Liouville's theorem);
the measure of their sum, which is the sum of their measures, must
be finite, since it cannot exceed the total measure of the energy
surface : therefore, the measure of each of them must be zero.

From i“*(Di) = 0 it follows that s« (D) = 0, which we wanted to prove.

While a strictly pericdie Lehaviour of a mechanical system

would require very specinl conditions, Poincoré's theorem shows that
in the general case the evolution of such a system still has a remar~
kable feature of near-periodicity. in that almost every state of the
system will recur indefinitely at IFregular intervals in the course

of .ime, at any rate approximately, This approximation can be as

close as one wishes, provided one waits long enough, Such a microscopic
behaviour of a system, just as mu . as the reversibility of its motion
in time, contrasts with macrcscopic irreversihility. In the early
period of elaboration of statistical mechanics, both features were
emphasized by Boltzmann's opponents as throwing doubt on the consis-
tency of the latter's statistical de sivation of the second law of
thermodynamics : the argument drawn from the microscopic reversibility
was put forward by Loschmidt, while that based on Poincaré's theorem
is known as Z:rmelo's cbjection, How such objections are overeome

will appear in the course of the following argument.

Whether the recurrence phenomencn predicted by Poincarés
theorem can or cannot be observed depends entirely on the order of ma-
gnitude of the corresponding recurrence times ™ -~ +imes vary enor=-
mously according to th~ ctivcture of the system and, of course,
inoreasc very rapidly with the number of degrees of freedom. We may
get a rough idea of the situation by considering a simple example.
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Consider a vessel containing 2N molecules of an ideal
gas under normal conditions of tempera*wvre and pressure. The probabili-
ty of finding an excess of molecules in one half of the vessel com-
prised between 5. N and ( Sial ) N is, asymptotically,
(PRI £ 5.0 ol Y
THLE > == e 5 db.
VN %,
s ~J N,
YN e 44
if we assume that this in- 1ality has arisen in the course of ran-
dom fluctuations. Now, if it is the average time interval needed
for the relative excess J‘ to change by }d\f| , the probability of
occurence of an excess in the interval (d ,§+ af ) in the course
of the temporal evolution of the system may be expressed as the
fraction dt/T of the average time T between two successive occurren-
ces of the excess J‘ . The ergodic theorem, as we shall see in the
next chapter, allows us to equate the two probabilities just consi-

dered and in this way obtain an estimate of the recurrence time T

for the excess 5‘ P | 4‘. }
l - ‘“’—L‘g) ‘l 5‘ . '
The average time variation of the excess J is of the form
(. e/"
4
y v e ]

where the relaxation time T is determined by the mechanics of the
irreversible diffusion process leading to thes establishment cf a
uniform density. One has, therefore,
L‘:’;.{
§ 1de
and S 1
e T
T’-\!""’”,"' ¢ .
J

If D is the diffusion coefficient, the order of magnitude of vV is

.1
ey

related to the linear dimensions L of the volume in which the procuss

takes place by a formula of the type

o L
T R

If the volume is of macroscopic Aimensicns, L lcm; say, one has

T 1 sec and N 10 19. Even an .. 5. v amAll relative excess of
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density, Jmo“, would not recur spontaneously befors times of the
fantastic order of magnitude Tzew sec, But 4if the volume is of
microscopic dimensions, o,g. L:glo’s cm, an excess of density of
1% will have a recurrence time of the order of 102 gee,
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II. The Exrgodic Theorems.

l.- E;istence of the time averagze. Let us consider the evolution

of a system starting at time to from a certain phase Po' As explained
in the introduction, the measurement of some macroscopic quantity
corresponding to the micrescopic phase function f(P) yields in the

first instance a time average
<t0+T

P (P st sT) = ;Jt £ (p,) dt, (1)
Q
taken along the trajectory defined by the initial phase PO; in this

formula, the symbol Pt denotes the set of canonical coordinates of

a point of this trajectory, expressed as functions »f the time and

the initial conditions Po’ to. One is led to expect that this time of
average has a limit for T =< <<* , which is independent of the initial
conditions and represents the value of the macroscopic guantity for
the system in its given stationary state. jse must now discuss the

mathematical justification of this surmise.

The first step is described by Birkhoff's ergudic theorem,
vwhich states that the limit

F(P)=1in F(P; t, T) (2)
o 130 o' "o’

exists for aluost all trajectories, and is independent ~f the initial
time to. We first prove the theorem for the case that the time interval
T varies by finite increments of duration T, i.e. we take T=n T

and investigate the limit of the sequence

F, (P s t)=EF(B; t, nT) (3)

as n+%, Let P_be an exceptional phase, i.e. such that Fn(Po;to)
has no limitj this means that the lower bound.:_(Po) and the upper
bound F(Po) are different . We can then choose a pair of members 0(,(3
(4 <3 ) between _F:(PO) and 'E—‘(Po), i,e. such that

Br) < « Fe) >3 (4)
Now, if the set D of exceptional phases were ~¢ pr-rit’ve measure, it
is easily seen l’ that one could find a peir (a / [5 ) for which the

K For deteils, see Khinchin, p. 19-27
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conditions (4) are satisf.ad for all the phases P cf a subset D"of
positive measure, By showing $hat this last property r\(D*) YO s
contradictory to the inequality & < )q , we deduce that the set D of

exceptional phases is of measure zero,

The contradiction is elicited as follows, Let us consider
the sequence of times tK = to + kT =2nd the corresponding phases

B =P, (k being an integer of any sign), we define
K

£ p) = ) Mt (e at (5)

the time average over the mterval (tk, tk l) By a change of origin
of the times, we sce that

£,(2) =1, (3) (6)

Now, the time average Fn( o’ ) is expressed as
___V\
1
and if we integrate thls over any set of phases D( , we get
[ "u)«,if»c = Z / (P)‘ll“ - 2., / /Z(P)'{l‘/
(l) INVL4

where D is the transfom of the set D when P 0™ P P If now

( ) is a subset of D such that for any P of Dg one has
F (P t ) >{3 , we obtain the 1nequallty

LX){{'M/> e (07)

(n)

Suppose further that the sets Dk

it
p) = ) Dl({n)
k=0 (“)
Since, by Liousville's theorem, }a\,( b ) /"( ) , we then have

JEO 4> b (o)

Now 1t can be shown'that such sums of non-overlapping sets D( n) can

sum

actually be specified for each value of n in such a wéy that they together

exhaust D;'r . We can then sum the inequqlities of the type just derived
for all n, and we get in the limit n -3 20

| A (04 fre (o

£=0 non-overlapping, and call their
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A similar wg@ent lcads to ﬁ?*/f (P) "lf‘ <0( f( (0*)/

and these two ine walities with rL(I)* ):; 0, do indeed contradict the
inequality « { P

To complete the proof of Birkhooff's theorem, we have to
¢o pare the average for an arbotrary time interval T with that for
the interval of the sequence n T nearest to T. We have

'~ h f(::)lt- “Hf(l)’(f/*)()/
d

LT
f /(Pt)JL‘--—]

with the notation (5). It is readily verified thc
Lwm L P /:
- ()| =0

h =) 0 M
almost everywhere, The proof is of the familiar type : onc shows

an uf'

by making use of (6) and of Liouville's theorem, that the set of phases
Po for which ‘fn (PO)|> rt . 1s of measure zero. Hence, the time aver=-

age F (Po; t o T) has a limit for T -psw almost everywhere,

Finally, it must be shown that this limit is independent
of the initial time to. We hove

by T

ko T tr T .

N R J
T Je, Toe-te 7/, T Jt

since the difference of the last two cxpressions tends to zero like

(t -t,) / T. Further, the difference
t fT (“

t|f'T
L { 4 [ - 1../
T 4 T £y T

also tends to zero, which complete the proof.

23- Iguivalence of time average and statistical average.

The time average whose existence is established by Birkhoff's theorem
does not yet correspond, in gereral, to the physical noticem of a macros-
copic quantity attached to an isolated system, since it ma?téé%end on
the partioular trajectory followed by the system and have different

values for different trajectories even on the same energy surface. It

T )a(t/ nl’/ //f)/r//r////
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is easy, however, to indicate a general condition sufficient to ensure
the constancy of all time averages almost everywhere on the energy
surface : it is the metrical indecomposability of this surface, at least
in the physical sense. For if the time average F(P) is not almost every-
where constant, it is possible to find a value F of F(P) such that the
conditions F(P)F end F(P) {F define two invariant sets of positive

measure, effecting an essential decomposition of the energy surface.

If the energy surface is metrically indecomposable, the
constant value of the time average can be expressed as a statistical
average over this surface. Roughly speaking, the trajactory along which
the time average is teken "fills" the whole energy surface ¢ the time
average can thus be considcred, if we disregard the temporal succession
of the phases as an avcrage over the energy surface, with a dcfinite
weighting of each surface element. This statistical weight turns out to

have an extremely simple specification : if we use the invariant measure

on the surface, the statistical distribution equivalent to the time
average is uniform; inAother words, the amount of time spent by the system
in any region of the surface is proportional to the invariant measure

of this region. This uniform statistical distribution is called ergodic
and the fundamental corollary of Birkhoff's theorem which express this

gituation can be formulated as follows :

If the energy surface_[).is metrically indecomposable, the
time average F of the phuse function f(P) is given by the ergodic ave-

rage
X = .-——-———-4 - . 1 P
ﬁ/e TR é /(P)d/‘ £ (7)

In the first place, it is clear that the ergodic average of f(P) is the
same as that of the time average F(PO; t o T) over any finite time
intervel T; indeed

£,+T
L / F(foj b, T) dpe = L= [ e L (L08R )y
F(') 0 &, {Q)
p Er !
g = At (B)dApe
T /('. /4{.(7.)/ ; )
in virtue of the invariancc of the cnergy surface 3 and this is
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- e ) 4 - «.‘2 ~ 2 =
T ‘e, /~ £ /

Since, owing tc the counstuney of F,

F= é?.a.) /n_’:"‘f‘fl

it remains to prove tha
(Pt dpz = ©
Lo /Q[F F (P b,T)] Ape
X

This is readily seen to be a consequence of the ergodic theorem
F(Po; tor T)~»F for T -+ for almost all P .

established

The last step in the physical equivalence betwren time avera-

- 4 an . 3 b} 0
ge and ergodiec average is obviuous extension of the preceding theprem ;

If the energy surface I):is metrically indecomposable in

the physical sense, the time aoverage F of any uniform rhase function

f(P) is equal to its ergodic average :
F = f_]E (8)

The equation (8) is valid for almost all phases of the
energy surface. For the physical iuterpretation, it is therefore
necessary to introduce a further averaging in order to eliminate the
possibili® - that the initial phase weuld happen 1o be an exceptional
one, Inste.1 of starting from a well-defined initial phase, we thus
assume an initigl distribution of “coples" of ocur sys ¢m over a finite
domain of 'he energy surface. The iime everage F must then be averaged
again over this domain : any excepiional phoses contained in it will
not give any contribution to the average, and the result will again
be expressed *7 an equation perfectly similar to (8). The replacement
of an initial phase by an -nitial “¢ 119 of finite (and arbitra~y)
size has a great impcrtance for the physical interpretation of the
theory. Before we discuss it, however, we shall proceed to an extension

of the ergodic theory which first displa - its full .chro

3.- Hopf's ergodic theorem. The restriction of the phases

to an energy surface is a strong idealisation ol an isolatecd system.
It is more realistic to allow a certain marsin ty the definition of the

energy, i.e. to regard os possitle all trajecvorlascournined within

T e et amee L a— i — T ——— - — | ———————— . . . —

]See Khinchin, p. 31- 32,
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an energy shell, consisting of all energy surfaces in the nergy inter-
val (E, E + dE). The ergodic "m~r-~- L over an energy shell is even some-
what simpler of expression than that on the energy surface, since it
corresponds to a distribution of uniform density with respect to the
simpler measure in phase-space given by Liouville's theorem : denoting

the energy shell by (E) and the corresponding ergodic average by

E] (B)? we have
f'].. - } [/(P) v’{/\/ "{H: ljl/' (/7/ (//:,-%//;1. (c,)

rite)] Ae
here ’4 [(E)] = ) d" reprcsents the measure of the energy shell.
(3

The condition for the equivalence of time average and
ergodic average over an energy sehll is not simply that all the encrgy
surfaces within the shell be motfically indecomposable. An additional
condition is nceded, involving mutual relationships between these
surfaces, The situation will be made clear by a simple example. Consi=
der a motion of a singlc degree of freedom, defined by an angle varia-
ble q =Wt (mod 2 JT) and the conjugate action variable ; which
is a constant of the motion. We may assume that the value of f)fixes
the energy; in the "phase space" (p, q,) the "energy surface" is then
the line p = const., or rather the segment 04Q2 on this line.

An energy shell will be a strip limited by two such lines, While each
energy linec is metrically indccomposable, the situation with respect ~
to an energy strip will be radically different according as the inte~
gral p is or is not independent of ¢} . In the first case, any initial

distribution will simply be displaced along the strip without any
. F

)

an ’ Py 7 e e L ;'1*_;.
tendency to uniform spreading. In the latter case, the initial distri-

bution, while remaining of the same total areca, will sprecad out in the
form of a more and more intricate subdivision of partial domains stret-
ching over the whole energy strip : this illustretes the "mixing" mecha=-

nism by which the ergodic distribution is established asymptotically.
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The general analysis of this “mixing" over an energy-shell
has been carried out by Hopf. It introduces two new elements into the
problem , In the first pl-ce, it is necessary to give a precise mathema-
tical definition of the mixing process; morever, we must formulate the
additional condition which guarantees this process to take place. The
limiting process corresponding to the mixing over an energy shell is
somewhat weaker than the convergenie almost everywhere which obtains
for the time average on an energy surface : it has the character of
"econvergence in the mean'". To define this, let us start, at time toz 0
from some arbitrary distribution characterized by a2 density g (P); the
statistical average of a phase-function f(P) for this distribution
is given by
(£, &) = {f(P). g(P) djr
the integration being‘éxtended to the whole phase-space (the limitation
to an energy shell is contained in the form of the density function
g(P) . At time t, the distribution density has become g(Pt), i.e. the
transform of g(P) by the automorphism PwpP,; this is some function
of P and t which we denote by :7; g(P). The average of f(P) at time
t is accordingly (f,f7f£g). The limiting form r(P) of the distribution
density is then defined, in the sease of convergence in the mean, by
the condition

/ T 7 . 2,/ _— {10
SR NIV AYRIA S R C
Ty T " = g
for any pair of functions f(¥), g(P). This means, physically, that the
time average of the statisticnl fluctuations of the phase average of
£(P) around its limiting value (f,z) tends to zero as the time T increases
indefinitely. Such a formulation is all that is needed for physical

applications.

We must now stote the condition for the existence of a
limiting distribution g(P) - isfying (10); as our example shows, this
eondition must express a relation between different energv . r’mces @
in its simplest form it must refer to a pair of energy surfaces., It
is convenient, for the consideration of such a pair, to "duplicate"
in a certain sense the phase space, i.e. to introduce a phase space
vhose coordinates consist of a pair of sets of coordinates of the original

phase space : this new phase space may be de:scribed as the "direct product"
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of the original one.into itself, L pair of encrgy surfaces of the

original phase space thus appears as a single energy surface of the

product space. We are now in a position to enunciate i Hopf's ergodic

theorem : if every energy surface of the original phase space is
metrically indecomposable, and almost every energy surface of the
prnduct space has the same property, every distribution tends to a
limiting distribution of uniform density in the sense of equation (lo)
This theorem completes the foundation of the concept of ergodic distri-
bution, on which the whole structure of statistical thermodynamics

rests.

4.~ The ergodic distribution. Let us now discuss from a more

physical point of view the main features of the ergodic distribution
and of the mixing process by which it comes about. In considering

this process we immediately face the paradox of an essentially rever-
sible mechanism leading to an irreversible situation; but we have also
in hand the means of solving this paradox. ] we analyse at any instant
the distirbution arising from any initial onc by letting the size of
the elements of phase space decrease indefinitely, we shall find that
a given infinitesiaml element is either occupied or empty, and the
fraction of occupied elements, by Liouville's theorem, will always
remain the same : from this point of view, there is thus no mixing at
all, bufa perfectly reversible evolution cf the distribution, If
however, we fix our attention upon an element of phase space of arbitr€=
ry but finite size, the density of distribution in this element will
tend asymptotically to a constant value ¢ as Ehrenfest expressed it,
the irreversible behaviour pertains to 2 course distribution in phase.
The degree of "coarseness", i.e, the size of the cells of phase space
with respect to which the distribution is defined, is arbitrary; but
it is essential that some finite subdivision into cells be assumed, It
is this cell-structure which represents the lack of definition of the
state of the system necessary for the application of a statistical
mode of description of its behaviour. From the mathematical point of
view, we need not specify the size of the cells and we may even ultim-

ately regard them as infinitesimal for the purpose of practical calcu=-

X
We shall not give the proof of Hopf's theorem, since it does

not involve any essentially new feature.
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lation; but the limiting process of letting the cell-size tend to
zero must then carried out after the process of letting the time of
evolution of the system tend to infinity. If we should reverse the
order of the two limiting processes, we should obtain the reversible

behaviour of a "fine'" distribution.

The next problem concerns the time of relaxation of the

mixing process, i.e. the average time which nust elapse before any
given distribution has pratically recached its asymptotic uniformity.

At first sight, it would seen that we are landing into another paradox;
our example of section 3 suggests that we must expect the mixing to pro-
ceed during a time sufficient to allow the system to return several times
near phases previously occupied, in accordance with Poincaré's theorem.
But the occurence of such repetitions of initizl configurations is just
the kind of behaviour characteristic of the purely mechanical evolution
of the system as opposed to its statistical, irreversible evolution.

The fantastic order of magnitude of the times of recurrence accounts

for the failure to observe such repetitions in ususl casesj and if the
mixing process should really have to involve them, the whole statisti-

cal interpretaion of irreversibility would collapse.

To clear up the situation, it must be remembered that the
usual systems to which thermodynamics is applied are composed of a large

number of identical elements : they are either bodies built up of atoms

or radiation fields consisting of proper oscillations. The physical
states of such systems are represented by generic phases; the latter

do not correspond to single 'cells'" of phase space but to regions called
"eonstellations'" by Ehrenfest containing many cells and intrically ime
bricated through each other over cach encrgy shell. The measure of a
constellation, according to the ergodic theorems, gives the relative
probability of occurence of the state represented by the corresponding
generic phase in the course of time. States very near to equilibriul

will thus occuoy a much larger part of the energy shell than states de-

viating appreciably from the equilibrium conditions. Thus, if a trajectory

starts from such an "improbable" constellsation, it will soon enter into
more and more porbable ones and when it will have reached the equili-
briul constezllation, it will stay in it nost of the time . although

it will continually cross less probably oncs, =»pearing as "fluctuations"
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from the equilibrium state., The return of a very improbable state, i.e.
the return of the trajectory to a very improbable constellation, would requi=-
re a time of a fantastic order of magnitude; but the time of relaxation is
deiined as that necded to r.:ach thec most probable constellation, starting
from a less probable one; and this is extremely short as soon as the number
of elements is reas.nably large., The importance of the consideration of
generie phases for the consisteney of the statistical theory in all cases
in which its application is significant was, of course, fully recognized
both by Gibbs and by Boltzmann, But the mode of exposition adopted by Gibbs
tended to obscure this issue. Gibbs was worried by the discrepancies between
theory and experiment, especially with respect to thc conszquences of the
equipartition of energy for the specific heats; these discrepancies seemed
to be connected with the assignment of the number of degrees of freedom of
the atomic systems; in the hope of throwing light on the origin of the diffi-
culty, he accordingly set himself the task to derive as rigorously as possi=-
ble all those statistical properties which apply to the most general mechani
cal systems, without any restriction as to the number of degrees of freedom,
Hence the emphasis in his book upon the derivation of such results, while
the discussion of systems of identical elements was confined to the last - .
chapter, Boltzmann strongly objected to the tendenc;” of Gibbs' book :"I
can understand statistics applied to a gas, he said,nbut I sce no point in
applyingit to a eewing machine"”. Gibbs' distrust of dectailed atomic models
was part of an attitude of miné snared by many physicists towards the end
of the XIXth century : it was an essentially idealistic reaction against
the mechanistics school which had flourished during the second half of the
century, and of which Kelvin is the typical representative, Boltzmann re-
mained to the last a £t uneh sy porter of the mechanistic ideal; and in spite
of the fact that this ideal has now been recongized to be too narrow, it did
at the time give Boltzmann the right inspiration. His views on statistical
mechanics were perfectly clear and precise, although he lacked the mathema-
tics, we now have for their appropriate expression, Yet he had to face
widespread scepticism and opposition and «id not Ziva Lz see the triumph

of his ideas.

)4
This utterance was reported f+ conversation by Ehrenfest who had

been a pupil of Boltzmann's.
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In fact, the objections raised against Boltzmann's position are only
interesting insofar as they show the RBind of misunderstandingr bf the
significance of the statistical approach one mié% fall into. Loschmidt
observes that if a certain time all velocities (and magnetic fields)
of the system arqﬁnverfed, the system will so to speak, retraceﬁts steps
if, therefore, its evolution went from less to more prscbable configurations,
it will now exhibit an opposite trend. Zermelo, availing himself of
Poincaré's theorem, pointed out that any configuration, howevegimprobable,
must be expected to repeat itself with arbitrary accuracy in‘the course of the
time. Both assertions are, of course, perfect%g true : they can be vizualiged
by following the path of the system among the é;élement of the various constele
lations, But they are beside the point : :t is the cotrse distribution which
has an irreversible evolution, and we hav§éeen that such an irreversible
trend is perfectly compatible with thgéeversibility of the mcchanism by

by the "mixing" of the cofirse distribution is brought about.

5. = Systems with weak interactions. We may follow up the last argument

more quantitavely. We introduce the phase space of a single element of

the system, the ",4-space" in Ehrenfest's terminology. The total phase

space of a system of N elements, or "‘ﬁ-space", is the direct product

of N identical pr-spaces. Let us subdivide the fl-space into cells of

arbitrarily small, but finite size @W¢ ; th 5 defines a subdivision of
f’-space into cells corresponding to the specific phases of the system.

Thus, consider the specific phases for w'iich there are Ni eleﬁﬁnts in the

~cgll W, : they occupy a cell in f'-space of measure W, 2J4{~- , Or
T] “J:l o To find the measure of the corresponding generic phase, we
have simply to multiply this by the n-mber of ways in w .2h the N elements

can be arranged in groups of N, N,,......, i.e. N / N, i N2! esss § the

l)
measure of the generic phase is thus N{
Nl]’T Wi
SN Ny = N =
¢!

To go on with explicit calculations, we must restrict ourselves
to a particular type of system : we assume that the interactions between its
elements can be neg lected ; examples of such systems are th?&deal gas and the
pure radiation field., It is important to note that inorder for the equilibrium
distribution of the system to be ergodic, % i§ésseﬁ£ial that the elements do
interact ; otherwise, the numbers of elements in the various energy shells of
fl ~gspace would obviously remain in*’tered in the course of time. ‘

But the magnitude of the interaction is . rrelevant
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end in suitable circumstances can be ragarded as negligible in compwirs.>

vith the proper energies =f the elements. In this case, we may assign a

well=defined energy Ei te all elements in the r ~cell w;and the tctal energy

of the system is an additive function of the Ei's :
E '“%- M £ (12)
If the total energy E is given, this is a condition imposed en the distri-
bution of the elements among the cells 4} . Ancther condition is, of course
N=XN (13)
We may now readily evaluate the' distribution Ni which, under the conditions

(12) (13) gives the constellation of ms= mum measvre (11), If the Ni’s

are large, the asymptotic expression for this distribution is

oot AL
NI]E s N W e i (14)

-

— -(EL
ZwCP (15)

and the parameter {& must be determined in terms of ;.f‘ro"x the condition

where

(12). In evaluation, the "sum cver states" Z it is permissible to treat
the f‘-cells as inf ‘nitesimal, and %o write

z - Q‘pH(I’f‘f’J{‘L , (16)

where H(p,q) is the Hamiltonian of a single element and the integration

is extended to the whole rk --space.

Let us now evaluate the measure-fz( hﬂlg, n&Jé,") of the
equilibrium constellation, and ccupare it with the measure cf the energy
shell in Iﬁ sﬁ%e in which it is contained. Ve brave

bog DL (Nle Ng, o) = Nty Z4 BE, (17)

so that the problem is reduced to the computation cf log Z . T this end,
we decompose the integration in f‘ space into an integration cver all the
values of the encrgy and another over each energy surface in turn, using,
vf course, the invariant measure in accordance with dfg = df‘E‘dE' Fer the
invariant measure of the energy surface E w2 write

pe) = e O
thus +eo (,_) /z._

2=
- o

The exponent »f the integrand has‘aynuxintm for ar energy P giver by
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. dE /m
Expanding it near the maximum, we have to a suf‘¢c*~nb appreximatien,
(6)-PE= 8 () ~BEn * 3 (] ), (E-En)",
the coefficient ¥ (d° ¢ / 4E \ is assured 45 be nﬁfratlve° This defines a
Gaussian distribution of the encrgy around the extramal values Em’ The mean
- 3 ) Pal 1,_.'
square fluctuation O of the energy is f(d2 s / dE;)Hgl, which gives
4
the physical meaning of the latter ghantity. Mo this approximation, we get

for log Z ;s | L.;f#z_;i
by T & by plE) -PEm s By AT

A oy p(EST)-fE N
if we denote by L ] an encrgy shell in f&-space of thiCKQSS\ZJT At

=

around the energy surface hm' ;ﬂSGTulﬂg the last formula into (17) and
. N\
noting that NEmﬁv E, we sce thet ,.,\ N ‘ *~l* ,-«) Lakes ~orm
/ - . 7 C .
([E ])P of the measure of the cencrgy sheil in f spase censiziing of

the shells[é ] in all the m -spaces. In *his sence, ve may say iv

asymptotically, the equlllbrlum constellat’ on is equolvalernt o e whole
energy shell in | space, The dictributica (1), which comp® tely describes

the equilibriu.iconstellation, mey therefore be wsed w0 comvate; to a suf-
ficient approximaticn; *the ergcdic aversges of all adqitive phase functlons
for the special type of syziten here considered ard. = . partiimlew, 1o define
the thermodynamical functions pertailaing to it. Wo shall come vack to this
last point in a moment, after having discuczed 1% fer ihe most general
isolated systemg.

T

6.- Thermodvnamics of isnlzted systems. Isciated systems do not lend

themselves very well to a ciscusewon of therm:l cuantities. for the defini-
tion of temperafure requires, from the phyesical point of view, the possi-
bility of an exchange of energy reiwse: the system and its surroundings.
Nevertheless, one can speak of the entropy ¢ an 1:2iated system and

may thus ask for the atomistic i lterpr“ubtloq of this guerwv.ty, The tempe-
rature will thus not receive any fdical interpredation, but will appear
as a derived concept., We shall give iat - a move satisfactory trcatment
af this problem; but we moy just e well take it up at this stage in

order to present the general noiat of view from which it is considered.

Let us first recall the pesulicr way ia which lacroscopic
variables enter intc the fondamental therncdynrriacs relaticas. Bach non -
thermal physical aspect is reprisented o a pair of variables {a, &) whese

rmitual
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relationshipr is characterized by saying that if the magnitude of a is con~
trolled by some agency externmal to the system, the werk done on the system
to change‘by da is Ada, In the atomistic treatment, we may take accoun't
of these macroscopic variables (~. A) by introducing into the Hamiltonan
of our sysyem suitable terns of potential enorgy which will contain the
parameters a. The associated variables A, called "forces" in an extended
sense, will then be defined as the statistiocsl averages of the phase funce
tions (D/‘)‘\ H (f ", n) . For an isolatecd system, we must take the

——

ergodic averages b H
A7 3w lE

The thermal transformations are also formally represented by a pair of
associated variables, the entropy ard the temperature, but these must, of

course, be treated separately and in a quite diffcrent way.

For an isolated system, the independent variables (i.e. those
which are controlled by external agencies) are the encrzy E and the para-

meters a. The entropy then plays the part of the characteristic function,

from which all other quantities are obtained by differentiztion and alge-

braic cpmbination. If adenotes the avsolute temperature, onz has

OLS:Jé__JE—-g—-:{a, (18)
80 that ; i Y
(48 AL (95

—éﬁ-(ﬁ >°‘ I g T ( do )E (19)

We shall always glve the temperature; the dimension ¢ an energy; the
entropy will accordingly be dimensionless. Ncw. we can readily indicate
an expressicn pertaining to the atomistic description of the system and
which formally satisfies the releions {19) characteristic of the entropy.
Let 0. represent the part of phase space “enclosed” by the energy surface
E, i:e. containing all the energy surfaces corresponding %o energy values
5 E, We may then take

S - fc“va ’./\ (;—l.) (20)

The verification of the suitability of this definition must
be limited to the second relation (19),. 3ince the first . 2e can onlg be
regarded as a forma. definition of the temperuturc, In order to calculate
the derivative DS da at constant E, let us introduce the characteristic
set function X(Q)of the set {2 , i.e. a function equal to unity for all
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phases onand zero for all other phascs; in the prusent case, we may
@
express Z (L) very simply as - “step" function § (x) of the argument
=E -« H (P7Q»'~) :

%(x)____fz for x ) 0

for x (O

The derivative of X(x) is the distribution § (x). This allows us to
write -
p(0) = [E[E-HE 0] d

the integration extending to thc whole phase space. We further get

op(2) . J"“ T[&-H(r,'f"*)_{ A _

et ”f“?ﬁ( 3 o ifall
Therefore J ﬁ £ B &(E)

oy P ()
But clecarl = - t
CEEEOF M VE
and therefore tf ! - % {Q) f
,4(m 7
whence finally B ﬂ-) A
b a B 9

In the special case of :systems with weak interactions, discus-

sed in the preceding secction, we mey, of course, use the definition (20)
of the entropy; but we may just as well take for this porpose a somewhat
different & 11T VJ.Z- ‘

o: g N (M) Male) oy (21)
whose explicit form is given by (17). The 'Torce’A is now expressed as an
average over the most probable distribution (14)

AN ] PLEE AP

2 da

the Hamiltonian H(p,q;a) now referring to a single element, and the inte-
gration being extended to thc corresponding 'u -space, Frem (21) and (17)
we derive () S _ F

58 °

which gives the interpretation of thc parameter F as the inverse of the

absolute temperature, and
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(W)E:‘FE da K=

which shows that the definition (21) of S is as acc stable as (20).
It is essential for this equivalence that the system considered has a
large number of degrees of freedom; for the equation (17) is an agymptoe..
4ic oﬁe. This ambiguity in the entropy definition for large systems was
discussed in detail by Gibbs, and also from a more physical point of view
by Lorentz, who called it the '"insensibility'" of the entropy definition.
The reason for this latitude in the choice of the function S is clear,
We have secen already that the measure of Q( N l; ,"Jé")is pratically the
same as that of an energy shell in f1 ~-space; and the latter is not signi-
ficantly different from the measure of the whole domain f),when the number
N of elements is very large. To give a simple example, consider an ideal
monoatomic gas, whq?e Hamiltonian consists of the kinetic energy
of translationéé t,}nl (m being the mass of an atom) and of a potential
energy expressing that the system is confined to a volume V. In computing
(f\) the integrations over the position and momentum coordinates can be

-
performed separately, the former gives a factcr Vk, the latter the volgpe .

of a 3N-dimensiorl spherc of radius y2m E, which is proportional to L
E(BN/Z)’ The measure ?4(E)A E of an energy shells differs from r'(fl)

/o ; 7(N.1)
only by the replacement of E(3N’“) vy (31/2) E Jénul’d F, which for very

large N is quite insensible.

