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Preface

These notes focus on the description of the phases of matter in two dimensions. Firstly,
we present a brief discussion of the phase diagrams of bidimensional interacting pas-
sive systems, and their numerical and experimental measurements. The presentation
will be short and schematic. We will complement these notes with a rather complete
bibliography that should guide the students in their study of the development of this
very rich subject over the last century. Secondly, we summarise very recent results
on the phase diagrams of active Brownian disks and active dumbbell systems in two
dimensions. The idea is to identify all the phases and to relate, when this is possible,
the ones found in the passive limit with the ones observed at large values of the ac-
tivity, at high and low densities, and for both types of constituents. Proposals for the
mechanisms leading to these phases will be discussed. The physics of bidimensional
active systems open many questions, some of which will be listed by the end of the
Chapter.
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Phases of planar active matter

1.1 Introduction

These notes describe the content of a two-lecture course given by L. F. Cugliandolo at
the summer school “Active Matter and Non Equilibrium Statistical Physics” held at
the Les Houches School of Physics (August-September 2018). They will be published in
a volume of the Les Houches collection dedicated to this school. A detailed introduction
to active matter will appear in other Chapters of this book and we will not cover it
here.

Our plan is to explain some of the peculiarities of passive and active matter in
two dimensions. While under most natural conditions matter fills three dimensional
volumes, systems can be restrained to occupy one or two dimensional spaces with
convenient confining potentials. Low dimensional systems are interesting for practical
and conceptual reasons. First of all, they are realised in Nature, and some classical
and quantum examples are colloidal suspensions under confined conditions, liquid
crystal, magnetic and superconducting films, and electrons trapped at liquid helium
surfaces, to name just a few. Secondly, they can be easier to study numerically and
experimentally than their higher dimensional extensions. But most importantly, they
can pose specific and interesting questions of fundamental relevance. We will discuss
some of these in these notes.

In the rest of the Introduction we briefly describe some salient features of equilib-
rium matter in 2d and the problems that the injection of energy poses on the analytic
treatment of far from equilibrium systems. We will also state the concrete issues that
we addressed in the lectures and that we will treat in the body of these notes.

1.1.1 Equilibrium: role of symmetries and space dimension
Let us start with an aperçu of passive matter in low dimensions. In equilibrium, the
inter particle interactions are responsible for the richness and complexity of the phases
in which matter can exist. Over the last century a rather good understanding of some
of these phases, namely the solid, liquid and gas, and a partial understanding of more
exotic cases, such as glasses or plasmas, have been reached. However, the phase diagram
of matter in two dimensions is still under debate. While it is well-established that in
the thermodynamic limit crystals cannot exist in two dimensions, non-crystalline solids
(with a non-vanishing shear modulus1) do. Still, the mechanisms driving solid’s melting
and the transition towards the liquid phase are not fully settled yet.

1The shear modulus quantifies the deformation caused under a force F parallel to one of the
material’s surfaces while its opposite face experiences an opposing force such as friction. It is defined
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Symmetries are one of the important factors that determine the collective behaviour
of an equilibrium system. Two basic symmetries of the laws of nature are translational
and rotational invariance. These are consequences of the fact that, typically, in systems
with pairwise interactions the potential energy depends on rij = |ri − rj |, with ri and
rj the positions of the two constituents, and not on ri and rj independently. While the
state of a macroscopic system in equilibrium is expected to respect both at sufficiently
high temperature and low density, in the opposite cold and/or dense limit one or both
of these symmetries can be broken, and macroscopic observations may, for instance,
depend on the orientation of the sample. Such a phase transition then reflects the
failure of the system to respect the symmetry of its Hamiltonian.

In a crystalline phase, the constituents order in a perfect periodic and stable array
that covers the sample (ignoring the typically small displacements induced by thermal
fluctuations). This kind of order is said to be “long-ranged”. Continuous translational
invariance is broken since the lattice is invariant under translations by discrete vec-
tors only. Moreover, the orientation of the local crystallographic axes, associated to
each particle via its first neighbours, is always the same, and continuous rotational
invariance is also broken. In a gas or a liquid both translational and rotational sym-
metries are respected, the constituents are randomly placed in the samples, and these
are completely isotropic. In between these two extremes, there are situations in which
the systems can be partially ordered, for example, exhibiting long-range orientational
order but only short-range positional one, meaning that the regular arrangement of the
constituents extends over a microscopic distance only, typically, a few inter constituent
spacings. We shall further explore these cases here.

In low dimensional systems with short-range interactions long-range translational
order is forbidden by the so-called Mermin-Wagner theorem but a solid phase with
quasi long-range translational order is allowed. Roughly speaking, quasi long-range or-
der means that although the ordered pattern is destroyed at long distances, this occurs
very smoothly and, more concretely, the corresponding correlation functions decay al-
gebraically. A proposal for the mechanism for the transition from solid to liquid led
by the dissociation of dislocation pairs2 was proposed by Kosterlitz & Thouless (KT)
in their 1972 & 1973 seminal papers. However, knowing that long-range orientational
order is possible in 2d (Mermin, 1968), Nelson and Halperin (1979) and Young (1979)
modified the KT picture and claimed that the transition actually occurs in two steps,
the second one being linked to the unbinding of disclinations3 [see the sequence of
upper panels in Fig. 1.4 showing configurations with four localised defects in the solid
(A), dissociated dislocation pairs in the intermediate (B) and unbound disclinations
in the liquid (C)]. In this picture the intermediate phase keeps quasi long-range orien-
tational order, allowing the system to increase its entropy over the solid at a moderate
energy cost.

Phase transitions have been classified by Ehrenfest according to the behaviour

as the ratio of shear stress over shear strain, (F/A)/(∆x/l), with A the area of the surface, ∆x the
displacement caused by the force and l the original length. Fluids have vanishing shear modulus.

2A dislocation is a line, plane, or region in which there is a discontinuity in the normal lattice
structure of a crystal.

3A disclination is a line defect in which rotational symmetry is violated.
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of the free-energy as a function of the thermodynamic variables. In this framework,
first and second order phase transitions exhibit a discontinuity in the first and second
derivative of the free energy, respectively, while infinite order phase transitions have an
essential singularity at a critical value of the control parameter (more details are given
in Sec. 1.3). In the so-called KTHNY scenario, the solid-hexatic and hexatic-liquid
transitions are of infinite order, à la KT. Part of the latter picture has been recently
contested in passive systems with hard potentials (Bernard & Krauth, 2011) and we
will review the modifications proposed in the body of the notes.

1.1.2 Out of equilibrium: lack of generic guiding principles

In active systems, the injection of energy adds complexity and richness to the variety
of behaviours that a large system can have. In particular, one could revisit the no-
go theorems for crystalline order in two dimensions, one could wonder whether the
solid phases still exist and whether they are favoured or disfavoured under activity,
or whether disorder phases are enhanced by the injection of energy. All these are
questions that merit attention.

Much of the studies of active matter systems have focused on low density limits in
which solid phases do not exist. Powerful analytical approaches, such as hydrodynamic
theories, and numerical ones, such as Lattice Boltzmann methods, can be developed
and successfully applied to describe the behaviour in dilute limits. These are treated
in detail in other Chapters of this book. In contrast, less has been done for dense
systems, cases in which even the passive limit is harder to unveil.

Another difficulty, or richness, of out of equilibrium systems is that thermodynamic
concepts have to be revisited as they are not necessarily defined. Effective tempera-
tures and chemical potentials, intensive parameters in a thermodynamic approach,
have been successfully used in the context of glassy physics, see e.g. the review ar-
ticle (Cugliandolo, 2011), but become dynamic concepts that need to be measured
carefully, separating time-scales and taking into account possible strong spatial het-
erogeneities. The definition of pressure, that appears linked to density and temperature
in the equilibrium equations of state and allows one to estimate phase diagrams, also
needs to be revisited out of equilibrium. Indeed, as it has been noticed in several
occasions, the mechanical and thermodynamic definitions that are equivalent in equi-
librium are not necessarily so out of equilibrium and the mere existence of an equation
of state becomes an issue in itself.

