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Dan Israël (israel@lpthe.jussieu.fr )



Lucio Fontana, « Concetto Spaziale »



Foreword

These lecture notes are based upon a series of courses given at the master program ICFP
in 2018 by the author. Comments and suggestions are welcome. Some references that can
complement these notes are

• Superstring Theory (Green, Schwarz, Witten) [1,2]: the classic textbook from the eight-
ies, naturally outdated on certain aspects but still an unvaluable reference on many
topics including the Green-Schwarz string and compactifications on special holonomy
manifolds.

• String Theory (Polchinski) [3,4]: the standard textbook, with a very detailed derivation
of the Polyakov path integral and strong emphasis on conformal field theory methods.

• String Theory in a Nutshell (Kiritsis) [5]: a concise presentation of string and super-
string theory which moves quickly to rather advanced topics

• String Theory and M-Theory: A Modern Introduction (Becker, Becker, Schwarz) [6]:
a good complement to the previous references, with a broad introduction to modern
topics as AdS/CFT and flux compactifications.

• A first course in String theory (Zwiebach) [7]: an interesting and different approach,
making little use of conformal field theory methods, in favor of a less formal approach.

• The lectures notes of David Tong (http://www.damtp.cam.ac.uk/user/tong/string.html)
are rather enjoyable to read, with a good balance between mathematical rigor and phys-
ical intuition.

• The very lively online lectures of Shiraz Minwalla: http://theory.tifr.res.in/ minwalla/

Conventions

• The space-time metric is chosen to be of signature (−,+, . . . ,+).

• We work in units � = c = 1
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Introduction.

In Novembrer 1994, Joe Polchinski published on the ArXiv repository a preliminary ver-
sion of his celebrated textbook on String theory, based on lectures given at Les Houches,
under the title ”What is string theory?” [1]. If he were asked the same question today, the
answer would probably be rather different as the field has evolved since in various directions,
some of them completely unexpected at the time.

One may try to figure out what string theory is about by looking at the program of Strings
2017, the last of a series of annual international conferences about string theory that have
taken place at least since 1989, all over the world. Among the talks less than half were about
string theory proper (i.e. the theory you will read about in these notes) while the others
pertained to a wide range of topics, such as field theory amplitudes, dualities in field theory,
theoretical condensed matter or general relativity.

The actual answer to the question raised by Joe Polchinski, ”What is string theory?”, may
be answered at different levels:

• litteral: the quantum theory of one-dimensional relativistic objects that interact by
joining and splitting.

• historical: before 1974, a candidate theory of strong interactions; after that date, a
quantum theory of gravity.

• practical: a non-perturbative quantum unified theory of fundamental interactions whose
degrees of freedom, in certain perturbative regime, are given by relativistic strings.

• sociological: a subset of theoretical physics topics studied by people that define them-
selves as doing research in string theory.

In these notes, we will provide the construction of a consistent first quantized theory of
interacting quantum strings. We will show that such theory automatically includes a (per-
turbative) theory of quantum gravity, and can easily incorporate as well gauge interactions
hence the building blocks of the Standard model of Particle physics.

Near the end we will venture a little bit into more advanced topics such as D-branes and
gauge theories, strong coupling dynamics and non-perturbative dualities, and
few words about AdS/CFT. We will conclude with a brief overview of current research in the
area.

Along the way we will introduce some concepts and techniques that are as useful in other
areas of theoretical physics as they are in string theory, for instance conformal field theories,
BRST quantization of gauge theories or supersymmetry.
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Introduction.

1.1 Gravity and quantum field theory

String theory has been investigated by a significant part of the high-energy theory community
for more than forty years as it provides a compelling answer – and maybe the answer – to
the following outstanding question: what is the quantum theory of gravity?

A successful theory of quantum gravity from the theoretical physics viewpoint should at
least satisfy the following properties:

1. the theory should reproduce classical gravity, i.e. general relativity, in an appropriate
semi-classical , weak-coupling regime;

2. the theory should be predicative at energies accessible to experiments, hence either
UV-finite or renormalizable;

3. it should satisfy the basic requirements for any quantum theory, such as unitarity;

4. it should explain the origin of black hole entropy, possibly the only current prediction
for quantum gravity;

5. last but not least, the physical predictions should be compatible with experiments, in
particular with the Standard Model of particle physics, astrophysical and cosmological
observations.

According to our current understanding, string theory passes successfully the first four
tests. Whether string theory reproduces accurately at energies accessible to experiments the
known physics of fundamental particles and interaction is still unclear, given that such physics
occurs in a regime of the theory that is beyond our current analytical control (to draw an
analogy, one cannot reproduce analytically the physics of condensed matter systems from the
microscopic quantum mechanical description in terms of atoms). At least it is clear that the
main ingredients are there: chiral fermions, non-Abelian gauge interactions and Higgs-like
bosons.

The problem with quantizing general relativity

The classical theory of relativistic gravity in four space-time dimensions, or Einstein theory,
follows in the absence of matter from the Einstein-Hilbert (EH) action in four space-time
dimensions, that takes the form

Seh =
1

2κ2

�

M

d4x
√
−g (R(g)− 2Λ) , (1.1)

where R is the Ricci scalar associated with the space-time manifold M, endowed with a met-
ric g, and Λ the cosmological constant that has no a priori reason to vanish. The coupling
constant κ of the theory is related to the Newton’s constant through κ =

√
8πG; by dimen-

sional analysis it has dimension of length. Its inverse defines the Planck massMPl ∼ 1019GeV.
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Introduction.

Quantizing general relativity raises a number of deep conceptual issues, that can be raised
even before attempting to make any explicit computation. Some of them are:

• Because of diffeormorphism invariance, there are no local observables in general relativ-
ity.

• A path-integral formulation of quantum gravity should include, by definition, a sum
over space-time geometries. Which geometries should be considered? Should we specify
boundary conditions?

• A Hamiltonian formulation of quantum gravity would require a foliation of space-time
in terms of space-like hypersurfaces. Generically, such foliation does not exist.

• Classical dynamics of general relativity predicts the formation of event horizons, shield-
ing regions of space-time from the exterior. This challenges the unitarity of the theory,
through the black hole information paradox.

Quantum gravity with a positive cosmological constant – which seems to be relevant to de-
scribe the Universe – raises a number of additional conceptual issues that will be ignored in
the rest of the lectures. We will mainly focus on theories with a vanishing cosmological con-
stant, and discuss briefly the case of negative cosmological constant that played an important
role in recent developments.

Perturbative QFT for gravity

One may try to ignore these conceptual problems and build a quantum field theory of gravity
in the usual way, i.e. by defining propagators, vertices, Feynman rules, etc..., from the non-
linear EH action, eqn. (1.1). With vanishing cosmological constant, one considers fluctuations
of the metric around a reference Minkowski space-time metric:

gµν = ηµν + hµν . (1.2)

Linearizing the equations of motion that follows from (1.1), in the absence of sources, we
arrive to:

�h̄µν − 2∂ρ∂(µh̄ν)ρ + ηµν∂ρ∂σh̄µν = 0 , (1.3)

where we have defined the traceless symmetric tensor h̄µν = hµν − 1
2
hρ

ρ ηµν. This theory
possesses a gauge invariance that comes from the diffeomorphism invariance of the full theory.
The equations of motion are invariant under

hµν �→ hµν + ∂µζν + ∂νζµ . (1.4)

One can choose to work in a Lorentz gauge, defined by ∂µh̄µν = 0, in which case the field
equations (1.3) amounts to a wave equation for each component, �h̄µν = 0.

The solutions of these equations are naturally plane waves h̄µν(x
ρ) = h0

µν exp(ikρx
ρ), and

the Lorentz gauge condition means that they are transverse. Finally, the residual gauge

8



Introduction.

invariance that remains in the Lorentz gauge, corresponding to vector fields ζµ satisfying the
wave equation �ζµ = 0, can be fixed by choosing the longitudinal gauge h̄0µ = 0. As a result,
the gravitational waves have two independent transverse polarizations. The corresponding
quantum theory is a theory of free gravitons that are massless bosons of helicity two.

The interactions between gravitons are added by expanding the EH action around the
background (1.2) in powers of hµν. In pure gravity one obtains three-graviton and four-
graviton vertices, that have a rather complicated form. For instance the four-graviton vertex
looks roughly like:

Gµ1ν1,...,µ4ν4(k1, . . . , k4) = κ2
�
k1 · k2 η

µ1ν1 · · ·ηµ4ν4 + kµ3

1 kν3

2 ηµ1µ2ην1ν2 + · · ·
�

(1.5)

Using these vertices one can define Feynman rules for the quantum field theory of gravitons
and compute loop diagrams like the one below.

µ3ν3

µ1ν1
µ2ν2

µ4ν4

kρ
2

kρ
1

kρ
3

kρ
4

Figure 1.1: Graviton scattering

As in most quantum field theories, such loops integrals diverge when the internal momenta
propagating in the loop become large, and should be regularized. By dimensional analysis,
the regularized loop diagrams will be weighted by positive powers of (Λuv/MPl), where Λuv

is the ultraviolet cutoff.
In renormalizable QFTs as quantum chromodynamics, such high-energy – or ultraviolet –

divergences can be absorbed into redefinitions of the couplings and fields of the theory, which
leads to theories with predictive power. In contrast, this cannot be done for general relativity,
for the simple reason that the coupling constant is dimensionfull (it has the dimension of
length). Therefore, the divergences cannot be absorbed by redefining fields and couplings in
the original two-derivative action; rather higher derivative terms should be included to do so.
General relativity is thus a prominent example of non-renormalizable quantum field theory.
Still it doesn’t mean that such a theory is meaningless in the Wilsonian sense; it can describe
the low-energy dynamics, well below the Planck scale MPl, of an ”ultraviolet” theory of
quantum gravity that is not explicitly known. However, as in any non-renormalizable theory,
this effective action has no predictive power, as higher loop divergences need to be absorbed

9



Introduction.

in extra couplings that were not present in the original action,1 but become less important
as the energy becomes lower. As we shall see string theory solves the problem in a rather
remarkable way, by removing all the ultraviolet divergences of the theory.

1.2 String theory: historical perspective

This is a very sketchy account about the history of string theory; interested reader may
consult the book [2] for first-hand testimonies.

String theory as a theory of quantum gravity came almost by accident, after being pro-
posed as a theory of strong interactions. The prehistory of string theory occurred during the
sixties. At that time, general relativity was not, with few exceptions, a topic of interest for
theoretical physicists, but was rather a playground for mathematicians.

Quantum field theory itself didn’t have the central role that it has today in our under-
standing of fundamental interactions. While quantum electrodynamics was acknowledged as
the appropriate description of electromagnetic interactions, most physicists thought that it
was an inappropriate tool to solve the big problems of the time, the physics of strong and
weak interactions. This was especially true for the strong interactions, as the experiments
were finding a growing number of hadronic particles, with large masses and spins. These
particles were mostly resonances i.e. particles with a finite lifetime. Defining a QFT includ-
ing all of these resonances did not seem, rightfully, a sensible idea. Quarks did make their
appearance in the theoretical physicists’ lexicon, however they were thought as mathemati-
cal tools rather than as actual elementary particles – the fact that they cannot be observed
individually supported this point of view.

A different approach, called the S-matrix program, was widely popular back then. The idea
was to construct directly the S-matrix of the theory using some general physical principles
(unitarity, analyticity,...), as well as some experimental input from the specific theory that
was considered, without any reference to a ”microscopic” Lagrangian.

One crucial experimental observation was that hadronic resonances could be classified in
families along curves in the mass-angular momentum plane (M, J) called Regge trajectories:

J = α(0) + α �M2 (1.6)

The value of the parameter α(0), or intercept, was determining a given family of resonances,
while the slope α � was universal – with one exception – and given experimentally by

α � � 1GeV−2 (1.7)

in natural units.
Among important requirements imposed upon the S-matrix, was that all the hadrons

along the Regge trajectories should appear on the same footing, and both as intermediate
particles (resonances) in the s-channel or as virtual exchanged particles in the t-channel, see

1Strictly speaking, the one-loop divergence of pure GR can be absorbed by field redefinition. This not the
case when matter is present, and from two-loops onwards for pure gravity.
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Figure 1.2: Channel duality: s-channel (left) and t-channel (right)

fig. 1.2; actually either point of view was expected to give a complete description of the
scattering process. This channel duality property of the S-matrix, together with the other
physical constraints, led Gabriele Veneziano to write down, in 1968, an essentially unique
solution to the problem for the decay ω → π+ + π0 + π− [3]:

T =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
+
�
(s, t) → (s, u)

�
+
�
(s, t) → (t, u)

�
, (1.8)

where α(s) = α0 + α �s describes a Regge trajectory. This amplitude has remarkable prop-
erties; it exhibits an infinite number of poles in the s- and t-channels, and its ultraviolet
behavior is softer than of any quantum field theory.

This breakthrough was the starting point for lot of activity in the theoretical physics
community, and remarkably lot of progress was done without having any microscopic La-
grangian to underlie this physics. For instance the generalization to N-particle S-matrices
was obtained, the addition of SU(N) quantum numbers, the analysis of the unitarity of the
theory (by looking at the signs of the residues) and even loop amplitudes.

Soon however people discovered strange properties of what was known at the time as the
dual resonance model. In order to avoid negative norm states, the intercept of the Regge
trajectory had to be tuned in such a way that unexpected massless particles of spin 1,2,...
appeared in the theory. Embarrassingly, it was also needed that the dimension of space-time
was 26! Around the same time it was realized, finally, that the states of the theory were
describing the quantized fluctuations of relativistic strings by Nambu, Nielsen and Susskind
in 1970.

Another problem was the appearance of a tachyon, i.e. an imaginary mass particle, in
the spectrum. This was solved soon after, following the work of Neveu, Schwarz [4] and
Ramond [5], who introduced fermionic degrees of freedom on the string in 197 (bringing the
space-time dimension to 10) by Gliozzi, Scherk2 and Olive, who obtained the first consistent
superstring theories in 1976 [6].

At the same time that these remarkable achievements were obtained, the non-Abelian
quantum field theory of the strong interactions, or quantum chromodynamics, was recognized
as the valid description of the hadronic world and, together with the electroweak theory, gave
to quantum field theory the central role in theoretical high-energy physics that it has today.

2Joël Scherk (1946-1980) was a remarkable French theoretical physicist who made many key contributions
to string theory and supergravity in the seventies, and died tragically when he was 33 years old only, leaving
an indelible imprint in the field. The library at the LPTENS is dedicated to his memory.
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It could had been the end of string theory, however, by a remarkable change of perspec-
tive, Scherk and Schwarz proposed in 1974 that string theory, instead of a theory of strong
interactions, was providing a theory of quantum gravity [7]. From this point of view the
annoying massless spin two particule of the dual resonance model was corresponding to the
graviton, and they show that it has indeed the correct interactions.