Our two definitions of the eutropy have a comr  feature : they
both express the entropy as the logari*lwm of the measure ¢f a domain of
phase space, i.e. of the relative probability of occurence, in the course
of time, of the phases contained in this domain, The logarithmic character
of the link between entropy and probability is easy to understand : if we
unite two independent isolated systems ino a single system, their entropies
should be added, the probabilities of their configurations multiplied.

The definition (21), usually adopted for systems with weak interactions,
corresponds to a more detailed discriminination of the configurations than
the general definition (20).

The law of increase of entropy appears as a statistical law,
If (by removing constraints) we allow the isolated system to pass from
an initial state of equilibrium to the state of equilibriv - corresponding

to the new conditions , the values of the entropy in the final state will
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necessary be larger than the initial one : but the behaviour of the staiis~
tical function log.ﬂ(Nl, N2....) during the trensition will, as already
stated, exhibit continual fluctuations (even after the new state of equili-
brium is reached), The concept of entropy, however, essentially refers to
the state of equilibrium under neglect of such fluctuations, The statistical
interpretation thus indicates the limit of validity of the entropy concej* ¢
if the fluctuations form a prominent feature of the phenomen n, as in
Brownian motion, the thermodynamical concepts become meaninglesss., The se-
cond law is not "violated", it ceases to be applicable. On the other hand,
the statistical treatment is still perfectly adapted to this kind of pheno-
mena; c.g. it can be used to evaluat@¢f§%.average amplitude of the observed
fluctuations, In this sense, the scope of statistical mechanics is wider

then that phenomenologieal thermodynamics.
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III, Statisties_ of Closed Systems-

l.- §1§§gg_gi;gifggwggppgqgﬁugg1 To ensure that a system S has a
definite temperature, we must imagine it in "thermal contact" with a
"thermostat", i.e. some other system T whose heat capacity is so large
that the exchange of heat with the system S does not sensibly alter its
temperature. The two systems S and T, freely exchanging energy with each
other, have then a common temperature, which is entirely fixed by the
thermostat. From the atomistic point of view, we have a total system ‘f
consisting of the system S under investigation and the thermostat T, such
that the number of degrees of freedom of S is much smaller than that of
Te. While the energy of botﬁ,s and T continually varies,; we may assume
that the total energy of Yemains constant, i, e, that is isolated.
The problem is thus to derive from the statistical distribution of the .
isolated systen 'Sthat of a small part S of L.S.

For this purpose, we consider the phase-spaces of S an” T,
with measures du s 4 r,. and the product space of “with measure .
d r = dr o Moreover although the systems S and T are essentially
interacting, we may assume tha® the magnitude of the in‘eraction is
negligible, so that the total energy E is composed additively of the
energies E S B

T
and T- spaces and in the product spaces the domalns.flb,()T,Slenclosed

of the systems S and T. We again introduce in the S~

by the energy surfaces E ES .E. Now. we are interested in the averages

of phase functions pertq?nlng to the system S, i.e¢. depending only on the
phase coordinates P . We may write dcw. ghese averages immediatly as er-
godic averages in the totalx ~space; we shall then seek tH) transform

these expressions so as to eliminate the irrelevant phase coordinates PT
the thermostat will be represented in the final result by only one para=-

meter, which play the part of the temperature.

For the transformation we have in view, it will be convenient

to write the ergodic average in the form

fle = 4 ) e /{(f’)v‘ﬁ (2)

For a phase function f(P ) belonging to S we may carry out the integration

with respect to the variables P 3 for each phase P, to which corresponds

S’
an energy ES= HS(Pé)’ and accordlngly an energy LT E - HS’ this gives a
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a factor HTL"QT (B - HS)J . The invegration over Py extends over
the domain enclosed hy ... .2.leces corresponding to the largest value
of E,, viz. E; but we may actually extend it over the whole S - space

S
since for larger values of E . the factor varlshes. Thus,

feo sp - [ o -5 ip

The derivation with re~ect to E transforms i‘ (J) ) into the invariant
measure of the limiting energy surface *4 (E - H ) and we get from (l)

ey

£ (Ps)l g= [t () L )‘* (h)”——S) d,'s (2)

We have now expressed the ergodic average of f(Pé) as an
average over the phase space :f the system S alone, each element of this
space being affected with the statistical weight f!T(E - HS) /’A (B);
since this weight factor only depends on the energy Hs, one may say that
it affects the energy surfaces or crergy shells in S - ~pace, As a re=-
sult of the contact with the thormostat. the energy ES of the system S
is not fixed, but has the equilibrium distribution given by f"T(E - ES)/rlE)
,ES and add them
up with the weights corresponding to the distribution of ES'

: we must thercfore tuke all ergodic averages f

2.- Canonical distribution. Our next task is to find a simpler

expression for the energy distribution in S - space. This means essen-
tially that we want to transform the factor I*T(ET), for the factor
f (E) is easily evaluated in terms of it; in fact, by an argument simi.
lar to the above, we find
PR L . -
F0 [l b ones o

the integration extending over all values of the cnergy ES

Now, we note that the structure of the thermostat is entirely
arbitrary, apart from the requirement that it be a very large system.
We avail ourselves of this latitude to obtain an . n asymptotic expression
for f&T(ET) : to this end, we assume the thermostat to consist of a large

number of parts T yee. whose interactions we may neglect., By making

2
repeated usc of a formu-a of the type (3), we get

prlco -f-fta,]dta -- j;l!- 2 (€,,) f‘u(ta) B (6 &&

- e t"“.')
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The formal analogy of this equation with the "law of composition" of pro-
babilities suggested to Khinchin an elegant application to our problem
of the "central limit theorem" of the theory of probability.

Consider n stochastic variables X XppeeeXy with independent
distributions u, (x;)dx;, U (x,)dx,,... The distribution of the sum
X =X X, £ X, obeys the law of composition.
U(x) «‘y olr, t"{ - »/t/x“_’ 4‘(11,) U (=) - ‘“q.‘( o x_-n;*;-"’,_,)

Now, provided that the distribution laws l43._()(1) satisfy certain conditions

1y

the most important being that the mcan fluctuations of the variable Xy
are finite, the dlstrlbution law for x has the asymptotic form (for n e
= (:..2)
ufx)dx = ———.—.—B (5)
where X = >. X, is the sum of the averagc. values Xi = xiui (xi) dxi,
i.e. the average value of x, and B = Z is the sum of the mean quadra-

2
4. = j (x.'-a;) A () ey,

tic fluctuations
'
We cannot, however, immediately 1dent1fy/11“ .‘ ) dE'T.‘ with
a distribution law WA, ( )dx tecause the measures r-T E ), though
finite, are not necessarlly bounded § they generally incre'lse as some
power of the energy. This obstavle is, of course, easily overcome by

putting B ET'

wi ()< 5 5 P (€5) (6)

~REL. ) )
ZL(@): j& ('*T;(tr.‘.)‘/{e"f (7)

secures the normalization, and 1is an arbitrary positive parametcr.

where

In fact, the (,k 's so defined are bounded and satisfy the law of compo-
sition (4), it can be verified in dctall " that they satisfy all the
conditions for the validity of the asymptotic formula (5).

The law of distribution u.‘(ET) derived from the set (6) by
the law of composition (4) has exactly the same form as each of theui's,
the normalization factorZ({& being the product of the zi’s. We readily

get = ) '{ H.?"
ET = JL h} (8)
. fr = 45" (9)

+ Voir Khinchin, p. 86
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It is easily seen T that equation (8) umiquely determines’3 in terms of
E; ¢ this makes it possible to fix the parameter'P by relating it to the
given average energy of the thermostat. We shall henceforth assume that

p has the value resulting from this equation (8) : it is this parameter
which will "represent" the thermostat in the final result, and we shall
see that it is simply related to the temperature.

Taking for M.(E ) its asymptotic form (7) we get for
rT(ET the asymptotic exprecssion = 1

2,(® B ~ (£ “{";;;"

"‘1(‘ > [' -(10)

In applying this formula to the argument E
(ET B )2 = (B S - E')2 Now, excepting the unliky cases when E

S
happens to be w1dely differcnt from its average ES the quadratic fluc.

p = E - ES’ we note that

tuations of the system S will be of a much smaller order of magnitude °
that those of the thermostat whose average is given by BT : we shall
accordingly neglecct them altogether and write

bl e = 22l ¢ PCR)
PR 151

For the factor‘A (E) we may writc down a completely similar expression

since according %o (3) the systems S and T are linked together by the

same law of composition as the various parts of T ¢ we may therefore

treat the total system S as we have just treated the thermostat. Thus,
aE
p ()= Gog ¢
and - —
- » Vs
1_([3)* LT([S) ((3)

while B differs from BT only by the contribution from the small system S

3

which can be neglected. For the energy distribution of the system S we
therefore get the vcry simplc expression
pr(€-6 _ | .~ BES
p€) Z (P (11)
in which the thermostat only appears through the paramcter f% .

In its most general aspect, the property expressed by

+
Voir Khinchin, p. 77
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formula (11) may be stated as follows : any smalll part of a large
systen, whose interaction with the system is weak, is distributed in
energy according to the law (11). In this form, the theorem is due to
Boltzmann, who recognized its fundamental importance for the statistics
of nomwisolated systems. The law of distribution (11), under the name
of cenonical distribution law, was extensively studied by Gibbs; the
insufficient emphasis put by Gibbs on Boltzmann's theorem is no doubt
responsible for the wisdespread confusion about the physical signifi-
eance of the canonical distribution. The above derivation, due to Khin-
chin, has the merit of elucidating the dcep~-lying relation of Boltzmann's
theorem to the general principles of statisties.

+
It need hardly be enphasized that the "small" part can be any macros-

copic system; it is small only with respect to its surkoundings, which
constitute the "thermostat"., On the other hand; the small part could
also be just an atom of an ideal gas : Boltzmann's theorem then gives
an indepcndent derivation of the theory of systems of weskly coupled
identical elements of Ch II, § 5.
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3+ = Energy distribution . The canonical distribution law has
important consequences for the average value of the energy. In the first
place, the study of th's quantity will allow us to establish a very simpld
relation between the thermostat parameter (3 and the absolute temperature
as usually difined. Further, we shall deriveageneral prope. ty known
as "equipartition of the energy". Finally, it is also possible, at least
for a certain class of systems, to derive the explicit law of lstribution
of the energ; .around the mean and, in particular, the mean . adratic
fluctuation of the energy.

The canonical average of the energy of our system S is given by ¢

- Lt
If, in particular, the system S is an idecal monoatomic gas, we have

(cf. Cn, 11, §6) U

1 ]"(ES) ~ ks‘{"

AL -
whence ls(f;) zJﬁ @ SP(Es) g“'.'s

_ W
: Y
~n C—F‘x% 't/(’(- il P
and E. = 2’.1‘.’ ,i_ .
A Y [ (12)

The thermodynamical value of the energy of such =2 gas is 3 R T
per mole, where R is the gas constant and Tthe absolute tempergtui'e in
the Kelvin scale. This may be written 3 N, if N is the number of atoms
per mole and f = kT, with k = R/, is“the measure of the absolute tempe=
rature in an energy scale. The conversion factor k is a universal constant
to which the name of Boltzmann has been linked (although Boltzmann himself
did not introduce it explicitely). The comparison with the statistical
formula fixes the relation of the thermostat parameter (5 with the absolute

= A
F’ ® (13)

The simple formula (12) is a special case of a more general property,

temperature :

If we can isolate in the Hamiltonian of the system any group of terms HY
homogeneous and quadratic in some of the p's, .,e. such that :
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Zﬁ,

(=1 1
we nay perforn the calculation of the, canonical average H' explicitly. In
fact, putting H= H' + H", we nmay write :

jo‘rc'MJHeP Ap', | .

where d r = ‘d ,A with d 'u dp1 APy Now, for any of the relevant
IE'S we have

/ Lw
H -AH ol
r,) ra ’p . B
P
whence
——— I
H = A L - "L,
‘ 2 0 (14)
The same argument applies to the case that the quadratic homogeneous part
of the Hamiltonian belongs to the potential energy, i.e. has this property

with respect to some of the q°s.

The general formula (14) expresses the law of equiri-i'1'on of the

energy t for a system of temperature 9 , every degree of freedom for which
the kinetie or potential part of Hamiltonian is homonogeneous and quadratic
in the corresponding canonical -1 able contributes & 9 to the average
energy of the system. In particular, every degree ofzfreedom of harmonic

oscillation contributes 9 to the average energy.

If the system S can itself be analysed into a large number of com=
ponent parts with weak interactions, e¢.g. if it is an ideal gas, we can
apply to the measure of its own energy surfaces fis (Es) the asy: »totie
formula that we had derived for the thermostat. The law of distribution of

the values E of the energy then takes the §:mple form : i é?-é:)l
£,- 526" ple-£,)-

Jz,rm c..{!E

LR S

2(p)

W(E) < *,.‘(gb) polE-8) z,(0

P &) {:; 5

(,-5)

- ’

L e 2
'
V2 B

where BS is defined by

)

>
S0
L .

it
(N
%

o] Lo

21
i

R
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We thus obtain a Gaussian distribution of the energy with a mean quadrae-
tic fluctuation BS * vhich is always smaller than BS §mg§change of energy
with the thermostat thus results in a negative correlation of the energy

distribution between the two parts of the total system.

The walue of the mean quadratic flu-tuation BS is easily
ecomputed, One has

et .

By = (& - B) i )

" - R N Y S LA
~d log Z 1 457 Sty L AL | (Al
5="ap ¢ Eé'*‘*'z”;" boap T 2 p'z* Jp)
ioe' o - 1
B, = - LE¢ =-%—6§ 6 (15 )

This form la exhibits a fundemental feature common to all

fluetuation phenomena : while the productg de is of macroscopic order

of magnitude, there is an extra factor 9 vﬁﬁ%h contains the essentially
atomistic constant k, In fact, flvuctuation phenomena are outside the scope
of macroscoéic physics i they are e:sentially linked to the atomic theory
of matter and radiation., Accordingly, the observation of their macroscopic
effects, such as Brownian motion, light scattering, etc., affords a proof
of the consistency of the atomic picture and a possibility of‘détermina-

tion of atomic dimensions.

4.~ Thermodynamics of closed systems. We shall now follow a line

of argument parallel to that developped for isolated systems., We shell
look for an atomistic interpretation of the characteristic function core
responding to the choice of the temperature and the extremal parameters
as independent variables : this is the free encrgy of the s stem, defined

e st P vt St w4
I L3

as s
F=Z- 0§ (12),

In fact, we find
F=-5al+aas, (17)
o dF
S=-(De )ﬂ.’ A=+ bﬁ )a (18)

From (16) and (17), we derive, bty making use of the general transforma=

i.eo

+
We may now drop the index
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tion formula : e {aaP p

the Helmholtz relation betweon mecan energy and free energy

- AIP
E=F-"35= ')f’ (‘\F) (19)

Nwl a direet calculation gives for the canonieal average
of the foree (dH /3 a)

At_:_.lalogz .
PO '

this formula, together with the previous one
- >$g§ .

shows by comparison with the second equation (18) and with (19), respee-

?

tively, that we must teke for F the expression

Fa-—elogZ' (=7)
except for an arbitraw linear function of § (without physical meaning)
Formula (20) completes the atomistic interpretation of the thermal
quantities pertaining to closed systems, viz. temperature and free

energy. The entropy now appears as a derived quantity :

S =10zz +?§ . (21)

It is not surprising that this expression for the entropy
is formally similar to that obtained in Ch. II, § 6 for the systems
of identical elements with weak interactions : for, as already noted
(see footnote at the end of § 2), the theory of such systems can be
regarded as a special application of that of closed systems.+ However,
the scope of formula (21) is much wider : it applies to any kind of
system whthout restriction. If the system is sufficiently large to
allow the use of the asymptotic expression for ﬁhe measure of its energy
gurfaces, we may compare the value (21) of the entropy with the logarithm
of the measure of the surface correspondmg to the _Dean energy E, viz,

log r(ﬁ)nlog?.-g%e }=S-log( 21 B)

LY
The logarithm of the fluctuation term is of negligible order of magnitue
de, and we thus get a new interpretation of the entropy in terms of the

t The system S then represents a single element, and the expression
(21) aceordingly gives the entropy per element.
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measure of a set of phases : this set is not, however, the domain
Q(ﬁ) enulosed by the energy surfuce TB-, but the surface iself. We
have here another illustration of the "Insensibility" of the entropy
definition,

With the help of (21), we easily verify the well-known ther-
modynamic property, on which the phenomenologizal definition of the
entropy rests, that the inverse temperature ﬁis an ‘ntegrating factar
of infinitesimal quantity of heat supplied to the system in a quasi-
static transformation. This quantity of heat is

Q = dE - Ada
whence :
(530 =d((!_)..Edp f&Ada)
=d(FE)+Tf§ ~—d{A lo;o- Lo2 2 a4

]

a (PE)‘+logZ ) =45
Pinally, let us introduce with Gibbs the concept of
Irobability exponent which will give us not onl” a compact nota®irn

for canonical averages, tut also exhibit a new aspect of our entropy

definition., The canonical aversge of any phase function
- PPH
- 3 p
£=5 jf (p) d TA
may be written as

f = j £(P) éh (®) a (22)

with - -
5 8 ,0) = 5 |7 () - 5 240 (23)

The function 1 is called by Gibbs the “probability exponent", since

n
n(e; 0,a) €3 (24)
represents the density of probability in phase space for the canoniecal
distribution. Now, the entropy, according to (16), is just minus the
canonical average of the probability exponent @
this may be written, with the notation (24)

Sz-’nlogn d‘)\ (25)
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Again, we find here a formal analogy with Boltzmann's r
Hefunetion for systems of weakly coupled elements. The expression
(25) may be applied to quite general systeus : it does not then refer
however, to any actual distribution of physical elements, but to a purely
fietitiop distribution of "eopies" of the system under investigation.

The statistical foundation of thermodynamies just outlined .
is not yet logically complete, ‘he basic differential equation (17) \

refers essentially to guasi-static transformations. We have still to imvestias

gate the behaviour of the entropy when the system is subjected to irvever-
wéible transformations., But before this, we have a more immediate task. In
the preceding diseussion, all macroscopie quantities have been as a matter
of course represented by canonical averages : this procedure, however, °
implies the assumption that the quasi-static transformations do not disturd
the canonieal form of the equilibrium distribution. Quasi-static transfor-
mations are of two distinct types : isothermal or adiabatic. Fox iso-
thermal transformations, the assumption just mentioned is obviously justi-
fied, since the system remains iqéontact with the same thermostat during
the transformation, But the case of adiabatic transformations requires a
eloser investigation. In fact, in such a transformation, the contaet with
the thermostat is initially severed, and at the end the temperature of the
system has varied, i.e. it is in equilibrium with another thermostat : it is
is then far from obvious that the distribution, while both external para-
meters and temperature varied, nevertheless rémained canonical. This is

what we shall now proceed to show.

5.- Permanence of cancnical distribution in guasi-statie adiabatie

Yrensformations. An adiabatic transformation can be analpsed as & succes-
sion of steps in which, the system being isolated, some external pareameter
(or set of parameters) a is varied suddenly by a very small amount da,
after vwhich the system is left to itself for a certain time, A second
sudden variation of a is then applied and the process is repeated with
suitably chosen intervals between the successive variations so as to appro=-
ximate any continuous variation aft) of the paremeter a, In order for the
transformation to .be quasi-static, we must, after each small variation

of a, allow sufficiant time to elapse for the system for the system to
reach the state of equilibrium corresponding to the new value: of the
parameter : & quasi-static adiabatic transformation corresponds in this
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sense to an infinitely show variation of a.

For our present purpose, it is of course sufficient to eomsi
der a single step, leading from a, toa= a + da, and to show that if the
initial distribution was canonical, with a certain tempera’:re (or, in
Gibbs' terminology, “"modulus") eo, the final distribution is again canonie-
eal, with a slighty different modulus. The variation of a has the effeet
of deforming the ;;ergy surfaces, so that a distribution whi¢h was origi
nally ergodie eeases to have this property when referred to the new energy
surfaces, Eventuslly, however, i$ will become ergodie on these new surfaces,
and the new phase density will be given by the ergodic average of the 0ld

one, taken on the new energy surfaces: The initial phase densiky was given
by 1‘7‘ 8 %o pq) ; the new one is accordingly Q'N‘D,"i}t’ﬂ ‘5(.)
We want Yo show that this quantity can again be wrltten in the form of a
senonical distribution of suitable modulus 8 .

To this end, let us first expend the distribution density
0 (%% 19)
'4 around the new value a of the parameter :

5 : B o
‘0’(9.110,{1): en(gu‘l r1) L;- ‘1‘_3:_ (A-SB)]

Nl H.,Q‘f D)

and aecordingly, since the factor ¢ is constant on the new

€ ): Ql?(e')o‘;m) [l— d{f- (A - ﬂé(«))]

Now, for systems with a large number of degrees of freedom,ﬁb%nonical

energy surface E(a)
c‘)t‘u TH ”)‘

distribution has a sharp maximum for the average energy E and we may use

- e
the expansions Al , _ , d Al - E B
Ale = Mg '3 ()i (BFT
— QYAlE T =3\
Ae Rl v1 g (£
The difference A - Il: will thus involve, besides a term linear in E - E
a taym comtaining = __

5 J
E@-B - -0 E-D-3-FF(E-5

owing to the small factor )B / D E, this term will be negligible in

comparison with the direct one, and we may therefore write -
c‘)(‘w"'il"‘)] ~ Q-(%/“I'F?) l}’ Ja )A_—_{E (E-E)J

E(a) G OF
It is now clear that the correction term in E - E can be compensated by a
suitable change of modulus; for if we pass from 00 to (} = 0,; d ] ’
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we have, using Helmholtz':s fur.uls, 10
. nipa: ¥ -£
(B rn) L 708,45 pg) [i- 2F (€ e)]
¢

‘Je eonclude that the final distributior is indeed the canonical one of
nodylus 9, provided that the variation d 0 of modulus is related to the
variation da by the equation
)—g_ - Q_AJ_E u[ e =0
(i 0E
Replacing I‘E by A and 0. by 9 , and noting, at constant a,
YRR
)E 26 [ g4

the last equation may be written

i _‘?_E‘)g_?_é_da.:O

o 49 20

It i3 readily verified % thet this equation just expresses the constaney

!

of the ¢nt-ony, dS = 0, during the trensformation.

6,~ Irrcversible transformations. The last step in establishing the

statistical foundation of thermodyggmics consists in verifying that our
interpretation of the entropy minusfithe average probability exponent of

the canonical distribution s:tisfies the part of the second law referring
to irreversible transformations. We must show that for any transformation
such that the surrendings of our system to their initial state after it

ie performed, the entropy of the final state of the system is larger

(or at any rate not smaller) than that of the initial state; if we formue-
late the law in terms of average probability exponents, the direction of
the inequelity is reversed. It nust be observed that a probability exponent
vhich would correspond to an equilibrium state under certain conditions
represents an arbitrary density distribution if these conditions are alte-
red, We shall thus have to introduce, following Gibbs, arbitrary probabili-
ty exponents T3 (P) and study the behaviour of their average values.

a:/ﬁew—llrl

under the various transformations satisfying the above-mentionned condition,

& In fact, from (18) it follows that
-9A . 25
24 )4

5

e ———

and from (19) that

S
=
[ ]
<~
r
"
Qs

‘. :

@\-
o i
@
o
<o
~
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Al such transformuticns roluce t two types : (a) the ndiabatic transe
* formations, during which the sjoi... it ther.~11y isolated, (b) the heat
exchange, in' which two initially separated systems are brought into ther-
mel eontact end separated again. We shall discuss these two types in sue~
eession, closely following Gibbs' elegant treatment of the problem,

(a) Adiabatic transformations. During an adisbatic transformation, the
distribution changes independently in each energy shell : we shall thus
compare distributions with the same total number of "copies of the system

in the same energy shell, and prove that the distributions with probability

exponent ‘Q‘O constant in each energy shell have a smaller average probabi-
lity exponent than the others. We call this statement the first lemma of
Gibbs, The assunmption is o,
j ews):r\ - f ¢ "JV
() (€]
for each energy shell LE J o For the average of U;O over a shell we
may thus write

2p & w'{) " ( o e,;a;(ﬂ
aQ,e odrrw,) e v"J - oy, r?f i ol . 0 y,
] L w . E] ]
and thereiore o, / o, A'A

We must now prove that .

&-TF = [(§-T.)r A7
Gibbs uses here a gendral procedurc applicahle to any inequality of the
form =~ J 2*€ LUJ M 7,0 . He refers this inequality to a property of the
exponc..tial function ¢

Cx -1 }',-0 for auy X.

To this end.(f he uses the norimaliszation conditions to show that
the appropriate terms £°- 1 associated to ~ x have “he average 0. In the
present instance - x = & - wog from the normalization conditions

Jea’d?\ :j e er 21
it indeed follows that
i & [ewwaf_,‘ J’l‘—” 0
Adding this to the ekpression I(Gi -w,) 'der , we immediately
eonclude that this quantity is always 2. 0.

Gibbs's lemra can ﬁow be applied successively to each step
da of the adiabatic variation of the parameter a from aq to &, (§5).
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Calling (frl, Tpreseey ) " the succesgive probability exponsnts, we have

éaa‘ 6‘ 2 """}(.-ﬁ.n.

If the transformation is quasi-static, the differences'd’f,,: {0, are of the
_ second order in da, and since the number of steps is :l{t{versely proportional

to da, the difference &, = T  after a finite varistion of a is infinite-
simal t the entropy in this case remains eonstant, If, on the other hand, * ..
the transfomzat;on is irreversible, the successive differences will in genee~
ral be of order da, and for a finite variation of a thers will be a finite
inerease of the entropy.

’

(b) Heat exchange. To discuss the ease of heat exchange we have to consi-

der a system ecmposed of two distinet parts 51, S ob W accordingly distin-
guish the two phase spaces of thesc parts and the toatl phase spaee whieh is
their direet product, Between the respective elements of measure we have the
relation

dﬂ,- ‘{/4‘ = U(/v

X7
The distribution & defines the distributions in the $,, and § ySmees a8

#, > '
¢ = / A Pz fe Totpe,

these partial distributions are, of course, normelized to unity 1

T - S [ :
/(; gl,,.q.:. .}t‘. "‘(/L/u,& ‘;/fial,u ,'1
Gibbs' segond lerma statea that

a3 N R 4 L:):J
the inequality holding only if the two distributions & 1» W&, are entirely
independent, so that A7 = CL'l(Pl) +1.t2(P2) .

To prove the lemma, note thet
. 73 Pr -~ a
w.:]w' &("1 d"' -:,ff.r‘e‘tdt‘ ) /1‘.‘.' ;/m‘a A/"‘
and therefore _
The normalization eonditions give
ormal &1 jcm[ﬁ(a‘.4m""—w-q] o 20
the ’ . #“

vhenceﬁaxmounced inequality follows, Moreover, the equality is seem to hold
only if o ~-a - w’zao , as stated,

With the help of this lemma, the discussion of the thermal cone
tact of two systems is inmediate. Before the contact, we have independent

distributions with exponents & ;, @, and the exponent of the total dis¢ri-

N
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bution istre a7, + @ o+ As a result of the thermal eontaet (dueing
vhieh the total system is isolated) the cxponent changes from ® to O

and by the first lerma

~—

F2R’
Now, we had on the one hand
E = 6‘51 + @ 2!

and on the other, by the second lemma

&' N Ql'.w 032,
mi, wébeing the exponents of probability of the two systems in their
final states, Therefore

T+ O, 2 W)+ (26)
i.e, the heat exocliange has caused the sum of the entropies of the two systems
to inerease.

T+ is interesting to analyse somewhat more closely the role
of the temperature in the phenomena of hecat exchange. The basis for sueh an
analysis is supplied by a third lerma of Gibbs : If & is a positive para-
meter, the quantity @ + (£ /6 ) is minimum for the canonical disteibutton

of modulus 8 . For the latter distribution, the quantity in question is Just

P /8 ; the lemma thus expresses a mimimum property of the free energy of a
system of given temperature, which is parallel to the maximum property of
the entropy of an isolated systen, We have to prove
a ) F * ( = / )
..,. M}& o ;t' “r‘ _"?- o, 1. o /‘?7 . ,/‘ [ I /t ? o J
jm 9 . .
RRabi jiy 235 egt of WQ penonical distribution of modulus 9
By the usual procedure, we derlve from the nor*aahzation conditions
O o
JeR [ el Tojup=in
vhenee  the preceding inequality follows.