Confronted with the difficulty of deriving analytic results for interacting many-
body systems, numerical methods can come to our rescue and help us understanding
at least some aspects of the collective behaviour of matter, especially under dense
conditions and the effects of activity. In the numerical studies of the equilibrium prop-
erties of passive systems one has the freedom to choose between molecular dynamics
simulations, in which Newton’s equations of motion are integrated over sufficiently
long time scales or Monte Carlo simulations in which non-physical transition proba-
bilities are sometimes chosen to optimise the sampling of the equilibrium measure. In
the context of active matter, the numerical integration of the actual dynamical equa-
tions is preferred [see, however, Levis and Berthier (2014) and Klamser et al. (2018)
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for kinetic Monte Carlo methods for active systems] putting a computational limit to
the size and time scales that can be studied.

1.1.3 These lectures
Concretely, the aim of these two lectures has been: (1) to expose the students to a
classical problem in statistical physics, the one of order and disorder in two dimensional
passive systems (possible glassy aspects have been intentionally left aside); (2) to
introduce them to some standard tools used in the study of molecular systems; (3)
to discuss some aspects of dense, dry, interacting active matter confined to a plane.
The latter system combines the difficulties of low-dimensional passive matter and the
effects introduced by the constant injection of energy that is partially dissipated and
partially used by the system itself. It is a challenging kind of problem with many open
routes for further study, some of which are discussed by the end of the notes.

Concretely, the rest of the notes are structured as follows. Firstly, we introduced
and discuss the definition of a couple of standard agent-based models in Sec. 1.2. Sec-
ondly, we gave a short reminder of the definitions and properties of phase transitions
of second, first and infinite order in Sec. 1.3. Thirdly, we recall some features of equi-
librium phases in two dimensions in Sec. 1.4. Fourthly, in Sec. 1.5 we present some
recent results on the phase diagrams of the two models defined in Sec. 1.2. Finally, in
Sec. 1.6 we present some conclusions and lines for future research.

1.2 Models and observables

Numerous models of active matter exist in the literature but we will not explain them
all here. We will instead focus on some that are directly inspired by the microscopic
modelling of atomic and molecular passive systems, and hence admit a clear and simple
equilibrium limit. Such agent based active matter models make choices on (1) the form
of the constituents, (2) the inter-particle interactions, (3) the coupling to the solvent
or medium in which the agents are immersed, (4) the way in which the activity acts,
and (5) the dimension and form of the confining space. In Sec. 1.2.1 we list and discuss
some common choices made on these five properties. Besides, in Sec. 1.2.2 we define
and discuss some observables that serve to characterise order (or the lack of it) in
molecular systems, and that we will use to find the phases of the active problem.

1.2.1 Models
The form of the constituents. Playing with individual spheres one can switch from
“atomic” to “molecular” models. More precisely, the constituents can be chosen to be
simply spherically symmetric objects (disks in two dimensions), two of them can be
linked together with a spring or a rod to form a dumbbell, or one can join many of
them to build a polymer. As well-known in the studies of passive liquids in equilibrium
and out of equilibrium, the behaviour of an ensemble of such various objects can be
rather different. Important shape effects have also been found in active matter and we
will discuss some of them here.

Specifically, a disk is a spherically symmetric planar object with mass md and
diameter σd. A dumbbell is a diatomic molecule made of two such disks linked together
with a massless spring or a rigid rod. There is a polarity associated to the dumbbells,
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with the each disk playing a head or tail role. Adding more such monomers one can
also build polymers of any desired length with adequate bending properties.

Coupling to the environment. The dissipation and fluctuations induced by the cou-
pling to the environment are commonly mimicked à la Langevin, by adding friction
and noise terms to the equations of motion. After inspection of the different time-
scales involved in the motion of the active (Brownian) particles and the constituents
of the environment, in standard experimental settings a Markovian (no memory)
assumption is justified (similarly to what is often done for passive Brownian parti-
cles). The noises are then chosen to be Gaussian, with zero mean and delta correla-
tions proportional to the friction coefficient γd and the temperature of the bath T :
⟨ξai (t) ξbj (t′)⟩ = 2γdkBTδijδ(t−t′)δab, with a, b = 1, . . . , d and d the dimension of space,
and i, j particle indices. The Boltzmann constant is denoted kB .

The active Brownian disks equations of motion. The dynamics of active Brownian
disks is usually studied in the over-damped limit. The particles self-propel under a
constant modulus force Fact along a (rotating) direction ni = (cos θi(t), sin θi(t)) at-
tached to the particle with θi the angle formed with a fixed axis. The disk center
positions obey

γdṙi = −∇i

∑
j( ̸=i)

U(rij) + Factni + ξi , θ̇i = ηi . (1.1)

In the first equation γd is the friction coefficient, U is the inter-particle potential,
∇i = ∂ri , Fact is the strength of the active force, and ξi is a vectorial white noise
as the one described in the previous paragraph. i, j = 1, . . . , N are labels that run
over all particles in the system. The angular noise is taken to be Gaussian with zero
mean and correlations ⟨ηi(t)ηj(t′)⟩ = 2Dθδijδ(t − t′). The units of length, time and
energy are given by σd, τ = D−1

θ and ε, respectively. The angular diffusion coefficient is
commonly fixed to Dθ = 3kBT/(γdσ

2
d) (apart from the unimportant numerical factor

that depends on the form of the objects, this is also the angular diffusion coefficient
of a single active dumbbell).

The active dumbbells equations of motion. We model the time evolution of each
sphere in the dumbbell through a Langevin equation of motion that acts on the position
of the centre of each bead, ri, and is given by

mdr̈i = −γdṙi −∇i

∑
j( ̸=i)

U(rij) + Facti + ξi , (1.2)

where i = 1, . . . , 2N is the sphere index and, again, ∇i = ∂ri . Since the noises acting
on the two beads that form a dumbbell are independent, the combined stochastic force
can make the dumbbells rotate.

In cases in which the inertial time-scale md/γd is much shorter than all other
interesting time-scales in the problem, one can take an over-damped limit and basically
drop the term mdr̈i from the equations of motion. (These cases are common in the
Langevin description of the random motion of particles and molecules.) In this limit,
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Fig. 1.1 A sketch of the Lennard-Jones (n = 6) potential, the WCA truncated and translated
n = 6 one, a hard wall and a truncated and shifted Mie (n = 32) potential, see the text for
their definitions.

the equations of motion are first order in the time derivative, as in Eqn. (1.1), but the
form of the molecules and in particular the (averaged) length between the colloidal
centres will have a notable importance in the collective behaviour of the macroscopic
system.

Inter-particle interactions. In atomic systems the potential typically has an attrac-
tive tail due to Van der Waals dipole-dipole interactions that decays as a power law
−1/r6 at large separations r while at short distances the overlap of the electron clouds
makes the potential strongly repulsive. The minimum of the potential, located at a
distance of a few Angstroms with a value of a hundred Kelvin, is responsible for the
formation of crystals. This kind of potential is also used to describe the interactions
between colloidal particles in a solvent although the length and energy scales involved
can be very different from the atomic ones (say, length scales between a nanometer and
a micrometer). In some cases, only the repulsive part that accounts for the excluded
volume interaction between colloids is retained. Without entering into a detailed jus-
tification for the latter choice, it is commonly adopted in the context of active matter
as well. The potential is then taken to be a generalised Lennard-Jones (LJ) of Mie
type (Mie, 1903), truncated and shifted à la Week-Chandler-Andersen (WCA, 1971):
calling ri the d-dimensional position of the centre of the ith particle and r = |ri − rj |
the inter-particle distance, the short-ranged repulsive potential takes the form

U(r) =

{
4ε [(σ/r)2n − (σ/r)n] + ε if r < σd = 21/nσ ,

0 otherwise ,
(1.3)

with n a parameter that tunes the softness of the potential (n = 6 is the usual LJ
one and increasing n the potential gets harder), ϵ an energy scale and σ a length scale
chosen to be of the order of the particle diameter. The hard wall, LJ, WCA, and the
very steep Mie with = 32 potentials are compared in Fig. 1.1.