The six extra dimensions of the superstring could be considered in this context as com-
pact dimensions, given that the geometry was now dynamical, resurrecting the old idea of
Kaluza [8], and Klein [9] from the twenties. The value of the Regge slope should be radically
different from was it was considered before in the hadronic context, in order to account for
the observed magnitude of four-dimensional gravity. One was considering

α � � 10−38Gev−2 , (1.9)

or equivalently strings of a size smaller by 19 orders of magnitude than the hadronic string,
i.e. impossible to resolve directy by current or foreseeable experiments. Despite that string
theory was able to fullfill an old dream – quantizing general relativity – research in string
theory remained rather confidential before the next turning point of its history,

Between 1984 and 1986, several important discoveries occurred and changed the fate of
the theory: the invention of heterotic string [10] (which made easy to incorporate non-Abelian
gauge interactions in string theory), the Green-Schwarz anomaly cancellation mechanism [11]
which strengthened the link between string theory and low-energy supergravity, thereby mak-
ing the former more convincing, and finally the discovery of Calabi-Yau compactifications [12]
and orbifold compactifications [13] which allowed to get at low energies models of particle
physics with N = 1 supersymmetry in four dimensions. After that string theory became
more mainstream, as many theoretical physicists started to realize that it was a promising
way of unifying all fundamental particles and interactions in a consistent quantum theory.

Thirty years and a second revolution after, we haven’t yet achieved this goal fully but
tremendous progress has been made, the hallmarks being the discoveries of D-branes [14], of
strong/weak dualities [15–17], of holographic dualities [18] and of flux compactifications [19,
20] to name a few. We still have a long way to go, and it is certainly worth trying.
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Bosonic strings: action and path integral

Bosonic string theory, which is the most basic form of string theory, describes the prop-
agation of one-dimensional relativistic extended objects, the fundamental strings, and their
interactions by joining and splitting.

Quantum field theories of point particles are obtained by starting with a classical action,
and quantizing the fluctuations around a given classical solution of the equations of motion.
Upon quantization one gets field operators acting on the Fock space of the theory by creating
or annihilating particles at a given point in space. An analogous string field theory exists,
but is still poorly understood. In such theory one should have operators creating a loop in
space, which is certainly more difficult to describe mathematically.

Rather the practical way to handle string theory is to follow the propagation in time of a
single string in a fixed reference space-time. As restrictive as it looks like, this first-quantized
formalism does not prevent for studying the interactions between strings, computing loop
amplitudes and make a large number of predictions. As we will see below this ”first-order”
formalism can be used for point particles as well, as an alternative to QFT Feynman diagrams
that allows to perform perturbative computations; however it misses important aspects as
solitons or instantons that can be handled semi-classically from a field theory, and is not
suited for all types of computations.

2.1 Relativistic particle in the worldline formalism

We consider a relativistic particle of mass m and charge q in a given d-dimensional space-
time M of metric G and background electromagnetic field. Its dynamics is governed by the
action

S = −m

�

l

ds− q

�

l

A , (2.1)

where l is the worldline of the particle, s the proper time and A(xµ) = A(xµ)ρdx
ρ the gauge

potential. Under a gauge transformation, A �→ A+dΛ, the worldline action (2.1) is invariant
up to possible boundary terms.

The worldline of the particle in space-time M corresponds to an embedding map1

R �→ M (2.2)

τ �→ xµ(τ) , (2.3)

where τ is an affine parameter and {xµ, µ = 0, . . . , d − 1} a set of coordinates on M. The
proper time differential can be expressed as ds2 = Gµνẋ

µẋνdτ 2, therefore the action (2.1) can
be rewritten as

S = −m

�
dτ

�
−ẋµ(τ)ẋν(τ)Gµν[xρ(τ)]− q

�

l

Aµ[x
µ(τ)]dxµ(τ) , (2.4)

This action is invariant under diffeomorphisms of the worldline, i.e. under any differentiable
reparametrization

τ �→ τ̃(τ) (2.5)

1Strictly speaking, this is in general valid in an open set of M where the coordinates {xµ, µ = 0, . . . , d−1}
are well-defined.
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Bosonic strings: action and path integral

The embedding is now given by definition by the set of differentiable functions {x̃µ(τ̃) =
xµ(τ), µ = 0, . . . , d− 1}.

Let us consider the variation of the particle action (2.4) under the infinitesimal change of
the path, namely

xµ �→ xµ + δxµ (2.6a)

Gµν �→ Gµν + ∂σGµνδx
σ . (2.6b)

At first order, one gets

δS = m

�
dτ

�
Gµσẋ

µδẋσ�
−ẋµẋνGµν

+
ẋµẋν∂σGµνδx

σ

�
−ẋµẋνGµν

−
q

m
(Aσδẋ

σ + ∂σAµδx
ρẋµ)

�
(2.7)

After integration by parts of the first and third term, and trading the integral over the affine
parmeter τ for the integral over the proper time s, one gets

δS = m

�
ds

�
d2xν

ds2
+ Γνρσ

dxρ

ds

dxσ

ds
−

q

m
Fνµ

dxµ

ds

�
δxν (2.8)

Not surprisingly, one obtains the relativistic equation of motion of a massless charged particle,
i.e. the geodesic equation plus the coupling to the electromagnetic field strength F = dA.

In order to make more explicit the diffeomorphism invariance of the worldline action, one
can introduce an independent worldline metric as ds2 = hττ(τ)dτ

2. In the one-dimensional
analogue of the tetrad formalism of general relativity, one defines the einbein e(τ) =

√
−hττ.

The action (2.4) can be then rewritten in a classically equivalent way as:

Se = −
1

2

�
dτ

�
−hττ

�
hττ∂τx

µ∂τx
νGµν +m2

�
− q

�

l

Aµdx
µ

=
1

2

�
dτ

�
1

e
Gµνẋ

µẋν −m2e

�
− q

�

l

Aµdx
µ (2.9)

where one can see that e(τ) play the role of a Lagrange multiplier field e(τ) – i.e. a non-
dynamical field that enforces a constraint in field space. Its equation of motion is simply
0 = −e−2Gµνẋ

µẋν − m2, which, upon replacing e by the solution in the action (2.9), gives
back the original action (2.4).

One can view this action as a one-dimensional theory of gravity coupled to a set of free
scalar fields xµ(t) (there is naturally no curvature term in one dimension). Notice that the
coupling of the particle to the electromagnetic four-potential A – the last term in equa-
tion (2.9) – is independent of the worldline metric. In this sense this coupling is of topological
nature. Under diffeorphisms τ �→ τ̃(τ) the einbein transforms according to

e(τ)dτ = ẽ(τ̃)dτ̃ (2.10)

which gives, for an infinitesimal transformation

τ �→ τ̃ = τ+ �(τ) (2.11)

e(τ) �→ ẽ(τ̃) = e(τ̃)−
d

dτ̃

�
e(τ̃)�(τ̃)

�
. (2.12)
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Bosonic strings: action and path integral

As in four-dimensional gravity, this reparametrization invariance is a gauge symmetry, i.e.
a redundancy in the description of the system that will eventually remove some degrees of
freedom from the theory.2

Path integral quantization

The quadratic action (2.9) for the relativistic charged particle is a convenient starting point
for quantizing the theory through the path integral formalism. It is convenient as well to
analytically continue the space-time to Euclidean signature x0 �→ ix0, as well as the worldline
time τ �→ iτ. We will consider a particle moving in flat space, i.e. with metric Gµν = δµν, in
the absence of electromagnetic field.

The one-particle vacuum energy in Euclidean space deduced from the wordline action
is given by summing over closed paths of the particle, which is given schematically by the
functional integral:

Z1 =

�
De

Vol(diff)

�

x(0)=x(1)

Dx exp

�
−
1

2

� 1

0

dτ

�
1

e
ẋ2 +m2e

��
, (2.13)

where one has to divide the functional integral over the einbein (or equivalently over the one-
dimensional metrics) by the infinite volume of the group of diffeomorphisms of the worldline.
This group contains the transformations of the vielbein given infinitesimally by (2.12). On
top of this shifts of τ by a constant, τ �→ τ + τ0, are diffeomorphisms that are not fixed by
the choice of a reference einbein. The volume of this factor of the gauge group is finite and
given by T , the invariant length of the closed path of the particle, see eq. (2.14) below. We
choose finally the parameter τ to be in the interval [0, 1], and, the path being closed, the
einbein is a periodic function: e(τ+ 1) = e(τ).

Gauge symmetry

To carry the functional integral over the ”gauge field”e(τ) one starts by slicing the field space
into gauge orbits, i.e. einbeins that are related to each other by a diffeomorphism. The ratio
of the integral over the whole field space over the volume of the group of diffeomorphisms
is then equivalent to a functional integral over a slice in field space that cuts once each
orbit, see figure 2.1 up to the Jacobian of the change of coordinates in field space; this is the
Faddeev-Popov method.3

To start with pick a gauge choice corresponding to a reference einbein ê. For convenience
we can take the reference einbein to be ê = 1. This reference einbein ê generates a gauge
orbit, the family {êα} of all einbeins obtained from ê by some diffeomorphism α: ê �→ êα.
Using eqn. (2.10), starting from an arbitrary einbein e one can reach in principle the reference
einbein ê = 1 with a diffeomorphism α that satisfies d

dτ
α(τ) = e(τ) hence is seems that all

2This redundancy was already explicit in the original description of the theory, eq. (2.1), as one could
have chosen the gauge x0(τ) = τ to start with.

3This method is rather overkill for dealing with a free particle but will be used again in the case of the
string.
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Bosonic strings: action and path integral

Figure 2.1: Foliation of the space of gauge fields into gauge orbits. A slice through field space
intersecting all orbits once is represented in bold.

metrics on the worldline can be brought to the reference metric by a diffeomorphism. However
the periodicity of the einbein is not preserved, as α(1) �= 1 for a generic diffeomorphism; this
is a global obstruction for all metrics on the closed worldline being diffeomorphic-equivalent.
The invariant length of the path is, as its name suggests, invariant under diffeomorphisms:

T =

� 1

0

e(τ)dτ =

� τ̃(1)

0

ẽ(τ̃)dτ̃ . (2.14)

Hence the positive parameter T labels gauge-equivalent classes of metrics over closed world-
lines; it is called a modulus. If one fixes the integration domain [0, 1] to preserve the peri-
odicity, the reference einbein should be defined accordingly. We choose then our reference
einbein, in a class of metrics of invariant length T , as ê(T) := T , such that

�1

0
ê(T)(τ)dτ = T .

In the path integral, one should perform the ordinary integral over all possible values of
T , as we integrate over all possible geometries of the worldline. In other words, the functional
integral measure De splits into a gauge-invariant measure Dα over the gauge group and an
integral over the modulus,

�
dT .

As in ordinary gauge theories like quantum chromodynamics in four space-time dimen-
sions, one introduces then the Faddeev-Popov determinant [1] (FP for short) through the
relation:

1

Δfp(e)
:=

�
dT

�
Dαδ(e− êα(T))δ(α(0)) , (2.15)

The distribution δ(e − êα(T)) will eventually project the integral over the metrics onto
an integral over the chosen gauge slice in field space, which is a one-parameter family of
diffeomorphism-inequivalent reference einbeins ê(T) depending of the moduli T of the closed
path.

The Faddeev-Popov determinant should be thought of as the Jacobian of the change of
coordinates from De, the integral over all one-dimensional einbeins, to dT Dα, the integral
over the gauge slice on the one hand, and over the directions orthogonal to it – in other
words over the gauge orbits – on the other hand.

Finally, the translation symmetry of the closed path τ �→ τ+ v is gauge-fixed by the term
δ(α(0)) setting arbitrarily the origin of the path at τ = 0; the diffeomorphisms α that we
integrate over are requested to keep this origin fixed.
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Bosonic strings: action and path integral

One can plug this expression into the path integral (2.13) and integrate readily over the
einbein e:

Z1 =

�
De dT Dα dL

Vol(diff)
Δfp(e)δ(e− êα(T))δ(α(0))

�
Dx exp

�
−
1

2

� 1

0

dτ

�
1

e
ẋ2 +m2e

��

=

�
dT

�
Dα

Vol(diff)
Δfp(êα(T))δ(α(0))

�
Dx exp

�
−
1

2

� 1

0

dτ

�
1

êα(T)
ẋ2 +m2êα(T)

��
.

(2.16)

The last expression can be simplified further by noticing that (i) the Faddeev-Popov is gauge-
invariant (being defined as an average over the gauge group) and and (ii) that by trading
the functional integral over xµ by the functional integral over the transformed field xµα under
the diffeomorphism α, the integrand of the integral over the gauge group is actually gauge-
independent, hence the integral

�
Dα factors out and cancels the volume of the gauge group,

except the factor T corresponding to the group of translations – as we have gauge-fixed this
symmetry – giving finally:

Z1 =

� T

0

dT

T
e−

m2T
2 ΔFP(T)

�
Dx exp

�
−

1

2T

�
dτ ẋ2

�
. (2.17)

The determinant ΔFP(T) can be expressed as a functional determinant as follows. Using
the infinitesimal expression (2.12) for the gauge transformation of the einbein, together with
an infinitesimal variation of the loop modulus T �→ T + χ, one can write

δ(ê− Tα) = δ

�
T
d�

dτ
− χ

�
=

�
Dβe−2iπT

�1
0
dτ β(d�

dτ
−χ/T) , (2.18)

where one has introduced a path integral over a Lagrange multiplier field β to implement the
desired constraint in field space. Similarly one can write

δ(�(0)) =

�
dλ exp 2iπλ�(0) . (2.19)

To obtain the Faddeev-Popov determinant, rather than its inverse, as a functional integral,
one can trade (β,�,χ, λ) for Grassmann variables (b, c,ψ, ρ), i.e. fermionic variables, and
write, after some rescaling of the fields

Δfp(T) =

�
DbDcDψdρ e−T

�1
0
dτ b( dc

dτ
−ψ/T)−ρc(0) . (2.20)

One can perform immediately the integral over the Grassmann variables ψ and ρ, which gives
finally

Δfp(T) =

�
DbDc

�� 1

0

dτb

�
c(0) e−T

�1
0
dτ b dc

dτ . (2.21)

In other words, one has inserted into the path integral over (b, c) the mean value of b(τ)
over the worldline, i.e. the zero-mode of the field, as well as c(0); both insertions are actually
necessary to cancel the integration over the zero-modes of the fields in the path integral as
we will see shortly.
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Bosonic strings: action and path integral

Functional determinants

We need now to perform the functional integral over the coordinate fields xµ. One considers
then the path integral �

Dx e−
1
2T

�1
0
dτ dxµ

dτ

dxµ
dτ . (2.22)

One expands then xµ over a complete set of eigenfunctions of the positive-definite operator
− 1