1

~Suppo::zé one of the two crctems just considered is a "“thermostat®

since the initial state ;as d‘.scribed by a canom.cal distribution of modulus
Pz . Thercforew.._. :tﬁ-"i""?’ o E P ‘

v .cz 7;, ) (27)
or in terms of thernal quantities

' [y}
S
v 7 e

2
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1.0. the entropy increase of a system brought in contaet with a thermostat
of temperature 6 18 at léast Q /p Y where Q 1s thé quantity of héat
passing tfrom the thernostat to the system, Using

-E! =E! -
E2 E2 El El

we can also write the inequality (27) in the forn
‘51 PR > a}; + L
e, B
shovinyf how the quantity o + (B /92) perteining to the system .S dearea-
ses after thermal contact with the thermostat, until, br repoated oz' pro=
longed contaet, the canonical distribution of modulus g 2 is reached, and
with it the minimum value of the quantity in question, which is then the

free energy of the systen,

Ve nay finally consider a systen So undergoing a eycle of
transformations in whieh it comes successively in contast with warious there
mostats of temperature Hl' /}2.... Aspuning ‘So to be initially at tempe~
rature 90 s We have

ey}
D, * 2
‘i‘ E: > CE. iy -E;"
L 2 Iy 9 (',l =0, 1, 2, "o)
b, ¢
whence f: E' - -,
A T2 % (28)
] &,

the term pertaining to the sysgem .So has disappearcd sinee ﬁ:) - Eo
owing %ta the oyclic character of the transformation. The inoquality (2#)
coineides with an important theorem proved by Clansius and used by him for
estadblishing on a phenomenclogi' cal basis the concept of entropy. If there
are only two thermostats, we have the kind of idealized engincs considered
by Carnot, Calling Q4 ,Q the algebraic quantities of heat supplied by the
thermostats during a cycle, inequality (28) takes the form
@ 9-3' ¢ 0

If the heat transfersﬁc:re Jrgihopaitile and sk accompanied by any mochanie
eal work, e,g, if heat ig conduected or radiated through the system 50, we
have Q‘l -02 and the inequality mepely expresses the fact that heat passes
irreversibly from the hot to the cold thermostat, If an amount’ of mechaniesl
vork V @ Q, + Q, is supplied by the englae( 6:’11 > o} @ > 0), ve find for

the efficiency the wellknown expression % <—-'-é—1-
the equality ocorresponding to Carnot's rg}'ersz.ble engine,
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IV.- STATISTICS OF OPEN SYSTEMS.

1. Phage funetions and averagzes for open systems,Our last objeet of

investigation is the statistical desceription of systems consisting of a
varisble number of elements. Since the main application of this theorwy

is the study of ehemical reaetions, we shall apeak of systems of “molecus
les", We start from the u ~spaces of the single molecules, from which we
eonstruet by direet produet the r'-spaces corresponding to any given numbers

of molecules of the varicus species ocouring in the system considered, In
the following, we shall only treat the cese of a mixture of two distinet
eonstituents, vhieh is suffieciently typical. We denote by P NIN2 the set
of coordimates of the | »apace corresponding to Nl molecules ot the
firat speefes and N moleeules of the othor,

The definition of phase functions requires sone care, Iuvgane-
ral, a physical quantity pertaining to a system of N molecules of the same
spoeics may be oxpressed in terms of other quantities attached either to
a single moleeule or to a pair of molecules or, more generally,'to a eluster
of any number of molecules. It can thus be wriiten in the form

¥ N o

e (0 =&t D) + 2 26D m) 4o (1)
vhere Pidenotes a phase in the p ~space of thc i-th moleeule, The exten-
sion of this definition to the case of a mixture of molecules is immediate ]
it gives a well-dofined meaning to the notation ¢ (PN1N2)

In order to compute the statistical average of such a phese
function for an open system, we follow the same line of argument as for
slosed systems $ we eonsider our sycten in conjuction with the requisite
number of very large reservoirs of molecules of the different speeios, 8o
that the total system may be regardesd as closed., For the closed systen,
whish we assuyme to have & definjite temperature, we may write down the canoe
niexl average of the phase funetion, there then remains the task of slimima <
ting the variables pertaining to the reservoirs, The exchange of molecules
botween the systen S containing a mixture of different species and any
reservoir R containing onc definite specics must be imagined to take plaee
through a suitable semi~-permeable membrane : the physical existence of such
membranes, however, is not relevant to the argument; it suffices that the
concept of semi-permeable membrane be logisally consistent with the basic
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assumptions of the atomic theory of matter.

The phase functions referred to the elnscd system 5 + Rl + Rz
are themselves statistical averages over all passible distributiona of the
moleeules between the systen 5 and the appropriate reservoir., With respeet
to cath species of molecules, the system S can be regarded as a snmall part
of the corresponding largc yeservoir ; the law of distribution of molesus

les in S therefore takes the asymptotic form of a Poisson distribution.*

-

N
w(~}=731‘- e~V (2)
N baing the average number present i% the system S . Thus, the phase
function whose cenonical average is nceded is

Z W(M W(”b){;“’ﬂth&.)‘ (3)

NN
with the definition (1) of £(p Nw:z) Here, f(PNINz) de pends only on the

variables of the system S . We have alsc to consider the total Hamiltoe
nian of the closed system S + Rl + R2, which we may take to be the sum of
"the Hamiltonians of the three parts : H + HR1 1R2" For any distribution

of the molecules, gharacterized by the numbers Nl ’ Nz, we have, more expli
efti,

H (Pyypo) + Bpy (Byi) + Hpp (By {4)

where PNI', denotes the phase of tho reservoir Ricontaining Ni molecules,
If N represents the total number of molccules of species 1, we have
N = )(i ~ N, so that the phase function of the more general type {4)
iﬂ also specifled by the numbers Nl. J2 of molecules in the system .

The statistical weight of the phase PNINZ of the system S is
therefore proportional to

dbuy, @ pH(luu/ BLBP,) +He ( ml]

y d,‘”; ’//‘y: ]
inec '0 I Y.} ’ —ry
o p e e .
. by L w-m) Lo (M-N,),
where ZR(Nj',) renresents the''sum over states" for the reservoir Ri
i

containing Ni' mnolecules, Denoting the corresponding sum over states for
the systenm by Z (Nl’Nz)' we finally get for the canonical average of any
phase funetion pertaining to the system S the expression

e e e s

x
We might even take a Gaussian distribution, but the choice of the

Poisson distribution is somewhat more general and fits in better with the
thermodynamical lor=ulece.
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In this formula, the parameters defining the external conditions under which

the system i3 eon, sidered are, besides the temperature and the non-thermal
paremeters of type a, the ayerage numbers Nl’ N2 of molecules in the sysatem
{which, however, are not necessarily all independent),

2.~ Chomical potentials. The problem now confronting us is to find

some simple asynptotic expression for the (-por’rnee of the funetion
Zﬂ { ™V ) , representing the reservoirs in formula (S), on the numbers N{
of molecules oontained in them. Since the total numbersc/?” can be made
arbitrarily large, we are actually interested only in small relative deviae
tiona (N‘ - N') 7/ N of the mumbors N! from their averace values

=c/V’ - Ni‘ Even the sbsoluts fluctustions N} - f;’. = «(Ny -ﬁ;) may
be reatrieted in pagnitude; for the contributions of terms corresponding
to large fluctustions are in any case cut dowa by the distribution factors
w (Ni)’ The situation here is entirely similar to that we had when discus-
sing the mnergy fluctuations in the interaction of a closed system with
8 thermostat, We have thus to compare each Ezﬂ (N ) with its average
velue 25 (N') for relatively small differences N'; - N’, and in order
firat to obtain the dependence of the latter function un the average numbey
E} we shall make use of the fact that log. g, (Ni) is directly connected
with the free energy of the system Ri' The following argument is essentially

due to Tolman t.

To present the matter as sinply as possible, we shall first
consider in general terms the question of how the macroscopie variables
deseribing a system of identical elenents depend on the number of these
elements, From this point of view the variables fall into two classes, Some
of them, called intensive variables, arc independent of the number of elements
they characterize properties which belong to any part of the system and
are wniform throughout; such are, for instance, the pressure and the tempe-
rature, Other variables, the extensive ones, are proportional to the number
of elements; they desoribe those properties of the humogeneous system whieh
arc due to additive eontributions from the various par of it; examples
of extensive variables are the volume, the mean energy, and the charaeterise
tie functions : entropy and free energy. Extensive v-riables give rise to

%0f R. Tolman, Phys. Rev. 57, 1160, 1940
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corresponding "densities", which are aghain intensive variables : the den-
aity ia the partial dexr .- “"7o- of *h~ extensive 'variable with respect to
the number of elements, provided that the other imdependent variables,
kapt eonstant in the derivation, are all intensive.

It {s alwaye possible to have all independent variables inten~
eive, for each pair a, A consists of an extensive and an intensive variae
ble, either of which zan be chosen aa representative of the eorrespomding
physioal phencmen:n, Thus, we may take either the volume or the pressure
as the mechanical variable of a body of isotropies structure; there are
aceordingly two different "free encrgies" F ( 8, V) and 6 ( €, 72)
whioh are usually associated, in a rather arbitrary fashion, with the
nemes of Helmholtz and Gibbs, respectively, In general, the passage from
the characteristic function F ( 8, a) to the function ¢ ( & , A) is affec-
ted by a "Legendre transfor?x&ion" :

¢(@,a=F[f a(a)=-al(a).a
wherc a(A) is the inversion of the function A(a) eomputed from P( & ,a)
Thus, G (N; 9,p) =F (N; ®,V) + ¥p, and the corresponding density is

o 8.0) = (575, (6)
30 that
6 (v 8, p)=Ne( @, p) (7)

From the connexion

log Z2 (N; §,0) == 56 (N; &, p)
betweon the statistical function log Z and the characteristic function G
wve derive immediately

log 2 (N; 8, ) =~Npeg (8 ,p)
i.e, log Z is an extensive function. This formula, it is true, is not
strictly applicable to the case of our x.i..foirs, because the variation
of the number of molecules in such a reservoir does not occur in an exterw
nally controlled way, at constant pressure, but as the result of random
fluctuntions, The pressurein the reservoir is regulated by the mechanical
equilibriulnconditions acrocs the semi-permeable membrane through which
the exchange of moleculea with the system § tokes place; ita value ie
thus a function of the average numbers '1:1'1 " Fé of molecules in the system
5 s and every deviation from these averages dbrings about a perturbation
of the equilibrium, For small deviations, however, we may write ¢
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where the reservoir pressure 5 is 1 function of the pr p of the
system S and of the average nunmbers N1 : N2. Apart from a factor indepen~
dent of Ni” and which therefore cancels cut in the average (5) of the

phage function f, we have the required asymptotic expression

Z (/?/ N} e e

Combining this. with the factor wr (Ni)’ given by (2); we may say that in
the average (5), each number Ni is weighted by a factor of the form

[ c "'l' Zf‘, N“

where the function ¥ i( 5, ps ﬁi ,-I\fz) =-g, + £ 1log —l\fi represents the
regoervoir R i in the same way as the parameter ¢ reprcsents the thermos-
tat, In view of its fundamental inportsnce for the determination of chemi-
cal equilibria, it is usually called the chemiocal potuntial of the mole-
cular species 1 in the system 5 .

The average (5) of the phase function f now takes the fora

. - 7/’\.';"'“ VoL E I'L’ / ‘::H{I‘l;
- g L o 4 ‘)|"{ G PR ‘J "s“’_;)
4;‘ - Sy M1 / A1 ‘_' R, (8)
s —--»v-~— i (, / . ! ‘\v \ '~7 .
‘f’-— ;V /, i C ‘7 N G AN

rrati indicated by ,/ . "
The phase ntebra ions indi 40y of Alyaws are over specif i phases,

and the factor { Nll NZ!) . has the effect of reducing them to integra-
tions over generic phases, in which eaeh physic2l coufiguration of the
syectem is ¢ mted oply once. The introduction of this reduction factor
was presented by Gibbs os a matter of convention, justifiedi%.ts success,
and it o~ cTme 7 .2 7 e to much confuse discussion ¢ the present
tler:lva'c:lon’m shows how naturally it comes in when a physical point of
view is adopted, in contrast to the more ebstract attitude of Gibbs,

XX On this point even Tolman's fmper, which we fcllowed in all other
particulars, is not.sufficiently explicit.

x It is easily found (sce : Tolman's paper) that the effect of the

perturbation of the equilibrium is of the order (N} -F ) / N7
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According to formula (8), the average f can be descrived as a canonical
average over generic phascs for each possible set of nurbers of molecu-
les, weighted by an exponential distribution factor exp p$( éiNl +-€§N2)
there is a complete analogy with the concept of canonical average itself
which is an ergodic averssc -1 -ach cruogy surJBee,.weighted by an
exponential factor exp [ - g H) . Hence the somewhat awkward nofencla-
ture proposed by Gibbs ; the ordinary canonical distribution of copies

of a closed systen forms a "petit ensemble"; the distribution just

found for an open system is a "grand ensemble". It is often, more simply

called a grand canonical distribution.

3,- Thermodymanies =~ " _-open systems. The statistical interpretation
of the thermodynamical functions for open systems is a straight forward
extension of the theory of closed systems, but it adds an aspect of fun-
danental importance in h‘ . ﬁiz, the way in which the characteris-
tic functions depend on{the numbers of molecules of various species
present in the system; We are here concerned, of course, with the equili-
brium states of the system, and therefore with ‘he averase numbers of
molecules, Let us assume, for definitcness, that the independent mecha-
nical variable is the pressure; the characteristic function will thus
be the Gibbs free energy,

Let us put

zliﬁ,'ﬁ} i ‘;’T"r L) (9)

For a system with fixed numbers of molecules N 2, we may define the

free energy by

5 (Nl, Nz) =~ €log Z(Nl, NZ): (10)
this differs from our previous defirition only by a constant term
without interest so long as the numbers of molecules do not vary. Let us

now consider the denominator of our fundamental formu«<la (8) 1

e Z” Mf.{*’ﬁ.@ﬁﬁ; )
& ety ) (11)

' A lV; ’

and differentiate it Nl’ N, with respect to all macroscoplc variables:

2
this differentiation includes the average numbers Nl’ Le, but leaves

out the numbers Nl’ N2, over which a summation is performed. We get
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where the averages refer to the distribution of the numbers Nl’

= -
'OL-Q.:’ e- 2_. ‘Z(N“N‘L" e
My,

%
given by the probability law

- Mg,
Ziv el (5070 M

The last equation may also be written
QL{uL?p‘g N‘ A NL} oM. B((N,,Nilﬂ‘;\g &Nﬁ-ﬂf d ‘.J £12)

which shows that the characteristic function in terms of the indepen=-
dent variables 8, p. Ny, N, is AP (1 (&, W +%8, N,).

If, in the right hand side of . n1ation (11) we replace the
sum over the Ni's by the single term corresponding to the values
ﬁiy ﬁé of these numbers, we derive from it an approximate form of the

characteristic function,

j?.{-,\(t J-.-r» 1—1.2)%(;(}(1\?:.&) (l)

according "o (10) To this anproximaiion, which is justified provided

that the numbers N, . Wq are vory large, we thus see that the characteris-

A
tic function is still the freesenergy =, taken for ine avcrage rumbers

of molecules, even when thesce average nuwabers are varizd independently.
Now; however, we see that it is quite essential to introduce the factor

-1 i ‘ e ;
N, I N,! vhose rolz is to reduce tie'sunm over siates'to the physi-

1 72 ’
cally distinct states of the system, represented by generic phases.
Indeed, it is only when the integration is reducad to gent: - phases
thit the free energy of a system of identi = elcments preserves its
extensice character when a subdivision of the system into parts is
taken into consideration. For if we make such a subdivision into two
parts containing N, and NB elenments, respectively, and consider the
y -

7
-l ~.'

sums over state Z (N + Ny ), 2 ¥ ) . ) integrated  r all speci-

fic phases of the total syoten anu )f the two paris separately, we have

(N + Ny,
Z (NA 4 NB) = — Z (NA) Z (NB)
N, ! N

I The factor{% can evidently be retained or omittes without changing

the property of the function of being a "characteristic'one.

e e et r 3 e Aeem—— . wwiasmm R e e a S . L e e —— s p——— ot ———
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i.e. pfecisely s
F (npemy) =2y F ).

The argument is immediately extended to the more general case we are
considering of homogeneous systems containing several species of molecu=
les. We must only ¢ n =."ige the concept of extensive and intensive
functions : these will denote homogeneous functions of the numbers of

molecules, of degree 1 and 0, respectively.

Using the approximation (1}) we get from (12) the funda-
mental relation

* __(h(.- - .

P TATE e, AN (14)
)Nyb':"" Cy &
the symbol \ﬁi} indicating that all ﬁk's except N; are kept constant

in the derivation. The extensive character of G allcws us to write

N (15)
kil
Comparing (15) with (13), we see that, to the approximation considered,

ﬁ

oL ® 0. This rcans thot the denominator of formula (8) pratically
reduces to unity, which considerably simplifies this formula.

An interestigé feature of the free energy for a mixture of
molecules is that it does not reduce to the expression for a single
species if the different kinds of molecules are identified. Take. e.g.
the simple case of a mixture of two species of molecules in the ideal

gas state. We have

If we identify the molecules Zl’ = 22 = Z, the two first terms reduce
to the expected forn - (Nl # N2) log Z, but the lazt one is different
from ~ log (Nl + Né)i This "Gibbs parastox" shows how essential it is
for a consistent treatment of systems ¢f various kinds of elements that
theses elements be distinguished by dissontinuous criteria. Of course,
the selection of those marks which will be used to distinguish fliffe-

rent species is a matter of convention, to be decided according to the

circumstances of the concrete problem at hand. Thus, in ordinary chemi-
cal reactions, isotopes must be treated as identical elenents, whereas

in questions of isotope separation they will naturally be distinguished
into different species by taking into consideration the mass differences

which are neglected in principle for the definition of chemical species.
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4o~ Characteristic sunctions involving the temperature. In the

preceding section, we heve chosen as independent variables, besides the
temperature, the pressure and the Efmbers of molecules § we have seen
that the correspondlng characterlstlc Junction is the free energy

¢ (0, p, N) in the sense of Gibbs. Always keeping the temperature as the
independent thermal parameter, we have in principle 3 other possible
combinations for the mechanical and chemical variables; according as we
choose the volume insjead of +ie pressure and the chemical potentials
instead of the numbers of molecules. It is easy to construct the charac-
teristic functions for all these ca ases, by applying the suitable Legendre
tmmmmmmm.%b%mwﬁmwemndmmﬂememmwofe,mS
as independent variables, for &he characteristic function would then

-z‘-
Fegome & =% Ni:si, i.e. by (15), identically zero. There accordingly re-~

maein 3 possibilities, viz.ﬁ

) G(eypyﬁ) =Zﬁ; \gi

(0, v, '1\3) =§.—'Ni ‘ji-pv (16)
Q(B,v,‘S)':-pv

The property of béing a characteristic function is expressed

in the threé cases by similar equations :
-sa8 +"dp+ ‘S d N
-sa B - pav +I ‘j "“/ (17)

)

aN=-sdaf - pv - Z N, 4%

Thus, we see that the chemical potentials can be defined by

SL: (g;)@ Vo {N} (18)

just as well as by (14). On the other hand, we have
V.. oQ)
AR TR R

The statistical definitions of the characteristic functions

aG

dF

it

(19)

-()., F, G, are likewise quite parallel : the present co mon feature of

X mhe function SY in (16) has a diffe ent meaning from the function

denoted by the dame letter in section 3. Henceforth, f)vnll always denote
the function defined in (16).
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being simply related to the normalisation factors of the respective sta-

tistical distributions., The definition of.(l is in fact given by

ﬂz.v.N'

I B
S T VI

' e T T

P RRTAN
e' £ H {'V; Ny -~y /d"(%‘orsl"

where the Hamiltonian is expressed in terms of the volume as the external
mechanical variable; the proof is immediately obtainedtby comruting the
differential ofn with respect to the independent variables 3 sy V and
the \sifs. From (:p) and (16) we derive for the function F the equation
< eﬁ} S (V-w;) 'e—.-pH(:’“. viei V)
€ = T o
NN,-- Ng! Nx-’"'

d P g -~ - (21)
if we neglect the fluctuations of the numbers N.l around their averages ﬁ;
this expression reduces to
5 fuies - .v)
Q-[&’.,’Q’J ; ep (V'Ml”l /,[ -~ -
N N W, n, - - (22)
Now, the corr%éponding rigorous and approximate expressions for the func-

tion G are the same as those for F, except that the Hamiltonian must now
be expressed in terms of p. This corresponds, for the macroscopic quanti-
ties, to the passage from the "energy" to the "enthalpy" of the system.
From the atomistic point of view, we have -

H(P ¢d= H(P V) +pV (23)
the physical meaning of this relation is that in this psssage we change
the definition of the mechanical system considered. In fact, i1f the volume
is given, the Hamiltonian is simply the energy of the system of molecules
enclosed in a fixed containew. If the pressure is given, we must imagine
that, for instance, one wall of the container is a mvable piston, upon
which the external pressure is exepted: this piston is now part of the sys=
tem and contribute. - a term pV to the Hamiltonian (where V is now regarded

as a function of p and the other indevendent macroscopic variables, )

" The situation is very similar to the above discussion of equation

(11); but there, we had chosen the pressure as independent variable, which
eventually led to the result that the other characteristic function t(l
defined by (11) vanishes.
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Seconde Partie

Chapter I.~ QUANTAL DESCRIPTION OF PHYSICAL SYSTEMS.

l.- The states of a physical systemn. We shull here briefly recall

the main features of the quantal mode of description of physical systzms
in the form best adapted %o the application of statistical considerations;
we shall espec’ 1ly have in view the definition of an invariant measure

in the "space" in which the st:sfes of such sysZems are represented.

“s is well-known, the most general way of characterizing

the state of a system is by a complcx vector in a Hilbert-space, i.e.

& linear space in which the operciion of scal.r product oi two vectors
is defined. This operation plays a fundamental part in the physical in-
ter.retation : it makes possible the normalizaticon of state vectoms, by
equating the scalar product of the vector by itself to unity; for two
such normalized vectors, the square of the modulus cf the i¢salar product
gives the proobability of ascertaining cne cf the states when the system

is in the other.

Finaily, one can specify the Hilbert space womewhat further
by assuming that it contains complete orthogonal systems of state vectors;
such systems form enumerable sequences of veclors. Every state vector
can be expressed as a superprsiticn cf all the vecters of sny complete
orthogona? system. Let (ﬁg) denote the scaler product of any two vect-rs
fig; it is defined in sdch a way that (g,f) = (f,g)$3 the cwmplex conju~
gate of (f,g). An orthogonal system ‘pi of normalized ctate vectors is
defined by the equations (‘(’i, ‘l‘k) =d sv T it is couplete, we may

write any state vector { in the form

f=2_ (f,t(i)h{)i. (1)

U :
For such a treatment, see von Neumann's treatise.
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2.~ Physical quentities and grerators in Hilbesrt space.

Physical quantities ame represented by linea T operators in
Hilbert space : the quantity A acts upon the state vector f to transform
it into another state vector Af, whose physical interpretation is fixed
by saying that the scalar product {Af,f) represents the expectation walue
of the quantity A in the state f. In order that this expectation value
be real, the operator A must satisfy the condition (Af, f) = (f, Af)
for any fj such operators are cslled Hermitian. Physical quantities
always correspond to Hermitian bperators. ’

Besides the expectation value of a physical quantity in a
given state, one can define the distribution cf the possible values of
this quantity in the state in question, This is the problem of main inte-
rest to us, since the distribution will give us the specification cf
measure we need for the study of statistical averages of the most gencral
kind, We shall therefore go into some detail about it, without, however,
‘aiming at a complete treatment? We start with a class of Hermitisn opera-
tors such that it is possible to find sta%es in whish they have a defini-
te value : the eigenstates and corresponding eigenvalues of the opera-
tors. An eigenstate T i of the operator A, with eigenvalue ﬂ-i, is defi-
ned by

A I O (2)
Fram equation (2) it follows that any two eigenstates corresponding to
distinet c¢igcnyalues are orthogonal. Further, if an eigenvalue is degenew-
rate, i.e. corresponds to a finite set of cigenstates, such a set can
always be "orthogonalized'". The total set of ecigenstates can therefore be
regarded as a complete orthogonal sy~tem; this neans that the eigenvalue

like the eigenfunctions, form an enumerable seguence.

Operators with =2n enumerable set of "discrete" eigenvalues
are not the most gener;l type associated with physical quantities; but
the further discussion of their properties will lead quite naturally to
the rquired generalization. If we expand the state vector f according
to (l) in terms of the eigenfunctions of the operator A, we get for

the expectation value of A in state f

x
For such a treatment, see Von Neumann's treatise.
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2
(af, ) = (z«i l(f/tfi)‘
Assuning, for simplicity; all eigenvalues non-degenerate, this relation
expresses the fact that the quahtity

& (a3 1) = (2, Y12

represents the probability of finding the eigenvalues g of A for a
system in the state defined by f; one has, of course, the right norma-

lization for probabilitiesz G(ai; f) = 1. For our class of operators
&
with discrete eigenvalues, the statistical weights 'CS'(ai; f) may be used

to fix a meazure in the sense of Stieltirs:: i.e., we may write the ex-
pectation walue of A in the state f in the form of a Stieljes integral

extended over the whole range of real values.

-0
e, 1) = | AAT (AR (3)

where the set function T3( N; f) is a discontinuous step function of

- #

the form indicated on the accompanying graph :
) S q. - {
B S R e S __.w,..__.,.-..\.,_‘! "j! .:,\is t\
e " The interest of formula (3) is

that it can be upheld with a deter-
mination of the measure &3( A ;f)
uy ’\ more general than that give by (4)

[
]
\
!
'
[}
]

A T X oo

TG

In order to arrive at this extension, we shall write formu-
la (3) in a form in which the arbitrary state vector f does not appear
explicitely. For this purpose, we associate with any state vector T
the projection operator P,T defined by

P £=(f, ¢)Y (5)
With this notation, we may write, for any operator A with discrete eigen-
values

A.:‘- aiP,, 3 (6)
Vi

or, symbolically, ~a&-~"

A= J N Uy (1)

<@ < z B

ne'
% The way to take account of any degeracy is quite obvious. Our

fundamental formulae (4) and (8) cover this caze as well.
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The meaning of the symbolical expressions (7) and (8) is given (3) and
(4), we may say that for any state vector f, the measure W( A; f) is
the expectation value of the operator U( )\) in this state. The normali-

zation relation may be written

+-2
N\ ) =1,
- o + =0 ; )
or, in operator forn, j d U(A) = |

- -
this explains the name "decomposition of unity" given by Von Neumann
to the operacor function J(A).

Now, decomposition of unity necd not be restricted to the
forn (8), corresponding to discontinuous step functions <f thepype (4).
We may have more general set functicns W ( /\_ ; £), e.g. continucus in
some interval. In fact, the properties vhich entirely characterize a
decomposition of unity completely -~z that the operator \U(.\') be Hermi-
tian and idempotent (i.e. U2 =), Accbrding +o (7), a given decompo-
sition of unity completely defianes an operator Aj; ecuation (7) expresses
the "spectral decomposition''sf .- "™e points of discontinuity <f the
decompostion of unity G (&\) of A give discrete eigenvalues of A; inter-
vals in which U( K) is continuous,; but not constant, form the "continuous
spectrum* of A. Not all Hermitian operators have a decomposition of
unity; but it mey be assumed that those overators -.=" i1 »iTve .o Dlgnii-
cilmhntities belong to this class, We may then conclude that the decom-
position of unity of the cperator representing a physical quantity defines
the probability distribution, for any stuve, .7 all tle possible values

of this quantity.

3.- Projection operators and traces. Projection dperators may some-

times be used with advantage instecad of the state vectors to which they
belong. Thus, the expectation values of the quantity A ir the state f

may be expressed in terms of the projection operator Pf es

(af, £) = tr (P A). (9)
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The operation indicat-d by tr is teking the trace of the operster £~1lo
wing it., If 5 is any complete rrthogonal system, the trace of the ope-
rator A is defined by :

tr A = (Ari’ fi);

it is readily verified that this definition is independent of the choice
of the sytem Yi; T;l";e notation (g) is especially convenient for expres-
g8ing the distribution density of the values ¢£ an operator ; the proba-
bility of finding a value between )\and k+ V!X when the system is in
state f is '

am (hi0) == [pa i(A)] (10)

If the operator A has a degenerate elgenvalue a, with a set
ke

gl

of orthogonal eigenii. cSicns (i” im the correspond:ing term in the spec-
tral decomposition of 4 is a, i 4 Witk

P~

: P
U; = 2 Ve
L 1 'y 'Vb\
Y\
and the probability of finding this value in ctate £ is ac~sxdinglr
tr (Pf U i>' Moreover, since txr Pfr 1 for any normalised gtate vector

tr U 1 represents the degree of degenerauy of the eiguavalue o,

4~ Temporal. evolvtion of a system. The way iz which the state cf &

system varies in the course of time may be described by assigning the
variation to the state vector. The fundamental equation cf "meticon™ cf
ammewwm\yh

{_’l’ M: H\P,

D& : (ll)

the operator H dencting the Hamiltenian ~f the system. Ir fue represen-
tation thus adopted, which is called the ** Schr&iinger“_represrntation
the time variation is entirely ascribed to the siate vcjtors, while
the physical quantities are fixed operators in Hilbert space, This situa-
tion is quite analogous to usual onein classical theory - the time
dependent $tate vectors correspond to the classical trajectories; while
the fixed operators correspond to the fixed rhas=2 functions which repre=
sent clagsical quantities. The time dependence of the latter is iudirecs—
ly given by the variation of their argument, just as the time dependence

of the expectation values of operators rosulis from the voriation of the
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state vectors.

A further analogy with the classical case appears when the
motion is reg-rded as a transformation of the state vector or the vhase,
respectively, The Schrodinger equation (11) defines an automorphism of
Hilbert space just as the Hamiltonian equeations define an automofphism

of phase space, In Hilbert space, the canonical transformetions are

those which preserve the fund=mental overstion of scelar product of state
veetors : they are the so-called unitary transformations. Now, equation
(11) cen be immediatcly integrated in operator form ¢

-4 HE
ty = € 4 7{’ 0
\i/ (t) ) (12)
and this form shows explicitely the unitary transformation by which
(0) is changed into Y.(\. The corresponding transformation of the
[
rojection operators is o K
Proj P L HF o Ht

A ew
Pq/(l) % /

and the analogue of Liouville's theorem here reduces to the trivial

()

gtatcrment of the invariance of the trace tr P
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Chapter II.- «THE ERGODIC THEOREM.