Activity. The active forces can be persistent or not. Persistency means that the con-
stituents have a preferred direction along which the active force is permanently applied.
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For instance, in the dumbbell models, the molecules are elongated along a main axis,
with each bead having a head or tail nature. The active force is always exerted along
this axis from tail to head (Cugliandolo et al., 2017; Petrelli et al., 2018). An example
with non-persistent activity is the one treated in Loi et al. (2011), a polymeric model
in which the active force was applied on temporal intervals of a given duration only,
on a preselected monomer, and with random direction. In the case of the active Brow-
nian disks, these are assumed to have a direction attached to them, along which the
active force is always applied (Henkes, Fily and Marchetti, 2011; Fily and Marchetti,
2012; Redner, Hagan and Baskaran, 2013; Fily, Henkes and Marchetti, 2014; Redner,
Wagner, Baskaran and Hagan, 2016).

The Péclet number. The Péclet number is a dimensionless parameter defined as Pe =
Factσd/(kBT ) that quantifies the strength of the activity as compared to the thermal
fluctuations. It has a twofold interpretation. One is as a ratio between the advective
transport, say ℓv = Factσd/γd and the diffusive transport D = kBT/γd. The other one
is as the ratio between the work done by the active force when translating the disk by
its typical dimension, Factσd, and the thermal energy, kBT . The Péclet number can
be tuned by changing Fact at fixed γd and kBT , for example.

Reynolds number. The Reynolds number confronts the strength of the inertial force
to the viscous one Re = ρLv/µ = (σdFact/γd)/(γdσ

2
d/m) = mdFact/(γ

2
dσd) and it is

typically very small, say 10−2, for the values of the parameters used in the simulations.

Space and packing fraction. The constituents are typically confined to displace them-
selves in a d dimensional box with linear length L and periodic boundary conditions,
a situation that minimises finite size effects and evades the difficulty of modelling
the interactions with the boundary walls. The packing fraction is then defined as
ϕ = πσ2

dN/(4L
d) (with an extra factor of 2 for the dumbbells, for which the distance

between the centres of the two coloids is fixed to σd) and can be tuned by changing
N or L, for example.

1.2.2 Observables
In this Section we define a number of observables and correlation functions that are
used to characterise positional and orientational order in molecular systems. In all the
definitions we keep the time-dependence to evaluate the possible evolution of these
quantities and thus quantify the dynamics of the problem.

Voronoi tessellation. The first issue we want to resolve is to attribute a notion of
neighbourhood to particles in the configurations. This is done with the help of a
Voronoi tessellation. In our problem, we start by assigning N points on the plane
to the centres of the disks, be them the individual particles or the beads building
the diatomic molecules. We then partition space in areas such that each space point
is closer to the centre of one disk than to any other one. Each particle is therefore
uniquely enclosed by each such polygon. The borders of the areas thus constructed
are polygons and the number of neighbours of a point is given by the number of sides
of the polygon, see the sketch in Fig. 1.2 (a). An example of a concrete dumbbell
configuration with its Voronoi tessellation is shown in Fig. 1.3 (a).
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(a) (b) (c)

Fig. 1.2 (a) An example of Voronoi tessellation. (b) Close packing of disks, the hexagonal
lattice. (c) The definition of the angle θjk between a bond and a reference (horizontal) axis.
The local hexatic order parameter represented as a vector attached to the central particle.
The two last panels have been borrowed from E. Bernard’s PhD thesis.

Fluctuating local density. One can measure local densities ϕj , with a discrete index
dependence, in at least two ways, and construct with them histograms and probability
distribution functions.

With the first method, for each bead, one first estimates the local density as the
ratio between its surface and the area of its Voronoi region AVor

j . This value can then
be coarse-grained by averaging the single-bead densities over a disk with radius R
around the concerned bead,

ϕj(t) =
1

n
(j)
R (t)

∑
i∈S

(j)
R

πσ2
d

4AVor
i (t)

. (1.4)

where n(j)R and S
(j)
R are the number of particles and the set of particles placed inside

the spherical disk with radius R around the jth bead, respectively.
With the second method, one constructs a square grid on the simulation box, for

each point in the grid one calculates a coarse grained local density ϕj over a circle of
given radius R, and one finally assigns this density value to the grid point.

A visual inspection of the density fluctuations in real space is achieved by painting
with the colour that corresponds to its coarse-grained local density each Voronoi region.
Typically, a heat map with the convention denser in yellow and looser in violet, is used.
The dumbbell configuration in Fig. 1.3 (a) is analysed along these lines and the local
densities are painted according to such a colour code in panel (b).

Positional order. The fluctuating local density field is defined as

ρ(r, t) = N−1
N∑
i=1

δ(r− ri(t)) , (1.5)

where the sum runs over particle indices, ri(t) is the time-dependent position of the
ith particle, and N is the total number of particles. The quantity is normalised to one∫
ddr ρ(r, t) = 1. In a homogeneous system ρ(r, t) = ρ0 = 1/V with V ≡

∫
ddr the

volume of the box where the system is confined.
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(a) (b)

(c) (d)

Fig. 1.3 (a) The Voronoi tessellation of a dumbbell configuration (the joining point between
the two beads is shown with a dark spot). (b) The heat map attributed to the local density of
the individual disks, with their own Voronoi cells painted accordingly. In panels (c) and (d)
the cells are painted following the heat map attributed to the projection of the local hexatic
order parameter in the direction of its mean value. In (c) the arrows are still drawn and light
colours are used while in (d) the arrows have been erased and darker colours are chosen.

The density-density spatial correlation function

C(r1, r2, t) = ⟨ρ(r1, t)ρ(r2, t)⟩ (1.6)

involves an average over different realisations of the system henceforth represented
by the symbol ⟨. . .⟩. This quantity is, for a homogeneous system, space translational
invariant meaning that it only depends on r1 − r2 = r. If, moreover, the density is
isotropic, C(r1, r2, t) = C(|r1 − r2|, t).

The Fourier transform of the density-density correlation yields the structure factor

S(q, t) =

∫
ddr1

∫
ddr2 NC(r1, r2, t) e

−iq·(r1−r2) =
1

N

∑
ij

⟨e−iq·(ri(t)−rj(t))⟩ . (1.7)

A real order parameter related to possible translational order is the modulus of
the Fourier transform of the density
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ψT (q, t) =

∣∣∣∣∣N−1
N∑
i=1

eiq·ri(t)

∣∣∣∣∣
2

. (1.8)

The positional order can be tested with correlations of the Fourier transform of
the density

Cq0(r, t) = ⟨eiq0·(ri(t)−rj(t))⟩ (1.9)

where r = |ri(t) − rj(t)| and q is taken to be q0 the wave vector that corresponds
to the maximum value of the first diffraction peak of the structure factor (1.7). The
quasi-long range positional order in the solid phase should be evidenced by an algebraic
decay of Cq0(r) with distance. Instead, in the hexatic and liquid phases the decay of
Cq0(r) should be exponential, see Fig. 1.4.

Orientational order. The order parameter for orientational order is the local time-
dependent n-fold order parameter

ψni(t) =
1

N i
nn

Ni
nn∑

k(i)

einθki(t) , (1.10)

where θki(t) is the instantaneous angle formed by the bond that links the ith bead with
the kth one, the latter being a first neighbour on the Voronoi tessellation of space, and
a chosen reference axis, see Fig. 1.2 (c). The sum runs over the N i

nn first neighbours of
the disk i and n is an integer to be chosen according the expected orientational order,
n = 6 in our cases.

The ground state of a system of spherically symmetry constituents interacting via
Lennard-Jones-like potentials is expected to be a perfect hexagonal lattice; for a recent
review on the search for ground state configurations, written from a mathematical
perspective, see Blanc & Lewin (2015). For beads regularly placed on the vertices of
such a lattice, see Fig. 1.2 (b), each site has six nearest-neighbours and all the angles
are, θki = 2πk/6 +ϕ where ϕ is just an arbitrary phase coming from the misalignment
between the bonds and the lab axis. The relevant value of n to use is 6, for which
ψ6i = 1 on a perfect hexagonal lattice. At finite temperature this parameter becomes
less than one.