T
∂2
τ satisfying the right boundary conditions. It is convenient to separate the zero-modes,

i.e. the classical solutions of the equations of motion, from the fluctuations:

xµ(τe) = xµ0 + qµ(τ) , (2.23)

where q(τ) satisfies the Dirichlet boundary conditions q(0) = q(1) = 0, such that x(0) =
x(1) = x0. The norm in field space for the fluctuations is naturally

||q||2 =
1

2

� 1

0

êT(τ)dτq
2(τ) =

T

2

� 1

0

dτq2(τ) . (2.24)

One has then the expansion on an orthonormal basis on eigenfunctions of the differential
operator D = − 1

T
∂2
τ with the right boundary conditions:

qµ(τe) =

∞�

n=1

cµn
2√
T
sinπnτ . (2.25)

and the measure of integration is

Dx = dx0

∞�

n=1

dcn . (2.26)

The ordinary integral over the zero-mode x0 gives the (infinite) volume V of space-time, while
from the integration over the non-zero modes one gets

�� �

n

dcne
−π2n2

T2
cn

�d

=

��

n

πn2

T2

�−d/2

(2.27)

This product of eigenvalues is divergent and needs to be regularized.
Functional determinants of the form det(D) =

�∞
n=1 λn can be evaluated using the zeta-

function regularization. One assumes that λ1 � λ2 � · · · � λn � · · · and defines the spectral
zeta-function as

ζD(z) =

∞�

n=1

λ−z
n , (2.28)

which converges provided �(z) is large enough. It can be analytically continued to the whole
z plane except possibly at a finite set of points. Next we notice that

log detD =

∞�

n=1

log λn = −ζ �
D(0) , (2.29)
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and define the regularized functional determinant as

�

n

λn = e−ζ �
D(0) . (2.30)

In the present case one has

ζD =

∞�

n=1

�
πn2

T2

�−z

=

�
T2

π

�z

ζ(2z) , (2.31)

in terms of the Riemann zeta-function ζ. Since ζ(0) = − 1
2
and ζ �(0) = −1

2
ln 2π, the path inte-

gral over xµ(τ) gives finally, dropping the infinite volume factor and after some T -independent
rescaling �

Dx e−
1
2T

�1
0
dt ẋ2 = T−d/2 . (2.32)

This result can be obtained – in a perhaps simpler way – by viewing the path integral over
a closed loop in Euclidean time as a partition function. One has

Zx =

�
Dx e−

�1
0
dτ 1

2T
ẋ2 = Tr

�
e−βH

�
, β = 1 . (2.33)

The Hamiltonian H = T
2
p2 is the same as a free (non-relativistic) particle of mass 1/T in D

spatial dimensions, and the computation of the partition function gives simply

Zx =

�
dDp

(2π)D
e−T p2

2 = (2πT)−D/2
. (2.34)

We now turn to the evaluation of the ghost path integral. We start with the expression
of the FP determinant that we have obtained before:

Δfp(T) =

�
DbDc

�� 1

0

dτb

�
c(0) e−T

�1
0
dτ b dc

dτ . (2.35)

Because b and c are ghosts, with are dealing with fermionic variables with periodic (rather
than anti-periodic) boundary conditions, hence having zero-mode. We recall here the rules
of integration over Grassmann variables:

�
dθ = 0 ,

�
dθ θ = 1 ,

�
dθ f(θ) = f �(0) . (2.36)

which implies that, to get a non-zero answer, the integrand should contain the right number
of zero-modes to cancel the corresponding zero-mode integration measure. Fortunately, the
path integral (2.21 contains the right number of insertions of ghosts zero modes. The integral
over the zero-modes yields �

db0 dc0 b0c0 = 1 , (2.37)

21



Bosonic strings: action and path integral

Computing the integral over the non-zero modes is a little bit subtle, however by looking at
this problem from a statistical mechanics point of view one can get the result easily. The
equations of motions for the b and c classical fields are

ḃ = ċ = 0 (2.38)

hence, with periodic boundary conditions, one has two zero-modes b0 and c0. In the quantum
theory, since b can be seen as the canonical momentum conjugate to c, one has the anti-
commutator

{b0, c0} = 1 . (2.39)

Since the Hamiltonian vanishes the Hilbert space contains two states of zero energy, |±�, that
satisfy

b0|−� = 0 , b0|+� = |−�
c0|+� = 0 , c0|−� = |+� . (2.40)

From these relations one learns that b0c0 projects onto the ground state |−�. Then the path
integral on a Euclidean circle of length T is interpreted as a thermal average of b0c0 at inverse
temperature β = 1, and one has:

�
DbDcb0c0 e

−
�1
0
dτ T b dc

dτ = �−|e−H|−� = 1 . (2.41)

We will make a more detailed derivation of a similar result for the string path integral.4

Worldline versus QFT

Collecting all pieces, the path integral computation of the vacuum amplitude gives, up to an
overall normalization factor,

Z1 =

�∞

0

dT

T1+d/2
e−

m2T
2 (2.42)

This integral is clearly divergent for T → 0, i.e. when the particle loop shrinks to zero-size.
The QFT picture will give us a more familiar understanding of this divergence.

Let us then consider the one-particle contribution to the vacuum energy of a free massive
Klein-Gordon QFT. One has

Zkg = log

�
Dφe−

1
2

�
d4xφ(−∇2+m2)φ = log

�
det(−∇2 +m2)

�−1/2
= −

1

2

�
dDp

(2π)D
log(p2 +m)

(2.43)
We can now move to Schwinger parametrization by using the simple identity

1

xa
=

1

Γ(a)

�∞

0

dT

T1−a
e−Tx , a > 0 . (2.44)

4To be precise, the Euclidean fermionic path integral with periodic boundary conditions rather than anti-
periodic is not exactly the partition function but rather Tr

�
(−1)F exp(−βH)

�
, where F = b0c0 counts the

number of fermionic excitations.
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which allows to get the general result
�

dDp

(2π)D
1

(p2 +m2)a
=

1

Γ(a)

�∞

0

dT

T1−a

dDp

(2π)D
e−T(p2+m2) =

1

Γ(a)

�∞

0

dT

T1−a
e−Tm2

(4πT)−D/2 .

(2.45)
At first order in the expansion in the parameter a one gets formally

Zkg = −
1

2

�
dDp

(2π)D
log(p2 +m2) =

1

2
lim
a→0

�∞

0

dT

T1−a
e−Tm2

(4πT)−D/2 . (2.46)

In other words,

Zkg =
1

2

�
dDp

(2π)D

�∞

0

dT

T
e−

T
2
(p2+m2) =

1

2

�∞

0

dT

T
e−

m2

2
T(2πT)−D/2 , (2.47)

which is the same, up to the numerical normalization factor that we did not computed
precisely, the same as the worldline computation (2.42).

As was noticed before, the expressions (2.42,2.47) present a divergence for T → 0; its
origin is clear from eqn. (2.46). In the momentum-space expression (2.43), it is understood
as the usual UV divergence of the loop integral for ||p|| → +∞. One can compute directly
the integral in (2.45) and get:

�
dDp

(2π)D
1

(p2 +m2)a
= (4π)−D/2 Γ(a−D/2)

Γ(a)
mD−2a . (2.48)

In the a → 0 limit, matching the O(a) terms on both sides yields to
�

dDp

(2π)D
log(p2 +m2) = (4π)−D/2 2

D
Γ(1−D/2)mD . (2.49)

Hence the ultraviolet divergence can be removed by dimensional regularization, as usual.
By analoguous computations, one can get the Klein-Gordon propagator by considering

open worldlines between two points x and x � in Euclidean space-time. It is also interesting to
consider the worldline path integral in the presence of an electromagnetic potential, starting
from the more general action (2.9); in this way one can get for instance the photon N-
point function in scalar QED, in particular the vacuum polarization (N = 2). Choosing a
constant electric field, one finds also the famous Schwinger formula for production of charged
particles/antiparticle pairs in an electric field [2].

We have learned with from this little exercise two important lessons that will be important
in the forthcoming study of relativistic strings:

1. quantum mechanics (or equivalently 0+1 dimensional QFT) on the worldline of a mas-
sive relativistic charged particle provides an equivalent formulation of massive scalar
QFT in an external electromagnetic field;

2. The UV loop divergences of QFT are mapped in the worldline formalism to closed
wordlines shrinking to zero size.

There exists several extensions of this worldline formalism, in order to include spinors, non-
Abelian gauge interactions, etc... As this is not the main topic of the lectures we will not
comment further but refer the interested reader to [3].
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2.2 Relativistic strings

We start our journey in string theory by considering the exact analogue of the relativistic
point particle in the worldline formalism for relativistic objects with an extension in a space-
like direction – the fundamental strings of string theory. These objects have a mass per unit
length, or tension T , which is by tradition parametrized as

T =
1

2πα � , (2.50)

where the parameter α �, the Regge slope, has dimensions of length squared. The interested
reader may consult section 1.2 to have some idea about where this terminology comes from.

In order to have a finite energy, the strings should have a finite length. It leaves two
possibilities, topologically speaking: a loop or an interval, which are called closed strings
and open strings respectively, see figure 2.2. In both cases the position along the string is
parametrized by σ.

σ σ

Figure 2.2: Closed strings (left) and open strings (right).

Open strings are a little bit more subtle to handle, as one has to specify what are the
boundary conditions at the end of the strings. We will therefore deal exclusively in this
chapter with closed strings, postponing the construction of open string sectors to chapter 7.
Another rationale for this choice is that the closed string sector contains quantum gravity,
the main string theory achievement.

Classical closed strings

A propagating relativistic closed string swaps in spacetime a two-dimensional surface s, or
worldsheet, in analogy with the worldline of point particles. It has the topology of a cylinder,
parametrized by the σ for the space-like direction and τ for the time-like direction, see fig. 2.3.
For closed strings, the coordinate σ is periodic. We choose the convention

σ ∼ σ+ 2π . (2.51)

The worldsheet of a relativistic closed string in space-time M of metric g corresponds to
an embedding map

S1 × R �→ M (2.52)

(σ, τ) �→ xµ(σ, τ) , xµ(σ+ 2π, τ) = xµ(σ, τ) , (2.53)

where the set of functions {xµ(σ, τ), µ = 0, . . . ,D−1} should be periodic in σ. For convenience
we will use the notation (σ0,σ1) = (τ,σ). The codomain of the map, i.e. the space-time M
where the string leaves, is usually called the target space of the string.
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σ

τ

Figure 2.3: Closed string worldsheet.

The space-time metric Gµν(x
ρ) induces a metric h on the world-sheet since along the

surface parametrized by the affine parameters σ and τ we have:

ds2 = Gµνdx
µdxν = Gµν

∂xµ(σk)

∂σi

∂xν(σk)

∂σj
dσi dσj

=: hijdσ
i dσj (2.54)

Therefore the surface element on an integral over the world-sheet is
√
− deth as the tangent

space of the surface can be split into a time-like and a space-like directions over every point.
In complete analogy with the relativistic particle case, see eq. (2.4), one postulates a

string action of the form

Sng = −
1

2πα �

�
dσ0

� 2π

0

dσ1

�
− det

∂xµ(σk)

∂σi

∂xν(σk)

∂σj
. (2.55)

This action is known as the Nambu-Goto action [4, 5]. It is invariant under diffeomorphisms
of the worldsheet as it should:

σi �→ σ̃i(σj) (2.56a)

dσ0dσ1 �→ (det∂iσ̃
j)−1dσ̃0dσ̃1 (2.56b)

∂xµ

∂σi

∂xν

∂σj
�→ ∂xµ

∂σ̃l

∂xν

∂σ̃m
∂iσ̃

l∂jσ̃
m . (2.56c)

In Minkowski space-time (Gµν = ηµν) the action is also invariant under space-time Poincaré
transformations xµ �→ λµνx

ν + aµ.
In the point particle case, there was a natural coupling to the electromagnetic potential,

i.e. to the one form A(xµ) = A(xµ)ρdx
ρ. There exists an analogous coupling allowed for the

string, but this time to a two-form potential5 B(xµ) = 1
2
Bρσ(x

µ)dxµ∧dxν, which is called the

5For basic facts about differential forms, see appendix 11.1.
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Kalb-Ramond potential [6]:6

Skr = −
1

2πα �

�

s

B = −
1

4πα �

�

s

Bρσ[x
µ(τ)]

∂xµ

∂σi

∂xν

∂σj
dσi ∧ dσj

= −
1

4πα �

�

s

dσ0dσ1�ijBρσ

∂xµ

∂σi

∂xν

∂σj
. (2.57)

As its one-dimensional cousin, the Kalb-Ramond coupling is independent of the parametriza-
tion of the worldsheet as it does not depend explicitly on the two-dimensional induced metric
h. Furthermore, one can naturally associate to the coupling (2.57) a gauge invariance

Bµν dx
µ ∧ dxν �→ Bµν dx

µ ∧ dxν + d(Λνdx
ν) = Bµν dx

µdxν + ∂µΛν dx
µ ∧ dxν , (2.58)

where the parameter of the gauge transformation is a one-form Λ = Λµdx
µ. This transfor-

mation leaves invariant (2.57) up to boundary terms using Stokes’ theorem:

�

s

B �→
�

s

B+

�

s

dΛ =

�

s

B+

�

∂s

Λ . (2.59)

Polyakov action

The non-linear Nambu-Goto action (2.55) is not a convenient starting point for quantizing
the theory. In analogy with the relativistic particle case, we will introduce a dynamical
worldsheet metric γ and consider instead the action known as the Polyakov action [7]:

Sp = −
1

4πα �

�

s

d2σ
�

− detγγijGµν∂ix
µ(σk)∂jx

ν(σk) , (2.60)

where the non-dynamical field γij(σ
k) is determined by its equation of motion. The Polyakov

action can be understood as the minimal coupling of a two-dimensional metric to a set
of scalar fields, hence is automatically invariant under diffeomorphisms of the worldsheet
σi �→ σ̃i(σk).

Let us now prove that the equation of motion of the dynamical metric γ in the Polyakov
action (2.60) gives back the Nambu-Goto action (2.55). Under an infinitesimal variation
γ �→ γ+ δγ, one finds that at first order

δSp = −
1

4πα �

�

s

d2σ
�

− detγ

�
δ(
√
− detγ)√
− detγ

γklhkl + δγijGµν∂ix
µ∂jx

ν

�
. (2.61)

Given that γijγjk = δik one finds at first order that

γijδγjk + γjkδγij = 0 =⇒ δγjk = −γijγklδγil (2.62)

6We use the two-dimensional epsilon symbol with non-zero components �01 = −�10 = 1. Note that
(− detγ)−1/2�ij is a two-index contravariant antisymmetric tensor.