1.~ Ihe first ergodic theorem. The discussion 6f the equival&i¥s

.- .

between time averéées and statis%ical averages in duantﬁm theory is for-
nally parallel to the classical one. It is still convenient to distinguish
between strictly."i;oiétéaﬁ systems,.whose state is described at any time
by the vector 4/ (t) arising from an initial one 1L(O) by the undisturbed
time evolution of the system, and systems whose initial state is more
"coarsely" defined : there will correspond an ergodic theorem to each of

these cases, like in classical theory.

From the point of view of the physical interpretation, however,
the first isolated system of quantum theory is rather different from that
of classical theory. While in the latter theory any initial phase fixes an
energy surface in which the trajectory is entirely contained, an arbitrary
chosen initial state vector \F’(O) will in general define a statistical
distribution of the system over all the possible values of the energy.

The ergodic average of classical theory accordingly corresponds to detai-
led statistical distribution over all the phases of a definite energy
surface; but there is no connexion between the distributions on different
energy surfaces; the parallel ergodic theor=sm of quantum theory will give
us a statistical distribution over all values of the energy, but without
any reference to the distribution of other physical quantities, Such a
difference clearly lies in the nature of the question. Although, as we
shall see, it will be levelled out when the conditions of the second
ergogéc theoren are introduwced, there nevertheless remains an important
field application for the first ergodic theorem ; we shall meet later

with a specific example of such an asplication.

Let us consider the time evolution of an arbitrary state vector
4 (0), as determined by the Schrodinger equation. We shall assume that
the Hemiltonian H has only discrete eiljenvalues Ei with eigenfunetions
E’i‘ We have initially a statistical distribution of the energy values :

YV =E (b0 ey,
the coeBficients ( 4/(0), %‘i) are complex: numbers with definite amplitue
des and phases : . '

T Lo

(*(%t q;y& L
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At tihe t, the state vector has become ‘ b

W= e xE e

the probability denSJ,ty wiE; ) = N2 of the enorgy distribution is
wnchanged (this corresponds to the fixed energy surface of the classieal
case), but the phases vary with time.

The expectation value of the quantity A at time t may be A

written

\ (¥ xe Y : S (€&
(AL‘_ \‘/t'}: 12 C‘_t(‘ "-l)(A({;,‘?a)‘i /( ()f'
It depends on the time only through the last exponential factor. Now,
this factor has always an average value with respect td tlme s it is
zero ognaccordlng 48 E # E or Ei = Fk Therefore, the tlmc average
‘—/)t of the expectatlon valub (4 4’t’ 4Jt) always exists; its character
is essentially different, however, according as the eigenvalues of the
Bnergy are or are not degenerate. If there is no degeneracy, we have

A = & AR, (1)
if, on the other hand, to take a simple illustra.ionm, the two eigenvalues
E e o Em are equal, their contribution to the average Ait, besides the

diagonal terms of the weneral type (1), will .include a creeitorm
C{dg - C A, y
in e [ ¢ Q(M)( A‘{’C'((m_),/

(Re = real part of) depending on the initial phases X, X ..

(&3

We therefore see that in order ot obtain a time average of
type (l), independent of the initial phases, we require an assumption
about the eigenvalues of the energy, the absence of degeneracy : this
assumption is the analc ue of the classical hypothesis of the metrical
indecomposability of the energy surface, Remembering the meaning of the
coeéficientsﬁg'i and using the trace notation, we may write formula (1)
in the form

(2)

with

- (3)
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Formula (2) expresses the time averege of A as a statistical average,
which is the quantal analogue of the ergodic average defined by Birkhoff's
therorem, The statistical operatori,}% depends, as already explained,

on 1y on the probability densit9 of tﬂe energy distribution in the initial
state i? » but not on the initial phases of the energy eigenfunctions in
state 'L? « #8 a natter of fact, the operator i * simply results from

averaglng the projection operator }‘ over these whases. Infact, from

. 4
P" .‘, ’ 'f r ! ( {' - V
t"’ f" -~ i ‘.‘( . {U = ":“ v # ! (4 \ l.f
1 L \ k)
we get by averaging over the‘x s /
P °f — v T ’ g
P o STt { O R
t "L,. § % T L L "*i" . F- 1,{# r
R L. pv '

In other words, the time variation of the state vector has the effect

in the long rua, of uniformly distributipg the initial phases over all
possible values : this somewhat loosc statement is analofrous to the clas-
sical picture of the trajectory "filling up'" the energy surface, The
averzying over the phases means that a "pure state!", represented for the
statistical purposes by a projection operator P?i_ ls replaced by a
statistical assembly, representcd by the operator |, %y.

2.~ Macroscopic quantities and coarse distribution.

i Ls already

pointed out, the statistical operatorjdﬁg,only describes a distribution
over the eigenvelues of the energy, withzut any further detail. If on=
tries in quentum theory to approxihate the calssical description of the
state of a system by a number of different physical quantities, one
imsediatly mezats with the limitations in the assignment of definite values
to such quentities which result from the non-comnutability of the corres-
ponding onerators., A way out of this difficulty has been suggested by von

Neunannt

“The idea is to represent the macroscopic quantities by commuta=-
ble operators constructed by an appropriate "smoothing out" procedure
fros those which give the idealized representation of the same quantities

in a strict quantal description of the system,

Thus, the energy of the system is strictly represented by the

m—

Hamiltonian ng S Ty
| = 2. )

)
[ ST
y §

—— L —. ——— — > - ———————————

7. Von Newnann, Z. Physik 57, 30, 1929.
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we again assune the Hamiltonian to have onig discrecte elgenvalues.

Let us now subdivide the energy-axis into a sequence ntervals Ia,
each containigg a certain number *\a of eigenvalues Ei; let us ascribe
to each interval Ia a single value .38, which will be some average of

the Ei's contained in I_, and a projection operator

T i

L’ = ~J(Ia3 = 2 i .'_!u (4)
the surmation };“;extending to all eigenfunctions L{f{. vhich pertain to
the Ei's in I_. We nay then define a new opera‘c01‘3.5l , which we shall

eall the "macroscopic energy", by its spectral decomposition

JC = Aw \& 1 (5)

We nay describg this procedure as EY "coarse" Shble sion of the Hilbert

space into energy shells, represented bu the projection operators Lj;.
<

To each shell corrcssponds =a c‘mmner te value of the'macroscopic’ ener
p Yy

of degree of degeneracy S == #r d

Any other macroscopic qua ntlty/lmust commute vith the maco-
scopic Lnergyje its eigenfuncrions wl«’ are therefore linearly related

to the f‘i's. In porticuler, ons may re-write formula (4) ia terms of

the Pwk : - (o ) \,)
o= 2= iy )
the summation extends over ail the P w belo;}gg’pg to the internal I
K - - -

Now, it may hapven that the wk‘s belonging to I correapcnd to several
7
distinct eigenvaluws 01\}“1',. in this case, such eigenvelues will Theracte-

rizec a certain subdivision of the interuatl I into smaller intervals
:'La y Le2. Of “he energy shell./int. celis

3

o

A \
D N =¥

= o I
K . ) ¥ y
(the stmruation < xtends over all the P 's belcnging to the interval

(g
(U} of deggn“racy/&\v tr L,LU) K

By using a sufficient number of suitable macroscopic quan-
tl‘tleSJlt B eess One finally arrives at a subdivision of e..— ch
energy shellU into N_ cells of fype (7}, $n such a wny that *

L(L‘;:.S_ﬁ_ M ) S = Z /~»_ (9

y=1

=

& We take the 's to be the set of cwganfuncﬂor\s cormon to
all the macroscopic varil éoles considered.
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We shall not here raise the question whether th'lc cell subdivision can
actually be brought down to limits sufficiently near to these imposed by
the uncertainty relations; von Neurmann has shown that it is indeed possi-
ble to construct a set of 'macroscopic" coordinates and momenta 62 K Pk
satisfactory in this respect. All macroscopic quantities of physical in-
terest can then be expressed as functions f(C?k,‘Ejk).

3.~ Von Neumann's ergodic theorem.

The coarse cell distribution in
Hilbers space just defined forms the basis for the formulation of a
second ergodic theorem, due to Von New:rann; and widely analogous to
the classical ergodic theorem of Hopf. We envisage a macrcscopic quantity
A= I3 dluy
o vz
and its expectation value in any state \j/(t/ at thL T

V%((f/&): E’( [ Z—Law}ww{

V t !/ (V) )
= [ { Uy )
(t:) 1: o9 //
The staterment of Von Heumann's crzodic theorem is thaet there exists a

statistic 1 average b uivalent to tae time average of (L/ in as
q D

much as the mean quqdrqtic flu tuation

T

< [T A )- Ay 46 o

tends to zero in the scnso of lxubabllltv, rovided *hat certain conditions

(whbch we shall formulate in the course of the analysis) are fulfilled by
the system. Convergence "in the sensc¢ of probability" means dhat the
probability that tas quantltj in question dous not tend to zero can be

made as small as one likes.

The expression for the statistical avorageﬁ;;llis a direct

)
extension to our coarse distribution of that giver by the first ergodic

o ‘{U(, _ /u u%)
y _@y &) U o)

In fact, by gi;pter I; §3, tho quﬂntf%/ -I}L[’ f’ { Fa/ (’Z? )

is the total probability for the initial state d/g 3 ¢l fiz’iny the
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pacroscopic energy in the interval Iq ( . with the value g ) and
t{ﬂ ]-IU —U a'/S i2 the mean projection operator in this inter-
val, With the notation 1nt*oduce1 so far, we can write (ll)

A= 5.4 047 He

o Y
The form of the express:Lon

(12)
; ) =
A () - Aly| = }’}:au[ww %ﬂl

suggests a comparison with the avoragre of the & “ntlty

(Aﬁ Z. (ar w)) h (W W&

By an appllcatlon of Sc* rz's mequallty we indeed fmd

- 04K,
(A/((//t m% \ UZ}—I/Z. 2 A“”’W( ()43@9

We shall have proved the theoren 1f we shox that th facto* of\‘A. /

in the right haud side of this inequalily, affer time averaging, tends

to zero in the sense of probability.

The only quant:ty devending on thetlme is

w () = Z(a ki {/L//,_) L(

Fork‘/ we may wnte using the samc no*ation as in § 1,

L@': £y, = tf i r
‘{/ — < }’)L (‘0,; ) [\)L»»- C(L A”: "-Lt-
We thus have /6 A _ T S v
V) T—\G/ ’/ } . 1{ ./ \{
’Hf( /é) /' }Z”V’Lc‘; /\(iﬂL} “‘)K/
. L. ,
= 30, . ME ) - Y
o g .
with Yo" a i L(}

(= 37 (a9l ) @

The C,(.7y) tkus defmed obviously vanish unlpssf \f both b2long
to the ﬁlturval I ol hence the restriction of the surna

this interval, Morcover, 1f(f \f) belong to I o
' @u
& == G

ion over i, j, to

\
]

L !

V=1 0" J
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and therefore W - Z‘: /kf{» ( 0) Z(a)

(14)

We thus have to take the time average of quantities of the

20=(w¢- 4%”;/’*-2 {4 Sty [cf"."’_é.. &)

¥
We see that these time averages reduce to expressions independent of the

phases D(i, dj only if the two following conditions aresatisfied :

a) no eigenvalue E, of the Hamiltonian H is degenerate,

b) there are no energy "resonances", i,e, no two energy differences
Ei $E 3 are equal, Note here azain the parallelism with the conditions of
validity of Hopf's ergodic theorem : besides the metzcal indecomposabi-
lity of each energy surface (corresponding to condition a ), we had to
assume metrical indecomposability for almost cnergy surfaces in the pro-
duct space, which is analogous to our present condition (b). Under condi-

tions (a) and (b), we get for the time average of wthe expression

©) u ) Atv) “) /71. \ @
Lv §_ V’ :
Applying Schwarz'z inequall’cy to the flrst term and using (14) we hav

W W >“‘“[c. 4“”}5_ | C

[ gl ¢
and accordlngly CL . d J’ ‘ J’

¥t
Sa. oW v zm 15)
Zw;xée—:-e LV) w x <Z L+ L\ W ME(}'
y 3 (59 A e (%) e
M9=2 B\ £y
3 Sa

In the expressmn on the right hand side of (15) the

A

L >

\.-r

factors which depend on the state vector considered, viz. the P 's and
u/ » are separated from the «o~ . llients M:E.j y in which the mfluence
of the coarse subdivision of the Hilbert space into cells is concentrated.
It is clear that the right hand side of (15) will always be <2§fw

, 1.8, <2€ for any state vector, provided only that all Mij
are themselves <£ The crucial step in the proof of the ergodic theo-

rem is the study of the distribution of the values of the Mﬁa’l's for all
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possible cell subdiwisZone . This will lead to an estimate of the probabi-

lity that the parameter Z be larger than any given value E o and will

show under which xonditzon this probability can be sufficiently reduced.

Von Neumann's n»riginal argument has been simplified and shar-
pened by Pauli and Fierzt? to whose paper we refer the reader for all
details, The starting point is the obserbatéﬁr&)that the ( 37 wk)
which enter into the exprzasion for the C 13 can be regarded, for any
interval Ia' as defining a set of orthe ~ unit vectors in a com

Qv
plexe space of :S dimensions; each ( '4epresents the scalar product
a iJ

of the prcjections of two such veciors on a of A & dimensions.
With the help of this geometrica’l model, the "moments* of the 's‘gibu—
Mln

My 3

tion of the Mi 37 i.e, the average values of the various powers
taken over all possible orientations of the vector set just described,

can be valuated. From the incments, an estimate of the probability distri-

bution readily follows.

The probability that, for any intexval :a’ the upper bound

of the M&;) be larger than zo ic found to be of the form

Ao S
i & - (17)

where b ’i.s a nmizber of the order of waily; tuis estimate is vaiid for

23)52\-30;4” We this sec thai fcr not too small vaiues of o’ the proba-
-

vi1iT(17) becomes vanishingly emall provided only that

C Z
28 N <) &WS \
A / b a_
N L. / v /
This is the essential 3dondition to ve fulfilled by our coarse cell subdi-
vision of the Hilbert space :r order %o ensure the val: 'ty of the ergodic

theorem. It means that the average number oi exgenfuacvions in any o3rse

ceil must ne lorge ¢ a quite réasonablie requirement.
q q

It must be admitted that von Neumann's ergodic theorem look s
rather forbiffing and ill-suited to practical applications. Fortunately,
as we shall see, its use is not required for the solution of actual physi-
cal problems, It has essentially the character of an existence theorem,
by means of which statistical distributions more nearly approximating
situations of physical interest can be derived. Thus, we shall presently

sece, in the next chapter, how von Neumann's theorem supplies the basis for
distribnticn, which de~nribes the s+tatistical behaviour of svstems of defi-,
nite }t‘emperature.

* W. Paul and ¥. Fierz, 4. Poysik 105, 572, 1937.
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Chapter III.~ STATISTICS OF CLOSED SYSTEMS.

l.- Statistics ~f composite systems.The course we shall follow from
now on will be closely parallel to the development of the calssical theo-
ry ¢ we shall study successively closed systems in thermal contact with
their surroundings and open systems , and in each case the argument will
be essentially the same 55 in classical theory : only the formal aspect
will undergo the changes required by the quantal mode of description.
Thus, for the discuszion of a closed system in contact with a thermostat
we first need a formal treatment of composite systems; whose various

parts are assumed to be in weak interaction with each other.

Let us consider, e.g., +ro sys ems, each described :n its own

1) y B 2) and state vectors Y A ,

Hilbert space by the Hamil-onisa H'
1? : « The composite system rese*t‘ng rcn the juxtaposition of these
two systems is descrited ‘= a H'ibort space which is the direct product
of the two individual spaces. Its Hamiltonian is

5) () o
H(l) X J‘\Z 4 H\2l' x l\l);

(k)

and the cross indicates the direct product of operators pertaining to

where 1 denotes the unii operator in the Hilbert space of system (k)

different Hilbert SpaS . The state vectors of the composite system

(3) X § ‘2) and trs corresponding projection operators

are products ‘
direct products P (1) x P (). The opcrator which governs the statis-
tical behaviours of the coomosie system Is the decomsposition of unity

of the Hamil*tonian : this is - ¥e musw try to determine.

-~ “e ],
Let t.§k) ' P E‘) be the eigenvilues and elgenfunctions

of the Hamiltonian H(k . and "(k) the projection operator of VO i
in the Bilbert spaco of sys%em %), The erergy eigenvalues of the total
system will be of types Ei: +-E{;’ with corresponcing projection opera-
tors P (l) X P (2) (cr sums of such operator products if there is

e
degeneracy) In nartlcular the projectiion operator L} (I) belonging

to an interval I of possible values of the total energy will be a sum

J@ =2r,0) x Py (2)
(I)
extended over all pairs fil), f (i) belonging to eigenvalues E(l) + E(g)

eontained “n I. Quit. gencrally. thorefore; the decompesition of unity
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°° o,
Lot Y TaR)

of the total energy is

utum*j

- e
where d \)( )(K) represciite the decomnosition of unity of the Hamilto-

nian H , and the integration is performed with respect to A'e

The expression for atJ(}) is immediately generalised to a

system composed of N parts with additive Hamiltonian

H= }i]‘l) X 1( ) cee (k) X eee X I(N)'

The deconp031t10n of unity of thls operator is

N-1

Lwn.wn HU‘” \xAt.f’“wxw«ow' aadx (1)

w;

(o\“)\ \ » (A- 2 ’\u

From this formula we derlve a "law of decompos1tlon" for the traces :

tr[olu'ia // ]ﬂt, [aU'" (Mg [,L{,‘”’“ Nf ] @

-k
[ M \,...)\.v 1
which is entirely analogous to the law of composition of the invariant

measures of energy surfaces in the classical case (Part I, Ch. III, §2).

In fact, at this point, Khinchin's argument can be taken up again and
repaated without essential modification.

For each component of the system, we associate with the
"weight" tr [d \)(k)()\) of the energy interval ( A, A+ d \) norma-
lized probability distribution (in the scnde of a Stieltjes measure)

e~ P e [d U'”Hﬂ
Z{k)({\)

which satisfies a law of composition of the same form as (2) The nor=

das™®oy = (3)

malization factor 1s

7' (m=I /""[W “in] = 'L‘ZM 1*@)

-0
If the total system has a large number of components, we get for its

probability distributiun the asyrptotic express1on

oA - (=E)Y
doo (A= FET TS E -] )\/ (5)
where '
- =

We use the same symbol tr to indicate the trace taken in any one of
our Hilbert spaces.
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179
=K :-‘“" 4 f i ks

-_d
oy £, EMe g 0 LI = G 2

represents the average value of the energy in this distribution, and

(k) plk)_ “Ia. LA (a\ (it
B=2¢ c [:;U J (7 Zip)(T)
i J Z( 1) f”) A, O%

is the sum of the mean squafe fluctuations of the energies of the oompo~
nents.

2.~ The canonical dis*ribution. We can now be very brief in establish-

ing the canonical distribution law r its quantal form for a systen S in
contact with a thermostat T, for the argumcut is little else than a repe-
tition of the classical one. To the total system'® we apply Von Neumann's
ergodic operator'll4p . For the initial state \y in which we consider the
system :? s We may choose an eigenstate of its energy. This reduces
essentially to the projection operator L)a belonging to the interval I

in which the corresponding eigenvalue /\ is containeds this prOJectlon
operator will be more conveniently denoted by A U(A), and

_ AV(A)
uw AV

Now, assuming a weak interaction betwecen syster: and thermostat, we may

write dUU‘}szL US(')\')X (:LUT[A-/\/) /.

and in particular, /
AU(A) deUS(A'J( AU, (1-X)

i.e, the "coarseness" of the energy defizition of the total system is
entirely referred to the thermostat; it does nc*t affect at all the energy

;\' of the system.S , for which we shall odtain a "fine™" distribution.

In fact, any operator A, pertaining to the system S gives rise
to an operator in a special form in the Hilbert space of thé total system,
viz,

whose average is given by

As<te(Uyh) - // qaatony) fr AURA YT

Ci AU(/\/
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For both the thermostat and the total system we may use the asymptotie
form (5) of the distribution law, and we may treat the energy interval
AN defining the thickness of the energy shell as a "physically infini-
tesimal" quantity, We then get in excatly the same way as in the classi-
cal case

/
CV[AUT V\')"jl at A 8 ﬂ/\
e e T e
be (AU (A)) L)
The statisv "2 . _ieccr oo " -anonical distribution is

thus [
-A A ,
Us = . Se SRR
! ()
i.e. (dropping the index S’

o PN ) -(*H
Up= 3@ O wath Z(p) - ‘e, (8)

in this formula H is the Hamiltonian of the system and ﬁ the inverse of

the absolute temperature :; it is uniquely related to the average energy of
of the thermostat by the cquation

_(L KC%ZT(N = ET

Tht{canomcal average of any gyantity is expressed by means of the operae
tor \,’{), in the form

A :tv(UﬁA) (9)

The statistical interpretation of thermodynamics can simply

be taken over from the classzical theory, The free energy is F = = 8 log&ﬁ[

and the entropy can be put in the form

Stk LU(” zé}u/’] (10)

One point, however, requires special consideration : it is the proof of
the permanence of the canonical distribution during quasi-static adiabae

tic transforications.

- Quasi-static adisbatic transformations. Let us start from a sgs=-

tem of given temperature, with the statist.. 2l operator

(.5 Hio )

UPO LT[P {’HloLo)j

We assume the Hamiltonimn H(n) to have, for any value of the external

paremeter a, discréts ~mA non-de~mepst . eigoavalues Ei( a) with eigen=
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functions F i(a). If after breaking the contact with the thermostat, we
suddenly change the external parameter fronm a, to a = a  + d a? each

of the state veetors \f) (a ) will evolve accordlng to the Sc@odmger
equation pertaining to the new Hamiltonina H(a)‘ According to the first
ergodic theoremi, the statistical operator P i(ao) corresponding to

this state vector will eventually take the equilibrium form

< - N} D
~ b (P‘P.:‘U-o) l?",lu.}) 'V'fa,)
But the state vector fi ) was initially represented in the statistical

operator (3 by its progectlon operator Plu‘)wn.th the coefficient

1-—-—--.— e pof s '{‘he statistical operator corresponding to the new equi-

l{"aa Q
librium is therefore ﬁ L
Ute) = Z ¢ ft
Z(/'.,,au) ”
' 5 'A«:'H,a“)
5 by [_-e [Z‘,/ot)] ({,!/a/ . (11)
by [e‘ﬂ H/“O/]

We have now to evaluate the traces occuring in the expres-

(1(, 1KY, ) Z"“’”) P‘f,f a)

-
- -

sion (11) for W(a) in terms of the new Hamiltonian; i.e. we must subs-

titute for H(ao) its value in terms of H(a) :

H(ao)=H(a )-da-g—g.

This calculation demands some care, because the two terms in
the expression for H(ao) do not generally commute. Since we only require

a result accurate to the first order in da, we may write
(3, [Hre)-du M) g, el _
(1] " n-‘ m
€ )u:e ’f‘ﬂ(?/a—Z-“'{/q/ ZH () 7

ve-1

but (Z__ --' H l.M;Pk',Lf{f) n E-h '( b e, ﬁ)/

3 There is no question of introducing here any coarse energy shells,

and applying Vun Neumann's ergodic theorem, as L. Broer erronecusly tried
to do in his Amsterdam thesis (1945). As already emphasized, we are here
dealing with a fine distribution of our system becausé’we ccnsider it+t:

initially.in contact with its surroundings.
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and therefore

- -fA, (o)
(e ﬁoH(ﬂDl(Pj’"’L‘f}’"’) = ¢ ﬁO P L4+ﬁoala' A‘\Ea]

with the notation - JH
P:\E)', "‘( :"O‘L, (PJ" 506‘)

for the expectation value of the force in the state Yﬁ(a). For the de=-
nominator of (11) we thus have

tr [e'{a"H(md} = 2 e*(”» " (1)21 [y Lo At ‘r-l

¢ —
Ly (Q.(i‘-’ HM)J .(1 Mo dea. A] )

st

wheréxidenotes the canonical average of the force for the values /30 J
a of the thermodynamical variables. The operator (11) accordingly takes
the form

- Hio) -
Ulw,:t«[:’f""”“’] ¢ 3o HY {4-/3;;d¢[A~A]

We may write this more compactly by introducing the opesmator

Z‘:i.ﬂE P
TR R ST
which commutes with the Hamiltonian H{a). Therefore,

Uot: 2 ™" g, ua [ -4 [

P e
The operator K},commuting with H, can be regarded as a funec=-
tion of H; let us assure that it can be expanded in the neighbourhood
of the value A E that it takes when H is replaced by its canonical ave=
rage B

AT‘ = ﬂ§+(%—§’-ﬁ (£ - E) +%(—b§'—§2)ﬁ (H - E)2+ cees

Teking the canonical average, we get for A the similar expansion ¢
VA
A - (H - E)Z + soee

A=a)z + ;

By the same argument as in the claggical case, we can show that the

difference .ﬂ - }1 is equal to (-\?-;‘R—) (H - ‘i) except for terms at most

of the order of relative fluctuations which are negligible for macros-
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copic systems. Now, a change of modulus in the statistical operator

Upla)= & fo Hre)

oy =
" te [ o~ PrA%]
yields
Uy, i) = Ufs/u-) [1+ ¢ H-E ]

We thus see that thc new statistical operator (J(a) has approximately
the canonical form Up(a) provided that the variation'.d() of modulus is

comected with the variation of external parameter da by the relation

1
dﬂ+ ﬂ)da(%g)fg:O,

whose thermodynamical interpretation is the classical one.

5.= Irreversible transformations. Gibbs' classical treatment of

irreversible transformations can be readily transposed to quanthn theoryt

We consider arbitrary statistical operators \J or rather, following Gibbs!
example, the corresponding probability exponents q , defined by U:‘ e 7
We have then to compare the average probability exponents tr( qeq )

under various conditions.

(a) Adiabatic transformations : As we have just seen,if we start
from a statistical distribution of the form ev -_-%- 6‘7" P‘Pk and perform

a snall change of the external parameters; we arrive eventually at a

distributi n 19l )
igtribution e 1 - Z (';']“ P‘ﬁ.m),

whose density fulfils the condition

o) e
en = Ly (EHP‘P«"“’)‘Z @,7‘( Wee ;a2

Ik
wki ?‘(‘fg ,Y(INHQ 5

Z W = 2w, =1 (13)

This is the g'nalogue of the condition of Gibbs' first lemma, We accore

with

we have

dingly prove that under condition (12)
o)
tr(q"”e” )étr[q c") : (14)

In fact, using the relation (12)

X
O. Kledin, Z, Physik 72, 767, 1931,
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v M= w0’
Celoe)=tr (17 7 )) : 3 % ¢ {2 W )

Ipl
or,by (13), =5 e o (’)«’7 _ (15)
¢, Ie
On the other hand, again using (13), the normalization conditiogs

tr(eh) = tr (EQ’J') = 1 may be written
. 't;( —_— W)
Z_(. W‘k =
LK

z_eq" W
Z_ ')“Mf (C—" 7/(_1)
< &
Addingt this to the right hand side of (15) gives (14) in virtue of the

identity e:x ~1l-x2 0. The discussion of adiabatic transformations

=1,

Kt

whence

on the basis of the inequality (14) is the same as in classieal theory,

(v) Heat exchange. The theory of heat exchange is likewise contai-

ned in the analogue of Gibbs' second lemma : if a system is composed of
two parts in weak interaction, any statistical distribution C.Q pertai=-

ning to it has a spectral decomposition of the forn

' r,(1)

and defines the statistical operators € 6'0(2) for the component

u)
13)
Y’Ml“ Z e " Z C I.&)
with . ,1

n:) Ze"m ' 2_ G'I‘k
We then have E

tr (?fv ) z tr ( ll(l) e r‘(l) + tr ( Il(z) e'l(z)) (17)

systens by V/ s) i

(16)

The procf is irmediate : we have, with (16),

t/(/(]") by /'7")67 )/ [/’1{2}6"/ Z e 710(/7,‘( " /2)/

whence (17) follows.
It is not necessary to pursue this kind of considerations
any further : the parallelism with Gibbs' classical discussion is quite

obvious. There is, howcver, in quantum theory, a kind of irreversible

process which does not occur for classical systems ¢ a measurement per-
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formed on a quantal system produces in general an irreversible change of
the state of the system: it is interesting to investigate the accompanying
increase of entropy.
b4
6.~ The process of rmeasure-ent. If we have a system in a "pure"
state yl y 1ts statistical operator is represented by the projection
operator P V’ : strictly speaking, there is ho thermodynarical anhalogy
to this case, just as little as to thc case of a classical mechanical
system on a definite trajectory. The statistics of the pure state is a
fundamental property of quantal systems, which has nothing to do with
thenodynamies., As we have seen, the quantal model of a macroscopic si-
tuation, to which thermodynamics can be applied, involves an element of
"coarseness", expressed by the change from the operatrr ’?\y to the sta-

tistical operator

Z [,(P‘,u,bz 1

lul
a, y

This corresponds to passing from a single classical trajectory to a
"tube of flow" in phase space, composing all trajectories defined bv
the phases of a finite cell,

However, the fact that q quantal system even in a well-defined
state involves a statistical distributign has in one respect consequences
of the same genceral kind as the effects considered in thermodynamics :

a measurenent performed on such a quantal system is a macroscopic process
by which the "pure stat¥" is transformed into a "mixture' of all the ei-
genstates of the quantity measured. The question therefore arises wether
the entropy concept can be extended so as to apwly to this specifically
guantal type of irreversible transformation, Thc answer given by Von
Neumann to this question is extremely simple: if a quantal system in is

a state represented by the statistical operator L), its entropy may be
defined as

S (V) =-tr [u 1og U] (18)

This expression vanishes for any pure state, for which v
is of the form P, . In order to check the adequacy of the definition
(18), we must therefore show, in the first place, that any two pure states

of a quantal system have the same entropy in the sense of thermodymamics

&
Je. Von Neurmann, Gottingen Nachrichten 1927, p. 2753
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i.e; that it is possible to pass frorm any pure state to zng other by a
quasi-static transformation which does not involve any heat exchange.
This seems at first sight somewhat surprising, especially if the two
states V,T are orthogo 1n, since in that case no direct measurement
perforrmed on the syst¥em in state \pwill ever yield state )0 . But as

we shall see, the quasi-static transition from the one to the other

be .mes possible if we use an a propriate sequence of intermediate steps.
It will suffice to discuss the case of two orthogoanl states, since eny
two others can be linked together by a third one, orthogonal to both

of them.