A colour code is useful to detect local orientational order. The plane is first divided
in cells according to the Voronoi prescription, see Figs. 1.2 (a) and 1.3 (a). Next, an
arrow representing the local (complex) order parameter is attributed to each cell, see
Fig. 1.3 (c). The average over all cells is computed yielding a vector of given modulus
and direction. The local arrows are then projected on the direction of the averaged
vector. The cells with maximal projection are coloured in red, the cells with maximal
projection in the opposite direction are coloured in blue, and the scale in between is
colour coded as in the right bar in Fig. 1.3 (d).

Upon coarse-graining over a cell with radius R around a point r that possibly con-
tains a large number of particles, say nR, one can build histograms and then probability
distribution functions of the coarse-grained local hexatic order parameter
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ψcg
n (r, t) =

1

nR

∑
i∈S

(r)
R

1

N i
nn

∑
k(i)

einθki(t) . (1.11)

S
(r)
R is the set of particles inside the disk with radius R centered at the point r.

With the complex order parameter (1.10), or with its coarse-grained version, one then
constructs a real correlation function

Cn(r, t) =
⟨ψ∗

ni(t)ψnj(t)⟩r=|ri−rj |

⟨ψ∗
ni(t)ψni(t)⟩

(1.12)

where homogeneity and isotropy have been assumed on the left-hand-side, with the
simple dependence on r = |ri − rj |.

The hexatic order parameter and its correlations probe the bond-orientational order
thus allowing the liquid, hexatic and solid phases to be distinguished: the decay should
be exponential in the liquid, power law in the hexatic and approach a constant in the
solid, see Fig. 1.4.

Defects. From the Voronoi tessellation of space one can count the number of neigh-
bours that any particle has. Deviations from the value 6, the one that a perfect hexag-
onal lattice would have, as in Fig. 1.2 (b), are defects, typically corresponding to
particles having 5 or 7 neighbours. The sketches in Fig. 1.4 show the behaviour of
the defects, according to the KTHNY scenario: the defects are bound to each other in
pairs and can freely move without destroying the quasi long-range translational and
long-range orientational order in the solid (A), they unbind in pairs in the hexatic (B)
and they get free in the liquid (C). In actual fact, recent simulations (Qi, Gantapara
and Dijkstra, 2014) show that defects get together in clusters, which tend to be small
and compact in the hexatic phase, but become string-like (grain boundaries) in the
region with coexistence of hexatically ordered and liquid and also in the liquid phase.
This is one of the issues that deserves a better analysis in the future, both for passive
and active systems.

Time delayed correlation functions. The use of time correlation functions in experi-
ments, instead of spatial ones, has the advantage that due to the limited field of view,
the latter cannot be obtained over a large dynamic range, while the former can, in
principle, cover arbitrarily many decades. Time-delayed correlation functions simply
compare the value of an observable at a time t1 with the value of the same observable
at a later time t2. The result is a function of t2 − t1 under stationary conditions. The
exponential or algebraic decays of spatial correlations as a function of distance in the
various phases is translated into exponential or algebraic decays as functions of the
time-delay t2 − t1 in the temporal correlations.

Mean-square positional displacement. The simplest time-delayed observable that char-
acterises the translational properties of the elements in the samples is probably the
averaged mean-square displacement of the position of a relevant point on the molecules,
be it the centre of the disks or the centre of mass,

∆r(t2 − t1) =
1

dN

∑
i

⟨|ri(t2)− ri(t1)|2⟩ (1.13)
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Fig. 1.4 Sketch of configurations with defects of various kinds (top panels) and the cor-
relation functions (bottom panels) in the solid, hexatic and liquid phases. Image taken
from Gasser (2009). Red (green) points are particles with five (seven) neighbours. The sketch
in A is in the solid phase, the one in B in the hexatic phase and the one in C in the liquid
phase. In the three lower panels, the (blue) curves lying above are the correlations C6(r) that
quantify the orientational order while the (purple) curves lying below are the correlations
Cq0(r) that measure translational order.

with the angular brackets denoting average over the noises and the times being such
that t2 ≥ t1.

Angular mean-square displacement. Another characterisation of the global dynamics,
that focuses on the rotational properties of the constituents, is given by the averaged
mean-square displacement of the angles formed by a relevant direction of the molecule
and a chosen axis of reference,

∆ϑ(t2 − t1) =
1

N

∑
i

⟨|ϑi(t2)− ϑi(t1)|2⟩ . (1.14)

The Lindemann criterium. The dynamic Lindemann parameter (Zahn, Lenke and
Maret, 1999) is

γL(t) = ⟨|[ri(t)− ri(0)]− [rj(t)− rj(0)]|2⟩/(2a2) (1.15)

with i and j first neighbour particles at the initial time t = 0, say, and a the crystalline
lattice spacing. In a crystal γL(t) is bounded at long times while in the liquid the dis-
placements of the two particles are uncorrelated and γL(t) = ⟨|ri(t)− ri(0)|2⟩/(2a2)+
⟨|rj(t)− rj(0)|2⟩/(2a2) is just the mean-square displacement of an individual particle,
see Eqn. (1.13), and it is then proportional to t (simple diffusion). The change from
bounded behaviour to time-increasing one can be used as evidence for the end of the
solid phase.
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1.3 A reminder on phase transitions

This Section contains a (very) rapid reminder of phase transitions with emphasis on
properties and concepts that are useful for our purposes. Many textbooks give detailed
descriptions of critical phenomena (Stanley, 1971; Amit, 1984; Parisi, 1988; Goldenfeld,
1992; Cardy, 1996; Simon, 1997; Herbut, 2006; Kardar, 2007).

1.3.1 First order
In a first-order phase transition a state that is stable on one side of the transition, be-
comes metastable on the other side of it. The order parameter jumps at the transition,
for example, from zero in the disordered phase to a non-vanishing value in the ordered
one. The correlation length, that is extracted from the correlations of the fluctuations
of the order parameter with respect to its average, is always finite.

In common discussions of this kind of transition, the interplay between only two
states is considered, each one being the preferred one on the two sides of the transition.
But this is not necessarily the case and a competition between various equivalent
stable states can also arise. The dynamics of first order phase transitions is driven by
nucleation of the new stable phase within the metastable one in which the system is
placed initially. During a long period of time the system attempts to nucleate one or
more bubbles of the stable phase until some of them reach the critical size and then
quickly grow. In the multi-nucleation problem, two possibilities then arise: either one
of them rapidly conquers the full sample or many of them touch, get stuck, and a new
coarsening process establishes. The latter case is the one that will be of interest in the
hexatic-liquid transition, as we will argue below.

1.3.2 Second order
In a second-order phase transition a state that is stable on one side of the transition,
becomes unstable on the other side of it and, typically, divides continuously into an
even number of different stable points, related in pairs by symmetry. The order param-
eter is continuous at the transition and, for example, it grows from zero in the ordered
phase. The correlation length, also extracted from the correlations of the fluctuations
of the order parameter with respect to its average, diverges algebraically on both sides
of the transition.

When the parameters are taken across the critical value, the system needs to accom-
modate to the new conditions and it does progressively, by locally ordering domains
of each of the possible and equivalent new equilibrium states. The latter process is
called coarsening or domain growth and, although it is a very general phenomenon,
its details depend on some characteristics of the problem as the conservation laws and
the dimension of the order parameter. The symmetry breaking process, whereby one
of the equivalent equilibrium states conquers the full sample, is achieved late after the
system is taken across the phase transition. Indeed, equilibration takes a time that
scales with the system size and diverges in the thermodynamic limit.