26



Bosonic strings: action and path integral

and
δ(
√
− detγ)√
− detγ

=
1

2
δ ln(− detγ) =

1

2
γijδγij . (2.63)

We obtain then

δSp = −
1

4πα �

�

s

d2σ
�

− detγ

�
1

2
γijγklhkl − γikγjlhkl

�
δγij . (2.64)

The vanishing of the first order variation leads therefore to

1

2
γijγklhkl = γikγjlhkl =⇒ hij =

1

2
γklhklγij . (2.65)

The determinant of this relation gives

deth =

�
1

2
γklhkl

�2

detγ , (2.66)

from which we deduce that

Sp = −
1

4πα �

�
d2σ

�
− detγγijhij = −

1

4πα �

�
d2σ

√
− deth

�
1

2
γklhkl

�−1

γklhkl

= −
1

2πα �

�
d2σ

√
− deth = Sng (2.67)

Hence, at least classically, the Nambu-Goto and the Polyakov actions give equivalent dynam-
ics for the relativistic strings.

The Polyakov action (2.60) is certainly not the most general action on the string world-
sheet that one can write. First, the coupling to the Kalb-Ramond field, eq. (2.60), is indepen-
dent of the worldsheet metric hence takes the same form in the Nambu-Goto and Polyakov
formalisms. Second, an acute reader may have wondered why, in the Polyakov action, we did
not include a ”cosmological constant” term

−
1

4π

�
d2σ

√
−γΛ , (2.68)

that would be analogous to the mass term
�
dτ e(τ)m2 in the worldline action (2.9) for the

relativistic particle. Such a term would imply that

1

2
γijγklhkl +

1

2
α �Λγij = γikγjlhkl . (2.69)

Contracting this equation with γij gives

γklhkl + α �Λ = γklhkl (2.70)
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which has no solutions unless Λ = 0. This is a peculiarity of string actions, which is not
shared with actions of particles or higher-dimensional extended objects.7 We will understand
shortly its significance.

There exists a last possible coupling of the relativistic string that has no analogue in the
particle case. From the two-dimensional worldsheet metric γ one can construct the Ricci
scalar R[γ], and write down a last term in the action of the Einstein-Hilbert type (after all
we are considering a dynamical worldsheet metric):

χ(s) =
1

4π

�
d2σ

�
− detγR[γ] . (2.71)

In short, one has traded the problem of quantizing gravity in four dimensions to the problem
of quantizing gravity in two dimensions! Einstein gravity is two dimensions is much simpler,
as first it has no propagating degrees of freedom because of diffeorphism invariance (standard
counting gives -1 degrees of freedom). The Einstein-Hilbert action is actually a topological
invariant of the two-dimensional manifold s, known as the Gauss-Bonnet term. In Euclidean
space it is equal to the Euler characteristic χ(s) of the two-dimensional worldsheet. If the
worldsheet is an oriented surface without boundaries, it is given by

χ(s) = 2− 2g (2.72)

where h is the number of handles, or ”holes”, of the surface. For the sphere g = 0, the torus
g = 1, etc... We will come back latter to the significance of these topologies.

There exists a generalization of the Einstein-Hilbert term that involves a coupling to a
scalar field in space time Φ(xµ) and that is not topological:

Sd =
1

4π

�
d2σ

�
− detγΦ[xµ(σi)]R[γ] . (2.73)

The field Φ(xµ), which plays an important role in string theory, is called the dilaton.
To summarize this discussion, the general fundamental string action is given by the sum

of (2.60), (2.60) and (2.73), hence a (1+1)-dimensional quantum field theory on the worlsheet
given by:

S = −
1

4πα �

�

s

d2σ
��

− detγγijGµν + �ijBµν

�
∂ix

µ∂jx
ν −

1

4π

�
d2σ

�
− detγΦ[xµ(σi)]R[γ]

(2.74)
This action describes the propagation of a single relativistic string in a background specified
by a metric G, a Kalb-Ramond field B and a dilaton Φ. The later two have no obvious
interpretation at this stage; note that in four dimensions the Kalb-Ramond field is actually
equivalent to a real pseudo-scalar field as its field strength H = dB is Hodge-dual to the
differential of a scalar field: �H = da.8

7Indeed for a p-dimensional extended object, p+ 1 being the dimension of its worldvolume, everything is
the same except the contraction with γij which gives p+1

2
(γklhkl + α �Λ) = γklhkl.

8Without using the differential form notation, one has Hµνρ = ∂[µBνρ] and ∂µa = Gµα�
ανρσHνρσ.
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2.3 Symmetries

We now turn to the path integral quantization of the bosonic string. To start, one has to
pay attention to the symmetries of the theory, in particular to the gauge symmetries that
need to be carefully taken care of, as in the example of the point particle that we have dealt
with in section 2.1. As there we will consider the path integral with an imaginary time
coordinate, i.e. we will consider an Euclidean worldsheet of coordinates (σ1,σ2) = (σ1,−iσ0)
endowed with an Euclidean metric γ. However we will keep the signature of space-time to
be (−,+, · · · ,+).9

To simplify the discussion, consider the action of a string action with vanishing Kalb-
Ramond field and constant dilaton field:

S =
1

4πα �

�

s

d2σ
�

detγγijGµν∂ix
µ∂jx

ν +
Φ0

4π

�

s

d2σ
�

detγR[γ] . (2.75)

The symmetries of the theory splits into worldsheet and target space symmetries. We
will start by looking at the latter. One has first target-space symmetries of the action (2.75)
corresponding to symmetries of space-time.

If the space-time is Minskowki space-time (gµν = ηµν) the action is invariant under
Poincaré transformations:

xµ �→ Λµ
νx

µ + aµ , Λ ∈ SO(1, d− 1) . (2.76)

These are global symmetries of the two-dimensional field theory.
The Polyakov action (2.60) is actually invariant under diffeomorphisms in space-time i.e.

infinitesimal coordinate transformations δxµ = rµ(xρ) accompanied with a change of the
metric δGµν = −2∇(µrν). In the present context it expresses the invariance of the theory
under field redefinitions.

2.3.1 Worldsheet symmetries

The string action (2.75), or its more general version (2.74), is by design invariant under
coordinate transformations, or diffeomorphims of the worldsheet,

σi �→ σ̃i(σk) , (2.77a)

γij �→ γ̃ij =
∂σk

∂σ̃i

∂σl

∂σ̃j
γk� , (2.77b)

being a theory of two-dimensional gravity minimally coupled to scalar fields xµ(σ).
The Polyakov action has an extra local symmetry, which corresponds to Weyl transfor-

mations of the world-sheet metric, i.e. local scale transformations:

γij �→ e2ω(σi)γij , (2.78)

9As we will see the price to pay will be the appearance of negative norm states. The latter can be
fortunately removed by using the gauge symmetry of the theory.
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where ω(σi) is an arbitrary differentiable function on the two-dimensional manifold s. This
property comes from the scaling of the determinant of the metric in d dimensions

detγ
Weyl�→ e2dω detγ , (2.79)

which, specialized to two dimensions, implies that the action (2.60) invariant under Weyl
transformations. The Kalb-Ramond coupling (2.57) is also by definition invariant being
independent of the metric.

The Ricci scalar transforms simply under a Weyl rescaling of the metric. We leave as an
exercise to show that, in d dimensions,

γ �→ e2ωγ (2.80a)

R[γ] �→ e−2ω
�
R[γ]− (d− 1)∇2ω− 2(d− 2)(d− 1)∂aω∂aω

�
. (2.80b)

In two dimensions, this expression implies that
√
detγR[γ] transforms as a total derivative,

since
√
detγ∇2ω = ∂i(

√
detγ∇iω). One concludes that, at the classical level, the dilaton

action (2.73) is not invariant under Weyl transformations, unless Φ is a constant, in which
case it was expected since the two-dimensional Einstein-Hilbert term (2.71) is topological. We
will see later on that, in the quantum theory, the story is somewhat altered by the presence
of anomalies.

A careful reader would have noticed that the Weyl symmetry is not present in the original
Nambu-Goto action (2.55). One can trace back its origin to the equation of motion for the
worldsheet metric, eq. (2.66), which is invariant under Weyl transformations. This feature
of the Polyakov action is not problematic. The Weyl symmetry is a gauge symmetry, hence
does not really correspond to a symmetry but rather to a redundancy of our description of
the theory. In the path integral quantization of the theory, this gauge symmetry will need to
be taken care of properly, as the diffeomorphism invariance.

Finally, we notice that the cosmological constant term (2.68) that we considered to include
in the action is not Weyl invariant, which explains why this term is forbidden in the first
place by the gauge symmetries of the problem.

2.3.2 Gauge choice

The Euclidean path integral of the fundamental string is defined by a functional integral
over the fields {xµ} as well as over the two-dimensional metrics γ – i.e. over Euclidian
worldsheet geometries – moded out by the volume of the gauge group of the theory, made of
two-dimensional diffeomorphisms and Weyl transformations.

As we have done for the point particle, we will properly define this path integral by
gauge-fixing and introducing the corresponding Faddeev-Popov determinant. To start with,
one associates to each two-dimensional metric γ its gauge orbit, the set of its images {γΞ}

under gauge transformations Ξ = (Σ,Ω) composed of diffeomorphisms and Weyl rescalings:

Ξ :

�
σi �→ Σi(σk)

γij �→ exp(2Ω) × ∂σk

∂Σi
∂σl

∂Σjγk�

(2.81)
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Figure 2.4: Perturbative expansion of string theory.

To define properly the gauge-fixing condition, one has then to understand how to classify all
metrics over two-dimensional surfaces into equivalence classes under gauge transformations.

The coarser classification of compact two-dimensional surfaces is according to their topol-
ogy. If we restrict ourselves to oriented surfaces without boundaries, their topology is com-
pletely specified by the number of handles in the surface, which is called its genus g. Ex-
plicitly, surfaces with g = 0 have the topology of a sphere, surfaces of genus g = 1 have the
topology of a torus, etc... As we have no reasons to restrict ourselves to a particular type of
surfaces, the Euclidean path integral contains a sum over topologies of the worldsheet. For
surfaces with fixed topology, the value of the second term of the action (2.75) is fixed:

Φ0

4π

�

s

d2σ
�

detγR[γ] = Φ0χ(s) = Φ0(2− 2g) . (2.82)

We have learned something very interesting. Let us define

gs = expΦ0 . (2.83)

The path integral, in the sector of genus g surfaces, is weighted by the factor g2−2g
s . In other

words, the sum over topologies is nothing that the perturbative expansion, or loop expansion,
of the theory! The parameter gs is the string coupling constant. This is summarized on
figure 2.4.

Having set the topology of the surface by its genus g, one has to find simple represen-
tatives in each gauge orbit under the action of diffeomorphisms and Weyl transformations.
Locally, as the two-dimensional metric has three independent components, one can use the
reparametrization invariance (i.e. the two functions Σ1,2(σk)) to bring the metric in a con-
formally flat form:

γij(σi) �→ exp(2Ω(Σi))δij . (2.84)

This is called the conformal gauge. The conformal factor exp(2Ω(Σi)) can be naturally offset
by a Weyl transformation, leaving a flat Euclidian metric. It will turn out to be convenient
to use complex coordinates w = σ1 + iσ2 and w̄ = σ1 − iσ2, and the reference metric

ds2
s = 2 �γww̄ dw dw̄ = dw dw̄ . (2.85)

In these complex coordinates the integration measure over the worldsheet is

�
dwdw̄ = 2

�
d2σ (2.86)
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and the holomorphic and anti-holomorphic derivatives:

∂ = ∂w = 1
2
(∂1 − i∂2) , ∂̄ = ∂w̄ = 1

2
(∂1 + i∂2) . (2.87)

A generic infinitesimal gauge transformation (ı.e. an infinistesimal diffeomorphism to-
gether with an infinitesimal Weyl transformation) around the flat metric is

δγij = 2δωδij − δjk∂iδσ
k − δik∂jδσ

k , (2.88)

which gives in complex coordinates

δγww̄ = δω− 1
2
(∂δw+ ∂̄δw̄) , (2.89a)

δγww = −∂δw̄ , (2.89b)

δγw̄w̄ = −∂̄δw , (2.89c)

where δω, δw and δw̄ are arbitrary differentiable functions of w and w̄.
Finally, the Polyakov action (2.60) in the flat gauge – or in the conformal gauge as it is

invariant under Weyl rescalings – takes the form

S =
1

2πα �

�
dwdw̄ Gµν∂x

µ∂̄xν . (2.90)

2.3.3 Residual symmetries and moduli

In the study of the point particle path integral, we have seen two global aspects of the
worldline geometry that played an important role: the existence of parameters, or moduli,
that couldn’t be gauged away by the choice of reference metric and the existence of gauge
transformations that did not change the one-dimensional metric. In the string theory case
these two aspects are still relevant, and needs a little bit more effort to be understood.

The moduli are, by definition, given by changes of the metric that are orthogonal to gauge
transformations, i.e. that cannot be compensated for by a combination of a diffeomorphism
and a Weyl transformation. In other words we consider a change of the metric δγij such that

�
d2σ

�
2δωδij − ∂iδjkδσ

k − ∂jδikδσ
k
�
δγij = 0 . (2.91)

This should hold true for any δω and δσk, hence it leads to a pair of independent relations:

Tr (δγ) = 0 =⇒ δγw̄w = 0 (2.92a)

∂iδγij = 0 =⇒
�

∂̄δγww = 0

∂̄δγww̄ = 0
(2.92b)

Solutions of these equations are called holomorphic quadratic differentials. The number of
independent solutions will give the number of moduli of the surface nµ. In the mathematical
literature, the space spanned by these moduli is called the Teichmüller space.
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A second mismatch between the space of metric and the space of gauge transformations
corresponds to combinations of diffeomorphisms and Weyl transformations that leaves the
metric invariant. From equations (2.89b,2.89c) we learn that they correspond to diffeomor-
phisms satisfying

∂δw̄ = ∂̄δw = 0 , (2.93)

while the compensating Weyl transformation δω is unambiguously determined by eq. (2.89a).
The solutions of these equations are holomorphic vector fields, i.e. vectors fields that are

locally in any open set of the form f(w)∂w where f is a holomorphic function. The key point
here is that we need to find vectors fields that satisfy globally this condition on the whole
surface, which is a rather strong constraint. These solutions form the conformal Killing group
of the surface; its dimension will be called nk.

The number of moduli and of conformal Killing vectors of a surface are not independent
but related to each other by the Riemann-Roch theorem. The number nµ of moduli and
the number nk of gauge transformations leaving invariant the metric is related to the Euler
characteristic of the surface, which specifies its topology, through the relation

nµ − nk = −3χ(s) = 6(g− 1) . (2.94)

The sphere and the two-torus

We will now move away from this rather abstract discussion and derive in detail the moduli
and conformal Killing vectors for the two most useful examples, the sphere and the torus.

Genus zero surfaces have the topology of a two-dimensional sphere. The Riemann-Roch
theorem (2.94) indicates that nµ−nk = −6. A conformally flat metric on the two-dimensional
unit sphere is given, in complex coordinates, by

ds2 =
dwdw̄

1+ww̄
. (2.95)

The coordinates (w, w̄) are defined in a patch that excludes the ”south pole” of the sphere at
w → ∞. A patch including the south pole is covered by the coordinates (z, z̄) = (1/w, 1/w̄).
The compactification of the complex plane C̄ = C ∩ {∞} is topologically equivalent to the
two-sphere; in a way the patch containing the south pole has ben shrunk to the point at
infinity.