Let us consider the sequence of (p + 1) states defin ed by

Wy W
vy = COS 'é;)-" .\F‘f‘ sSin 2 p P P 7 O, 1, 2, ceey Ps (19)

the first state Wo is our initial state (/ , the last one ‘H, our final

state ‘P , orthogonal to l}/ « We start from an assembly of copies of
the systen considered all in state l}/o. If we perform on all these sys
tems the measurement of some quantity Al which has Lf/l as one of its
eigenfunctions, we transform the original assembly into a mixture, a
fraftion l(yo’ y/l)l 2 = oot ?T;— of which is in state \Pl. Next
we hrasure a quentity Az, having )*/2 as oneof its eigenfunctions; the
new mixture resulting from this measurement esontains a fonction €T 5
of systems in state «l/ 5 which is at least the fraction of states }1/2

contained in the state \(l; d.e,

2 2
@2} '((f/or Vl)l . |(%1%2)| H
but froun(lé) we get quite generally

ul

[Cynn Pl 2= 1O W) | 2= eo® o

Therefore,dr > A cos4-2-g- . Proceeding in the sale way, we finally arrive
at a mixture containing a fraction m’p of sysyems in state Pp for

which we may write

2p a1
Wp 2 cos 2p

Since lim cos 2p 1L = 1, wc see that by taking q sufficiently large
number of intermediate $teps, we can actua:ly transform the assembly

in the pure state(l/ into an assembly in th. pure state )0 « Moreover,
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the operations invoved in the sequence of measurements do not zive rise
to any change of entropy : we have therefore proved that all pure states
have the same entropy.

It is now casy to evaluate the increase of entropy associa-
ted with the transformation of a pure state \V into the mixture resulting
from the measurement of a quantity with eigenfunctions \fi. The statis-

tieal operator of the mixture is
P 2
L

i,e., the mixture contains a fresqtion “71 of states ‘Fi’ In order to find
the entropy of this mixture we must try to produce it in a quasi static
way, starting from an assembly of systems all in statec L’/ . To this end,
let us divide the N systems of the assembly into groups of m—l N, UZN""
systems, As we have just scen, we may without change of entropy trans-
form each of these groups into the corresponding pure state fraction

of the mixture ), i.e. %he i-th group into @, N systems all in state

We have then only to mix together in a quasi static way, all the separa-
te groups thus obtained : this last operation, as is well-known, is acé

companied by an increase of entropy,

-V Z N . @0‘% w."
[
i.e. if the entropy is referred to a single system, just the exvression

(18).
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Chapter IV.- Statistics of oven systems.

1.~ Quantal systems of identical elerents. Consider a gysten of U

lidentical elements. Any physical quantity pertaining to this systeiris
syrmetrical with respect to the sets of coordinates representing the ele-
rments. This symmetry entails an esscntisl dereneracy of the correspondin:

operator : from any eipzenf.nction a set of ¥! distinct eizenfunctions can

be constructed by vermutin: the coordinates of the N elewents in all possiw’

ble ways; ail theses eirenfunctions belonz to the same eigenvalue of the
operator., In particular, the Hemiltonian presents this deseneracy, which -
is the analogue in quantur: theory of the set of specific phases constitua..

ting a generic phase.

The symetry degeneracy is rerioved, however, by an additicnal
requirement imposed upon all state vectors of the system : these vectors
rust be either symmetrical or antisyrmetrical in the coordinates of the
identical elements., By means of any set of N! eirenfunctions of the kind
just described one can construct only one symmetrical and one antisgmmetri-
cal combination : the one or the other must be chosen according to the na-
ture of the elements, The requirement of antisymretry is called the exclu-

sion principle; since it implies that no two elements can have the sarme

set of coordinates. The exclusion princinle applies, in particular, to
the fundanent~l constituents of matter, nucleons and electrons, It can be
shown that elements composed of nucleons and electrons (such as nuclei
. ators or molecvles) hove syrmetrical or antisyrretrical state vectors

according as they contain an even or odd nwiber of euvnatitucnts.

In discussing quantal systers with a variable number of iden-
tical elements, a considercble forsal simplification is achieved by trea-
ting the nu bers of elements in this various possible state as quanrtal
variables., Consider first a single element under the external conditions
applying equally to all elements of the system : its behaviour is described
by a Hamiltonisn, which delines a complete set of non-dewenerate gtationa-
ry . states of energies Ek of this element .. We may now introduce the oners-
tor Nk characterizing the number of elements in st«~te k : its eigenvalues
are N'. = 0, 1, 2..... if the state vectors of the systern are symetrical,

k

or N'k = 0, 1 if the elerents obey the exclusion principle. If the interac-

tions betweemn the elements are neglected, the Hamiltonina of the system

will take the simple additive form
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H= % E, N, (1)

valid for an unSpecifigﬁ total number of elements.

Any interacti n of the elerments between themselves or with other srecies
of elerents will etfect transitions of the systews between states charac-
terized by different numbers N'k of elements in their various individual
states k. The corresponding overators may be expressed in terms of elemen-
tary "apnihilation” and " creation" oper:tors By a‘% whose effect on an

eigenvector \'J(N'l, N, ol ....) of the variables Ny, N,.... is defined

k

by th lati
y the rela 1onik \‘/(...N:‘-.) - ﬁ;( \f/ (.- N,:“‘ )
(l;; \V('NL) :{N;u \‘/(ow‘t\/':”'._.)

in the ce®¢ of syrmetrical state vectors, and

K W(NL) s N (V)
ab WM )2 (1-W) (-1 Vi-)

in the case of antisymmetrical state vectors. In both cases, the opera-

tor Nk is given by

” +
k= % %

The inter-ction Hamiltonian of the system may consist of vari.us ter:s repre
senting interactions between pairs, triples, etc... of elements. Thus, the
intersction between pairs of elernents has a Heamiltonian gf the form
S wnsr (VRPN e
where % QPZI), P(2)) denotes the operator of potential energy between two
elements of coordinates P(l), P(z); the matrice element of this operator
rust be taken betwzen the two inital states k', f' and the two final
states k, £ . In the following we shall only discuss in detail systews with
weak interactions, for which the simple forsula (1) is a sufficient appro-
ximation to the Hamiltonian., But in general we may always regard the Hamil
tonian operitor as a function of the operator 81 8y acting upon state

vectors of the type \*'(N'l’ N'2, T N'k,....)

2.- Grand canonical distribution. The classical argunent leading to

the establishinent of the grond canonical distribution for open systems
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ctn he extended to quantal systmes with no essentinl alterction. The system
(3] ¥
S under investigation will be described by, an Hamiltonian H( v\“) u, f ot(_”
(ot ) d““' 4 Y

«® K ] - P ) where the overators & & % pert~in to the i-th species

of elements contained in the syster., The total number of such elements is

v 3 W

( ) of a,lements of e:ch species; their
. (g, g o)
respective Hamiltonians )Vlll be H'/( &, A P 7) where thejopera-
16} )
tors are denoted by 6‘ € ¥ to indic- te(a,rmlhllatlun and crention ’

that they refer to elerontb 1n different pxtarna.l conditions from those of

an operator

We further introduce rescrvoirs R

the syster : the a's and b's coivmte. The numbers of elerents in the sta-

. (C) e t)f { i
“:s of the i~th reservoir will be denotcd by P‘e = By K.C )

their tot.l Q@ uber is accordingly M 2 ﬂ ). The total syster consisting

of system § and reservoirs riay be regarded ‘s a closed syster, with fixed

.ﬂf((): NU)+ "IU) (2)

of elerents of each species.

numbers

The statistical operator of thb tot'ﬂ. syster is thet of a
canoniecal distribution, v~ expl_ {5 (7 +2’I- J ; the norralization is
obtained by teking the tr.ace of this opera_’ror with respect to the sét of
eigenvectors \{/ (N 1) (1) ) of the numbers of elggnts in the various
possible states, subgect to the restricticns (2). The statistical operator
perteining to the systern S is accord:ifgly H (;)‘

oy e."(sHUG—[“-{S [
. -
where the traces over the reservoir operntors are a2gnain taken subject to
the relations (2); this nienns that the resulting factors zre o-erators dee
pending on the N\t i . At this stage, the armr'ent of the cl‘lbslcal treatment
which determines the tyve of dependance of tr f € {5 H on N( 1) can be
taken over. In general, for any closed system of M elenents, the extensive

« »racter of the free encrgy leads to a proportiuvnelity relation

- . NH
log tr[_(’.l ]NM

-ﬂu]
Hence, for a very large open system, the variation of log tr [C A
for a small variation of tie nurber of elements from its averige value

will be approxirately proportinna} to this variation, For the reservoirs

we nay therefore write, on account of (2)
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{0) ’(k)N(‘l‘)
G-L—c-/‘sﬁ"j_ o ? -9 -

where g(l) is 2 function of the macroscoric variables, including the avera-
&e numbers ;ﬁl (i = 1; 2; ~v.). This gives the final form of the statisti-
cal operator of the open system S : 3]
RIS
n (3)

in this formule, the normalization factgr € is defined by
- ¥ A
- pLL pPLE SN A] )
_ s (4)
all qQuill4a] operators N(l), H %fe expressed in terms of the N ;), or rore
) )+

generf:;lly of the &, °, “k .

‘*jf’a <

If the pressure p is chosen as the external rechanical para-
1 -cer, we again find that 2 pratically reduces to zero. Bnt it will
be more convenient, in the following, to tare the volume V as independent
variable : then, just as in classical theory, JfZ. defined by (4) plays the
part of a characteristic function-n. ( 9 y V s r“)). It will be noticed
that no mention has been rade, in the preceding considerations, of the dis-
tinction, s important in classical theory, between specific and generic
phases : this is simply bLecnuse the quantal stetes as explained in §1, a1-

. i - . L&
ways refer to generic phases; no factors (N( )!) 1 appear explicitely be-
cau-e the reduction to generic phases is already included fro  the besinning

in the specification of the syrmetry or antisyumetry of the state vectors.

3.~ Open sysyems with weak interaction. We shall now anply our gene-

ral forrulae (3) and (4) to open systems with weax interacticns. For the
moment, we consider systers with only one cpecies of elements : there is
then in (3) and (4) no sw mation over this index (i), which wmay be dropped
altogether. The Hamiltonian is of the additive type (1). We first discuss
the thermodynamics of sucii systems, which is entirely contained in the
characteristic function (4). This function can now be put into a form
involving only the states E.

i

is the analogue of the p=ss:

of ~ single ¢lement : a transformation which
l"n

o

ge from

theory. In fact, we may write s / Y. £ ) Y
& ﬂ e ',. - I 2 i

e.-r:.n. = Z—-

-space to A - space in classical

NiW, -

’ p(S-Ex) N
- [T 2 e
A A
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Por systei:s with sysnetricnl state vectors, we m.st sw over all inteernl
v-lues of the N’k; this :ives |
p -

for systers with antisymretrical state vectors, we have only N'. = 0 or 1,
whence _.{5_{1 - {5( 'S-Ek)
e [ I+

It will be convenient to condense the formulae correspading to these two

c2ses by vintroducing the symbol
§ - + 1 in the antisy metricrl cuase
-1 in the syrmetrical case (5)

/5(‘5'&)]

“+h this notation
a0 > € ZI rée
po: 2 by

The average number of elements is given by
N - - 3t

- |
Ve X TTR(3-E, (7)

If the average number N is given, equation (7) 1s an implicit definition

of the chemicel potential ! in terms of the macroscopic variables. Since
in any case N st not be negative, formulae (7) shows that the r-nge of
poSsible values of x is restricted in the syrmetrical case to 3 L 0, whi-
le there is no restrictiun to I in the antisymmetrical case, Moreover, one
observes that 1ff)3 becomes negative and very large, the expression for N

reduces to an asyr»ptotw form cumcp to both kinds of elerments :
N = 2 e pL3-E
(3)

This forrula ha.» the sare structures as the classical one? the only diffe-

tFrom the classical formuli./ for an open system with weak interaction
_pa rY N

e P = Z L e Z

N N}
iere Z denotes the sum over the states in ,M ~-space, one derives

N = - =z € > —L i

)Y (V-1
The substithtion N<¥N + 1 in the sum over N shows that this sum is equal to

-p A eﬁ\s Z
whence N = CpIZ
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rence being that the classical expression for the "sum over state" in
,A -space is replaced by the corresponding quantal expression

7:29:(,36"

= : (9)

One usually expressesh%his situation, in a somewhat loose terminology; by
saying that the limiting case of large nagative’ﬁ‘g is that of "classical
statistics", The genernl case is then described as that of ‘'quantal degene-
racy", and the formulec applying to systems with symmetrical or antisymme-
trical state vectors are denoted as "Bose-Iinstein or Iermi-Dir:sc statistiecs”
respectively; the constituent elements of csuch systems are often called
"hosons" or "fermions", The himit of "strong degeneracy", opposed to taat

of classical statistics, corresponds to ".gétﬁ 0 for systems of bosors, and

ﬁ"s - o for systens of fermions.

It will be useful to examinc somewhat more closely the formu-
1z (9) for the sum over states Z. It may be split into two factors, Zt
and Zi reffering to the degreess of freedom of translation and intcernal wo -
tion, respectively. The factor Zt can be ewvaluated in e quxte gencral way.
1o momentum of an element is related to the wave number of the correcspon-
ding stationnary de Broglie wave by the ralation‘¥?= h Ef and the wave

nunbers are quantized =ccording to the rvlations

kx = hx/lt prEmT g

where Doy ny, n, are positive integers, and L is the side of a lorge cube
in which the aystem is ~ssumed to be enclosed. This giwes in thoe vsusl wev

< g
tum soace ¢

the asymptotic expression for the elcument of meesure in momen

0‘3 1] b / ?
o”"rf L bl.%, J"y”‘%z s LAk, """y ‘“‘: < —L do ”(.“ “p
Fal

D

We get accordingly, if m denotes the mess of an element

- B Leet i ~ : P W - 3,’ .
Z ~ A'," e lwl(r,)t 'y Pl ): (’.ﬂ m) {/ b‘
r 5
*his differs from the classical value only by the comstant fastor h -,

Such a factor has no ir "luence, in the ciassical limit, on the thervedyno-

v -

(20}

mical significance of thc sum over the stetes, we shall come back in tho

next section to its physical medWing i, quwtwz tieory.

The other factor Z; of Z depnnds on the structmes of whe
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elenents of the system and cannot be reduced to any universal form. Let
£y be the (negative) eigenvalue of the energy of the ground dtate of an ele-
ment, and E . & PYRRERE the encrgies of the successive excited states:
the positive dlfferonce »,(- c‘, accordi. ngly: represent the energy quanta

¢ .rresponding to the tronsitions from the excited states to the greund

state. We may write ‘EO‘ Z e (El.'eej‘
L= -0 (11)

a convenient form to study the behaviour of Zi with varying tempersture.

We see that at very low temperature, Z i bocomes exponentiaily infinite, like
e !’%"57"’1 s at high ternper;atures, Zi also tends to infinity, generally like

some power of the tomperature. For instance, if the element considered per-

forirs harmonic oscillations of frequency VY about an equilibrium configura-

tion of energy £o , we have, with &, = £ - *’5_ fv

- f’,ls jl l.. f}l*,'v'{"I

I -

s -

/
L

and therefore

Z:x 0/ fro Y21

We are now ir posi‘ion to discuss under which physical condi-
tions the 1limit of "classical statistics' is wvalid. According to formula

(8), the formel condition for the validity of classical statistics , viz

-[E‘S }) 1, means

log é.. ,‘7 X . (12)
Y

¢ us first treat thc cause of clemens without internal structure, for
which 7 reduces to the trinslation part 72 e Using formula (10), we mzy then
write the condition (12) in the form
x 312

far w)

. \
o8 o / N )
N NV

N b z, /

which shows that classical ’s’catistics applics at sufficiently high tempera-

")

77 (13)

tures or low densities. Conversely, we shall expect quantal degeneracy at

low temperatures or high densities.

This conelveion is not moddfied if we include the internal

i . -~ o / E .
structuie of the elements, Ir faet. viluteing -~ forumla \7)7 and putting
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) = i
L‘_’ k. = tk" Eo y we derive from it the a§ymptotic form

- PLS-8) < -fEk

VY e <. €
identical with (8), on the conditio: that -ﬁ( 5+ (fol)»l, which is slighty
nore stringent for the absolute value of ‘3 that our previous condition
-ﬂ»S >> 1. But then, according to (11) we wet instead of (12) the condition

| - BIE]
Ze 2{0‘:? ;i> i

log =
N
&léa'
in which the factor € which renders Zi singular at low temperatures
- neutralized. The only modification in the finql formula (13) is thereforc
an alteration of the exponent of é} in the limiting case of large f; .

The qualitative statement of the conditions for the validity of classical

statistics remains the same,

\

4.~ Chemical eguilibria. As is well knuwn, the two laws of

thermodynamics do not suffice to fix completely the law of equilibrium

of a system of several constituents in chemical reaction with each other.

It is possible to derive by thermodynemical reasoning the general form of
hte "law of mass action", but in the expression for this law a constant
factor rcmains undetermined. This arisegr%ﬂe fact that the characteristic
functions are only defined up to a linear function of the temperature

(a constant for the entropy). In order to remedy thic deféct, Nernst was lcd
to supplement the classical scheme of thermodynamics by a further postulate
which he called the third law, Nernst's postulate does nct directly fie

the value of the entropy constant; but it sets up a relation of universal
character between the entropies of different systems, which suffices to re-
move any ambiguity from the law of mass action, Nernst essumes that when

the temperature tends to the absolute zero, the entropies of all bodies tend

to become equal.

The true significance of Nernst's postulate has only been-
rovealed by quantum thecry. In fact, ist validity is a dircct consequence
of the cxistence of stationary states, which we can always assume to forr
a discrete sequence. As the temperature tends to zero, the statistical
distribution of any syster will tend tu be concentrated in its ground sta-
te, and according to ofir quantal definition the corresponding entropy will

tend to zero, independently of the nature of the system.
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This docs not »can that v huve Jdecive? Nernst's postulate from quental
statistics : for we might of course have added an arbitrary cons*ant to our
stropy definition, But we may say that Wernst's postulate fits in quite
naturally in the frame of quantum theory : it has no longer the appearan-
ce of an ad hoc requirenent, but it seen to be intimately connected the
existence of stationary states expressec by Bohr's fundamental postulate

of quantum theory.

From the preceding considerations it follows immediately that
in order to get a complete determination of the law ¢f mass action all we
have to do is to stick “o the definition we have adopted for the free ener-
gy, 1.e. to consider this definition as "absolute", without any addition
of a linear function of the tempcrature. Now, our definition consists in
relating the free energy directly to the normalization factor of the sta-
tistical distribution of equilibrium. This means, precisely, that we take
as the "unnormalized" statistical operator that factor which contains the
atomistic operators (which we would ecall clagsically the "phase functions"
viz. the Hamiltonian and the nirbers of elements : we thus obtain 2 unigque
meaning for the normalization factor, end conszquently for the characteris~
tic function. In other words, all we have to do to sccure the fullilment
of Mernst's postulate is %o work consistently with actual probabilities

correctly normalized tc uaity in the sensc just explained.

.Considering. in particular, the limiting case of "classical
statistics" (which covess the most usuzi applicatiors to chemical reac-
tiors), we have Just to work witii the “absolute" velue of the sum cver
states, as given bty the :ormula (lC), to get the precise determination
of the "chemical constants" entering into the lam of chemical equilibrium
This implies that the chemical constants will essantially involve the quan-

3

tum of action, represeated by the Tactor h™” in (20) end similar factors
arising from the sun over states of internal moticn Zi’ We here meet with
a striking illustration .1 the essential purt rleyed by the quentum of
action in chemistry : we are, in fact, reminded that the stability of

atoms ard moleculew can only be understood on the basis of quantum theory.

There are phe.omena of an essaentisily &ifferent choracter
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fr-m crdtnavy shomical prociicna. Ao whi ek olomente of vorlony kinds aan
be created and annihilated : ., in interaction with a radistion fisld
pairs of electrons of opposite signs can be produced or can annihilate
into radiation. The statistics of open systems we have developped covers
such phenomena as well, Let us consider, as a simplc, the equilibrium
between positcoe and negatons; the radiation field can be left out of
consideration ; it can be regard~d as the "therrmostat" supplying all
necessary enersy. We have now a statistical operator of the general type
(5), with two species of elements,myhich we will distinguish by the
indices +, -. The average numbers N + ﬁ _ are not fixed, but connected
by the relation
Noo- N+ = const.
expressing that the total charge (usualli an cxeoss of ne;mtons) is con-
served (i.e. that the positrons and negalons appear and vanisl in pairs)
We have simply to write down t?e ¢quilibrium condition __ -
— - 7
0‘(’: _‘_)__Sf J‘ﬂ»./* + f...(.:. (A - Z t‘ff V{N; ‘i'{) r/{}‘\/-:()
)W, JN .

with the additional requirenent

AN, - ANz

-

This gives immediatcly p
3 -+ f_ L
the chemical pcetential of eitheghgegatons or the positrons can be
chosen arbitrarily; the other is then complotely fixed by the above
relation. It nust be noted that the chemicnl potentials we have used are
not the most approprinte to the present problem : in fact, they are
referred to a damiltonian representing only the kinetic cnersgy of the
particles, whercas we are here cconcerned with an essentially relativistic
effect, for wtich it is more convenient to usc the ordinary relativistic
definftion of the aergy which includes the rest mass. The chemical po-
tential j'vr;ferred to this determination of the Hamiltonian is simply
rclated to the potentinl \S by
e s Lpwmct
so that the equilibrium condition takes the form
\.S*" . “(9 - Lowm t
o (14)

The astrophysical implications of this reletion have been discussed by
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Chandrasekhar and Rosenfeld o The most irmediate inference is the following ¢
we see from (14) that the pusitron and negatron systems are in a kind of
reciprocal relationship wih respect to quontal degeneracy. If (as is the
case in white dwarfs) the neagaton gas is strongly degenerzte, the positon
gas is in a state corresponding to classical statisties : it cannot, there-
fore, esseutially modify the steller equilibrium, whic: is predominantly

determined by the pressure ¢f the degenerate ncegaton gas,

5. Statistiacl distribution of open systems with weak interactions.

Hitherto we have discusscd the tnermodynamical cousequences of
the general statisiical operutor ‘2) for open systems with weak interace
tions., Let us now *urn to thc more detailed consideration of the statistical
distribution itself, or, what amount“ to the same. the average value

R [Ay]
. (15)

of any operator A. If we cxpress /A iuv terms of the operator a, .,
A

~ . .
3&, it is
always possible in principle to eliminate {rem {15) all rcfzrence o the
nembsrs off elemeris and to reduce 1 Yo A exprescion invoiving ily the
stationary sta*tes or a singlc element. Just as in the clasrsical case, however
a simple result is oply obta‘nbd for additive quantitics of the form

PR — ),\ (R
: SOA

o= L b Yis
? l\

L0
To avoid trivial complicaticns., let us take the casc of a single species of

o

clements. If A is of the type A = 2, f\ th we get

_ {5":)~< 13 tll( V€, )7Nk] ’7' L-/ ﬂ(Stf)
A= € 8

A, [ r\/ ¢
{ (\ s ;.',) "',l/ 7
- -k S
il\ k (/‘ L e F’ [ "! } i"\,r'. {

L .
This has indded +*he form of an average over the stationary stotes of a

o | e ’f “\ L -~

'N
!

single clement, with a distribution function f(Ek)

= Z 4 £(E,) (16)
t

S

B

-

The function f(Ek) represents the average number LB;Of clements

in state k. An cxpiicit exproussion for it is enaily obtained, We start from
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o WO

tu
o
EH
s
o

F (Ek,
= /1 + 2 ¢ ) { I /:7\

with the notation (5) for dietinguishing hosons and feraicns. The distribu-
tion function f(Ek’ is the legarithaic de._vaibive of F{EP} vt B wd, pigt Yo
(3 ( % 'Ek/’ i.c.

1 "

f(Ek) = - (18}

. o A B < %

Bl -
e N B, €
The limiting case of cLags lC al statistics requires no speclal comment: using
(8) and (9) to eliminate 5 , we ges
\[ - ‘.)[:'9,
. ~ I 2 6
f(Ek) - - e
5
&
On the other hand, the behaviour ci tho ditrionrion Jor ofr1onz quuntal dege-
racy is quite dificrent for bosone snc feranors. In $he casce oo Yosons, we

shall have an accumulation of cie eabs in Sho grovad etate lead'ng to a

peculiar "condens:sion! phencmenong in the casc of fenwlons . ae “onduncy
wzll be for the elzments to I711 up al™ tle Lowest statioraiy siates. A

thorough discussion of thesc aspects. which hewve physical applicaotions of

fundemental importance, is outside the scope of this coursc.

6. Statistics of the radiavicn field- The orly vpoint which remains %o

be settled is the position of tve ra-iacion f.eld witn respect to “he sta-
tistics of open cystems. A radia’*ion rield within an enclosvre with roflec
ting walls can be described as a svster off iniepencent propTe oscillations,
whose wave numbers ki are detcrmined by the boundery co 'ltlonss moreover,
to each wave~nunber belong two independent nogo cf polarization. .ach

- A 4 . . . o .
proper oscillation ™, of frequercy ,f'n ¢! ! ., is quantized a3 a harmonie

;
oscillator of that frequency, i.2. lts ereryy has le eigenvaius o Wik Ei
where Ei =h V; and N{ is a non-aegative interzwe, Although there is no inter-
action between different osrower osclillations, the systen iz nevertheless
crgodic, rrovided *hat we introeduse into sthe enclosure a Ygralin of coal dust"

NV

= e i b5 oS, 5 it ot i e s . 5 7S S
The single index i rcpresents the set of gquantum numbers characterie

zing the proper oscillaticon, including i$s volarization,

e m——
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(vKohlcstHubchen) to secure by absorpeion and omission the necessary oxchan-
gc of cnergy between the various oseillations. In other words, we treat the
radiation ficld as a clossd system  of proper oscillations in contact with

a thermoscat represented by the grain of coal dust.

The total Hamilitorian ie simply the sum of the Hami™toniens Hi
of the proper oscillations. Leaviig out the zerc=point aersy of tae usoill--

tors, we get for the free cneegy f the systums

- ,. — - W7
.-(3"' - i B Z ¢ r )
€ = tr Z'd .I - 'a, b . -
- (_’, t'f" A’,l ; {“ .
(1 2 e = 1B
£ oY) *
i.e, '-/)"-'( K

WL 2 b [ - F K (19)

L .
This expression prosents a formal analogy with that for th: characteristic
function 12 of a system of bosons,; ziven by (6) : it would correspond to
the value ‘j;= C of the chemical potential.

The hosons in guestion are the quanta of oscillation of the
field, usually callced photons : they rcprosentdfpc"uarticle aspect™ of the
radiation ficld. In fact, to cach wave nurber ki 2nd modc of polarization
wa may associate vhotons of cnergy Ei =h L&. Moreover, in virtuc of the
iaws of the radigf?on field, the proper oscillation has a momentum Ni Ei/c
in the direction ki ¢+ we may thus ascribe to cach photon bolgpging to this
oscillation a momentum of magnitude Fi - Ei/c ans dircction k;, i.e. ‘

F? = hiz; The rest mass of the photon is accordingly zero. We may further
introduce creazion and ennihilation cperstors for photons, and ccfine the
operator Ni for the number of photons ir stats i, The dHamiltonian of the
ficld then takes the form H = 2 Ei Ni’ corresoonding to a system of parti-
clos in weak interaction. Tn this rooresentation, the radiation field is
conceived as an open system of bosons, t e grain of coal dust playing the
part of a rescrvoir of photons. Thus, the cxchange of cnergy and the exchan-
ge of elaicnts arc herc the same process, and this circumstance is cxpres-

sod by the fact that the chemical potential vonishes.
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The statistical opcerator of the radiation field
o o }e
5 > -
Mtk Bs o byl

-
U - .
-~ - A
ks 6§.l_ 4 f h;] ¢
gives risc to z distribution function
1

e P o

i3 (EK) ”

for the computation of averages of operators additive in the photon numbers
The asymptotic expression for the clement of measure in the momentum space
of the photons is twice the usual une, so as to account for the two indepen-
dent modes of polarization., Thus from (19) we get for the frec encrey the

asymptotic value
% — ﬂt. p )
V / l;\ L r'/‘ 53 pi-'"‘ . / b= E"' o
e 14
J

)

o
=l

y

I

F = 6‘

he ' .
nye' [~ ¢t
= LR J S '/{ X CL? ( -
™)
\\ h ¢ ) g S ra >l
= -~ &V (‘)‘1 with & = ri‘l-!- . .,,.-..._....
E (hed? ], e*-

This formula contains the thormodynamics of the rauiation ficld, viz. its
entropy doensity 3
A = f—’- 6 é /
2

its Lm,rg'y d. nsity

({ .
2 = .‘\:7 -~ € (Law of Stefan-BMtzmann)
and the radiation pressure
=1/3 &
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INTRODUCTION

Afin de décrire théoriquement les phénoménes nucléaires
sur la base d'un schéma Hamiltonien, il est nécessaire de connaitre
1t'énergie d'interaction entre deux nucléons. Le vecteur d'état du
systeme doit, en effet, &tre solution de l'équation du mouvement :

ﬁ Dw (Hof HLM}-)\}}

On recherche donc la forme de l'interaction en partent d'un certain nome
bre de données expérimentales concernant les configurations de 'deux ou

. , . g, -
pluasieurs wneléons. Cette méthode emplyée auparavant dans le cas atomique

B'est montrée, comme on le sait, trés fructueuse.

Nous nous occuperons ici des tentatives les plus récentes qui
ont été faites dans le but de déterminer la forme du potentiel nucléaire.
Nous n'avons pas la possibiliﬁé de traiter en détail les nombreux travaux
sur ce sujet. Néus preférons nous étendre sur certains aspecté du probléme
renvoyant & la littérature pour d'autres moins récents.

Les derniers renseignenments relatifs a 1ltinteraction nucléaire
prgvienné% des données expérimentales concernant le sys.  : de deux nuclé-

ons seulement.