1.3.3 Infinite order
Berezinskii-Kosterlitz-Thouless (BKT) phase transitions (Berezinskii, 1971a; Berezin-
skii, 1971b; Kosterlitz and Thouless, 1972; Kosterlitz and Thouless, 1973; Kosterlitz,
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1974; Kosterlitz, 2016) lack an order parameter taking a non-vanishing value on one
side of the transition (in the thermodynamic limit) and are not related to spontaneous
symmetry breaking. They are transitions of a different kind, driven by the unbinding
of topological defects when a critical value of a control parameter (typically temper-
ature over an energy scale) is reached. In the disordered phase the density of free
topological defects is finite and the correlation function of the would-be order parame-
ter decays exponentially, with a correlation length that is proportional to the distance
between unbound defects. This length diverges exponentially at the transition and
remains infinite in the full quasi-long-range ordered phase. Topological defects exist
in the ordered phase but they bound in pairs and localised in space. The divergence
of the correlation length implies that the correlations of the would-be order param-
eter decay algebraically beyond the transition, that the system has quasi long range
order and that this full phase behaves as a critical point. In terms of the associated
susceptibility, it is finite in the disordered phase and it diverges in the full subcrit-
ical phase. Even more so, the transition is characterised by essential singularities in
all thermodynamic functions thus receiving the “infinite” order qualification. This be-
haviour is due to (spin or density) wave excitations with a linear dispersion relation
at long wave-lengths.

The dynamics of such phase transitions is characterised by the growth of the quasi-
long-range order and the annihilation of topological defects, see, e.g. Jelić & Cuglian-
dolo (2011) for a numerical study of the 2dXY model or Comaron et al. (2018) for a
similar analysis of a driven-dissipative bidimensional quantum system.

1.3.4 From infinite to first order

The picture described above has been developed based on the analysis of the 2d XY
model in which planar spins are placed on the vertices of a regular lattice, with nearest
neighbour pairwise interactions −Jsi · sj = −J cos θij with θij the angle between
the two spins at the i and j sites. Interestingly enough, the nature of the transition
can change dramatically if the interaction term takes other forms that still respect
rotational invariance. The potential 2[1− cos2p

2

(θij/2)], that interpolates between the
conventional one for p = 1 and a much steeper well for large p2, was used by Domany,
Schick and Swendsen (1984) to show that the transition crosses over from BKT to first
order for large p2, see also Jonsson, Minnhagen and Nylen (1993) and Zukovic and
Kalagov (2017) for a more recent and complete analysis of the Langevin and Monte
Carlo studies of the same model, respectively. In particular, for p2 = 50 the transition
is very sharp with a huge peak in the specific heat and many other elements of a first
order phase transition. The reason for this behaviour is that the typical temperature
for the unbinding of vortex-antivortex pairs is pushed to very high values, beyond the
ones at which other kinds of excitations drive the discontinuous transition. Similarly,
other examples of models expected to have BKT transitions, such as the 2d Coulomb
gas, were shown to comply with these expectations only at low density and depart
towards a first order phase transition at higher density (Minnhagen, 1987).
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1.3.5 Two results against common wisdom

Breakdown of universality. The phenomena described by the end of the last Subsec-
tion seem to be in contradiction with the picture that emerges from the renormalisation
group theory according to which systems in the same universal class (having the same
symmetry of the order parameter, same dimensionality and same range of the inter-
actions) should exhibit the same type of phase transition. More precisely, universality
states that the set of critical exponents that describe the behaviour of physical quan-
tities near a continuous phase transitions, be it of second or infinite order, should be
identical. However, a rigorous proof that planar spin models of the XY kind with a
sufficiently narrow potential undergo first order phase transitions was provided by van
Enter & Shlosman (2002) and the fact that with a simple change of parameter one
can change the order of the transition was thus confirmed.

Continuous symmetry breaking in two dimensions. It is commonly found in the lit-
erature that the content of the Mermin-Wagner theorem is that “two-dimensional
systems with a continuous symmetry cannot have a spontaneous broken symmetry at
finite temperature”. This, however, is not true in general and it was not claimed by
these authors either. The Mermin-Wagner result is that the expected order parameters
vanish in a number of two dimensional cases, including superfluids, superconductors,
magnets, and crystals, but it does not imply that there cannot be long-range order of
another kind. The spontaneous breaking of orientational order in 2d, that was already
anticipated by Landau himself (Landau, 1937a; Landau, 1937b), is a counter example
of the statement between inverted commas. Indeed, broken translational symmetry im-
plies broken rotational symmetry. However, the converse is not true and it is possible
to break rotational invariance without breaking translational invariance. The most ob-
vious way to do it is to use anisotropic molecules, as in liquid crystal systems. Another
way is by achieving long-range bond orientational order with spherically symmetric
constituents.

1.4 Equilibrium phases in two dimensions

In this Section we recall some properties of passive matter in equilibrium. We focus on
two representative cases. We take a dense system at low temperatures and we evaluate
the effect of thermal fluctuations. We consider a loose system and we derive the virial
expansion that leads to the equation of state. These two well-known problems have
intriguing extensions when activity is added, issues that we will cover in the next
Section.

1.4.1 Effects of fluctuations on dense systems: melting in low dimensions

Consider a sufficiently dense system so that it should be a solid, possibly in a crystalline
phase and evaluate the effect of thermal fluctuations. Does the solid melt? Which are
the mechanisms leading to melting? Which is the order of the phase transition taking
the solid into a liquid?
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Positional vs. orientational order. In the 30s Peierls (1934) and Landau (1937a,
1937b) argued that it is not possible to find long-range positional order in low di-
mensional systems with short-range interactions.

Peierls used the simplest possible model for a solid, one of beads placed on a d-
dimensional lattice, with Hookean couplings between nearest-neighbours, in canonical
equilibrium. The question he asked was whether such a system could sustain periodic
order over long distances under thermal fluctuations, and he concluded that this is
not possible in d ≤ 2, while it is in d ≥ 3. Landau based his arguments instead
on his theory of phase transitions and reached the same conclusion. In the 60s, the
numerical simulations of Alder and Wainwright (1962) pointed towards a first order
phase transition between solid and liquid. A more general proof of absence of crystalline
order in 2d, that does not rely on the harmonic approximation but uses a classical limit
of Bogoliubov’s inequality (Bogoliubov, 1962), was given later by Mermin (1968).

An equilibrium amorphous state has a uniform averaged density ⟨ρ⟩ = ρ0, while a
zero temperature crystalline state has a periodic one

ρ(r) =
∑
i

δ(r−Ri) (1.16)

with i a label that identifies the particles or lattice sites, and Ri the position of the
ith vertex of the lattice. At zero temperature a perfectly ordered state, with periodic
density is allowed for all d ≥ 1. However, thermal fluctuations make the atoms vibrate
around their putative lattice sites, and the instantaneous position of the ith atom
becomes

ri = Ri + ui = Ri + u(Ri) (1.17)

with ui = u(Ri) its displacement from Ri. A simple way to see the lack of positional
order in low dimensions (and the existence of it in higher dimensions) is to compute the
mean-square displacement of the atoms assuming thermal equilibrium. Take a generic
pair-wise potential

Utot =
1

2

∑
ij

U(ri − rj) =
1

2

∑
ij

U(Ri −Rj + ui − uj) . (1.18)

Indeed, the total harmonic potential energy is (Ashcroft and Mermin, 1976)

Utot = Ugs +
1

2

∑
ij

∑
µν

(uµi − uµj )
∂2U

∂rµi ∂r
ν
j

(Ri −Rj) (u
ν
i − uνj )