The sphere has no moduli (in particular the radius can be absorbed by a constant Weyl
transformation) and six conformal Killing vectors. Three of them are easy to identify, the
generators of the Lie algebra so(3). To find all of them, one needs to study the holomorphic
vector fields on this manifold. Let us assume that the holomorphic vector field δw admits a
holomorphic power series expansion around the north pole w = 0:

δw = c0 + c1w+ c2w
2 + c3w

3 + · · · (2.96)

This holomorphic vector field should be defined everywhere, in particular in the patch around
the south pole. Under the coordinate transformation w �→ z = 1/w, one finds that

δz =
∂z

∂w
δw = −z2(c0 + c1/z+ c2/z

2 + c3/z
3 + · · · ) , (2.97)
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hence one gets a globally well-defined holomorphic vector field, in particular at the south pole
z = 0, provided that cn = 0 for n � 3. The three complex parameters {c0, c1, c2} parametrize
the conformal Killing group of the sphere around the identity. This group is isomorphic to
the Möbius group, i.e. the group of fractional linear transformations

z �→ az+ b

cz+ d
, a, b, c, d ∈ C , ad− bc �= 0 . (2.98)

Given that the map is invariant under rescalings of the parameters, one can set ad− bc = 1

and these transformations define a group isomorphic to PSL(2,C), the group of complex 2×2

matrices M of determinant one identified under its center M �→ −M.
Genus one surfaces are topologically equivalent to a two-torus. The Euler characteristic of

the two-torus vanishes, hence a two-torus can be endowed with a flat metric ds2 = dwdw̄. The
torus has an obvious discrete Z2 symmetry w �→ −w as well as two conformal Killing vectors
corresponding to translations along the two one-cycles of the torus. They are described
simply by the constant holomorphic vector field δw = c0. According to the Riemann-Roch
theorem, one expects that the torus has two real moduli.

The torus can be described conveniently as the complex plane quotiented by the discrete
identifications

w ∼ w+ 2πnu1 + 2πmu2 , n,m ∈ Z , (2.99)

where u1 and u2 are complex parameters. By a rescaling of w, accompanied by a constant
Weyl transformation, one can get rid of the former hence we consider the quotient

w ∼ w+ 2πn+ 2πmτ , n,m ∈ Z , (2.100)

where we have adopted the standard notation τ ∈ C for the torus modulus. As for the circular
worldline in the point particle case, see the discussion above eqn. (2.14), an alternative way
to think about the torus is to consider the metric

ds2 = |dσ1 + τdσ2|2 , (2.101)

with the standard identifications σi ∼ σi + 2π. There exists some discrete ambiguity in
the identification of the parameter τ. First, the metric (2.101) is invariant under complex
conjugation of the parameter τ, hence we can restrict the discussion to τ2 = �(τ) > 0 (the
case �(τ) = 0 being degenerate) i.e. to the upper half plane H. For a square torus, �(τ) = 0,
while in general the real part of τ represents the way the circle parametrized by σ1 is ”twisted”
before identifying the two enpoints of the cylinder.

The two-torus, being defined as a quotient of the complex plane, is nothing but a two-
dimensional lattice, see fig. 2.5. It is obvious that the same lattice is described by replacing
τ by τ + 1. According to the metric (2.101) it amounts to redefine σ1 → σ1 + σ2, which is
compatible with the periodicities of the coordinates. It it slightly less obvious to realize that
another equivalent parametrization of the torus is given by τ �→ −1/τ, if one allows a Weyl
rescaling of the metric. From the metric (2.101), one sees that it amounts to replace σ1 → σ2

and σ2 → −σ1. In other words it exchanges the role of Euclidean worldsheet time and of
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Figure 2.5: Two-torus as a quotient of the complex plane.

the space-like coordinate along the string. These two transformations generate the modular
group PSL(2,Z), which acts on the modular parameter as

τ �→ aτ+ b

cτ+ d
, a, b, c, d ∈ Z (2.102)

This group is indeed the group SL(2,Z) of 2× 2 integer matrices M of determinant one

M =

�
a b

c d

�
, ad− bc = 1 , a, b, c, d ∈ Z (2.103)

quotiented by its center, i.e. with the identification M ∼ −M, as replacing (a, b, c, d) by
(−a,−b,−c,−d) does not change the action (2.102). To avoid an over-counting in the path
integral, we will choose to select a representative of the modular parameter τ into each orbit
of the modular group. One can show that every point is the upper half plane H > 0 has a
unique antecedent under the modular group in the fundamental domain F, defined by the
conditions

F = {τ ∈ H , |�(τ)| � 1
2
, |τ| � 1} , (2.104)

where the boundaries for �(τ) > 0 and �(τ) < 0 are identified, see fig. (2.6). To anticipate
a little bit, this technical point will have drastic consequences. Remember that the torus
diagram represents the one-loop contribution in the perturbative expansion in string theory,
much as a circle represented the one-loop contribution in the point particle case, see sec-
tion 2.1. We have found there that the UV divergences in QFT were related to circle of size
L going to zero size. In the string theory case, it would correspond to the limit �(τ) → 0,
which is completely excluded from the path integral if we choose to integrate over F, the fun-
damental domain! This remarkable feature of string theory, which persists to higher order,
indicates that the theory is UV-finite.

2.3.4 Conformal symmetry

Our discussion of conformal Killing vectors – i.e. of metric-preserving gauge symmetries –
had been global as we only focused on holomorphic vector fields (2.93) defined everywhere
on the manifold. This was important as we wanted to knew exactly the mismatch between
integrating over worldsheet metrics and over diffeomorphisms × Weyl gauge symmetries.
There are however important properties of the quantum field theory defined on the worldsheet
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Figure 2.6: Fundamental domain F of the modular group.

of the string by the gauge-fixed Polyakov action (2.90) that depend only on the symmetries
of the problem in an open set of the complex plane C.

If we allow the transformations (2.93) to be defined only in some patch of the worldsheet,
they generate a much bigger group of symmetry. If we consider finite transformations rather
than infinitesimal ones, what these equations tell us is that for any holomorphic function f,
the change of coordinates

w �→ f(w) (2.105a)

w̄ �→ f̄(w̄) (2.105b)

dw dw̄ �→
��∂wf(w)|−2dw dw̄ (2.105c)

can be compensated by a Weyl transformation of parameter Ω = log |∂f| such as to leave
invariant the flat two-dimensional metric.

This infinite-dimensional symmetry will play a crucial role in the following. The holo-
morphic coordinate transformations (2.105a,2.105b) preserve the metric up to a local scale
transformation as can be seen from eqn. (2.105c), and the set of such transformations corre-
sponds to the conformal group, which is indeed of infinite dimension precisely for a space of
dimension two.

We will obtain Ward identities associated with these symmetries for the two-dimensional
quantum field theory defined on the worldsheet, as such identities do not care about the well-
definiteness of the symmetry at the global level. What we will obtain is an infinite number
of constraints on this QFT, which is every theoretical physicist dream!
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2.4 Polyakov path integral

We have gathered the ingredients to define properly the path integral associated with the
Polyakov action (2.90), which is a path integral over two-dimensional scalar fields xµ and
over two-dimensional metrics γ on Euclidean worldsheets.

We have learned first in section 2.3 that the path integral splits into a sum over topologies,
i.e. over surfaces of different genera g. In each sector we integrate over metrics γg of surfaces
with a given genus. Accordingly we are considering the formal vacuum amplitude

Z1 =

∞�

g=0

g2g−2
s

� Dγg

Vol(diff×Weyl)

�
Dx exp

�
− Sp[γg, x]

�
, (2.106)

that receives contributions from single string worldsheets.
As in the point particle case, we have formally divided the integral over the metrics

γg by the volume of the gauge group Vol(diff × Weyl) in order to take care of the gauge
redundancies of the formulation of the theory. As there we will define properly this integral
by the Faddeev-Popov method.

Inequivalent gauge orbits of metrics γg under diff×Weyl gauge transformations are labeled
by a finite set of nµ parameters m�, the moduli. Along each of these orbits one can choose a
reference metric �γg(m�), whose image under a transformation Ξ will be denoted �γΞ

g (m�).
We want to trade the integral over the metrics γg by the product of an integral over the

moduli and an integral over the gauge group, but the latter contains elements that do not
change the reference metric, the conformal Killing vectors. In the point particle case this
extra symmetry was taken care of by fixing the image of the origin under the diffeomorphisms
of the worldline. In the present case we have to discuss separately the different topologies,
as the outcome will be different. As before we will focus on the two most important cases,
the sphere and the torus.

2.4.1 Path integral on the sphere

Surfaces of genus zero have positive curvature, see eqn. (2.71), and are all diff.× Weyl equiv-
alent to the round unit two-sphere, as the latter has no moduli, see section 2.3.

The conformal Killing vectors on the two-sphere form a group isomorphic to PSL(2,C),
the Möbius group, which is a non-compact Lie group of complex dimension three. While it is
easy to gauge-fix part of the rotation subgroup SO(3) ⊂ PSL(2,C) by leaving fixed the origin
of the coordinates w = w̄ = 0 under the diffeomorphisms that we integrate over – exactly as
we did for the point particle path integral – there is no way to gauge-fix the whole Möbius
symmetry for the vacuum amplitude on the sphere.

The path integral (2.106), which contains the inverse of the volume of the Diff. × Weyl
gauge group, will therefore retain a factor of 1/Vol

�
PSL(2,C)

�
which vanishes, as the Möbius

group is a non-compact group. We learn that the vacuum amplitude on the sphere, i.e. at
tree level, vanishes, as it should be because otherwise it would mean that we don’t expand
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around a vacuum of the theory.10

Of course, string theory, as QFT, is not just about computing the vacuum amplitude.
Physical observables correspond generically to time-ordered correlation functions of gauge-
invariant observables of the theory. Because of diffeomorphism invariance, the observables
take the form

Ok =

�
d2w

�
detγVk[x

µ(w, w̄)] , (2.107)

where Vk is some functional of the fields xµ(w, w̄) that transforms as a scalar under world-
sheet diffeomorphisms; other constraints should be imposed on these functionals, and will be
discussed later. Then we have to consider path integrals of the form

�O1 · · · On�g=0 ∼ g−2
s

�
Dγ0Dx

n�

k=1

�
d2wk

�
detγVke

−Sp[x,γ0] . (2.108)

In this context the gauge-fixing problem that we had for the vacuum amplitude is easy to
solve. If the number n of operators is larger or equal to three, the Möbius symmetry is
completely fixed by setting the positions (wk, w̄k) of three operators to arbitrary fixed values
(�wk, �̄wk) instead of integrating over them.

To formulate the problem a bit differently, the integral
�
Dγ0

�3
k=1 d

2wk over the metrics
and the position of three operators covers the whole gauge group, hence can be traded for
an integral

�
DΞ which cancels out completely the volume of the gauge group in the path

integral (2.106).
We define then the Faddeev-Popov determinant of string theory on the sphere in terms

of the path integral over the gauge group

1

Δfp(γ0)
:=

�
DΞ δ(γ0 − �γΞ

0 )

3�

k=1

δ
�
wk − �wΞ

k

�
(2.109)

where �wk are arbitrary positions and �wΞ
k their images under diff. × Weyl gauge transforma-

tions. We obtain for the full path integral at tree-level

�O1 · · · On�g=0 = g−2
s

�
Dγ0DΞ

Vol(diff×Weyl)
Δfp(γ0)

n�

k=1

�
d2wk

�
detγ0

�
Dx

n�

k=1

Vk[x(wk, w̄k)]

× exp
�
− Sp[γ0, x]

�
δ(γ0 − �γΞ

0 )

3�

k=1

δ (wk − �wk)

= g−2
s

�
Dx exp

�
− Sp[ �γ0, x]

�
Δfp(�γ0)

3�

k=1

�
det �γ0Vk[x(�wk, �̄wk)]

n�

K=3

OK . (2.110)

By diffeomorphisms and Weyl transformations, one can bring the metric on the sphere to
a flat metric, the price to pay being that the south pole is mapped to |w| → ∞. This is not

10As we will see below, the same conclusion can be obtained by noting that the zero-modes of the ghost
path integral measure will not be ”saturated” by the appropriate ghost insertions.
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a problem as long as we consider the compactification of the complex plane, C̄ := C ∩ ∞,
which is topologically a two-sphere.

In order to evaluate the Faddeev-Popov determinant, we first recall that the argument of
the distribution δ(γ0 − �γΞ

0 ) around the reference metric is given by eqns. (2.89). We have
then

1

Δfp(γ0)
=

�
DδωDδwDδw̄ δ

�
δω− 1

2
(∂δw+ ∂̄δw̄)

�
δ
�
∂δw̄

�
δ
�
∂̄δw

�

3�

k=1

δ
�
δw(�wk, �̄wk)

�
δ
�
δw̄(�wk, �̄wk)

�
. (2.111)

All these Dirac distributions are exponentiated by means of a corresponding Lagrange mul-
tiplier:

1

Δfp(�γ0)
=

�
DδωDδwDδw̄Dη Dβ Dβ̄

3�

k=1

dφkdφ̄k

e2iπ
�
d2z η

�
δω−

1
2
(∂δw+∂̄δw̄)

�
e2iπ

�
d2zβ∂̄δwe2iπ

�
d2z β̄∂δw̄e2iπφkδw(�wk, �̄wk)e2iπφ̄kδw̄(�wk, �̄wk) (2.112)

We eventually need to insert the FP determinant rather than its inverse as for the particle,
therefore we substitute for the variables (δω, δw, δw̄,η,β, β̄,φk, φ̄k), the Grassmann vari-

ables (κ, c,�c, ζ, b, �b,ψk, ψ̄k). We can compute immediately the integrals over κ, ζ, ψk and
ψ̄k which gives, after a rescaling of the fields, the relatively simple expression

Δfp(�γ0) =

�
DbD�bDcD�c e−

�
d2w
2π

(b∂̄c+�b∂�c)
3�

k=1

c(�wk)�c( �̄wk) (2.113)

To summarize the sphere path integral of string theory is given in its full glory by the
expression (n > 3):

�O1 · · · On�g=0 = g−2
s

�
DxDbD�bDcD�c e−

�
d2w
2πα � gµν∂xµ∂̄xνe−

�
d2w
2π

(b∂̄c+�b∂�c)
3�

k=1

c(�wk)�c( �̄wk)

3�

k=1

Vk[x(�wk, �̄wk)]

n�

K=3

OK , (2.114)

where {�wk} are arbitrary positions, that we take usually to be {0, 1,+∞}.