Le systéme constitué par deux nmucléons n'a gu'un seul état |
1ié : 1'état fondsmental du deutéron. Nous connaissons pour cet dtat
fondamental 1'énergie de liaison, le moment angulaire total, le spin, 180@0mtwl%
dipolaire magnétiquc et le moment quadrupolaire électriqﬁe. Bien qu'elles
soient insuffisantes pour établir une forme définitive pour le potentiel
nucléaire, ces donndées nous fournissent un certain nombre d'informations

sur son caractére.

On peut, par exemple afflrmer que la torce entre neutron-proton
dépend de ltorientation relathn, “des spins et de l'angle entre le spin
total et la ligae qui J01nt les centres de gravité des deux particules,
1'état fondamental du deutron n'ayant pas la symétrie spherlque.
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Les renseignements les plus 1mpo§g§%§% concernant les forces
entre deux nucléons proviennett des états du continu. On déduit de l'ex~
périence les sections efficaces pour les chocs n~p et p-p en fonction
de 1'énergie et de l'angle de déviation. I1 faut citer aussi les données
relatives A la désintégration du deutéron en ses deux constituents lors-
gqu'on le soumet & 1'action d'un champ électromagnétique externe , ou le
processus inverse de la capture d'un neutron par un proton avec émissions
de rayons ir.

Les expériences de choc aux basses énergies ne permettent
pas d'éteblir la dépendance du potentiel nucléaire de la distance relative ¢ :
on peut en effet avec différentes formes d?ﬁotentiel expliquer la vatria
tion de la section efficace totale en fonction de 1l'énergie et de la sec-

tion différentielle qui est isoé%pe dans le systéme de référence centré

autour du centre de gravité (en négligeant 1'effet coulombien dans le

cas p-p). |
La forme du potentiel de Yukawa :
em ™1
Vn
TR

permet d'expliquer d'une maniére satisfaisante 1'égalité des forces nu-
cléaires entre n-p et p-p se trouvant dans le mfme état quantique. Les

3 autres forﬁes de potentiel $ puit de potentiel, potentiel exponentiel,
potentiel gaussien ne peuvent 1l'expliquer. Les expériences plus récentes
aux hautes énergies, lides & l'ehploi de grands aocélérateurs, ont fourni
des renseignements importants. Dans le choc n-p, la distribution angulaire
prise dans le systéme de référence du ceatre de gravité est anlsotrope,
c&ﬁ}rggqlue tgaét&f fé‘ti !:f!cagngieetrlque por .raﬁ'ﬁort Mla direction perpendi..
Le fait que pour des angles supérieurs & 902, la valeur de la section
efficace est élevée confirme 1'hypothése, faite pour d'autres raisons,

du caractere de forcegd'échange des forces nucléaires. Les types de forces
ordlnalres fournissent toujours aux énergies assez élevées un maximum

en avant (& ce propos, penser au scattering coulombien).

. Dans le choc p-p-, On a une isotropie remaiquable qui s'ét ad
3 peu prés dans 1l'intervalle 15¢ - 1652 si 1'on néglige l'action du
potentiel electrostatique qui ne se fait sentir que vers 02 et 1802,

Si les états du systéme n-p étaient identiques & ceux du systéme p-p

on pourrait conclure du comportement différent de la distribution angulai-

re dans les deux cas que l'interaction n-p est nettement différente aux
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'de

énergiecs élevées de celle entre deux protons.,

L]

. Mais & cause du principe de Pauli, la moitié seulement des
états est occupable dans le sesond cas. Deux protons dans des états
noment.. orbital impair doivent avoir nécessairement leurs spins- paratldles,

‘et leurs spins antiparalléles dans des états pairs.

On n'a encore fait aucune analyse quantitative indiquant si

aux énergles élevées, les forces n-p et p-p- sont les mémes, sauf pour

les effets électromagnétiques. Le probléme de l'indépendance de la charge
aux énergies élevées pour les fortes nucléaires n'est pas encore résolu.

Pn n'a pas encore pu trouver’jusqu'icivuné forme ‘phénoménologi~

que de potentiel nucléaire explinuant les divergqéonfigurations possibles

auxihautes énergies, Ces difficuléés ont conduit certains auteurs & ten-

“ter de pier le schéma Hamiltonien et de renoncer aux potentiels nucléaires,

sans toutefois donner une autre ccnception plus efficace. Nous n'avons

encore actuellement aucun principe sur lequel on puisse b&tir une nouvelle

dynamique nucléaire., On peut obtenir des renseignements moins directs,

mais utiles, sur la nature du potentiel nucléaire eqétudiant les phénomé

‘ nes nombreux qﬁi intéressent plus de deux nucléons. En partant des confi

-dlorbites successivag se disposant en couches

gurations dﬁunvsystéme compléxe, on peut en effet remonter & la nature
de la force d'intéraction élémentaire. Cette question sera présentée dams

la seconde partie de ces notes.

_ Etant donné les difficultés que présentent les problémes i
plusiours dégrés de liberté, on est obligé d'employer dans 1'étude
mathérotique des noysux complexes des méthodes d'approximation qui consis-
teﬁt a4 faire des modéles pour les configurations nucléaires. Il n'est

pes asussi sipmle de se donner un moddle d'édifice nucléaire que de se
dorner un modéle d'édifice atomique. Dans les atomes le champ électrique
central intense du moyau détermine essentiellement le caracté?e des eonfi-
gurations électroniques. On peut accepter, comme premiére approximation,
que. les électrons se déplacent indépendamment les uns des autres en obée
issant au principe de Pauli., Ceci conduit, pour les électrons, au schéma

,2utour du noyau. , dont

celles qmi sont compldtes montrent une stabilité particulidre. Cette
premidre éguadion dqns 1'étude des systémes atomiques‘permet d'expliquer
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le systene périodique does éléments. Une seconde approximation dans laquei-
le ‘on tient compte des forces d'lnteractlon entre les electrons conduit &

une desc¢riptiop trés soignée des spectres atomiques.

Dans 1'étude des noyaux, de nombreuses données expérimentales
sont aussi favorables & 1'idée d'une espéce dc systéme périodique.
‘Les noyaux comprenant 8, 20, 50, 82, 126 protons ou neutrons occupent
une position privilégiée dans la nature, corme les gaz rares dans
la cidssification périodique des éléments. L'usage a eonsacré pour ces
nombres le qualificatif de "magiques". La stabilité exceptionnelle des
noyaux nagiques est confirmée d'une manidre indirecte par le f=2it que
leur abondance relative sur la croute terrestre est plus grande que

celles des noyaux dont les masses sont assez proches.

L'sxpérience montre que 1l'énergie de liaison d'un nucléon
ajouté & une cenfiguration magique est sensiblement inférieure & la valeur

nmoyenne de 8 Mev.

Les spins et les moments électriques et magnétiques confir-
nent la régularité indiéuée pour les noyaux magiques. I1 faut accepter
comme une bonrte hypothése de travail 1'existence d'un champ central dans
les noyaux, bien qu'il ne soit pas facile de: gomprendre le mécanisme
responsable de cette symétric centrale. Une explication trés suggestive
par sa simplicité de la structure en couches compldtes pour les états
nucléoniQues des 5 nombres magiques'cités plus haut est fondée sur *
l‘hypothésé que les nucléons soumis & wn champ central sont aussi sujets
a l'action d'un couplage du type spin-orbite, proportionnel au moment
angulaire total. Un nucléon en mouvement, ayant un certain goment orbital
sera sollieité différemment selon que son spin pryprﬁk'ajoute ou se re-
tranche au moment orbital. La présenae d'une telle force de couplage est
décelée par des effets de polarisation. En faisant passer un faisceau
de protons ou neutrons non polarisés au voisinage d'un noyau, on peut
nbsefver aprés un choc que les particules orientent leurs spins dans une
direction privilégide, Des expériences ont mis en évidence la polarisa=-
tion des neutrons et des protons, donnant ainsi une preuve directe de
1'existence d'un couplage spin-otbite proportionnel au meuent angulaire.
Pour conclure ces considérations sur notre programme, nous voulons ajouter -
que nous nous oécuperons aussi, assez briévemﬁent, du modéle dit de Wigner-
Hund qui a‘joué un r8le important dans l'explication de certaines proprié-

tés des noyaux.
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FORME DU POTENTIEL PHENOMELOGIQUE NUCLEAIRE

Afin de limiter le choix des divers types possibles pour un
potentiel nucléaire, on est conduit A poser certaines hypothéses simplica-

trices qui ne peuvent &{re justifiées qu'ad postériori.

Nous admettrons que 1'interaetion nucléaire dépend unigue-
ment de variables liées aux mucléons, c'est-d-dire des coordonnées
d'es;éce, de spins, et de leur charge. Pour déduire la dépendance du
potentiel de la charge, il cs% avantageux d'emplyer le formelisme du

spin isotopique introduit pour la premiére fois par Heisenberg.

T
On va attribuer & chaque état %J une variasble de eterge qui
ne peut prendre que deux valeurs
la valeur + 1 correspond & un état p (proton)

la valeur - 1 correspond & un état n (neutron)

Dans une représentation de¢ Schroedinger, la fonction d'état

sera non seulement fonction de € , mais aussi de € et €. On écrira ¢

v (r,6,T)

l'opératuer de charge est :
1 = ¢ s

Dans 1'espace formé par \i-’(;f/ ‘,'”) et ‘I”(;ilsl-‘) ,

les opérateurs q et 23 seront alors représentés par les matrices
1 o 1 oy
e=e{, o %
Par analogie avec le formalisme emplyé dans 1'étude du spin ordinaire,

on introduit les deux ppérateurs T;‘ et t p) qui seront représenté dans

dans le méme espace par les matrices
T. - /° 1y T. - [° -i
s (l 0 ) 9 (:i ) ;)
n a ‘C;‘.‘.'-C';:t‘;":i
mir,):-r,r,:bf;

etcede
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Les deux opérateurs | ‘ Ts-0T
' T, LC.) {1 T - - ?
[} t .'.": .‘—L—-—.'..___..,; ! -L et ’ B
s & 7y 0 2

réprésentés par les matrices

- S I |

font passer d'un état de cha.rgé 4 llautre. “

On peut encore pa.rler du carré du spln 1sotop1que :

_-t;/,t,) +‘C§' :.1‘-(1: £-+T°T*) + Ty =3

et attribuer & chaque nucléon un spin 1sotop1que T = + dont la composante

¥ dans 1'espace de charge ne-peut prendre que les valeurs + § et - %

L'espace de charge est purement symbolique et n'a aucun rapport avec l'es-

pace ordinaire, Considérons ¢2ux nucléons dont les états de charge soient

déerits par (al bl) et (32 2:). Les états de charge pour le systdme des
2
deux nuclé.ns sont
Sh=2 8
t .
3, =
3 . LEN

T b1®;

N &>

3

L (a; by - 2y 1))

5

I
!
—

oy
o

M .
+

. [\)m
F
S

Les trois promiers états correspondent au spin isotopique total T = 1

le dernier au spin isotopique T = O

La charge totale -2
g i+ 'CS’ | 'Y \-S
e ( rmaesinnt— + —————
L5 v
est diagonalisée dans la base formée par les . ‘S

Les états p-p et n-n sont donnés d'une manidre univoque
par a, a, et bl b2 + Ils appartiennent donc au spin 1sotop1quc> T 1,
tandis que 1'état n-p peut &tre un melange des états \f et S « I1
n'esfpossible de distinguer ent;e t '5 que si 1e spin isotopique

tctal est un bon nombre quaatique

I1 faut remarguer que. ‘les fonctions propres x de 1'opéra=
teur de charge sont symétriques par repport & l'échange des coordonnées
de charge des deux nucléons; la fonction Toau contraire est antisymé-
trique. |

1'opérateur relatif & cet échange, on aura donc

T
Appelant Pl2
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fatv .-.‘t" f‘;XI“')

Considérons maintenant le produit scalaire

‘ 2 A
- () =) i ''T . +T. L
t,( ,T( - tstt *'t") n tly ™y

-

, \ -
il est aussi diagonal dans l'espace TS + \S

On peut facilemeﬂt voir ue

(T =457,
(izlﬂ —'U)) 3 - -3‘5

.On aura donc - (1) =(2) p
(t . TF 2 fe
L'opérateur d'échange pour la charge s'exprime done simpleﬁent dans
le formalisme du spin isotopiyue par | _2
, g 1
T ‘+(t{)‘>{z)) (//UC) =4
P> - T1g .
W~
: X » ‘ :
Le principe de Pauli s'exprimera dans le formalisme du spin isotopique

en disant que les états 1J<doivent 8tre antisymétrique par rapport &
e,
1'échange simultané des coordonnées d'espane; d spin, et de charge des

deux nucléons c
C \
Po PP V- g

Dans le cas n-n et p-p, cela implique une restriction pour la symétrie
de la fonction dtcnd: spatiale. Dans le cas n-p cette restriction; au
contraire, n'existe pas, comme il faut ='; attendre pulsqu 111 s'agit

de deux particules discernables.

On peut observer que, comme .ious avons pu le faire dans le
cas du spin isotopique, nous pouvons écrire

-{) z)
FC - 116 ‘fm (
RN - 2

et llopérateur échangeant les coordonnées d'espace prend la forme

P (+g()(,l” 841'.“'{{“
- ’ : hand ¥ o, iy V-
n. 3 't PR 2,

Cet opérateur commute avec le spin total et avec le spin isotopigque.

Nous pouvons retourner maintenant au probléme de la forme
du potentiel phénomélogique nucléaire. Que peut-or dirs de la dépendance

du potentiel nucléaire des coordonnées spatiales 2, , %, des nuclésns




R

et de leurs impulsions iﬁ F; ?

Le potentiel doit déﬁendré seulement de la coordonnée rela-

-

tive r-T,

spatiales, et de lao vitesse relative afin d'8tre invariante pour une

= T afin d'6tre invar iant. par rapport aux translations
transformation de Galilée (nous nous bornons au cas non relativiste).

Pour ce qui concerne ce dernier point, vu que 1'opérateur
ecorrespondant 3 une transformation infinitésimale de Galilée dans une
direction § peut s'dcrire @ ' .

s { Hi"’;-tf’"}f

(ot Ta est le vecteur du centre de gravité, P l'impulsion totale du

systére) et que r., ne cowrute pas avec P, l'interaction ne peut dépendfe '

- G
de r, ou de P. L'opérateur de la vitesse relative

Gl B
- —
Pr _ Pe
Wy o oWy .
commutant au contraire avec rGet p peut donc &tre admis. Dans le eas
nucléaire, m my est assez proche de m, . Nous pouvons donc supposer que

le potentiel V depend de. l'lmpulsmn relative p:L - p 2 = p.

Avant tout nous désirons établir la forme de V dans le cas
d'une forece indépendante de la vitesse et nous nous bornerons au début
& un systeme de deux particulés égales p~-p o1 n-n pour lesquelles
i1 n'estpas nécessaire de faire intervenir le spin isoto pique.

Le potentiel V peut étre 501t H
a) indépendent - de 61 et €2
b) lindaire en ¢’ 1 et 6‘2.
¢) bilinéaire en ?l et & 2
Ies diverses pesoibilités de dépendance des éoordonnées du spin pour V
sont exhoustives puisque Q: c 5; - 6§ =1
On & done, dans les 3 cas :
| a) 1 . - - ‘ \
b) G_‘ : 5,'*.6'1 171: G.!: 61
D@6 4 T e v b

b g (66 ol el ) s ho @)

Cnk t 6iy ©

/
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. ¢, est un tenseur & 5 dimgnsions dont la trace est nulle,

K
Dans ltespace produit Rlx Rl de deux espaces'vectoriels Rl

on a2 trois sous ‘espaces invariants, un scalaire Ro' un vecteur Rl’ un

tenseur symetrique R,, soit en tout 9 composanten. Nous écrirons

| RlezR +R1+R2 ' . v N
La dépendance du pspin peut &tre complétement caracterlsee par l'espaoe
sorme

 R= 2R +3 R +R,
I1 est encore utlle de suivre le comportement 1lié aux inversions d'espace

et de temps, Nous 1l'indiquerons par des indices r

placés en haut des
lettres, 3 droite pour les inversions d'espace et & gauche pour ies inverw-
sions de temps. bans l'espace ordinaire 6§ est un vecteur axial qui chan-:
ge de signe pour une inversion par rapport au temps comme un moment

angulaire; on peut donc écrire
4+ At ot
/R_? R +2 Rl+ R1+,R2

Chacun de ¢es sous espaces . des variables de spin doit "8tre multiplié

par un sous espace correspondant d 3s variables de position, afin d'obtenir

une quantité scalaire -c'est & dire indépendante des rotations d'espace
et des inversions d'espaée et de temps. Avec les coordonnées d'espace il
est possible'de former .
. - un scalaire 5" jui peut Stre wie fonetIoH arbdItratte F( 74 )
dépendant 48 1] < % | )

- un vecteur ordinaire +S-l— qui doit &tre du type T £( %)

« un tenseur symétrique + S; dent la trace est nulle qui est du
type = 1 2v ’ V
Xy -~ -
etc-...
‘Les fonctions F (1) f£( 1) & ‘l) doivent =8tre réelles si 1'on veut
que l'interaction soit Hermitique, ce qui est nécessaire pour la conserva-

tion du nombre de particules.

On a donec trois posgibilités.

2t s et R L st
o 2 2

Les trois interactlons étant

1P2,t (xixk ’sz)
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4. ' . une fonction multiplicative prds ne dépendant que de la veleur
absolue de 4 . '

du type
L'interaction t,, (xi:tk 3 vy f )

. BINT Y
ou aussi ls(ct)—)(sl) ) t) )]
S12 =

q’k
s'appelle force tensorielle, Lorsque l'on désire étendre ce type d'inte-
‘raction au cas ou le potentiel dépend de l'impulsion p, le ncmb‘re' des
diverses possiblités n augmente pas beaucoup i 1l'on se restreint & une
dépendance - meximum 11nea1re en p, qui est un vecteur d'un espace T
I1 suffit en effet d'ajouter le seul espace produit

2R T =2 (W YT+ Y,

qui lorsqu'on le combine avec l'espace ordinaire ne donne que deux gsutres
ihteractions poss:.bles :

2 YTy
[<é;+é’z>xp}a.
[(G —C )xp]'l.

La premidre de ces deux interactions correspond au couplage spin orbite

qui sont

L.S, la seconde doit 8tre exclue dans le cas de particules indiscernablex
parce qi'elle n'est pas symétrique en 1 et 2. L'introduction du spin iso-
topique augmente le nombre d'interactions pos:sibles. Comme dans le cas
du spin ordinaire, il faut icd distinguer pour le potentiel V entre 3 .
cas . ' | , '

a) V indépendant de . tl et T 5

b) V lindaire en T, et T,
C) V bilindaire en T, et T 5

I1 faut en plus inposer la restriction pour V de conserver la charge
totale , c'est-a-dire de commuter avect(% + 'C(§ ce qui conduit aux
possibilités suivantes
a) 1
) OF T T
) T3 +Ty A Ty-L

_,(a)t(z) . {+) t(t} | 'C'U,ZEI)




-1l -
Comme :.')on’ a " O (< VW tl t(ﬂ
e+ T: 'l'.. 2 ( 3 YOy T
on peut aussi Choisir dans le cas c) @) ) {2 )

() T (’)
e) 3 t} , P‘l , t‘_ t{, r..
Ces operateurs sont invariants pour les rotations et inversions de 1'es-

pace ordinaire.-En ce qui concerne l'inversion du temps L-B reste inchane
gé car il conserve la charge, mais l:+ et 1:_ doivent &tre remplacés par
leurs complexes conjugués T - et T +° Tous les opérateurs que nous avons

éorits ci-dessus sont invariants par rapport & l'inversion du temps, sauf

1 (I(l) T (2) ‘c(l) t(z) ) qui chang de signe.

Les interactions possibles sont done donndes pour les produits de

(1), - (2) (1) +(2)
1, lyt +T ett3 t,3
avee c ‘ .
1, Py, “1 +:<;2) xp . 515
donnant en tout 16 eas possibles et les produits

SR L N O A B ¢
(qui 1nterv1ent seulement dans le cas n-p) et

(T (f) ‘(3) _&) 'c(f)) (€,x &) i
(qui est aussi invariant pour 1l'inversion du temps). Ces deux derniers
types d'interactions ne conservent pas le spin, tandis que lss autres
1, Pl2, LS, 8§y ﬁ?mettent Si(carré da spin,totaé) comme un bon nombre
guantique., - l Plz, I%S. cowmutent”aussi avec L (carré du moment angu~
laire); Sl ne commute pas avec Lg, conmutant seulement avec le moment -
Yotal (L + S),.et dans ce cas 12 n'est pas un bon nombre gquentique.
La forme la plus générale du potentiel nucléaire - en se resteeignant au
cas ol l'on a au maximum une dépendance linéaire en p, et & 1'approximaw
tion non relativiste, peut &tre une combinaison arbitraire des 18 cas
que nous avons indiqué plus haut. Si 1l'on veut que le spin isotopique
total soit un bon nombre guantique, il faut se restreindre & 8 cas seu-
lemenYQar, en ce qui . concerne la dépéndance du spin isotopique total,
on ne peut prendre que 1 et P;;, donnant les possibilités

€
1l ' P12
Pl2 L.S




S - - 12 -

Les forces les plus etudxees en theone sont les forces statiques. Les
forces de Wigner et. Maaora.na (W+m P ) V{ *) sont indépendattes du
spin et du spln 1sotopique. Les forces du type P1‘2 s appellent forces de
Bartlett, et celles du type P12’ forces de Heisenberg.
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CH. II.CHOCS ENTRE 2 NUCLEONS,

Afin d'interpréter dans le cadre d'un schéma Hamiltonien
les configurations(pdssibles pour 2 nucléons se trouvant dans un état
d'énergie E ) 0, nous devons nous occuper de la théorie du choc de 2
nucléons avec des intersctions telles qu'on les a déerites dans le ¢ha-

pitre pré cédent.

Nous nous occuperons d'abord de 1a théorie du choe dans le
eas d'un potentiel V (7 ) qui tend vers zéro plus vite que -i-‘_-quand
r tend vers 1l'infini, puis d'un potentiel correspondant & la foree tensoe

rielle S, & (r) ou g(r) tend vers O comme ll+i avec § » 0 et
enfin du couplage L.S. T

’ La dcpendance du spin ne donne lieu 2 aucune difficulté,
puisque le spin est toujowrs un bon nombre quantique prenant les valeurav‘
letO (correspondan’t respectivement & un état triple et un état simple).
La peésence d'un potentiel coulombien tendant vers O comme -:!‘- demande une
étude sepa;'ee. Nous ne nous en occuperons que briévement car il stagit
simplement d'une ,1égéfe modification du ces od il A'y a pas de potentiel
de Coulomb.

lo- Cham aﬂ:o . )
Dans la réprésentation de Schroedinger et dens le systdme de
référence 1ié au centre de gravité, 1'équation du mouvement s'éerit

'(Auc?)\y Uy .
2 =,%?%§L€I (r)caf;ﬁgg—

est la masse redi%e -,
Q a approximativement )“?-'% od M est la masse d'un nucléon.
Comme le mosent angulaire ia et sa composante I, font de boms.mecobres
gquantiques, nous pouvons écrire la solution comme une superposition d'é-
tats correspondants aux différantes valeurs de 12 = ? (2+1)
et L y= 0, car nous prenons 1l'axe 3 comme direction d'ineidence et que

nous admettons une symétrie initiale autour de cet axe.
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Posons

ey - 24 “© (9, y)

y (d \()sont les fonct:.ons nonnées sur la sphére unlte,

ye ’ (ALY Pf(c% 8) o Py est le polynume de Legendre '
dtordre I, 40 '
L'équatidn radiale pour Mﬂ(r) g'éerit

(45 - )= Vee

4 nt (1)
ol U ( 'l) tend vers 0 plus vite que %quand r tend vers l'infini.
' _ ' 3 , A A
Ue — QA u: ¢ fF( 2y
N A - oo : ;
4
ou U« L et U sont les solutlons régulidres et singulidre 4 1l'origin e
de » ( JL p ?.. a (lf"‘ )L\ - D )
4 1'- (1 ¢ o
(nK'L'J ‘(k.‘) kt) "( ) ":..E..;E
tes u J(h) T oV(2)

¢
u" ‘)\XT.“ (M) 0“) ( k1 a{(i)) by

k{J

Pour r ~ 0

o . |
| 3> (3)

Pour » =0 0l o
4 » Lo
W, ey o - Lo i)
- A Py \ B ~ _~:~-—-—--—---~-
1o \:_t_) - ("-’, ; ,,‘\:‘ {
Wl L€ ) ’-—L‘Y = fre-ytt s
¢ T k) T LS : (4)
b)
gy (o) x> ¢
Nous utiliserons sussi les 2 fonctions ¢ ,
. S 3 o
o Ao IR & IR S
e - t.& £ * L 1R - "*L ”}"‘z\{ﬁ et ?‘ .
‘.‘.C‘ = ‘,‘ ¢ ~Lu 2 ‘l’, K ) .
’ LI W
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On peut remarquer que :

up Ay “W dut® -

a{ﬁn) A(kr)

Avee une onde plane incidente

}emaf 2 el L& e YJ

~afin que pour chaque dlrectmn E, ¢ la d).fference \'P'i
l

portionnelle & ﬂ_ qui re-présente une .onde Sortante, on d01t avoir
comme comportement de la fonction &

1'infini
o \(fc y T (2640) (8 (5 miJud pc(ene)
'Viﬂ"‘f ~ EeVgEiogm ¢

- +
TRV o F Seitel -u. Y N
t' . 2
de diffusion L
L'amplitude w.vj% est donnée par
L
61z

et la seection efficaée est

A B Py ,

y o . i - A i )
TEY VL = ';i } =l evi) = LSe 1) Pe| AR
pour un choe lastique il faut poser ’Sd 2 1 pour qu'on ait conservé,-
tion du flux. Nous écrirons S

¢ est une phase réelle,
6‘(&’ __}Z‘.b‘.“><€{-‘)}>< M %ge Pel

. ¢
© 11 faut évaluer rs,g,ou mieux y '

e" T g, §e = *'—-i"‘" /i] - (5{, +4)ﬁ
| Me-4 € (5%e-1)
Ae = wfj de A '

Cela équivaut & chercher wune solution de (1) dont le comprtement & 1'in-

=e eO\lS

fini soit :

.

',a-;:.;;\{)w | Ue')

U,
et' . L o
S =t

e~y

(s ¢ est le cas le plus élémentaire de la matrice S de Heisenberg et se
réduit & un nombre ).

e,
G“QGA— = v(’\‘{B} i _5;}1; & é‘z_e+|> e
4% o ¢

T M ¢

3
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2.- Formule 1ntegale pour Y J

On peut écrire une formule intégrale qui exprime )\f en fonca

tion du comportement asymptotique de la solution U et

u,q_'.‘.jﬁ(%.w,b(a +Ua)

De . . / ' - |
Lo umu—nut) = Uy |

{nous omettrons par simplicité 1'indice € ), on obtient en intégrant i

. oG
| e A [Tt Uwdn

et dev " "’ '
.,m(u ) 3 ',"""M‘U—)”) - u“‘u n
dn |

L R AT

dene

“ o
e (i) Bl Wl d
- & W‘);z J‘b_(a U U.. OLY‘L

2\ = ; | |
‘jw W U w dr (8)'

[

qui est indépendante de la normalisation choisie peur u. On obtient peur -

S l'expression

Rg), + S, v Uud
JCART g TR

On peut aussi déduire de ces formules de l'équation 1ntegrale équivalente

a (1) X . .
ot g f Gl Ue's b ) dn

. @ , ,
olx (k (ry ') est 1la fonetion de Green choisie 'de manidre A satisfaire

au comportement asymptotique de Y .
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, e
-_L. w(m\!«‘f“‘ et
Y

(?(z,z') z g .
[N

mapour 1 =Y . . | , ) ,
W “-W“ _;_: u_’l\) f‘, u (Q)U(Q)W(i) 'ft

pour 4 ~ O -
8 “lh) -4 ‘*\-1(0) /u’u*; U{t’) u(q.’;eh'
o |

w(2) w4y 154/

u(t) > "E
Done " <
o () [ Uy w0

wh(), 7 [ WV Upyemrda
/ ut* U w da

3.= Dévelonpeuent de A en série de pulssane-e de 1'énergie.

Az

Pour s:tmpllfler les formiles, il est avantageux de normaliser

; Q0
W do menidre que / wt Uy Ao ~k
o .
ee qui signifie que 1l'on prend = A u", q,4
. 4 -
2 ) e

Afi.n d'obtenir un développement en série de puissances paires de k pour A
33 est commode au lieu de partir de (&) de svivre la méthode indiquée par
Bethe~ (2) et (3) Nous prendrons le dével oppement autour de la valeur
Rde k? Nous éerirons \A pour W (k r) eb )‘ pour A (k) On a @

A -uu s (- K'yuRr =0

et aussi ] i - o
u“ul’m - W o L{,”w -I»(‘L-IR ) UWeo U =

ol ' A werw

‘o.‘:‘_ A
o« = A at+in

“:, ,\)/(“ uwua,)ah,-{(uu-uuj{u R )}

 BEun passant & la llmite pour ¥ = 0, on obt:ent

et u”-‘*{k‘\ /( -h) {u 0 -Hm“ﬂ)’li

|2
“u

h a-A

le signe indiquait que le terme smguher de Y, “, w pOur 2 = O no doit
pas 8tre pris en considération. La démonstration derwe du fait que pour]

R -2 0 N -4

‘
'L" W =

- U
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a
¢
-
-,
"
{
&
=
=
.

:;. "“ - ,zz
Lot
“‘-ao “ul M.4: . '—&iT- (L/- (‘t)}
- ’ —y - %
et que A (fl"u’-\l,“")" U‘L‘L‘) W' u

k Uy (k, 1) est unc fonction mairs A . 00 MILLS o LTt do consi-
dérer A Kg(*/”)” (Aﬂ,if.u")h
’rl t. ( k 2 )
Wik 2
7y (.k,’r.) z () w (k,’l.)
A(-k) - l\(k)
Cotte dernidre relation étant due au fait que [1) a une seule solution

régulidre pour ¢ = 0, et que l'équation difil.catielle ne contient pa

que k A, . Oomme 1n collision es? ‘nvariantc par rapport & une inversion

du temps S (- %) g(k):;

dont on déduit A(-%) =~ A(‘a)

Afin d',gbtenir en partant de. (- le develo »pement que 1'on désire, i1

suffit d’ecrire Je dev*eZLOppeme,nt de La soluti Lon F¥e k *) au::omu. de k.
Rlupgh,n) 5 ROu, + (1-RF) e +(h‘£\ ué’ -

btient = ieut - - X
iy s R R (\—h) i (V! "‘f)’["‘

kl. A ¢} ‘
(L) A/ i ~£‘»-JM m(‘g)dau»-(m)

4.~ Développement au voisinage de 1'énergie zéro.