= Ugs +
1

2

∑
ij

∑
µν

uµi Dµν(Ri −Rj)u
ν
j (1.19)

where Ugs =
1
2

∑
i ̸=j U(Ri −Rj), and in the second term µ, ν run from 1 to d, Dµν

ij ≡
Dµν(Ri−Rj) = δij

∑
k ϕ

µν
ik −ϕµνij and ϕµνik = ∂2U(r)/∂rµi ∂r

ν
k . Three symmetries of the

couplings follow immediately Dµν
ij = Dνµ

ji , Dµν
ij = Dµν

ji (from the inversion symmetry
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of a Bravais lattice), and
∑

iD
µν
ij = 0 (from the uniform translation invariance of the

full lattice). After a Fourier transform Utot becomes

Utot = Ugs +
1

2

∑
k

∑
µν

ũ∗µ(k)D̃µν(k)ũν(k) , (1.20)

where ũµ(k) =
∑

i e
ik·riui and ũ∗µ(k) = ũµ(−k) since ui is real. Next one needs

to estimate the k dependence of D̃µν(k). Using the symmetries of Dµν
ij , its Fourier

transform D̃µν(k) can be recast as

D̃µν(k) = −2
∑
R

Dµν(R) sin2(k ·R/2) ≈ −2
∑
R

Dµν(R)(k ·R/2)2 , (1.21)

after a small k approximation. It is now possible to further assume

D̃µν(k) 7→ k2Aµν (1.22)

where the important k2 dependence has been extracted and Aµν is a constant matrix.
Utot thus becomes the energy of an ensemble of harmonic oscillators. The equipartition
of quadratic degrees of freedom in canonical equilibrium yields

⟨ũ∗µ(k)ũν(k)⟩ =
kBT

k2
A−1

µν (1.23)

and a logarithmic divergence of the mean-square displacement

∆u2 ≡ ⟨|u(r)− u(r′)|2⟩ ∼ kBT ln |r− r′| in d = 2 (1.24)

follows as a consequence of the logarithmic divergence of the integral
∫
d2k k−2.

An even simpler derivation of the same result goes as follows. Take the harmonic
Hamiltonian H = c

2

∫
ddr (∇u)2 as a starting point. The excitation of a spin-wave with

wavelength L (wave vector 2π/L) then requires an energy E ≈ Ld(2π/L)2 ∝ Ld−2 that
diverges with L for d = 3, is independent of L for d = 2 (marginal case) and decreases
as L−1 for d = 1.

The divergence of the mean-square displacement in Eqn. (1.24) implies that any
atom displaces itself a long distance from each other and hence no long-range order
is possible in d = 2. This weird effect is due to the dimensionality of space. In three
dimensions, the mean square fluctuation is finite.

A more general proof of the lack of positional order in d ≤ 2 that goes beyond the
harmonic approximation was by Mermin (1968). In this paper, he first proposed the
following criterion for crystallinity:

ρ̃(k) = 0 for k not a reciprocal lattice vector ,
ρ̃(k) ̸= 0 for at least one non-zero reciprocal lattice vector , (1.25)

with ρ̃(k) the Fourier transform of ρ(r), in the thermodynamic limit, that is

ρ̃(k) =
1

N

N∑
i=1

eik·ri . (1.26)
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Using Bogolyubov’s identity, Mermin showed that the condition (1.25) cannot be sat-
isfied in d ≤ 2 since in thermal equilibrium at non-vanishing temperature, for all k,
⟨ρ̃(k)⟩ is bounded from above by a quantity that vanishes in the thermodynamic limit.

The possibility of a two-dimensional system with constant density (all Fourier
modes vanish) being, however, anisotropic over long distances was left open by Peierls
and Landau. The actual definition of the orientational order was also given by Mermin
in his 1968 paper. Within the harmonic solid model he simply noticed that

⟨[r(R+ a1)− r(R)] · [r(R′ + a1)− r(R′)]⟩ (1.27)

approaches a21 at long distances |R −R′| → ∞, implying that the orientation of the
local order is maintained all along the sample. The status of the studies of orientational
order in two dimensional systems in the 90s is summarised in (Strandburg, 1992).

Melting scenarii. In d ≥ 3 melting is a first order phase transition between crystal and
liquid (although the details of how this transition occurs are still not fully understood
and may depend on the material). In d = 2, instead, there is no full consensus yet
as to which are the mechanisms for melting and how the passage from solid (with
quasi-long-range positional and long-range orientational order) to liquid (with both
short-range positional and orientational order) occurs. In the late 70s Halperin &
Nelson (1979) and Young (1979) suggested that the transition can occur in two steps,
with an intermediate anisotropic hexatic phase with short-range positional and quasi-
long-range orientational order. Both transitions, between solid and hexatic on the
one hand, and hexatic and liquid on the other, were proposed to be driven by the
dissociation of topological defects, and therefore be of BKT type:
• In the first stage, at the melting transition Tm, dislocation pairs unbind to form

a bond orientationally ordered hexatic liquid.
• In the second stage, at Ti, the disclination pairs which make up the dislocations

unbind to form an isotropic liquid.
(These features are sketched in the upper panels in Fig. 1.4.) Moreover, within the
KTHNY theory, the finite size scaling of the order parameters is expected to be as
follows. In the solid phase the translational order parameter should decay with system
size as N−η with η ≤ 1/3. In the hexatic phase the hexatic order parameter should
decay with system size as N−η6 with η6 → 0 at the transition with the solid and,
according to Nelson & Halperin, η6 → 1/4 at the transition with the liquid. All these
conclusions were derived from an RG analysis of the continuous elastic model of a
solid separated into the contribution of the smooth displacements and the one of the
defects.

A large number of numerical and experimental attempts to confirm (or not) this
picture followed. A summary of the situation at the beginning of the 90s can be found
in Strandburg (1989, 1992) and close to ten years ago in Gasser (2009). Early numerics
and experiments faced some difficulty in establishing the existence of the hexatic phase,
and suggested instead coexistence between solid and liquid as expected in a single first
order phase transition scenario. However, by the turn of the century the existence of
the hexatic phase was settled and quite widely accepted (see the references by Maret
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et al. cited below) although evidence for both transitions being of BKT kind remained
still elusive.

More recently, Krauth and collaborators (Bernard and Krauth 2011; Engel et al.
2013; Kapfer and Krauth 2015) came back to this problem with powerful numerical
techniques and they suggested that, for sufficiently hard repulsive interactions be-
tween disks, the transition between the hexatic and liquid phases is of first order. A
phenomenon similar to the one put forward by Domany, Schick and Swendsen (1984)
with a numerical study, and later shown rigorously by van Enter and Shlosman (2002),
would then be at work. Namely, that the BKT transition derived with renormalisation
group techniques would be preempted by a first order one. This new scenario allows
for co-existence of the liquid and hexatic phases in a finite region of the phase diagram.
The mechanisms for the transitions would then be the following.

• In the first stage, at Tm, dislocation pairs unbind to form a bond orientationally
ordered hexatic phase.

• In the second stage, at Ti, grain boundaries made of strings of alternating five
and seven fold defects would percolate across the sample and liquify it.

While real time video microscopy on superparamagnetic colloids interacting via
a soft r−3 potential tend to confirm the KTHNY scenario (Zahn, Lenke and Maret,
1999; Zahn and Maret, 2000; Von Grünberg, Keim and Maret, 2007; Keim, Maret
and Von Grünberg, 2007; Gasser, Eisenmann, Maret and Keim, 2010), experimental
evidence for the new scenario in a colloidal hard disks system was recently given by
Thorneywork et al. (2017). It seems plausible that the mechanism for melting in 2d
be non-universal and depend on the interaction potential and other specificities of the
systems. Indeed, the numerical simulations prove that for sufficiently soft potential the
first order transition is replaced by the conventional BKT one (Kapfer and Krauth,
2015). Moreover, a choice between the two is also made by the form of the particles:
the polygon case was carefully studied by Anderson et al. (2017) and a dependence of
the order of the transition with the number of sides of the constituent polygons was
claimed in this paper.