2.4.2 Path integral on the torus

The second important case is the two-torus, that corresponds to the one-loop amplitude in
string theory, and present some differences with the previous case.
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Gauge-inequivalent surfaces of genus one correspond to two-tori characterized by one
complex parameter τ in the upper half-plane H = {z ∈ C, �(z) > 0}. Because of the ambiguity
in assigning a modular parameter τ to a given two-torus – or equivalently to a given two-
dimensional lattice – one restricts further τ to be in the fundamental domain F of the modular
group, see eqn. (2.104). A two-dimensional metric on the torus of complex modular parameter

τ = τ1 + iτ2 , |τ1| � 1
2
, τ 2

1 + τ 2
2 � 1 (2.115)

is then given by the flat metric (2.101) with σi ∼ σi + 2π.
The two-torus has two real conformal Killing vectors, that are easy to understand, as they

correspond to translations along σ1 and along σ2. These translations form a group isomorphic
to U(1)2, whose volume is 4π2τ2, the area of the torus of metric (2.101). It means that the
integral

�
d2τDΞ over the moduli and over the gauge group covers more that the integral�

Dγ1 over the metrics on genus one surfaces.
Fixing this extra symmetry is possible, even for the vacuum amplitude in the following

way (this is the same method that we used for the point particle vacuum amplitude). A
general diffeomorphism is given by two functions Σi(σk) that will not generically map the
origin of the coordinates σ1 = σ2 = 0 to the origin, as Σi(0, 0) �= 0 in general. Because of
translation invariance is possible to restrict the path integral to diffeomorphisms preserving
the origin, i.e. such that Σi(0, 0) = 0 or, say differently, for every diffeomorphism Σi one can
translate back the image of the origin to Σi(0, 0) = 0, which will select an element of the
translation group . In this way, the spurious gauge freedom will be removed. In addition to
these continuous symmetries, the torus metric is naturally invariant under the Z2 symmetry
σi �→ −σi, which doubles the volume of the group of metric-preserving gauge transformations.

These considerations lead to the following expression for the Faddeev-Popov determinant
on the two-torus, as an integral over the gauge transformations Ξ = (Σ,Ω):

1

Δfp(γ1)
:=

�

F

dτ

�
DΞ δ

�
γ1 − �γΞ

1 (τ)
�
δ
�
Σ1(0)

�
δ
�
Σ2(0)

�
, (2.116)

with the reference metric �γ1(τ) obtained from eqn. (2.101)

�γ1(τ) =

�
1 τ1
τ1 |τ|2

�
. (2.117)

Expanding the Dirac distribution near the reference metric gives

δ
�
γ1 − �γΞ

1 (τ)
�
=

δ
�
2δω− 2∂1(δσ

1 + τ1δσ
2)
�
δ
�
2|τ|2δω− 2∂1(|τ|

2δσ2 + τ1δσ
1) + 2(τ1δτ1 + τ2δτ2)

�

δ
�
2δωτ1 − ∂1(|τ|

2δσ2 + τ1δσ
1)− ∂2(δσ

1 + τ1δσ
2) + 2δτ1

�
(2.118)

As before we introduce Lagrange multipliers fields. Compared to the sphere case as the
reference metric is not diagonal it will be technically slightly more cumbersome. We introduce
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a symmetric two-index tensor of Lagrange multipliers of components βij as well as a one-form
of components ηi. It gives

1

Δfp(�γ1(τ))
=

�
dδτDδωDδσi Dβijdηi exp

�
2iπηiδσ

i(0)
�

exp 2iπτ2

�
d2σ

�
β11

�
δω−∂1(δσ

1+τ1δσ
2)
�
+β22

�
|τ|2δω−∂1(|τ|

2δσ2+τ1δσ
1)+2(τ1δτ1+τ2δτ2)

�

+ 2β12
�
2δωτ1 − ∂1(|τ|

2δσ2 + τ1δσ
1)− ∂2(δσ

1 + τ1δσ
2) + 2δτ1

��
(2.119)

Integrating over δω imposes that the tensor β is traceless, i.e. that βij�γ1(τ)ij = 0. The
remaining path integral in Db will be therefore on traceless tensors only. In order to get the
FP determinant rather that its inverse, we replace (βij, δσi,ηi, δτ�) by Grassmann variables
(bij, ci,ψi, κ�) and get after rescaling of the fields

Δfp(�γ1(τ)) =

�
dκDci Dbijdψi exp

�
ψic

i(0)
�
exp

�
−

1

2π

�
d2σ

�
det �γ1(τ) b

ij∂icj

�

× exp
� 1

2π

�
d2σ

�
det �γ1(τ)κ�b

ij∂τ��γ1(τ)ij

�
, (2.120)

which can be further simplified by integrating over κ� and over ψi.
Inserting this result in the Polyakov path integral (2.106) one gets finally the vacuum

amplitude as11

Z1 =

�

F

dτdτ̄

16π2τ2

�
DxµDbij Dci exp

�
−

τ2

4π

�
d2σ

�
bij∂icj +

1
α �gµν�γij

1 ∂ix
µ∂jx

ν
�

c1(0)c2(0) × τ2

4π

�
d2σbij∂τ�γ1(τ)ij ×

τ2

4π

�
d2σbij∂τ̄�γ1(τ)ij (2.121)

The dependence in 1/τ2 in the measure of integration over the modulus τ comes from the
volume of the group of translations along the torus, since have we have explained we don’t
integrate over this part of the gauge group. As we will see this factor ensures that the result
is invariant under the modular group PSL(2,Z).

It is finally convenient to come back to complex coordinates (w, w̄) = (σ1+τσ2,σ1+ τ̄σ2).
We write then

bww = b , bw̄w̄ = �b , cw = c , cw̄ = �c (2.122)

The insertion in b(w, w̄) and �b(w, w̄) takes in this basis the form

1

2πτ2

�
d2wb(w, w̄)

1

2πτ2

�
d2w �b(w, w̄) , (2.123)

11The exact normalization of the result could be obtained by checking carefully how the insertions in the
path integral are normalized, however since the original path integral is ill-defined, and, since we did several
field rescalings while manipulating formally the path integral, the honest way to get the factor right is to ask
that the end result is properly normalized if interpreted as a partition function. Concretely if one chooses a
fully compact space-time one can request that the vacuum appears with degeneracy one.
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As we will see later, one can replace b(w, w̄) by its value at any given point, for instance
w = w̄ = 0, as the non-zero modes of the field don’t contribute to the path integral (2.121).

Therefore we can replace
�
d2wb → 4π2τ2b(0), and the same for the �b insertion.

We get the final result for the vacuum amplitude of string theory at one-loop as

Z1 =

�

F

d2τ

4τ2

�
DxµDbD�bDcD�c b(0)�b(0) c(0)�c(0) e−

�
d2w
4π

�
b∂̄c+�b∂�c+ 1

α � gµν∂xµ∂̄xν
�

(2.124)

The dependence of the integrand in the modulus τ is hidden in the periodicity of the complex
variable w ∼ w+ 1 ∼ w+ τ.

If one wants to compute a different observable as an n-point function �O1 · · · On�g=1, it
is enough to insert the operators Ok in the path integral above, as no gauge-fixing of the
position of some operators is needed in the present case.

This result is very close to the sphere path integral (2.114), the differences reflecting the
number of moduli and conformal Killing vectors in each case. One can generalize of course
this discussion to surfaces of higher genera, but a rigorous presentation would be rather
technical.

In this chapter we have assumed that the gauge symmetries of the classical theories,
diffeomorphisms and Weyl transformations, were also valid in the quantum theory. As we
shall see, the latter may be violated by an anomaly that put the theory in danger of being
inconsistent. Before proceeding to this computation, we will introduce in the next chapter
the powerful methods of two-dimensional conformal field theory.
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Two-dimensional conformally-invariant quantum field theories were introduced by Belavin,
Polyakov, and Zamolodchikov in 1984 [1]. These theories play also an essential role in sta-
tistical physics, for the description of critical phenomena in two dimensions. The book [2]
is probably the most comprehensive book on the subject, and reference [3] is geared towards
string applications.

After gauge-fixing of the diffeomorphisms and Weyl transformations to the flat worldsheet
metric ds2 = dwdw̄, the Euclidean Polyakov action

S =
1

4πα �

�

s

d2wGµν[X
ρ]∂Xµ∂̄Xν (3.1)

has an infinite-dimensional residual symmetry that consists in the coordinates transformation

w �→ f(w) , w̄ �→ f̄(w̄) , (3.2)

where f is a holomorphic function, that leaves the metric invariant up to a conformal factor:

dwdw̄ �→
�
∂f(w)

∂w

��
∂f̄(w̄)

∂w̄

�
dwdw̄ (3.3)

As we have seen previously, the topology of the worldsheet restricts severely the transfor-
mations of this type that are allowed globally, i.e. the conformal Killing vectors of the surface.
On the sphere we have found that they corresponded to the Möbius group PSL(2,C), while
on the two-torus the only holomorphic functions periodic around both of the one-cycles are
constants. As a result, the transformations (3.2) are not properly speaking local symmetries
of string theory itself. In addition we will see shortly that the local Weyl symmetry might
not hold in the quantum theory due to an anomaly.

At this stage we will be interested in a slightly different problem, the properties of
two-dimensional quantum field theories defined on the complex plane (w, w̄) with global
symmetries including the two-dimensional conformal transformations (3.2). In this context
two-dimensional gravity is no longer dynamical, and we work in a theory with a fixed two-
dimensional flat metric ds2 = dzdz̄. In the string theory applications we will consider the
compactification of the complex plane by adding the point at infinity, C̄ = C∩ {∞}, which is
related to the two-dimensional sphere (2.95) by a Weyl transformation ω = 1

2
log(1+ww̄).

In general, quantum field theory with conformal invariance are called conformal field
theories. In two dimensions this symmetry is often powerful enough to solve exactly the
theory, without using any perturbative expansion.

3.1 The conformal group in diverse dimensions

The conformal group in two-dimensions is of infinite dimension, unlike the conformal group
in higher dimensions. To understand this we will study the conformal group in arbitrary
Euclidean space-time of dimension D.
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Conformal transformations are defined as coordinate transformations that preserve the
metric up to a conformal factor, i.e.

xi �→ x̃i(xj) , δijdx
idxj �→ δij

∂xi

∂x̃k
∂xj

∂x̃�
dx̃jdx̃� = exp

�
2Ω(x̃k)

�
δijdx̃

jdx̃� . (3.4)

Here the metric is fixed, hence such transformation is really changing the geometry. The
defining propery of conformal transformations is to preserve angles between vectors of tangent
space over any given point.

Let us consider a generic differentiable change of coordinates xi = xi + δxi(xj). At linear
order in δx, this change generates a conformal transformation of the D-dimensional metric
γ provided that

∃α ∈ C0(RD) , δ(γk�) = −(∂�δxk + ∂kδx�) = α(σi)δk� . (3.5)

Taking the trace of tells us that −2∂iδx
i = Dα, hence one has the equation

(∂�δxk + ∂kδx�)−
2
D
(∂iδx

i)δk� = 0 . (3.6)

Acting on this equation with ∂� finally gives

�δxk +
�
1− 2

D

�
∂k(∂iδx

i) = 0 . (3.7)

Let us assume a power series expansion:

δxi = ai +mi
jx

j + bix2 + xi(cjx
j) + O(x3) (3.8)

and look for constraints on all the coefficients. While a is unconstrainted, eqn. (3.6) tells us
that

m(ij) −
1
D
δijTr (m) = 0 , (3.9)

hence m splits into a trace part and an antisymmetric part. Equation (3.7) becomes at this
order

2Dbi + 2ci +
�
1− 2

D

�
(2bi + (D+ 1)ci) = 0 (3.10)

which is solved for ci = −2bi.
One can check that there are no solutions to the problem for higher order terms in (3.8)

if D > 2. The space of solutions of these equations is then finite and corresponds to:

• translations: δxi = ai constant

• rotations: δxi = rijx
j with r in the vector representation of so(D), i.e. the antisym-

metric part of m in eqn. (3.8)

• dilatations: δxi = λxi with λ a non-vanishing constant, i.e. the trace part of m in
eqn. (3.8)

• special conformal transformations δxi = bi x2 − 2xi(bjx
j) .
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These are actually a set of generators of the Lie algebra so(D+ 1, 1), i.e. of the Lie Algebra
of the Lorentz group in D+ 2 dimensions.

In two dimensions, the conformal transformations are given, in complex coordinates, by
w �→ f(w), w̄ �→ f̄(w̄) with f holomorphic, as we have already noticed. Naturally this
infinite-dimensional group contains as a subgroup the transformations existing in general
dimensions. Explicitly:

• translations: δw = a, δw̄ = ā

• rotations: δw = iθw, δw̄ = −iθw̄ with θ ∈ R.

• dilatations: δw = λw, δw̄ = λw̄ with λ ∈ R.

• special conformal transformations δw = −b̄ w2, δw̄ = −b w̄2, b ∈ C.

Following the general discussion this generates a Lie group isomorphic to SO(3, 1), i.e. the
Lorentz group in three dimensions, whose component connected to the identity is isomorphic
to the Möbius group PSL(2,C) that appeared already in section 2.3. It was shown there that
the Möbius group was the subgroup of two-dimensional conformal transformations that are
globally defined on the two-sphere, or equivalently on the compactified complex plane C̄.

3.2 Radial quantization

The Euclidean two-dimensional conformal field theory associated with the worldsheet of a
propagating string is naturally associated with a surface with the topology of a cylinder, i.e.
parametrized by two coordinates (σ1,σ2) with σ1 ∼ σ1 + 2π, or equivalently the complex
coordinate w = σ1 + iσ2 with w ∼ w+ 2π. The coordinate σ2, which runs from −∞ to +∞,
is the Euclidean time, obtain through Wick rotation: σ2 = −iτ.

Even outside the string theory context, the natural starting point for canonical quantiza-
tion of conformal field theories is on the cylinder, in order to avoid infrared problems in the
case of an infinite space direction.

States of the quantum field theory are defined on a space-like slice, i.e. on a slice of
constant σ2 after Wick rotation to Euclidean space. In particular, an initial state |in� of the
theory is defined on a slice with σ2 → −∞.

Invariance of the theory under conformal transformation allows to give a different repre-
sentation of the (Euclidean) time evolution of the QFT and of states of the theory. Let us
consider the conformal mapping from the cylinder to the complex plane:

w �→ z = e−iw , w̄ �→ z̄ = eiw̄ . (3.11)

In this description, σ2 → −∞ is mapped to the origin z = 0 and slices of constant σ2 are
mapped to circles around the origin, see fig. 3.1.

Time evolution correspond to dilatations or, said differently, the Hamiltonian operator
corresponds to the dilatation operator. Likewise, time-ordered correlation functions of the
QFT become radial-ordered correlation functions.
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z-plane

Q = 1
2iπ

��
C J(z)dz−

�
C J̄(z̄)dz̄

�

|in�

|in�

radial time |z|

Q=
�
j2dσ1

−∞

σ2

Figure 3.1: Conformal mapping of the cylinder to the complex plane.

3.2.1 State - operator correspondence

In quantum mechanics or quantum field theories, states and operators are very different kind
of objects.