Aux basses énergies, avec des potentiel & courts rayons
d'action, on peut se borner au moment angulaire L = 0, Le développement
(10) peut.s'écrire-(4) (5), (on néglige pour la facilité. de placer en
bas des lettres l'mdlcc o)

lu. cLed W S RYEPPL oo (1)
L (RA)

‘ .o . % >.':
" 8" E:o ‘ w o/ &.estla longueur de

, LY

dirfusion pour 1l'énergie zéro
€ J, (who -ty dn
U o G (A M‘M.+w.»‘it)
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1a quantité p est le rayor A'nction effcctif du potentiel. Cette dénomina-
fion est justifiéc parce que dans le cas particulier diun potentiel eh
forme de puit dont la profondeur est choisie de telle manidre que %u 0
(réson*ance pour l'énergie 0) le rayon d'action effectif coincide avec le
rayon du puit.

En général le rayon d'action effectif diffdre du rayon entrant
deng:, 1l'expression du potsntiel d'une maniére d'autant plus sensible que
1a diminution de V pour 1 = *® eat moins rapide. Lorsque 1'énergle est
assez petite pour que 1l'on pui;se se limiter au premier terme du dévelope

pement (11), on peut poser :
|
ANz - —
k a

On peut penser que cette relation est encore valable lorsque k est

imaginaire en admettant que }%a fonction k \ soit analytique au voisinage
t 1 ]

de l'énergie zéro. 8 (k) = )\*.‘ admet pour 0 ; A= - i. ~ oL

. a
donne une valeur approchée pour ce zéro. Ces valeurs de k et 4;_\correspon-

(12)

-

dent A une solution ° U§ qui se comporte & 1l'infini comme € X En effet,

le développement (11) a été deduit avec la condition que
ﬂ » -
W & A whin® = 7!; {(M;) wt oA u }
[

Done
a > 0 signifie que le systéme possdde un étét 1ié d'énergie® - - »

-'.'-ii -i—-

i a*
a {0 correspond & un état virtuel; 1'existence d'un état réel n'esl

pas possible, car le comportement & 1l'infini de la fonction est dans ce

f
tas du type € 1al , Ces considérations suffisent ‘aflllustrer la signifia
cation physique de %‘ . ' '

g’_gication :

Dans un choc n-p, en supposant une interaction d'un type cene
tral, la section efficace peut s'écrire pour des énergies assez faibles

o o~ AT

6, 3 A 2
E000 T (Ve

ﬂt , dans cette approximation, représente le rayon du deutéron dens 1'ée
1 .13
tat fondemental 9 Ay ¥ 593 %10 T um

dans le cas du spin S = 1
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Aux basses énergies (k &, <'s 1) on peut done dire que la section effiea-
ec totale est celle qui correspond a la diffusion pf;m une sphere rigide
syant un rayon égal 4 celui du deutéron. Dans le cas du spin 8 = 0

€, = L T
( '/ a #) . A
1'expérience donne la valeur de l'amplitude de la diSfusion cohérente

dans le parahydrogéne

] ¥ -
f-a}—--;i-——- =-4,10 B om

?
qui & done une valeur négative. QR4 est inférieur A 0, donc 1'état s
du systéme n - p est virtuel, La section efficace totale est en 1'absence
dﬁolaruation .24 '

Lot al)y > 10,00 wat

Aux énergies plus élevées (Jusque 10 Mev) on obtient une excellente appro-
ximation en retenant les deux premiers termes de (11) ce qui dorme les
formules suivantes meilleures :

B s

ut-_-;usc’-r"

r~=-’-*.-fz(’ Y’ (13)
(»

ar

L
kl\a-'-'f - ot

o~

|

2 .
- e X < 2,3 Mev est 1'énerglie de liaison du
deutéron
On peut déduire #4; et @, des deux grandeurs mesurées

30 8
- 2

e 4

2
€, = 4T Z— a, . +%: 62 ) section efficace pour les
: neutrons épithermiques,

{ ¢ d6duit e la premiére relation (13), . efi comparant la forme
théorique de la soction efficace totale aveo la valeur expérimentale
(de 0 & 6 Mev) ainsi que des données concernant 1'effet
photibélectrique, Nous donnons un tableau -(6) des.données les plus ré-
centes pour les diverses quantités que nous avons considéré ¢
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. . w8 -
-3
-4,3,‘8 P 0,08 x10 um

a, = .
A = ylsg ha 0;('5‘ ¥ 10 en
13
- 0 _
(o‘ - Z,‘\ b 0/5 x | ,;m
G L A,
- -4
L. 4338 ¢ 0,025 x 107 "em
b 4

On voit donc que par ce que l'on vient de dire la diffusion n - p jusque

10 Mev peut &tre décrite au moyen de deux paramdtres seulement. On ne
peut done établir la dépendance de Zdu potentiel statique car il est toue
Jjours possible avec un potentiel de forme quelconque de fixer les deux
paramdtres (profondeur et largeur) de fagon que les sections efficaces
sodent expliquées).

5.= Méthodes d‘'approximation pour le calcul des déphasages.

Pour apprécier si une forme de potentiel dor_mée conduit &
des résultats valkbles, il faut pouvoir intégrer 1'équation (i). Sauf pour
~ eertaines formes particulidres de potentiel pour lesquelles 1'intégration
exacte est possible, par exemple le pult ‘Ldu potentiel, le potentiel Jo Hult heg

pour l'état - 0 qui est du type TR Dans la grande majorité des

cas, il est indispensable d'employei'. des méthodes d'approximation. On
peut les ranger en 3 catégories :

Méthode variationnelle

Méthode d'approximation de Born

Méthode W K B, _
Nous nous intéresserons suri ut & la premiérée mentionnant celle de Born

et ne nous occupant pas de la méthode W X B.

Principe variationnel :
Nous comencerons par le principe indiqué par Bulthen. { o‘)

Considérons 1'opérateur différentiel :
L..L". s kY Ly
T dan 2L
l'intégrale PP ‘
Ju* / w Lo J'f._- (14)
est stationnaire (va.riation premisdre J - O) si u est solution de
l.o( u ) » 0 et satisfait aux conditions aux limites
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u,(k,o) =0
“(k,-o):‘ AM,"*‘AA

. )
On a en effet [T - _1/ Ju Liuy da
H g

Réciproquement si 1'on veut que J‘ J: ,801L awl pour des valeurs arbitraires

(15)

de f“ s il faut que :
L(u)=o0
Htlthen choisit
us= Xu'1+ w
ol 0 oat indépenflant de A .
v(k,0)= 0
vee) = ud

On peut alors montrer facilement que 1
I“:—F'ltl(b\“u))t“k?)eA

(16)
ou A

N = ./Dl."u“‘V'b"L

¢

o3 Lt

kp= = : M.\ M‘L“"‘-
A
F= j ’U“Z.(U‘) ¢"L
J

Ondéduit de "}‘“&:0

b

kqs)\—.:k-N

et en substituant dans (15)
Ty BA- (F”\”\>

Nahof = A .% (Faan)

Si vdépenqd linéairement d'un certain nombre de paramétres variationnels

¢ ot ai est indépendant de c, P ‘lindaire en c, la condition
¢ ' v
de stationarité -;:—- = O donne :
é)(. ' d¢

x est fonction linéaire des paramétres c¢ pour 1l'équation
5 95)‘ =k-N .
et & cause de cela les équations qui déterminent ¢ -
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F . IV

sont lindaires pour lees varacliircs inconnus,

(¢)(3)
Méthode de Schwinger .
L'intégrale ~
J¢ < Ty - [‘&'l o Qe)

est stationneire si u est solution de I (u) = 0 et satisfait aux mémes
conditions aux limites que Jl, défini en (14)
On 2 en effet @ dl
- u
§1,. JJ,,,Q{J-EU) J{tea] dn :
(15)

Réciproqueuent, il résulfe de SJ = 0 que
L (v) =
(g ) ext, = =@ Tg) ext. k/\ extrémale ,
Schwinger chois:Lt P / v/ 1€)
u Aw* %(’*U M”}?(‘) (

‘3“1) i,: -.\A&(t)“ ("7 'L>“'/

N
‘ } est la fonction var:.atlonnellle, mais il faut pour satisfaire aux

conditions & 1' =0 que ; soit noxmé ‘de fa~on que :
oy

l “ W Ar =L

La relation (14') peut alors s'écrire

" Ar Y 2 /:Z_l"g('u') H“"w(”h’
Iﬁz“[o / * (1)7(&} o ‘

On peut dédulre de {14') que si u(r)<¢ 0 La valeur de kX A de Schwine
ger ost ) 2 celle de Hulthen - ~ '
A< wr)Y 0 ; la.valowr ge ¥, /* do Schwinger ost ( A oclie o
Hulthen,
Elimination des conditions de normalisation.
Afin d'élininer toute restriction de normalisstion pour la
fonction variationnelle, c'est-a-dire si 1'on veut choisir
K = Abe v '

avee V' (0) =0 ,

v(®)=c U -
il suffit de poser dens le cas de Hulthen 305




¢ peul amses o7 lzedre

C>r ~
Ry

puisque Z

it

-

Dans le cas ‘¢ Q'M’wmer il *‘a t &erire

, ?
S I _L c o] A
Is - "H z‘] " L ]

B
ou aussi _{iyl"' ‘jJA Z(i)/ A’ g(’u.} élhig(t)
7; EYL R = 18)

wt U 4 nh,.)“

Le principe variatiormel (18) peut se déduire directement

(2
\ v fo

Observation :

de l'équation *‘n’cég:ale s la fonetion ¢ qui siéerlt

ou %e la ful’l tlon de Grce‘* It suffl*‘ de multiplier par U(

d*intégrer de Ce 3 1'infini pour ovtenir 1° eXpI‘eSSlO'l de k l\

kh= " L.MV‘“"‘b 4{ Q{,”'! A= }w(&’,‘ AL )um\a‘a

T [

On peut encore montrer directement que cette expression est n princi-

pe variationnel.

Approximation de Born.
Cn prend corme approximaticn d'ordre zéro pour la fonction
K , 1'état initial u = u (x)

{0}
dans le cas ¢ = o2 ou encore S =1

En premiére approxi ation on pose

2wt e ”g, (1) Ui w'(r) da

4

0
Donc (comparer avec (19) )

AD ot
-4 {muf" U utd
® "a

En seconde approximation

et e 306
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w25 =

N <

‘r\ R o e ‘, N

T O A o o0
- da w> A w'n +/ RIS IR 1
R/@«L LWer«] gen v {

Une étudc soignée de la validité de l'éguation de Born dans le cas

nucléaire (10) permet de concluse gue pour des énergies de 0 Mov le
développement en série de Born ne peut 2tre employé, IL fournit des va-
leurs essenticl? oy i Jifféreates de celles quion calzule avee plus 4t
exactitude par des intégzu‘:wnu munériques. Une sclution de 1°équation
de (19) o'btenue a partir de la méihode de Fredholm fcg.vo’-;;'ten~L de deux

.

séries ¢ pussanws du paramdtres ¥ fixant le pcten‘uel) se montre rGU

utile pour lez calculs mmér:‘-.quoa narce qu'elle converge trop lentement.

.- Théorie de la coliis - dans le cns diume force temsorielle.
Fa vrésence d'un potentiel du type tensoriel :
, T (SR D) T Fia
g. . k{ O Y ,, 4 W ,...‘_T_,_, —— - he > < (1)
{ ﬁ;

la théorie du ches est légérement pius compiiquée car le moment orbital

L™ r'est Pius ' bon nonbire guantigue, Toutefois pulsque le moment
+

L =D ¥ sont de boas nombres quan~
tiques, il ost utile de se placer dans la basc des Tenctions propres
o

-, I & lr ¢ . . .. - s ,
t_/. ty { 9,17. 54 gul ooxregpoadent & des valwars déterminées de
2 N

T s dg o5, Lz n"OPPI'd. Leu i_i.‘? 'f-‘ewx diagonal par ragport a J , J§
S® mais norn dlegonal per vapport A L La force tenscrielle n

efficace que pour les états trip_.. 35 car elle sannulo pour S = 0.

J

Dans la suite, iorsquc rous parddrons du spin, nous sous- engendrous

~ -

toujours 3 = 1,

Pour 1 donng, Jdes walewrs possibles ée L? som, )
. . , ,, [ ram ¥4
Q -1, 2 231, Dans 1csnace T Tar i -
* * b }-ll Jerif /AJJ
1l'opérateur S. . es*t représenté par la natri § ' .

~1. o
o 3 . q'mm o\
za%l 2«34‘ IJ z)

.—5»—- “;?;—;3‘ -2 “2 ¥ i

3jal ’

— 1D

G

[
N

PSRRI
s -

\ - 0 A

. O -

I1 est évident que 1'état Z
o ‘ 2 " J1

37 Jai T car ces deux derniers ont une parité opposde

[

a4 cells I. 2‘_

&
n'est pas melange avee les 2 autres

( SE.E irrariant pour les inversions d’espace,; " 309
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Pour 1'état pé oy onm peut répéter les considérations que nous avons
faltes auparavant pour un oham“p central et nous pourrons nous borner au
SOus espace de Z),, 3 et 4{ BE Bolent U, (1) ot W, (1) les parties
radisles corregpondant aux deux états., On a le systéme d'équations
différentielles ,

Elov ¢ “‘) - { 3 “)

o L)\ ) 4 h Vi | (20)

Iv_est 1'opérateur habituel

7 TR P A S 407 W) 2 =5

J FEL PR

g est proportiennelle a la partie radiale K de la force temsorielle
f et g dépendent dans le cas plus général d'une superposition d'un poten-
tiel central V & la force tensorielle de V et de K. En 1l'absence de
force tensorielle (g =0) le systdme se rédult & 2 équations différentiel-

los indépendant,ef entre clles. On a pour d ‘\grandes valeurs de 4:
-t - L" 3 - a‘J
A | ¢ L 4 Y n] 6 R 4 ° * 2 "J

u; ¥ -

) 'y [} v 4
-ilkd.-—f—'—'ﬂ'] tLH.- Z—-"}

w“: a-z e ol - al & ¢

A 1'onde incidente’ ( a, “l) correspond univoquement 1 onde sortante
( 4, L) et 1a relation qui 1ie (£, €, )a( 4,4, ) est lindaire.
Nous écrirons ¢

(bl}-.-. {Sn '512) (31
b, 921 S 8
En général, 8y, est différent de 0 , car aux paires (1, 0) peut corres=-

pondre la paire (‘D1 b2) avec. b, différent de O. On peut dire la méme
chose pour 821. Nous écrirons pour abréger

b=S a
Au moyen d'une transofrmation orthogoanle
cos § - a8ing

V=

sin § cos §

- il est possible de nc:nrr aetd

ln‘_

' ={
bt =l '1
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" A -
b=S a devenant

b! ==(U"lSU)a’

\ peut &tre choisi pour que Y -1 S Usoit diasgonal, La matrice S doit
8tre unitaite et symétrique, L'unitarité est une conséguence de la con-
servation du flux de particules

2 -2 ' !
Jda + \8.,\ = "b7 + )
La symetrie est Gihe conseéquence ée 1'invariance des lois du choc par

rapport & liinversion du temps (11) La matrice U doit é&tre or*hogjmale
pour co?server 1'unitarité et la symétrle de S. Nous appelons €

et ¢ les deux valeurs propres de S ( J et J} sont réels)
cgrrespondan* aux deux vecteurs propres (ds £ , sin § ) et (-s:.ni ’
CJS ¢ ) Nous ppuvons alors parler de deux types de solutions.

Type & ayant le comportement asymptotique : =~ -1 )’
.thu. )‘:..' ] :u.f,{ \.L k4~ J’“ﬂ—.’

o

Yt ¢ xz.rr
qéA { .1[;“__3;[“]\ 34&( '(«[‘/t J}
W, N~ M‘ﬂ\i_ e -

' ugm

Type (4 ayant le comporvement aspmptotique A
aF ~Lhv-pda) o adds SRR "3}
N~ B § $ ¢ _

q,
} ¢
. “i[kr- P:-‘"] 2idp 4;[&-2%"1%

ou aussi (fd! NS R LU S |

u.;f:'- Liwng @ ae [ RE- 0 ]

| o The Lot fal

R 7 a6 e Zfﬁ o J
A - % ‘ (21)

Ja pn /*!ﬂ _ ‘}‘il n.{f(_;]

6 « . E £
i‘ -~ - 2" LW
)

f . ilu(ﬁ P Z—j:,t .. a,i_'.’ﬁ + IT‘J (21_,)

w)'_\" 2¢ wr t € 2z

Ies dews types de solutions A( et (3 se cavactérisent donc par le fait

qu'elies ont le méme déphssege (rendant 1z matrice S diagonale)

On a: P .
* : f W, r .
1%} - Ay €0 f 4. = ¢
—te - (w‘a CI / w@ ) ) F (22)
W; alzw : ! J’ Lo

Le probldme mathématique consiste & trouver deux solutions de (20) ayant
le comportement asymptotique (21) et (21!), Les parametres nécessaires

pour la détermination de la section efficace sopt done : ” et (r
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Calcul de la section différentielle totale. .
L’orde plade incidente x ¢
. \

i ( £+
ke Y, = ZG ‘f ( )
peut s'éerire de.ns le gysté ne des

ke Y., = {:’? 24 ¢ (?.tn) cu;" (f!, ~ lnn-) 4,}
_” Z;« 4}-} (,e;.,) uc (4 3 {Prowm) ZFJ
" . w ]H
\/?Z" (c | ,; 12 +C ‘}3/ +C 2+/)
u

X ) X LY
d att

N

En écrivant Zi “pour ZJ +‘)J
M
Z

les coefficients ¢, €7, C+" qui font passer ée la base YP X”h A la
base 3 sont donnés par

pour ZJJ

NIRRT s somins s s
¢ \TH IS V’i_:f > e Z“ te 7 ey)d
<M %TT 2,‘2:-;( ™ A

el R L Zci"‘cj‘:ic‘tc‘“wzf-w“-f“m
T €O

ondition

ka %m A Fine X
on déduit Ba %“H - ;,,l(tﬁ*"_"_ an ):}:

-3-‘-'3{ (S')(ﬂ“}e-ffw-'}?i

¢

Enécrivant:{y,m&{ !: (C?‘C%)v-

+
V) - 1)
£- 4. = &

c =«
Il en resulte pour l'amph tude de diffudion

/“’/ﬂ/» Z(W ‘r“ gm"‘* "*-[J’“t «...sz)
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d'ol on deduit la section efficace différentlelle (ll) ‘Pour la section
efficace totale, nous remarquons que j‘ Z \ Ju = i

j ﬁtﬁjld‘ W = --~ 2_( AL dfmer.f‘}d’ , am
+ {a("’”‘ '1 am s )
et avec une onde 1n1t1ale non polansee

q:,..'.z {,p,e,;dw_; T 5 (yr)(tndS. + 80 +Au'm.f)

Nous remarquons que pour calculer la section efficace totale, il n'est
pes nécessaire de connaitre le paramétre £ .

Méthode variationnelle dans le cas de la force tensorielle.

On peut généraliser facilement pour ce cas les principes
variationnels que nous avons dlscute sdans le cas du champ central, Nous
ne nous intéresserons briévement qu'a ma méthode de Schwinger 12 appli-
quée pour les chocs n ~ p ou p - p. Le systeme (20) peut stécrire sous
la forme 1nte§frale H

ot Zig et .
( ‘ / ,g Q (:f}g(‘j ; u{t/) dr’
W’ {b uy | "' O 17 3(:") Ae) ) { WiL)
? (2)? ) sont les fanctlons de Green relatives aux 2 opérateurs

. - [ R 4 ’
‘/‘/;1 (k) =0 .-gu;{fa} -~ (2) 2< R

- ! R ! < - Ty 't,
9+ vy ‘(—;(7/ iy {1’

Pour les solutions du type (21) ou (21!') on a :

*

)‘= o | i)
S i 1 (ﬁa f_éwldq -Af-—- /ﬁi_")- {g,us‘- "\W}dt

( (-'k ;::?hw} _//45:(5‘ ':a'.w' (29

On a écrit £ pour £ (r!) et de méme pour les autres gra.ndeurs accentuées,
En multiplient la premhiére relat:.on (24) par fu + gw et la seconde par
gu + hw, on obtlent en mteg;r'mt et sommant :

oo ol DL LGN )]

i i

/% -/0“3 Ifx ?“’““‘/i(g"[@**ﬂw}“i‘w
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I1 est facile d'établir que kl\ est stationnaire pour des variations
arbitraires de W etW qul satisfant .aux conditions aux limites (21) et
(21') et nulle pour r = O.

La fonection d'eséai la plus élémentaire consiste & prendre
un seul paramétre variationnel, donné par le rapport de W et w/ pour

=°O .

7.~ Quelgues donnéesrsur 1'état 1ié du deutéron.

On peut aussi obtenir des renseignements pour la force n - p
dans 1'étattriplet en partant de la configuration stable du deutéron.
La présence d'un moment quadrupolaire électrique

a=+ 2,76 . 107" em
démontre que 1l'état fondamental du deutéron ne peut 8tre un état A symetrie

, sphérique. Avec un moment ‘angulaire total J =1 et un spin 8 = 1, 1'état
- fondamental du deuteron doit &tre un mélange 3 Sl + 3 Dy Si X’M sont
les fonctions propres du spin (S 1), u(a ), w (4 ) les deux partie s

- radiales, on peut écrire :
= L “u 4+ -——F—- Sl 1 "J} XW\
’ 8

‘est 1'opérateur de la force tensorielle. On a

jitl‘f{lw‘ dw = ﬁu‘+w‘)ulﬁ.
0 .
' law- Lwt)d
P e
N‘l <YIY>W\:I 1o ‘j-:(“-)' w!)d"'

Pour le moment dipolaire magnétique, on a , en négligeant les corrections -

relativistes : 4 a S L4y -
W S LA YA R > LE NI W PRV 1
< ~t"l\y>'i'o\:|

(25)

ou 312

et

mesuré en magnétonswnucléaires
wt Az
r“ 2 = >
_ : ( wrw?) Aa
‘De la valeur expérilentale m= 0,857 , (y\,a 2.793 et =~ 1, 923), on
déduit ‘36.3! 0.04 un autre parametre important pour la détermination du
potentiel n ~ p dans 1'état trlplet est 1'énergie de liaison

fb = 2,2 Mev 314
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Une étude systématique ae ?otentlel phénoménologique a été falte récerment

. Ces auterrs ont pris un potentiel central
- 2./t
<

_par Feshbach et Schwinger

e = V&
! ﬁ/za

et un potentiel tensoriel  _ Y, |

VL‘ 2 Voa CA /‘Slu,

qui ont un comporterent spatial du type Yikawa.

On a, en tout, quatre constmntes \/‘:2;(’ A, ﬁ;(_ . Deux de
‘celleg-cl sont fixées par les valeurs expérimentales de 1l'énergie de iiai-
son et du roment quadrupolaire. Nous ne pouvons nous occuper icl des métho-
des variationnelles qui permettent le calcul des parties radiales M(Q)
et W (’L) de la fonetion d'onde (25), Le celcul est beaucoup plus facile
que dans le cas correspondant du spectre continu., On peut avoir une gra.nde
: confianee en l'exactitude de la valeur propre correspondante ( comparepavec
le travail cité en (14) ).

I1 est possible d'expr:mer \/" et Y en fonctlon de '2 et i
Les valeurs de 1 ¢ et 'I,‘ peuvent 8tre déterminées de maniére & donner une
valeur conforme A l'expérience pour le noment magnétique de deutéron (en
fixant Pg ), la diffusion pour 1’ét§t triplet n-p aux basses énergies (en -
fixant la portée effective ft )} et enfin 1'effet photoélectrique : capture
radiative par um neutron d'un proton. On trouve que PD ne dépend mms du
rapport IZL/’L , mais que ("_ limite fortement le choix de ?‘_ et ’ll, .

Avec les valeurs 3

(e

1,71 , 1071

H]

Pb = 0004'2
on a N y '
MIL& (—:’I!L ‘ a/:"?‘)
6 i
1 . et ‘lvr correspondent respectivement A& des nasses nésoniques de
P =286 P, = 280
Avec les valeurs
fe =1, T
Py = 0.038 - ~
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- i ?.( V:: = 1,34 C J = 0,84

Me = 326’ /‘t.=252
La valeur de . fb ‘ne peut &€tre fixée exac+eren£ car des effets relativistes
apportent des coX¥Yections an 32 chiffre decirﬂa.x de PO /e La valeur de fé_,
n'est pas non plu§ connue avec une préclSlon sufflsa.m;e,e 2.45 #£ 0,5
On voit que la portée de la force tensorielle n'est pas égale & celle de
la force centrale (comize on 1'avait naturellement admis dans le travail
de Rarita et Schwinger(lS)), rais plus grande. Il n'est pas possible d'é-
tablir actuellement si cette conclusion dépend du choix fait pour la dépen;
dance spatiale de Vt + Un autre comportement spatial pour V,, pourrait
rétablir 1'égalitc des portées 2 et )lf' »

La seution efficace pour I'effet‘ photoélectrigue da deutéron,
8i on admet l'abseence de force dans 1l'état P dépend des parametres qui
fixent la force dans le cas du triplet, La valeur de (’r déduite de la sec |
tion efficace expérimentale est en bon accord avec celle déduite de 1‘'éner-
gie de liaison et du scattering, mais la capture radiative est une preuve
moins bonne de la validité de la théorie cﬁr la section efficace & fait

intervenir (a' dont on ne connait pas la valeur précise..

% » .
Réceiment Lévy a déduit en se basant sur la théorie mésonique sydée

trique pseudo-scalaire que l'iriteraction s'tat;'.q_ue entre deux nucléons pou=
vait &tre déérite, pour des distances ghpérieures & une certaine valeur ?°
différente de zéro, par le potentiel

V + "’ ‘

Y : -ML
AN Y .3 3
Vzr""’sfﬁ (zn)’{u(. P (1)) )T
. L 2 | Y 4
— | 2 Bo(2
Uy * f‘ziﬁ? (L) A {’r}" K'(‘z’”)* 2h (% -<°(",“)) }

ou ft est la masse du méson T

Ko et Ky les fonctions de ‘Hankel d‘'argument imaginaire d'ordre 0 et l.

. ‘ | _ ,
Les deux param‘etres 1, et £ peuvent 8tre fixds par 1l'énergie

de liaison f du deutéron et la longueur de diffusion &

, -13
~ 10 e > 0,6, 10 um
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Pour des distances z<Ct, , on évite de parler de potentiel; on introduit
une condltlon aux limites pou; la fonction d onde & la distance %:7%y cor—
respondant & une barriére de potentiel infini, Avec le choix des parameétres

2, ef f ’indi(iué plus haut; on peut déduire les quatre val eurs

2 3

Q»=.2?08 . 10727 e
Po =0,05
e =1,7 en bon accord qualitati
(o A =2,15 | vec les valeurs expérinentales

Remarquons que Q est sensiblewent inférieur & la valeur expérimentale et

que C et F ne sont pas encore bien connus.
\a o

Collision de deux nucléons en présence d'un potentiel covyambien.

En présence diun potentiel coulombien
V4

QH .z :‘e
"‘7,\/«,\4";?.'“5 ,(,, 7= Far

(cas du systéme p-p) la théorie du choc doit &tre modifiée. On ne peut
traiter le potentiel coulorbien coume le potentiel nucléaire qui tend ver s
0 plus vite que —:' lorsque ?-» % puisque le pbtentiel coulombien est du

“type 7,1.— , 11 n'est plus possible d'écrire pour la solution de 1'équation

dlfferentlelle :
( kl‘_ {((}') lkn) uu
A n* R

(VIE) /\ Litf (¥

A 4
dans laquelle Y et u sont

les solutions réguliére et cinguliére de
| ( A- o, R e(Len )V-\'E o
dat e

~ La généralisation congiste & prendre les solutions wi,uliérce P ot singulide

res G de 1'équation '
A]. kl- Z(e-ﬂ) - Z‘l?.') )U\:’O

o B R

. 4 (9
F et @ étant normalisés d'une maniére asnalogue & YU et U , clest - i-dire
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P *Mm(’&t~g_:.r-7%2k‘t.{-6‘,)

b | (21)
27
- 1ha + €¢
¢ = wrb ( ko - &0 - " by 3
: a2 z
ol -2, ¢, r‘(e’“"':">
T TITINTY
-Les deux fonctions F et G nfont pas dicxpressions analytiques aussi simples

. 2 o ) - : ’ A z
que celles de W et U, On peut trouver des tablies trds soigndes de leurs

valeurs dans le travail cité en (1’?)5 Nous nous bornerons ici & dire qu'il

est possible d'écrire les deux fonctions F et G sous une forrme intégrale.

Ecrivons . e} g"')'@“)
' F(l) = (2,("" Ut S : z
‘ i1me z ‘ztkt)(*‘fl‘}
z Jy,({rl)
oA 2

_ » e Z
(2) . (2t +) ! —— f Zilre
OB e Jo, (2 etikn) '+l

ol o§ et '02 sbnt les chemins d'intégration de la figure

-0
D,
:(;D 2_.-1*'&‘5.