1.4.2 Effects of interactions on dilute systems: the equation of state
Since we may be dealing with first order phase transitions, it is useful to recall how
these arise in the best known case of the liquid-gas transition and how they lead
to co-existence. This is seen, for instance, from the equation of state derived under
various approximations. For example, the virial expansion is a common technique used
to study weakly interacting gases with perturbative methods. It is explained in many
textbook, see e.g. (Kardar, 2007), and we will not reproduce much details here. In
short, the virial expansion expresses the deviations from the ideal gas equation of
state, PV = NkBT = nRT with n = N/NA the number of atoms over Avogadro’s
number and R = kBNA the gas constant, as a power series in the density ρ = N/V
with temperature dependent coefficients. Truncated to order ρ2, this expansion yields
the Van der Waals equation PeffVeff = (P + aN2/V 2)(V − bN) = nRT (where the
effective volume takes into account the reduction due to the space occupied by the
particles themselves and the effective pressure is higher than the bare one due to
the attraction between the particles). The latter breaks the positivity requirement



20 Phases of planar active matter

on the isothermal compressibility κT = −V −1∂V/∂P |T that is a consequence of its
fluctuation-dissipation relation (in the grand canonical ensemble) with the variance of
the particle number confined to the volume V ,

κT =
1

kBT

V

⟨N⟩2
⟨(N − ⟨N⟩)2⟩ ≥ 0 . (1.28)

In physical terms, a system with negative compressibility is unstable and it would
collapse. Indeed, the Van der Waals isotherms have a portion with negative compress-
ibility that indicates an instability towards formation of domains of low and high
density, in other words, phase separation between liquid and gas, both with positive
compressibility. For volumes in this region, the isotherms of the real system are in-
stead flat due to the coexistence of the two phases (see Fig. 1.6 (a)). The Maxwell
construction, an equilibrium argument, indicates that the stability of the sample is
obtained at a value of the pressure P (that determines the volumes occupied by the
two phases) such that the areas above and below the dip and peak of the P (V ) curve
are the same.

In a real system with finite size, the isotherms also show a Mayer-Wood loop struc-
ture (Mayer and Wood, 1965). However, one has to be careful before concluding that
such a loop is due to a first order phase transition. Actually, finite systems undergoing
a second order transition may also show one (Alonso and Fernández, 1999). The scal-
ing of the loop area with system size does, instead, provide unambiguous evidence for
first order phase transitions. Indeed, if there is a coexistence region, the system should
hold in it an interface between the two macroscopic phases. The surface occupied by
this interface should scale as Ld−1 (ignoring possible fractal phenomena) and the free-
energy cost of it should therefore be ∆F ∝ Ld−1 leading to a free-energy density cost
of ∆f ∝ Ld−1/Ld = L−1 that, in d = 2 corresponds to N−1/2. The free-energy density
can be derived from the equation of state via an integration since P = −∂F/∂V |T
that implies that the area occupied by the loop should decrease with system size as
N−1/2.

1.5 Active systems

We now enter the field of active systems. We very briefly mention in this Section
the results of numerical studies that led us to construct the phase diagrams [in the
(Pe, ϕ) plane] of the active Brownian particle and active dumbbell systems. When
constructing these phase diagrams we seriously took into account the knowledge of
the passive limit behaviour that we have described so far.

1.5.1 Numerical methods
We will not expose here the numerical methods used to integrate the dynamics of
passive and active matter system as there exist excellent textbooks and review articles
in the literature that explain in detail these techniques (Allen and Tildesley, 1989). In
a few words, the integration of Eqns (1.1) is typically done with the velocity Verlet
algorithm (Rahman, 1964; Verlet, 1967) that can be easily parallelised, and this is
done using the LAMMPS method (Plimpton, 1995).
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It is important to note, though, that while in equilibrium statistical averages are
usually exchanged with time averages under the ergodic hypothesis, out of equilibrium
this hypothesis cannot be taken for granted and statistical averages may need to
be done by definition, that is, by averaging over many samples run under the same
conditions.

Numerical simulations suffer from severe limitations given by the typically small
size of the systems compared to the thermodynamic limit in which theoretical calcula-
tions are performed. Furthermore, the dynamic equations are integrated over relatively
short times. In the context of active matter, these two limitations can, however, repre-
sent the actual experimental situation as real systems do not count with constituents
as numerous as the Avogadro number and time-scales can be relatively short as well. In
finite size systems, special care has to be taken with the choice of boundary conditions
and how these may affect the behaviour of the system in the bulk. Periodic boundary
conditions are often chosen since they tend to minimise finite-size effects, not hav-
ing edges, but they also avoid the annoying decision to make concerning interactions
between particles and walls. Special care has to be taken not to inhibit periodic or
orientational order or symmetry with this choice.

Having said this, we are interested in determining phase diagrams that exist in the
thermodynamic limit. Finite size scaling should therefore be used to determine the
behaviour in the infinite size limit. Typical simulations ran with N = 2562 particles,
scanning the parameter space ϕ ∈ [0 : 0.9] and Pe ∈ [0 : 200]. Notice that since the
disks are not completely hard, some overlap between them is possible and values of ϕ
that are slightly larger than the close packing limit can be accessed in the simulation
(recall that the close packing fraction of disks in two dimensions is achieved by a
perfect triangular lattice and it amounts to ϕcp ≈ 0.91).

1.5.2 Phase diagrams

Passive systems in two dimensions have liquid (short range order for both translation
and bond orientation order), hexatic (short range order translation and quasi long
range order for bond orientation order) and solid (quasi long range order for translation
and long range for bond orientation order) phases. The fact that there is co-existence
between liquid and hexatically ordered phases in systems of passive, purely repulsive,
disks was evidenced by Bernard, Kampfer & Krauth, in a series of papers, if the
potential is hard enough. The question naturally arises as to whether the passive
phases, and the co-existence region, survive under activity, and whether they do both
for spherically symmetric and asymmetric elements.

The various phases can be examined with the usual observables already defined
and mentioned in the context of the passive limit: order parameters, their correlation
functions, the distributions of their local values, their fluctuations, and the pressure
loop (if accepted, see below).

We will not include here all the evidence for these claims, that can be found in the
relevant references, and give rise to the two phase diagrams in the (Pe, ϕ) plane shown
in Fig. 1.5 (a) for the active disks and (b) for the active dumbbells. The colour code
is such that white is liquid (or gas), grey is coexistence, blue is hexatic, and yellow is
solid (in Sec. 1.5.4 we will explain why we have not distinguished hexatic from solid
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(a) (b)

Fig. 1.5 The phase diagrams of interacting active Brownian disks (a) and dumbbells (b)
as obtained by Digregorio et al. (2018) for the disks [see also Klamser et al. (2018)] and
Cugliandolo et al. (2017) and Petrelli et al. (2018) for the dumbbells. The insets are zooms
over the small Pe regions, close to ϕ = 0.7. The colour code is such that in the grey regions
there is coexistence, while the system exhibits hexatic order and is in the solid phase in the
purple and orange regions, respectively.

in the dumbbell system and why we have depicted all the region above the end of
coexistence in blue). We will simply discuss in the following paragraphs some aspects
of the structure of these systems.

In both cases there is a region with co-existence (grey) that penetrates the phase
diagram along the Pe >∼ 0 direction, close to ϕ ≃ 0.7. The dilute phase has no order
and behaves as an active liquid or gas while the dense phase next to it has orientational
order and it is therefore an active hexatic phase. However, we see a difference. While
for disks this coexistence ends at a relatively small value of Pe and the so-called
motility induced phase separation (MIPS) region appears for much larger values of
Pe, for dumbbells the region with coexistence simply merges (or is the same as) what
is usually called MIPS. We will not discuss here the transition between the active
hexatic (blue) and the active solid (yellow) phases.

1.5.3 The equation of state

The mere definition of pressure needs attention in active matter systems. In mechan-
ical terms, it is the force per unit surface exerted by the system on the walls of its
container. In equilibrium in the thermodynamic limit, the mechanical pressure is also
given by an equation of state that relates it to bulk properties of the system, namely,
temperature and density, with no reference of the particular interaction potential
between constituents and boundary walls. This relation is not at all obvious out of
equilibrium, and it has been observed in some active matter systems that the pressure
does depend on the interaction potential details. This issue will be covered in other
Chapters in this book.
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(a) (b)

(c) (d)

Fig. 1.6 The equation of state. (a) The van der Waals equation. (b) Simulation of hard
disks from Bernard & Krauth (2011). (c) Experiments on hard disks from Thorneywork et
al. (2017). (d) Simulations of active hard disks from Digregorio et al. (2018).