On the one hand, states characterize the system at a defined time and are implemented in
the path integral formalism as boundary conditions for the functional integral. For instance,
in quantum mechanics,

�q1, t|q0, 0� =
�q(t)=q1

q(0)=q0

Dq exp
i

�

� t

0

dt �L[q(t �)] . (3.12)

If we prepare the system in a given state characterized by the wave-function Ψ0(q, 0) at t = 0,
the wave-function at time t is given by

Ψ1(q1, t) =

�
dq0

�q(t)=q1

q(0)=q0

DqΨ0(q0, 0) exp
i

�

� t

0

dt �L[q(t �)] . (3.13)

Likewise in quantum field theory a state is a functional of the fields defined on a space-like
slice of space-time, in the present case on the circle parametrized by σ1.

On the other hand, local operators in quantum field theories are defined as arbitrary local
expressions constructed from the elementary fields of the theory and their derivatives, i.e.
local functionals Ψ[φ̂i(xµ),∂νφ̂

i(xµ), · · · ].
The conformal mapping between the cylinder and the plane has some surprising conse-

quence. Let us consider an initial state |in� of the CFT on the cylinder, defined on the circle
parametrized by σ1 in the infinite past σ2 → −∞. Under the conformal mapping (3.11) it
is mapped to the origin of the plane z = z̄ = 0. This means that the initial state is mapped
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to a local object at the origin, in other words a local operator, inserted at the origin. This is
called the state-operator correspondence:

�A|0� ↔ OA(z = 0, z̄ = 0) , (3.14)

which says that a state obtained by acting on the vacuum by some operator Â is equivalent
to a local operator OA(z, z̄) inserted at the origin of the complex plane. In this perspective
the vacuum |0� corresponds to the identity operator on the right-hand side.

3.2.2 Conserved charges

Let us consider a field theory with a conserved current, ∂µj
µ = 0, and a certain space-like

foliation of the ambient space-time. One can defined a conserved charge

Q =

�
jµdΣ

µ (3.15)

where dΣµ is the surface element over a space-like slice. For a conserved current on the
cylindrical worldsheet of the string, it gives

Q =

�
j2
dσ1

2π
. (3.16)

Let us map the theory to the plane. A two-dimensional current has components Jz(z, z̄)
and Jz̄(z, z̄) in complex coordinates, and current conservation means that ∂̄Jz = 0 and ∂J̄z = 0.
Hence J := Jz(z) is a holomorphic function and J̄ := J̄z̄(z) a anti-holomorphic one.

The integral around the cylinder
�
dσ1jr becomes an integral over the polar angle,

�
dθ Jr.

In complex coordinates, one obtains

Q =
1

2iπ

��

C
J(z)dz−

�

C
J̄(z̄)dz̄

�
, (3.17)

where C denotes a contour encircling the local operator corresponding to the state for which
we compute the charge. In many cases one finds conserved holomorphic and anti-holomorphic
charges, associated respectively to holomorphic and anti-holomorphic transformations.

We will consider below the main application of this formalism to conformal field theories,
by looking at conservation laws associated with conformal transformation themselves.

3.3 Conformal invariance and Ward identities

The dynamics of quantum field theories with conformal invariance is severely constrained by
this symmetry, especially in two dimensions where this symmetry is infinite dimensional.
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3.3.1 Stress-energy tensor

In the classical theory, the stress-energy tensor obeys strong constraints for conformal in-
variance. Under a change of the background metric, the action of a field theory transforms
as

δS = −
1

2π

�
dDx δγij

δ

δγij

�
− detγL = −

1

2π

�
dDx

�
− detγ T ijδγij (3.18)

Consider a general diffeo.× Weyl transformation of the background metric, δγij = 2γijδω−
(∇iδσj +∇jδσi). Invariance under diffeomorphisms implies that the stress-energy tensor is
conserved:

∇iTij = 0 , (3.19)

while invariance under Weyl symmetries implies that the stress-energy tensor is traceless:

Tijγ
ij = 0 . (3.20)

In two-dimensions, these expressions take a particularly simple form in complex coordi-
nates with a flat background metric:

∂̄Tz� = ∂Tz̄� = 0 (3.21)

for the former, and
Tzz̄ = 0 (3.22)

for the later. This means that the stress-energy tensor has only two non-vanishing compo-
nents,

T := Tzz , �T := Tz̄z̄ , (3.23)

and that they are respectively holomorphic and anti-holomorphic functions:

∂̄Tzz = 0 =⇒ T = T(z) , (3.24a)

∂Tz̄z̄ = 0 =⇒ �T = �T(z̄) . (3.24b)

We will finally give the form of the Noether currents associated with conformal transfor-
mations. Let us consider the infinitesimal transformation

z �→ z+ ρ(z, z̄)ε(z) , z̄ �→ z̄+ ρ̄(z, z̄)ε̄(z̄) , (3.25)

which reduces to a conformal transformation for constant ρ and ρ̄. According to eqn. (3.18)
the variation of the action of the theory is then

δS = −
1

2π

�
d2z

�
T(z)∂̄

�
ρ(z, z̄)ε(z)

�
+ �T(z̄)∂

�
ρ̄(z, z̄)ε̄(z̄)

��

= −
1

2π

�
d2z

�
T(z)ε(z)∂̄ρ(z, z̄) + �T(z̄)ε̄(z̄)∂ρ̄(z, z̄)

�

(3.26)
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A very powerful point of view in two-dimensional Euclidean QFT is to consider w and
w̄ are independent variables. This means that we consider the analytic continuation of the
Euclidean space R2 to C2, and the move from coordinates (σ1,σ2) to (w, w̄) just as a change
of basis in C2. Naturally at the end of the day one should enforce the reality condition
(z̄)� = z.

From this point of view one can consider purely holomorphic conformal transformations,
i.e. with ε̄ = 0. The associated Noether current is then

Jz = T(z)ε(z) , Jz̄ = 0 (3.27)

The non-zero component of the current, J := Jz is then holomorphic: ∂̄J = 0.
In the same way a purely anti-holomorphic conformal transformation, , i.e. with ε̄ = 0,

gives the conserved current
J̄z = 0 , J̄z̄ = �T(z̄)ε̄(z̄) , (3.28)

whose non-zero component J̄ := J̄z̄ is anti-holomorphic: ∂J̄ = 0.
As in other quantum field theories, these classical equations lead to functional equations

in the quantum theory, known as Ward identities that we shall study now.

3.3.2 Ward identities

Let us consider a generic time-ordered N-point correlation function of local operators in a
two-dimensional conformal field theory. By local operator we mean any operator that can
be written as a local expression in the fundamental fields φi and their derivatives. The
corresponding path integral is written as

�O1(z1, z̄1) · · ·ON(zN, z̄N)� =
�
Dφie−S[φi]O1[φ

i](z1, z̄1) · · ·ON[φ
i](zN, z̄N) (3.29)

We consider a holomorphic conformal transformation with support in a small disc d in the
complex plane, i.e. a transformation (3.25) with ρ non-vanishing only in the neighborhood
of some point (z0, z̄0) and ρ̄ = 0.

There are two cases to consider: either there are no local operators in this neighborhood,
or there is (at least) one inserted at a point inside the disk, see fig. 3.2.

Let us start with the former case. By construction the local operators are not affected by
the conformal transformation, hence the change in the path integral comes from the measure
Dφi and from the action S[φi] only. We will make the assumption that the measure is
invariant so the only variation comes from the action.1 The path integral is then modified at
first order as

�
Dφie−S[φi]O1 · · ·ON �→

�
Dφie−S[φi]

�
1−

1

2π

�
d2z T(z)ε∂̄ρ

�
O1 · · ·ON . (3.30)

1This assumption is very strong and turns out actually to be wrong in many cases; this is the path integral
view of QFT anomalies. We will come back to this important issue later on.
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(z1, z̄1)

(z1, z̄1)

(z2, z̄2)

(z3, z̄3) (z4, z̄4)

(z2, z̄2)

(z3, z̄3)

(z4, z̄4)

(z0, z̄0)

(z0, z̄0)

Figure 3.2: Conformal transformation with support away from local operators (left panel) and
including one local operator (right panel).

The path integral should actually be completely independent of the transformation which
should just be thought as some change of variables in the integral. Therefore one gets the
constraint, after integration by parts

�
Dφie−S[φi]

�
d2z ρ(z, z̄) ∂̄

�
T(z)ε(z)

�
O1(z1, z̄1) · · ·ON(zN, z̄N) (3.31)

Since this should hold for any choice of ρ, we are led to the condition that
�
∂̄
�
T(z)ε(z)

�
O1(z1, z̄1) · · ·ON(zN, z̄N)

�
= 0 . (3.32)

This is the quantum version of Noether theorem; naturally there is an analogous formula for
anti-holomorphic conformal transformations.

We move now to the latter case. Let assume that the operator O(z1, z̄1) is inserted at a
point where ρ �= 0, i.e. where the conformal transformation has support. Then on general
grounds the operator transforms

O(z1, z̄1) �→ O(z1, z̄1) + δO(z1, z̄1) . (3.33)

We insert this transformation in the path integral and, using similar arguments as before, we
get at first order the relation

−
1

2π

�
d2z ρ(z, z̄)

�
∂̄
�
T(z)ε(z)

�
O1(z1, z̄1) · · ·ON(zN, z̄N)

�

=
�
δO1(z1, z̄1)O2(z2, z̄2) · · ·ON(zN, z̄N)

�
. (3.34)

The function ρ being arbitrary, we can take it to be the indicator function of the disk d
around (z0, z̄0). The left-hand side can then be simplified using Stokes’ theorem:

�

d

�
∂zJ

z + ∂z̄J
z̄
�
= −i

�

∂d

(Jzdz− Jz̄dz̄) . (3.35)
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In the present case Jz̄ = 0 as we found before so eqn. (3.34) gives

i

2π

�

∂d

dz
�
T(z)ε(z)O1(z1, z̄1)O2 · · ·ON

�
=

�
δO1(z1, z̄1)O2 · · ·ON

�
, (z1, z̄1) ∈ d . (3.36)

This teaches us a very important result: the change of an operator δO under a conformal
transformation is given by the residue of its product with the stress-energy tensor, namely

δO1(z1, z̄1) =
i

2π

�

∂d

dz T(z)ε(z)O1(z1, z̄1) = −Resz→z1 (T(z)ε(z)O1(z1, z̄1)) (3.37)

The holomorphic function ε being arbitrary, this means that the operator product between
T(z) and O(z1, z̄1) has a first order pole when they approach to each other:

T(z)O1(z1, z̄1) = · · ·+ Res (T(z)O1(z1, z̄1))

z− z1
+ · · · . (3.38)

There is naturally a similar story for the anti-holomorphic conformal transformations, which
gives in particular:

�T(z̄)O1(z1, z̄1) = · · ·+
Res

�
�T(z̄)O1(z1, z̄1)

�

z̄− z̄1
+ · · · . (3.39)

These singularities when operators approach each other are a generic feature of quantum
field theories. They have been studied more systematically under the name of operator
product expansions. The operator product expansion exists in all quantum field theories,
and provides the behavior of the theory when two operators O1 and O2 come close to each
other. The basic idea is that, when the separation between them become infinitesimal, one
can expand the product into a sum of local operators. While this is usually an asymptotic
expansion only, one can show that in the case of conformal field theories the series converges,
with the radius of convergence given by the distance to the nearest operator On�=1,2.

3.4 Primary operators

The variation of a generic local operator O(z, z̄) under a holomorphic conformal transforma-
tion ε(z) is contained in eqn (3.37). We can get some insight by looking at specific simple
transformations.

Let us look first at a holomorphic translation defined as z �→ z+a, z̄ �→ z̄. It acts on any
local operator O as

O(z, z̄) �→ O(z− a, z̄) = O(z, z̄)− a∂zO(z, z̄) + · · · (3.40)

By identifying both sides of (3.37) one learns that

∂zO(z, z̄) = Resz �→z (T(z
�)O(z, z̄)) (3.41)
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or in other words, after doing the same for anti-holomorphic translations:

T(z �)O(z, z̄)
z �→z� · · ·+ ∂O(z, z̄)

z � − z
+ · · · (3.42a)

�T(z̄ �)O(z, z̄)
z �→z� · · ·+ ∂̄O(z, z̄)

z̄ � − z̄
+ · · · (3.42b)

We look now at infinitesimal scaling transformations, which are by definition the (non-
holomorphic) transformations z �→ (1 + δλ)z, z̄ �→ (1 + δλ)z, with real δλ. We consider
operators that are eigenstates of the dilatation operator; the corresponding eigenvalue is
called the scaling dimension Δ of the operator:2

O �→ λ−ΔO (3.43)

The transformation of an operator OΔ of scaling dimension Δ under an infinitesimal scale
transformation is given by:

δOΔ = −δλ
�
ΔOΔ(w, w̄) +w∂OΔ + w̄∂̄OΔ

�
. (3.44)

We consider finally infinitesimal rotations in the complex plane, given by z �→ (1 + iδθ)z,
z̄ �→ (1−iδθ)z̄ with real δθ. Consider again an operator which is an eigenstate of the rotation
operator; its eigenvalue is called the spin s of the operator. The transformation law is given
by

δOs = iδθ
�
sOs(z, z̄) + z∂OΔ + z̄∂̄OΔ

�
. (3.45)

In order to use the holomorphic/antiholomorphic splitting of conformal transformations
that we have used throughout, it is convenient to combine scalings and rotations into the
complex transformations

δz = (δλ+ iδθ)z =: δα z , δz̄ = (δλ− iδθ)z̄ =: δᾱ z . (3.46)

Consider common eigenstates of the dilatation and rotation operators. The eigenvalues are
called the conformal weights (h, h̄) of the state, and are related to the scaling dimension and
spin through

Δ = h+ h̄ , s = h− h̄ . (3.47)

We obtain then from the transformations (3.44,3.46) the infinititesimal transformations:

δαOh,h̄ = −δα
�
hOh,h̄(z, z̄) + z∂Oh,h̄

�
, (3.48a)

δᾱOh,h̄ = −δᾱ
�
h̄Oh,h̄(z, z̄) + z̄∂̄Oh,h̄

�
. (3.48b)

Under a finite scaling transformation and rotation, the operator of conformal weights (h, h̄)
transforms as

Oh,h̄ �→ λ−Δe−isθOh,h̄ =
�
λeiθ

�−h �
λe−iθ

�−h̄
Oh,h̄ . (3.49)

2At the classical level Δ is the same as the dimension in units of length coming from dimensional analysis.
For instance, a free massless scalar field in dimension D has an action 1

4π

�
dDx (∂φ)2, hence φ has dimension

(length)2−D, in other words scaling dimension Δ = D− 2.
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The residue formula (3.37) will provide then the relation between the (anti)holomorphic
scale transformation and the operator product with the stress-energy tensor. One has first

hOh,h̄(z, z̄) + z∂Oh,h̄(z, z̄) = Resz �→z (z
�T(z �)O(z, z̄))

= Resz �→z ((z
� − z)T(z �)O(z, z̄)) + zResz �→z (T(z)O(z, z̄)) (3.50)

which gives, using also eqn. (3.41)

hOh,h̄(z, z̄) = Resz �→z ((z
� − z)T(z �)O(z, z̄)) (3.51)

In summary, we have learned that the operator product expansion of one of the components
of the stress-energy tensor with an operator of conformal weight (h, h̄) contains the terms

T(z �)Oh,h̄(z, z̄)
z �→z� · · ·+ h

(z � − z)2
Oh,h̄(z, z̄) +

1

(z � − z)
∂Oh,h̄(z, z̄) + · · · (3.52a)

�T(z̄ �)Oh,h̄(z, z̄)
z �→z� · · ·+ h̄

(z̄ � − z̄)2
Oh,h̄(z, z̄) +

1

(z̄ � − z̄)
∂̄Oh,h̄(z, z̄) + · · · (3.52b)

The operator product with a generic operator of weights (h, h̄) contains in principle more
singular terms in the Laurent series expansion in powers of (z−w).