On a @ "l ! , 7
 r= (R?) ’e o Ce (F')+ F(z)
_ L+ . , R
o= (k)7 ke ¢, (Fl)-r())
/

Lia constonte (( est choisie pour satisfaire I~ rormalisation donnée par

@7)
: - T ca, O fene l ¢
- Ly v L& -
Co = ¢ / e e i( ) )
/20y |)'
. L :
(facteur dé pénétration en présence d'une barridre coulombienne)

p(1) + F‘(29 = ,F, (( r ”"7 ) £l 2/*2"}31&') est la fonction
hypergéométrique conf usnte. ‘
Pour ?— O, F s'annule comme 1

G a une singularité logarithmique.

ly 1

-

Bornons nous i écrire le 1dyalonperent nmour 1o nss narticulier

4;0
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r"‘&)‘- C.'Z‘L(itky)q 5--‘) ' 5 1o
G(vy = L (n—?.hn‘tl_tnzhnz-r-?y—lr'”'))]fn)
<

. 7"(~w_)
by o+ Re T'(’“H

)r 0y 5772 est la constante @ ‘:uvg)z, Mﬂ:gpz@@

- avee h(q) =

t

L'amplitude de diffusion dve & un champ coulombien peut s'éeri-

re
/:-(9) = ¢. (,3/*4)(5 - ; :ﬂ (e o'?) (29)
! 27:’!,'6“ !
czrﬁ % ayant la signification habituelle @ ez ! (f" [+ ¢ '))

‘ e ri-in)
En présence d’un charp nucléaire UV 1'amplitude J» d1 fusion est modifide
par la présence d'un facteur de rhase nualéaire e’ ¢

. 2:€ Zt‘f .
(). LS (ze) (¢TI )R ()
° ‘ : ,

-

I1 est cormode d'écrire

£ () = fw(@)fr%@q(é)

ou - ‘ ._,.‘.,,&M’g”‘(;
fw(ej.-.f_.}_uu){{ -1)P(ws9) ;(h__.’._...oé | (30)

0 £ Sy &) B (o) 8D

Nous observons ici que le potentiel- coulorbien ayant une portée infinié ’

et

la série (29) converge trés entement et il est indispensable d'arriver &
connaitre la somme exacte donnée par (50);, Pour le potentiel nucléaire, il

suffit de reterir peut de termes de développement (31).

Nous ne voulons pas nous arrdter ici plus longtamps’ sur les
sections efficaces différentielles et totelés, mais nous nous limiterons &
observer que dans le choc p-p de deux protons,‘ particules identiques de
spin —%, en l'abscence de polarisation, il faut écrire pour la section effi-
cace différentielle : ,

deo 3 |foperolts Loy fmnf®

. I1 faut en effet antis; m&riser pour Yec 4iut: trinles -t eyl .riscr po@l9
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1'état simple. o

pouve : i

Les formules trouvics plus haut "):‘%«&uvent &tre écrite '

dans le cas .coulombien : il sufflt de reprendre les rémes consideratlons ’ i
" en posant & la place de U et b- les fonctions F et G, En partlculier, il

est possible de donner un developpement en série de pmssances de 1'énergie

(5) et @'y inclure les effets de couplage Spi'n-orbité.

Coas - Nous voulons écrire ici la forre (2) de k cotg J; analogue

2 eelle déjé trouvée pour le cas n - p. On a :

any 2L Ry by 2 - 4 PR (i’ o) Ay
¢2'7°‘

est la solution en 1'abscence du charp nucléaire , 1'indice O se

rapporte & 1l'énergie (k'z ) = 0. On obtient le développenent en série de xt
en remplacant dans-l'intcgrale ‘f et npar leur déve‘alop}ge‘ment. On peut
on particulier définir une portee effective
/ G = 2Tt nlyde
en compldte analogie avec le cas (n-p) (Jjusque 405 Mev, saul le terme

linéaire en 1l'énergie est important.)

Une discussion détailléed de la comparaison entre la formule
theorlque (32) et les valeurs expérimentales de § peut &tre trouvée dans
le travail de Blatt et Jackson(l')

‘simplet l'interaction n - p et 1l'interaction p - p, ayant néme portée

Ces auteurs concluent que dens 1'état

intrinséque et comporterent spatial, sont 1égérement différentes entre

elles. Dans le cas d'un pbtentiel de Y'kawa,; par exemple, la force n-p est

(19)

1,6 % plus forte que la force p - P. Séhwinger a toutefois montré que

1'indépepdence de la charge d'interaction nucléarire péut 8tre rétablie

lorsque l'on tient compte des forccs magnétiques Entre deux dipoles magné-

thues, dans l'état S, l'interaction est proportlonnelle au produit

- (r‘ "; rl‘ % ). Dans un état singlet € 6 = - 3 L'interaction
H’v chenge de signe lorsqu'on passe du systene n -~ p au systéme p - p

On a une légére attraction additive dans le premer ces. La valeur de ﬁ

€, =2.76 £0,07 , 10 en |
obtenue pour un ¢ oc p - p avec un potentiel d¢ Ytkawa peut donner une

valeur meilleure de fbpour le cas n - p.
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9.~ Tentatives théoriques d'interprétation des chocs entre deux nucléons

aux hautes énergies.

Les données les plus frappantes fournies par lcs sections effica- -

ces différenticlles peuvent se réswer corme suit :(21)

1.) Choc n = p. _
Le distribution angulaire aprés le choc est isotrope dans le

systere da centre de gravité jusque des énérgies de 14 Mev. Pour des dénergies
pluskgrandes,,l‘anisotropie est de plus en plus marquée. Les sections effica=
ces différentielles ont une syrétrie rerarquable pour la direction & 902 . -
par rapport au faisceaun incident.

2.) ChOC E - 'E. v
On a une isotropie remarquable dans l'intervalle angulaire

trés étendu allant de 152 jusqu'a 1659.ALa valeur de 1a section efficace 3
902 est de 2 & 4 fois plus grande que celle correspondant au cas n - p et

est indépendante de 1'énergie entre 150 Mev et 400 Mev. On n'a pas établi
directerent si la force nucléaire dans le cas n ~ p est égale & la force p =p

dans le méne état quantique.

I1 y 8 eu deux tentatives thébriques pour essayer d'ﬁnterpréfgr»

les données cxpérirentales en employant un potentiel etatiquon. Christlan

(23)

et Noyes obtiennent des résultats satisfaisants pour les secthns

efficaces on supposant @ ' : "

pour un état simplet 0 451 ¢ . 10 vm

11

/
v? 60
+ - 13,23 v P Moy 2V ést0vm

pour un état triplet

4
- P 0 m- s,
Vis-ass il o o 4(”,;) RARA TR §u
L 2 1 y
+(-:s')zs') L.f;’:. (E,e)le. 1, S,.‘_
2 T

2, =1.35 107w

1, =16 10
Px est 1'opératéur d'échange pour les coordannées spatiales. La
section efflcace totale théorique est sensiblement plus grande que la section
efficace exper1antale. JaStOW‘24) prend le potentiel suivant
Vs w  powr 2<0,6  107em
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On a un bon accord guelitatif avec les données expérimentales, nais on
ne peut expliquer qu'a 345 Mev 1'isotropie s'étende jusqu'a 1592, Le méme

potentiel perret d'interpréter le cowporteﬁent de la section efficace ?ifs
25

férenticile dans le cas n -~ p. Une autre tentative due & Case »t Pais
est basée sur l'hypothese d'un potentiel linéeire dans la vitesse relative
c est ~ & =~ dire du type (L. S) Les calculs des sections efficaces ont été
faltcs par ces.auteurs en employant 1 approxination de Born dans laquelle

(19)

on ne peut avoir confiance . En tout cas, il est intéréssant de suivre

qﬁalitativement les effets dus & la présence d'un tel potentiel,

‘ - -y
ForcellL, S.)

: -3 - : .. "
Pour un potentiel du type (L. S) Lfk‘l), la dépendance spatiale -
est encore arbitraire; en analogie avec le cas électronagnétique, on peut .

choisir pour V( ?,) unc dépendance du type @ ) 4

-t
\/(1,] Vo = A_ (}"T .
xt d(n) U x™ (34)

La singularité & 1'origine est utile, permettent d'obtenir 2 909 une sec-
tlon efficace différentielle non nagllgeable, ce que donne un potentiel
régulier. Un potentiel du type (LOQd) n'agit pas dans les états S et nos
considérations aux basses énergies sont Aone toujours valables. Corme pour
‘une force tensorielle, le potentiel (E. g n’agit que dahs les états trie
plets, Mais, & la différence de cette force, il conserve le moment orbital
12, Ia théorie exacte du scatdering donnant la section efficace différentiel-
le en fonction du déphasage a été develoupee plus haut. Pour la conservation
de L , les deux types de solutions Y’ et ﬁy obtenues corrxspondent aux

‘valeurs du paramdtre £ = O, J}_

Pour le calcul des déphasages, il est possible d'utiliser
~ les riéthodes variationnclles développées pour le champ central. Pour avoir

(22),

t
_pew .- expllquer le choc p ~ p qu'mn introduisant une dépendance de la char-
rouv s
ge ~ pofentiel

k Nous ne parlons pas de la tcntative de Christian ¢t Hart squi ne

322 .



-39- 3
une idée gualitative de l7effet d'un couDlage ( 3 sur la distribution '

angulaire en utilisant la preriére approxihation de Born, il faut pouvoir v

calculer dans le cas n - p l'expression : JEn 1
“ buvaelt | / ‘)' ¥
ds, PNZ (=l %»V;*/Vm e Aw|™ :
> TR
- o’ _‘? _—‘ -
E’",—[_kx/.»’j ‘;f_-tvt.. *x > ‘

" Le signe ~~v indique la proportlonallte. Si :

A :L,.
Ta = /

et ‘;?4; ~
ot (s) = /V(w_) ¢ A%

c'est & - dire oy e | L
P R |7 et /
4 S * lﬂ , K

R I + ? (_iz_ /ﬁ‘""‘ -
'x. . z
1r1p11quant une contribution importante pour 9 =
‘L

Il faut faire remarquer ici que dans 1l'approximation de Born
, q _ 1

il n'y a pas d'lnt‘erference pour la section différentielle entre la diffusio |
due nu potentiel (L. S\ V (1) et celles dues au charp central et 3 la force
tensorielle. On peut donc ah ajouter les sections différentielles obtenues
séparerent pour les trois chanps. Ca;se et Pais déclarent qu'il esmt possible
dtajouter la valeur ae € ( IE) pour la diffusion p~ p & & L pour 350 Mev

2 w.lrpour 30 Mev, si 1'on choisit dans 34 :

Lo, 10 @ Vo = = 12 Mev.
et une gépendance par rapport & l"échange des coordonnées spatiales du
type pair. Il ne féut pas prendre ses valeurs & la lcttre parce qu'élles se
basent sur 1'approximation de Born, Le signe - choisi pour b% correspond
4 une force répulsive dens 1'état 3D, du deutéron; selon les auteurs, cela ne
donnerait liew & aucune variatién sensible de la valeur fﬁ = 0,04 indispensa-
ble pour obtenir des valeurs correctes pour le moment électromagnétiqud du
deutéron. Un tel choix du signe serble toutefois donner lieu, dans la distri-
bution angulaire pour les collisions.n - P, & une légére asymétrieiautour de
902, dand le sens bupese a cclle étudiée expérimentalerent. Le choix du signe

4 * pour Vo conduirait & avo:Lr pour un ? determne, dés etats noins liés pour

AR g ol e o
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pour ceux ayant y une grande valeur. de j§ ceci est”éontraire - 8ux diffibul— ,
tés lides & la valeur de P prés - & ce que nous suggérent les moddles centr
traux pour les noyaux complexes.(Mayer). ‘ '

Notre conclusion doi‘t 8tre qu'on ne fxéut établir avec sureté
par les considératiuns que l'on vuxﬁc de faire, si l’on peut &tre asssuré de
la présence d'un potentiel du type (L., _3 Cette question pourra.peut-&tre
trouver une réponse dans 1l'étude expérirentale et théorique des effets de
polarisation dus & la présence d'un couplage spin orbite dont nous allons

nous occuper naintenant.

10.~ Couplage spin orbite et polarisation des nucléons,

'
Si un faisceau de neutrons ou neutrons non polarisés to~m4é-2—
‘sur un noyau, et si'l;interaction responsale du choc dépend de l'angle entre
le monent du spin et le mozi"l’e:it orbital, le spin des nucléons aprés le choc
est en grande partie orienté dens une direction privilégiée 1 oh a des effets
de polarisation, Nous allons pour cormencer traiter ici le cas le plus sime ‘

ple du choc d'un neutron contre in noyau de spin 0(26)

A chaque valeur l du morient orbital correspondent deux valeurs
f ++ et [ - +.du moment total. L'amplitude de diffusion correspondant

a l'onde plane incidentg pourra 8%re écrite

fal6,) J—ad«wmo [l Yo us (09
s G e e

)/( ¢sd N sont les fonctions propres correspondant au*morent total
Lot 4 1a coriposante m de (L + S)l‘ . Elles sont no. nées de telle
ma.nlere que ¢ ’

| oy
N chti{/ee"‘"'“‘ / (40 Ko

west i1a fonetion propre du spin. & :
y (94{>est la fonction sphérique d'ordre e (avec n= O) no née sur
la sphere unité,

N «
Appelons 3 P{ les deux operateurs de progectlon

[(e+) P 8]

P 16#!
F; ‘I.tutz-(L 6)]
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On peut facileicent démontrer que

ARCRER NCALEY

I1 est comr ode d'effectuer une rotation des axes de reference x.y ;(3 } est

la 47Te Gt?ﬁm d'1n01dence du neutron)d'un angle Y de telle menisgre que

pour le nouveau systéne de référence 7 ‘) i ?soit dans le plan de scate

tering, Dans ce systéne de référence (L’ 6) stéchit sirplement

PR 9
(L, 6‘) =i €, >
T
Loedl D L:t‘-d'{yez—- L N
{ 00 / Dx( '3 'l)
L et L \S peuveht &tre posés égaux a méro, puisque \/ ( 9 t()
est indépendant der On peu’. donc écrire £ (8 ?l ) de la ranidre sui-
vante
f‘m(gl‘”: {: (A,B%)Xm
AL ~t ' -

16

Pour un état de spin initial Xowe = S M X "

( Xl‘mu / thﬂ.) -

on a une anmplitude de diffusion

£o0) = J_(A*BE)X:M

La section efficace dlfiéren‘clelle peut s'éerire @

c(0= (AP = [ (reB e fo O OK]

a’antorza’ea’uzz,‘
W e (84) < \A R (xu\c,kxwt)(%m’@

Somnt@et les ansles caractérisant 1= diracti r du v'ecteur polarisation
indident P = ( X inc 2X1 wc)



(57)¢

est la composante du vecteur polarisation perpendiculaire au plan de. scat-

DX #
t : T gyt P ABT+ATB ..
R (o :(:anm (P A2 02 e
si est 1'azinuth du plan du scattering par rapport au plan défini par

RO .
P et k (ce qui revient & poser @ = 0 et si P, =Psin @ est la conposante

\
tering. La section efficace peut s'éerire :
- Ry

- . .
de P perpendiculaire 3 k.) On déduit de (38) qu'il n'existe aucune dépenden~
ce pour €& de l'azirmth si P.L = 0, ou s'il n'existe aucun couplage spin ‘

orbite car dans ce cas :

/ J‘k* )
r < ¢ et B=0
I1 est important de calculer la valeur du vecteur polarisation aprés le choce

défini de la maniére suivante s .

FD(S ) _ [ fee) C./f(,é)]
| (o), p(8)]

La composante § est ’
‘ . '
. ) N Xi«w,(’\*" |36})6§(A+B€§)/nmg) |
5 [AfY s (81t (A ATB) R
)

P est la composante § du vecteur polarisation incident

3

’ : 1 41 ‘(';
RO As* ATBY ¢ (AT BIT) R

$

L ' ¥ a2y pi)
AT+ R1Y A7+ n078B) P
LY l“‘( ‘ A {
On a done, si on a un couplage spin orbite, un effet de polarisation méme
. -ty .
-en présence d'un faisceau incident non polarisé P (7 _ 0, on peut favile-

. -
ment démontrer que les compae ntis ;)et 3 du vecteur P *)

. U
nelles 3 P(‘) et I{')
plan du scattering. En papticulier, en liabscence de polarisation initiale

sont proportien=-

-3
et s'annulent-donc si P () est perpendiculaire au

‘la polarisation aprés la collision est perpendiculaire au plan du scattering
Pour mettre en évidence l'efifet de polarisation du & la présence d'un cou=
plage spin~orbite lorsqu' on ne dispose qgj d'un faisceau non polarisé, .

il suffit d'avoir recours & une expérience éouble collision,.
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On peut par exeumple avoir une collision en

f‘;.. N. suivie d'vne collision en N? dans la direction
p perpendiculaire ¢t nesurer la section efficace
\
différentielle dans la direction N2D ou de NZS
,\"T/l Y’ est llangle a2irnithal antour de la direction
S @ ______..D ) N,’.\IZ (& = 0 es* donné par la direction perpendi-
: - s ¢ ] T
‘(_-, -0 Vo ‘(: %E culaire du pian I l‘I '\42\, Les angles ¢ = *‘Trcor—
respondent a N2D et N S. Le rappor’ des doux sevtions efficaces est donné P
ar
P H Q*
R =

Ql

; \
ou . A ‘.3 A B
Q = : .
RIS
A2
I(J'e})cperlence a été faite en envoyant des protons contre des noyaux d'Hélium
28

3 elle donne une valeur de R # 0, ce qui dérmortre la présence d'un cou-
plage (I:Z g) I1 faut éviderment nodifier légdrement la thdorie dans le cas
des protons, pour tenir compte du chanmp coulombien : au lieu de collsidérer
dans les forrules les seuls déphasages nucléaires Jg il faut considérer la
soruie de J et de la phase ~oulombienne 65 correspondante (Cf §8) On

trouve ox érin entalerent que les nivesgux T‘:, et P3 7, sont séparés dans le

cas de He 5 par un intervalle d'énergie de 1'0 e de 3 Mev ou le prenier
niveau P4 (1e plus bas)....
2 .
1 .
Une sepa"a‘clon aussi forte des niveavx Pj et P| ne peut s'ex=-
A

i

pliquer - au moins en se basant sur wne ¢évalaution qualitati Ve - var. une
foree tenswwlle nornale en*tre les nucléons cu uwn effet r\,lablv1s Sie .

P onas et constitu une reuve en faveur du ccupla S -
du type Th t constitue n T ds ) eT nac‘eai
re. Une premiére évaluation a permis de conciuwe qu’un potentiel \L S\ V[é )
ayent une profondeur du méme ordre de grandevr que celui des forces stati—
ques peut donner lieu & des séparations de niveaur de 1°'ordre de quelques
Mev comme on 1l'a observé expérimentaiemen’. Des expériences de diffusion
de neutrons contre He4 ont corfirmé le fait que les niveaux PL et P 3
5 5 = T

se présentent dans He” & peu prdés comme dans le cas du Li

Effet de polarisation avec des noyaux ayant .= spis & C.

Nous voulons généraliser les considérations du & précédent
au cas du choc defucléons contre des noyaux de spin guelenngue. Nous démon-

trerons aussi que‘ les deux nucléors non polarisés peuvent donncr licu aprés

. ' ' 327
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collision & une polarisation toujours perpendiculaire auvplan- du scattering.
La polarisation des nucléons incidenis peut &tre mesurée en partant de la
dépendance aziruthal de la section efficace ‘différentielle. Nous devons : ‘
pouvoir écrire les configurations correspondant & un état du spin S noxi A
polarisé ou du spin & avec un certain dégré de polarisation. Dans le premier
cas, no 8 observons que | ¢
.0k |
\{/ ﬁgﬂ ) ( (39)

¢ + X, sont les

fonctlons propres du spin ayant ia compo.” ante le long de l'age z, On
voit aisément que la valeur noyenne du spin S est (&b S }0) O pour les
donnéds par (39) Une configuration correspondant 4 un spin » aya.nt la

ol 1esé sont des opérateurs de projecti ton; f by -

valeur P du vecteur polarisation peut s'écrire :

Yeac. X* F A, E*/K (40)

E; ~ sont les opérateurs de projection.
X et les fonctions pnopres du spin le long de l'axe de polarisation.

' k" ‘ tn 8 e‘ Yt - @ R4 X
- 1 ¢ V t l -
X* M -5 4 " ‘ . i 4 (/}.1)

v T sont les angles polaires de l'axe de polarisation. On a :

<X§:S )' | ;/ o @44'%(%/(,0&"@»)

| N Qum g
(((,SY) la]* (XSH.) ¥ cug"(.;(*sx)

g [ia,,[ - if—\-‘-_!

1]

i

Pour la fonetion (40)soit normée : |

i ]

ol + fatten

on-a 3

— ' ‘

e,5¢) = - ?

( ¥ (f - ,_,’_ P . - q»L ' q" ~ fd..[
t - \ 42)

(¢. ¢

Nous allons considérer la collision faisant passer d'un ¢tat initiel consti’ -

tué par un noyau A de spin 4, et un nucléon P de spin § & 1'état final

constitué d'une particule B de spin SB et d'une particule Q de spin 8q°

L'état initial sera ume superposition de ~oufiemrations

YVo(0,0) X K
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caractcrisée par le mouent orbital L (L + 1) et la projection Z du ioment ‘

total‘. , ,

 M+a+ P . ‘ .

5, _ ; | ;
X'\ | J sont les fonctions propres de spin A et P, Nous éerirons plus

\/‘-“(O,)X* X?,,

L'emplitude de diffusion sera donnée par

Z X X (e‘ﬂ 'F(“’F)N“P) (44)

bebeen 5
et X repr senten‘c les fonctions proyres de spin /( b et X

des particules finales, Conne l'interaction du choc doit conserver le momen t

briévenent

(43)

a.ngulalre total, nous pouvons dire que ;

(Lq [ Feop| Hup) 5)

o une compednnite J idu nonent total égale &

J’l' = r1 + K 4 P - 6‘ -4 \
Nous ne pouvons pas envisager qu'elle cit mn moment orbltal L (L+1)

car i1 n'est pas certa:m que L soit un bon nomnre quantique. Nous allons

étudier maintenant le comporterient de F par rapport aux rotations spatiales,

Nous devons observer que (m) devra se transformer par ranpoft
aux rotations de la m méme £a¢y que (43). Soit R la rotation faisent passer
de la direction (A),_ 34 la direction ‘«)F

ol = R &

On pourra ecrlr;'e : o
| Y(«;;)-ZD,,,(M/ (wf) h
\ XA:%, OS“:()X/ -
Xeo - % '_P,(R) Xps e
Xe =3 04 (%) Xy | "
Xy = 21 n“ (R) Xy
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w6 =

On a: ‘ ,
v KRy A a,;»m;)! M ,) Dyt Oy Dgq- K, X ?(a,mq )i""*'rj%
'(sovmatlon sur les indices repetes) S

' On a encore; étant domné 1'unitarité des transformat:ons D

v B p _.
(4” F(of)[Map) = Dy Df««’ Dy Dy Dy f (L4 | F(Gf)|mwe’)

Choisissant corme axe % celui de l.. direction incidente, on a M = 0 et

L

éen-prenant en particulier N[ .20 la rotation R fera dans ce cas passer

des angles polaires (0, 0) aux angles (@ ‘(

/ : s £ e"g 4—"«% c“%
/i e ‘
D,, (R): : L L (48)
re - 44\M,Q (’: '(/L u)v% [ 2 .
. 1

Les quantités ( 4‘,«, l F( 0) / H ’m’f’)

ne sont différentes de zéro que si

/
M'ra'p/ -6 -q"0

est développable en série de fonctions sphériqueé

appartenant & la composante Z
' + at + p' - bq' =0
01;1 peut done écrire (47) sous la forme & -
(&q ‘ F(u)f)H’ ap) <

D:, C.'w"-«’—}’ D DrP' Dcs qu (CQ/F()/C' —q-’; ) |

que nous écrirons en abrégé

((}q {F('-“)"‘P) =D :, ey ' pr B«.n' Dpp’ Dc ¢ D‘I 1'({’1'/f;“)/"}9 (4%

Cette relation nous donne le comportement de la partief angulaire de 1!

plitude de diffusion par rapport aux rotations d'espace. Nous allons
aintenant étudier le comportement de F pour une inversion de signe desggzq



nombres quantiques & p. b q. Nous allons démontrer que @ ‘
| - . ‘ll‘ToQ )‘Q-(&‘ ~ ) ) -~ ‘9 -
(-4,-9|F(w))-a-p) =t ¢ { F1) (tq] Femfnp) 59
ol le signets (indépendant de a, p, b, q) est fixé par la parité des confi-
gurations, On démontre ainsi en pessant du schéra L S A SP de la base initia=
le & celui de J L S ‘
J' Honep Saw;a L% ﬂ¢af,

y (‘\’.)XX (Lﬂ Sare Csk.alsr? Z 3

Cl”Sh sont les coefficients de Klebcoh Gordon donnant la réduction de 1'espa~
ce produit des deux morments angulaires L, 8 en les sous espaces irréducti-

LS o Heasp
bles J, Si & la fonction d'onde *° Z ¥ correspond 1'amplitude
de diffusion Heatp ' : g

(LSI/CAT) Z

ot (LS J/{ s J) sont des coefficients indépendents des variables angulai-

res ou de spin, ayant posé

€. _ Neasp S PETI T R e+q .'" | A\ Y v
Z}. : CCM'J 3,“’ ngb SQ? >/C (U)Xbxlt
On peut écrire. T oy by
: .T' Heatp § asp NS
(4] Feaf "“’) (‘”/"I)Cf-"“"’ Cotor C(:',pr
On sait que T~ - '
C}‘,mw. | Lese rC \ C/ («\ @*
N WA AL T 55-5 Yt ()

" Bogent M = 0 ,
m=a+p=-ba=~gq, on obtient.la relation (50). Pour calculer la forme
_ de la section efficace différentielle d'un faisceau polarisé de nucléons
fombant =41 un noyau de &pin quelconque, non polarisé, il faut considérer |
l'amplitudu de diffusion corresl)ondant 1'état initial,

m 2 c. € €, a, w,',(Oq?) / (9:7) X Ko

75 P( 8] (P)est le matrice deflnle en (41) : il faut tenir compte de (39) et
(40). on peut éerire @ '

, - ; . \
AF = m 2 C,_ €y Em LN Dm,f Xb X,,(C,If(w){“r)
4
La section efflcace est donnée par

=7 L
(Af, M) LS Ll c..w | ) D,,.,, D,h,(c‘,;m) ,)(4, [Feafnr’)
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=
e

..43.'.\
(2 S**‘) “f“ z Z ¢, (Gﬂfw)!ul‘)‘ 1
4wl “”ﬁr“ZM“ )

La quantité . ' - L ; : v -3
Q) :cet ¥ 3¢ L‘,{f F lk’!) (ey1F %)
" et réells %y corme on peut le volr aisément grfce a (50) et indépendante de
f R(6
Posons “EC; &qu l“f)l ( )
quantité réelle et independante de
On a :

(z,sm(ﬂr,wrﬁ(smmﬁ (1) Q) gy

qui est une expression analogue 4 celle que nous avions ‘trotvé préeéderment

indépendante du spin du noyau A initial et des particules finales.

Pour.évaluer la polarisationildans le cas ou la particule? est
aussi un nucléon de spin ¥ et ol le faisceau 1n01dent n'est pas polarisé,

il faut pdrtlr de 1'amplitude de diffusion

L
pro LS sty Xy Ky (G F o] wp)
(15“+l - Ji ‘ ' : |

App“iquonS*l'opéraxeur spin de la particule q

SoApel = Tens, (K (€I o) XL

25,4 '
t . (,-LIF “lap)
(S ' Sr)’“(: f?s:"" _2 Q !'xs Ko (

Done (Af,SiAf)=O‘ '

’ . \ . (- |F i*r) ¢ o4 |F '“").
(A,. (S #\;\,)A;)_ 2 stl z_ {- C ( /' (

La quantlté

Lot e (4 r)(‘*— JF ) = & (9) '

(52 ‘
est réelle et 1ndépendante de ?’, corme on peut le démontrer en partant de
(12), donc ' |

(AL Gx+iSy ) ) - .L,____..___ e?@(") () 33

zs“i"



Sz Y =~ - sin ((’
<Sy> ~ ‘cos \{ : /

2

45, 5 0

La polarisationn est donc un vecteur perpendiculaire & Z et au
vecteur (sin ¢ cos ¥ , sin 8 siny cos & ) Elle est donc norrale au
plan da scattering. Nous observons que ces déductions sont indépendantes

des spins des deux particules initiales S, et SP°~

A

Polarisation de nucléons produits dans des réactions nucléaires.

Les nucléons produits dans les réactions nucléaires provenant
du choc de deux noyaux peuvent présenter une polarisation normale (30) (31)
au plan défini par la direction d'incidence et la direction d'émergence des
nucléons. Eq varticulier, il n'y a pas de polarisation dens la direction
d'incidence. ' '

On doit é’attendre, var exemple, & une polarisation pour les
neutrons etnprotons engendrés par la réaction fameuse d + d. La valeur de 1
lé polarisation dépend naturellenent de 1'énergie des particules incidentes

et de 1l'angle entre les directions d'incidénce et d'émergence (voir (3°)~

et (3'), Dans 1le cas de deux d non polarisés, 11 convient de prendre pour
les configurations initiales une base liée au moment orbitel L et au spin
total 8. Le principe de Pauli demande, puisqu'il s'agit de deux particules
- identiques de spin 1, que la parité de S soit onposée & celle de L. L'qmnpli-
tude de diffmssion peut s'éerire :

- $
s Do 22 KKy [ty [Flo|mas)
Ls 25+l y
[,& étant les opérateurs de projection dans liespace des spins S. Il suffit
de reprendre les développements que nous avons fait au paragraphe précédent
pour obtenir la valeur de la polerisation, I1 faut évaluer les coefficients
(9] Fiorl™as) :

qui sont liés auxphascsde la collis@irm vour retourner & la valeur théorique
de la polarisaition° Cette évaluation est extrdmement difficile : il s'a:it
d'un probléme de quatre corps qu'on ne peut réspudre que d'une maniére appro--
chée (32). La mesure de la polarisation des nucléons produit par la réaction
d + d peut ge déduire de 1'étude des dépendances azituthales de la section
efficace différentielle pour la collision contre des noyaux de spin O par

exemple; aux environs d'un niveau de résonnance (28) (33:).“On peut le dédui-
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re smussi d'éffets électrooagnétiques (34) (35); le merment symétricque du.
neutron peut en effet donner liéeu dans le champ coulomblen V d'un noyau

3 une 1nteractlon du type (L ).

AV \ ;7 2
et () ()

Pour mettre cet effet en évidence, i1 est utile de faire une
nesure azimuthale de la section efficace des neutrons incidents dontre des
noysux lourds (Pb ) afin d'avoir un couplage consiAérable'et»évoir de

grands angles de scattering. Une expérience (55) utilisant les neutrons
engendres par la réaction d + d-a permls d'établir ainsi 1l'existonce 4!

une polarisation.
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