Expressions for the mechanical pressure for spherically symmetric constituents gov-
erned by a Markov stochastic process of Langevin kind both under and over damped for
confined and periodic boundary conditions, were recently derived. Moreover, formulæ
for ensembles of active Brownian particles in interaction (Winkler, Wysocki and Gomp-
per, 2015) and active dumbbells also in interaction (Joyeux and Bertin, 2016) were also
recently deduced and discussed. In cases in which the constituents are not symmetric
there is some ambiguity related to the way in which the interactions with the walls
should be considered; we will not discuss this issue further here.

Figure 1.6 displays four panels with the equation of state of (a) the van der Waals
equation, (b) the numerical simulations of a rather hard disk passive system from
Bernard & Krauth (2011), (c) the experimental measurements of another rather hard
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disk passive ensemble from Thorneywork et al. (2017), and (d) the numerical simula-
tions of an ensemble of active Brownian disks at small Pe from Digregorio et al. (2018).
All plots are quite similar and were used to claim that the transition is of first order
in the (b), (c) and (d) cases. In the case of active Brownian particles, these mea-
surements were used to locate datapoints that yield the boundaries of the co-existence
region (and coincide with the location of the boundary estimated from the distribution
of local densities and local hexatic order parameter).

1.5.4 Phase separation in the dumbbell system

We will end this presentation giving some details on the phase separation found in
the dumbbell system, with molecules made of two joined disks with the same disk
diameter σd and distance between their centres very close to 2σd and almost constant
over time. A much more exhaustive discussion of the structure and dynamics of this
model can be found in (Petrelli et al., 2018).

Take the passive dumbbell system at a given global density with co-existence. As
the activity is turned on, some spatial regions get denser, leaving away disordered
holes. Under increasing activity, the high density peak in the bimodal distribution of
local densities continuously moves towards higher values and its weight increases while
the low density peak moves in the opposite direction and its weight decreases. As far
as density is concerned we do not see any discontinuity when moving towards higher
activities in the coexistence region. A similar behaviour is observed when following
the local hexatic order parameter. Curves of constant repartition of dense and loose
phases can be traced and the system’s behaviour can be compared on these. This is
different in the active Brownian disk system, for which the region with coexistence at
low Pe ends on curves at relatively low values of Pe, see the phase diagrams shown in
Fig. 1.5.

(a) (b) (c)

Fig. 1.7 Dumbbells at a global packing fraction such that the system is in the coexistence
region with 50-50 proportion of liquid and hexatic phases, Pe = 200. Panel (a) shows the
dumbbells polarisation, panel (b) the local velocity and (c) the local hexatic order parameter.
The figure is taken from Petrelli et al. (2018).

Depending on the strength of the activity, this dynamic process allows the dumb-
bells in the ordered regions to pack in a single domain with perfect hexatic order, or



Concluding remarks 25

in polycrystalline arrangements concerning the orientational order, see panel (c) in
Fig. 1.7.

Another interesting observable to characterise the structure and dynamics of the
clusters is the coarse-grained polarisation or, basically, a vector constructed as the
average over a coarse-graining volume of the sum of vectors pointing from head-to-
tail on each dumbbell, see panel (a) in Fig. 1.7. At Pe = 0 there is no polar order
whatsoever (not even locally). At intermediate activity, say Pe = 40, the clusters show
an aster polar configuration with a defect at the centre (basically on the dumbbell that
triggered aggregation and the subsequent formation of the cluster). At larger activity,
say Pe = 200, the aster evolves to a spiralling pattern (see the map in the figure)
and the cluster consequently rotates, a motion that is not observed at lower Pe, see
Fig. 1.7. We therefore found that polar order differentiates between clusters at small
and high activity.

Interest can then be set on the motion of the dumbbells. In the phase separated
cases, the dumbbells in the dilute phase are basically free, since their kinetic energy is
very close to the one of independent dumbbells for all Pe values. The kinetic energy
of the dumbbells in the dense phase, instead, increases very weakly with activity, due
to the fact that the mobility is suppressed inside the clusters and these are massive
and move very slowly.

While the kinetic energy gives a measure of the strength of flow in the system,
the enstrophy is a measure of the presence of vortices in the velocity field and it can
be used to understand whether clusters rotate driven by activity. For high values of
the activity the dumbbells arrange in spirals, the clusters in the system undertake a
rotational motion and the probability distribution function of the enstrophy develops
a multi-peak structure associated to the rotating clusters. A comparison between the
velocity and the polarisation fields shows that the former exhibits a vortex pattern
while the polarisation one is a spiral.

For strong enough Pe, say Pe > 50, the spontaneously formed clusters turn around
their centre of mass with an angular velocity that is proportional to the inverse of
their radii. The poly-crystalline nature of the clusters, with respect to the hexatic
order, does not seem to play a major role in their rotational properties. Instead, the
orientation of the dumbbells inside the clusters is, indeed, important, as a certain
amount of disorder in the form of misalignment is needed to make them turn.

The exact nature of the transition between the hexatic and solid phases for the
dumbbell system and its location in the phase diagram are still open questions. Since
monomers are constrained to be attached in pairs, they cannot arrange on a triangular
lattice at any ϕ < ϕcp forcing the positional correlations of the monomers to decay
exponentially. It is therefore hard to identify the solid phase and this is the reason
why in Fig. 1.5 (b) we show all the region of the phase diagram lying above the end
of coexistence in blue.

1.6 Concluding remarks

The motivation for the studies of active systems in two dimensions described here
was to determine their full phase diagram linking the strong activation limit (usually
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Fig. 1.8 Four snapshots taken at subsequent times that are representative of the dynamics
following a quench across the first order transition of the Potts model with q = 9. Each colour
represents one state among the nine possible ones of the spins. Figure taken from Corberi et
al. (2018).

studied in the active matter literature) to the passive case (already a very hard and
not yet settled problem).

Many open questions remain unanswered and pose important challenges. We com-
ment on a few of them below.

The first issue that calls for a careful analysis is how does the phase diagram
transform from the one for disks to the one for dumbbells when one smoothly varies
the form of the molecules to interpolate between these two limits.

A careful study of the dynamics of the topological defects and their influence upon
the phase transitions is definitely needed. Qi et al. (2014) and Kapfer & Krauth (2015)
suggested that there is a percolation of the defect string network at the liquid-hexatic
transition of passive models with sufficiently hard potentials, and that these strings
surround domains with hexatic order. Is it the case for the active model as well?

In equilibrium a duality transformation linking the interacting defect system rel-
evant for two-dimensional melting to a Laplacian roughening model is often used to
attack the former by simulating the latter. However, such a relation does not necessar-
ily hold under active forces since it relies on a transformation of the partition function.
Are there other transformations of similar kind that could be used in the active case?

The hexatic phase is only stable in a minute density regime in the case of hard
disks, which can be missed very easily in both simulations and experiments. Addi-
tionally, the order of the transition is difficult to ascertain due to finite-size effects.
Therefore, although the picture that we described here is consistent and very attrac-
tive, it still needs to be confirmed with more detailed numerically simulations and,
hopefully, experimental measurements. A rigorous proof, as the one developed by van
Enter and Shlosman (2002) for the planar spin model seems out of reach for the active
model since it is specific to equilibrium conditions (Gibbs states, partition functions).
Could any other kind of rigorous proof be worked out for the active case?

The dynamics across a first order phase transition occurs via nucleation of the
stable phase into the unstable one. This problem is usually discussed with a single
state that wins the competition against another one when the transition is crossed.
A slightly more complex example is the one of the Potts model with q > 4, a model
in which the stable states in the ordered phase are q degenerate ones, and the rel-
evant dynamic process is a multi-nucleation one. If many stable phases of different
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kind nucleate simultaneously these will grow quickly until they touch and block. The
further evolution is a normal coarsening one. The time-scales for nucleation, growth
of sufficiently large bubbles and coarsening are very different and can be numerically
quantified exploiting data from Monte Carlo simulations (Corberi, Cugliandolo, Es-
posito and Picco, 2018). The dynamics across the first order liquid-hexatic transition
should have similar features to the ones just described. This problem is under study
in our group.
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