Conformal primary operators

A distinguished class of local operators in a two-dimensional conformal field theory are op-
erators for which the terms written in eqns. (3.52) exhaust all the possible singular terms in
the expansion, namely

T(z �)Oh,h̄(z, z̄)
z �→z� h

(z � − z)2
Oh,h̄(z, z̄) +

1

(z � − z)
∂Oh,h̄(z, z̄) + regular (3.53a)

�T(z̄ �)Oh,h̄(z, z̄)
z �→z� h̄

(z̄ � − z̄)2
Oh,h̄(z, z̄) +

1

(z̄ � − z̄)
∂̄Oh,h̄(z, z̄) + regular (3.53b)

These are called primary operators, or primaries for short. Given that the regular terms
in the expansions do not contain essential information, we will often remove them from the
expressions of the operator product expansions.

Primary operators are interesting because they have particularly simple transformation
laws under a generic holomorphic conformal transformation δz = ε(z). Using once again the
residue formula (3.37) and the OPE (3.53a) for primary operators one finds that

δεO = −Resz �→z

�
ε(z)

�
h

(z � − z)2
Oh,h̄(z, z̄) +

1

(z � − z)
∂Oh,h̄(z, z̄) + regular

��
. (3.54)

The infinitesimal conformal transformation ε(z) is by definition holomorphic in the neigh-
borhood of z and can be Taylor-expanded there:

ε(z �) = ε(z) + (z � − z)∂ε(z) +O
�
(z � − z)2

�
(3.55)
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Therefore transformation of a primary operator under an infinitesimal generic conformal
transformation is given by

δεO(z, z̄) = −ε(z)∂Oh,h̄(z, z̄)− h
�
∂ε(z)

�
hOh,h̄(z, z̄) . (3.56)

This transformation law can be generalized to a finite – rather than infinitesimal –
transformation, namely w �→ w̃ = f(w), as well as to its anti-holomorphic counterpart
z̄ �→ ˜̄z = f̄(z̄). One finds then:

O(z, z̄) �→ Õ
�
z̃, ˜̄z

�
=

�
∂f

∂z

�−h�
∂f̄

∂z̄

�−h̄

O(z, z̄) . (3.57)

Correlation functions of primary operators

Conformal invariance severely constraints the form of correlation functions between primary
operators. Let us start with the simplest case, the two-point function:

�φ1(z1, z̄1)φ2(z2, z̄2)� , (3.58)

where φ1 (resp. φ2) is a conformal primary of weights (h1, h̄1) (resp. (h2, h̄2)). Under a
conformal transformation z �→ y(z), z̄ �→ ȳ(z̄) one should have

�φ1(y1, ȳ1)φ2(y2, ȳ2)�

=

�
∂y

∂z
(y1)

�−h1
�
∂ȳ

∂z̄
(ȳ1)

�−h̄1
�
∂y

∂z
(y2)

�−h2
�
∂ȳ

∂z̄
(ȳ2)

�−h̄2

�φ1(z1, z̄1)φ2(z2, z̄2)� (3.59)

Invariance under holomorphic and anti-holomorphic translations implies first that

�φ1(z1, z̄1)φ2(z2, z̄2)� = f(z1 − z2, z̄1 − z̄2) . (3.60)

Next we investigate invariance under holomorphic and anti-holomorphic scale transforma-
tions. It leads to the functional identities

f
�
λ× (z1 − z2), z̄1 − z̄2

�
= λ−h1−h2f

�
z1 − z2, z̄1 − z̄2

�
, (3.61a)

f
�
z1 − z2, λ̄× (z̄1 − z̄2)

�
= λ̄−h̄1−h̄2f

�
z1 − z2, z̄1 − z̄2

�
. (3.61b)

hence f is homogeneous of degree −(h1 + h2) (resp. of degree −(h̄1 + h̄2)) in z1 − z2 (resp.
in z̄1 − z̄2). In other words,

f(z1 − z2, z̄1 − z̄2) =
C12

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2
, (3.62)

where C12 is some constant. We now impose invariance under the transformation z �→ −1/z,
which is simpler to handle than the special conformal transformation z �→ z/(1 − b̄ z). One
gets

(−1/z1 + 1/z2)
−h1−h2 =

�
1/z21

�−h1
�
1/z22

�−h2 =⇒ (z1z2)
h1+h2 = z2h1

1 z2h2

2 , (3.63)
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with a similar equation for the anti-holomorphic transformations. Therefore the two-point
function can be non-zero only if h1 = h2 and h̄1 = h̄2:

�φ1(z1, z̄1)φ2(z2, z̄2)� =
C12

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2
δh1,h2

δh̄1,h̄2
. (3.64)

Up to a constant, the two-point function is then completely fixed by invariance under the
global conformal group PSL(2,C).3

The same can be said about the three-point function of primary operators. Invariance
under PSL(2,C) reduces the three-point function computation to a single unknown coefficient:

�φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)� = C123

1

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z1 − z3)h3+h1−h2

× 1

(z̄1 − z̄2)h̄1+h̄2−h̄3(z̄2 − z̄3)h̄2+h̄3−h̄1(z̄1 − z̄3)h̄3+h̄1−h̄2
. (3.65)

3.5 The Virasoro Algebra

The operator product expansions (3.52) are valid for all local operators that are eigenstates
of the dilatation and rotation operators. By dimensional analysis, the stress-energy tensor
Tij given by the definition (3.18) has scaling dimension Δ = 2 in two dimensions. Under a
rotation z �→ z � = eiθz its non-vanishing components transform as Tzz �→ Tz �z � = e−2iθTzz and
Tz̄z̄ �→ Tz̄ �z̄ � = e2iθTz̄z̄.

This analysis shows that T = Tzz is an operator of conformal weights (h, h̄) = (2, 0) while
�T = Tz̄z̄ is an operator of conformal weights (h, h̄) = (0, 2), see eq. (3.47). However nothing
indicates that these are primary operators. Let us consider then the OPEs

T(z �)T(z)
z �→z� · · ·+ 2

(z � − z)2
T(z) +

1

(z � − z)
∂T(z) + reg. (3.66a)

�T(z̄ �)�T(z̄) z �→z� · · ·+ 2

(z̄ � − z̄)2
�T(z̄) + 1

(z̄ � − z̄)
∂̄�T(z̄) + reg. (3.66b)

3.5.1 The central charge

The missing information in the OPEs (3.66) are the possible terms more singular than 1/(z−
w)2 in the expansion. The only universal operators that should appear in any conformal field
theory are the components of the stress energy tensor and the identity operator which has
naturally conformal dimensions (h, h̄) = (0, 0). On general grounds, one should allow terms
proportional to the identity on the right-hand side of eqns. (3.18). By dimensional analysis,

3Actually all is needed is that the operators transform as (3.57) under the action of PSL(2,C), which is
a weaker statement than asking that this equation holds true for any holomorphic function. Such operators
are called quasi-primary operators.
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T being of dimension (2,0), this term should come with the power (z � − z)−4 in the operator
product expansion:

T(z �)T(z)
z �→z� c

2(z � − z)4
+

2

(z � − z)2
T(z) +

1

(z � − z)
∂T(z) + reg. (3.67a)

�T(z̄ �)�T(z̄) z �→z� c̄

2(z̄ � − z̄)4
+

2

(z̄ � − z̄)2
�T(z, z̄) + 1

(z̄ � − z̄)
∂̄�T(z̄) + reg. (3.67b)

These OPEs depend on two C-numbers c and c̄ that are called the central charges of the
conformal field theory, and encode the failure of the components of the stress-energy tensor
to be conformal primaries. They play a central role in the study of conformal field theories,
characterizing in particular the number of degrees of freedom.

From the operator product expansion (3.67) one deduces the transformation of T under
an arbitary infinitesimal holomorphic conformal transformation:

δεT(z) = −Resz �→z

�
ε(z �)

�
1

(z � − z)4
+

h

(z � − z)2
T(z) +

1

(z � − z)
∂T(z) + reg.

��

= −
c

12
ε ���(z)− 2ε �(z)T(z)− ε(z)∂T(z) , (3.68)

and similarly

δε̄�T(z̄) = −
c̄

12
ε̄ ���(z̄)− 2ε̄ �(z)T(z)− ε(z)∂̄�T(z̄) , (3.69)

Notice that for infinitesimal dilatations, rotations and special conformal transformations the
terms proportional to the central charges vanish.

For finite transformation z �→ z̃ = f(z) and z̄ �→ ˜̄z = f̄(z̄) the components of the stress-
tensor transforms as

T(z) �→ T̃(z̃) =

�
∂f(z)

∂z

�−2

T(z) +
c

12
{f(z), z} , (3.70a)

�T(z̄) �→ �̃T(˜̄z) =
�
∂f̄(z̄)

∂z̄

�−2

�T(z̄) + c̄

12
{f̄(z̄), z̄} , (3.70b)

where one defines the Schwarzian derivative

{f(z), z} =
2f ���(z)f �(z)− 3(f ��(z))2

2(f �(z))2
, (3.71)

which is compatible with the composition of successive conformal transformations.

3.5.2 The Virasoro Algebra

The information contained in the operator product expansions (3.67) can be recast in a
different way that will turn out to be very useful, as it will allow to study the properties of
the CFT using the tools of representation theory.
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To start, the components of the stress tensor T and �T are respectively holomorphic and
anti-holomorphic functions on the complex plane, hence admit a Laurent series expansion:

T =
�

n∈Z

Ln

zn+2
, �T =

�

n∈Z

�Ln

z̄n+2
. (3.72)

The coefficients of the expansion can be found by a contour integral

Ln =

�

C

dz

2iπ
zn+1 T(z) (3.73a)

�Ln = −

�

C

dz̄

2iπ
z̄n+1 �T(z̄) (3.73b)

where C is a contour encircling the origin counter-clockwise. The mode Ln corresponds to
the conserved charge associated with the conformal transformation δz = zn+1 following the
discussion in subsection 3.2.2. In particular, L0 + �L0 is the dilatation generator, L0 − �L0 the
rotation generator, while L−1 and �L−1 generate holomorphic and anti-holomorphic translations
respectively.

In the quantum conformal field theory on the plane, we will consider the commutator of
two Laurent modes of the stress-energy tensor. In other words, for any state |φ� in the theory
we consider the quantity

[Lm, Ln]|φ� = LmLn|φ�− LnLm|φ� . (3.74)

The first term corresponds to applying first Ln to |φ� and then Lm, while the second one
corresponds to applying first Lm to |φ� and then Ln.

Using the state-operator correspondence, the state |φ� is mapped to an local operator
O(z, z̄) that we can put at the origin. We have learned also in section 3.2 that the charge of a
state w.r.t. a holomorphic current is computed by a contour integral around the corresponding
local operator, see eqn. (3.17).

Let us consider the circular contours C of radius R and C � of radius R � > R, both around
the origin. We have

LmLnO(0, 0) =

�

C �

dz1
2iπ

�

C

dz2
2iπ

zm+1
1 zn+1

2 T(z1) T(z2)O(0, 0) (3.75a)

LnLmO(0, 0) =

�

C �

dz2
2iπ

�

C

dz1
2iπ

zm+1
1 zn+1

2 T(z1) T(z2)O(0, 0) (3.75b)

In the following we will remove the operator O which plays no role in this computation; it is
understood that the operators are applied to any local operator in the CFT inserted at the
origin.

The only difference between the two equations (3.75) is that in (3.75a) the contour of
integration over z1 is around the contour of integration over z2, while in (3.75b) it is just the
opposite. To compute the commutator, the trick is to consider first the integration over z1
for fixed z2, see fig. 3.3. Going from expression (3.75a) to expression (3.75b) amounts to pass
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z2

z2

z2

C �

C

C �

C

Figure 3.3: Commutator of Virasoro generators.

the contour of integration over z1 (solid line) through the locus of the contour of integration
over z2 (dashed line).

As the operator product T(z1)T(z2) has pole, one picks a residue when the contour of
integration over z1 crosses the position z2 where T is inserted. One has finally to integrate
this residue over z2:

[Lm, Ln] =

�
dz2
2iπ

zn+1
2 Resz1→z2

�
zm+1
1 T(z1)T(z2)

�
. (3.76)

We now compute the residue using the operator product expansion (3.67a):

Resz1→z2

��
zm+1
2 +(m+1)(z1−z2)z

m
2 + m(m+1)

2
(z1−z2)

2zm−1
2 + m(m2−1)

6
zm−2
2 (z1−z2)

3+ · · ·
�

×
�

c
2(z1−z2)4

+ 2
(z1−z2)2

T(z2) +
1

(z1−z2)
∂T(z2) + reg.

��

= m(m2−1)c
12

zm−2
2 + 2(m+ 1)zm

2 T(z2) + zm+1
2 ∂T(z2) . (3.77)

So we end up with the following integral

[Lm, Ln] =

�
dz2
2iπ

zn+1
2

�
m(m2−1)c

12
zm−2
2 + 2(m+ 1)zm

2 T(z2) + zm+1
2 ∂T(z2)

�

=

�
dz2
2iπ

�
m(m2−1)c

12
zn+m−1
2 + 2(m+ 1)zm+n+1

2 T(z2)− (n+m+ 2)zn+m+1
2 T(z2)

�

=

�
dz2
2iπ

�
m(m2−1)c

12
zn+m−1
2 + (m− n)zm+n+1

2 T(z2)
�
, (3.78)

where we have done an integration by parts of the last term in the second step. Now we
simply have to express the right-hand side of the final expression in terms of the Laurent
coefficients using equation (3.73a) and get the well-known Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (3.79)

If we did a similar computation, using the equation (3.73b) at the last step, we would find
in the same way

[�Lm, �Ln] = (m− n)�Lm+n +
c̄

12
m(m2 − 1)δm+n,0 . (3.80)
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The Virasoro algebra (3.79) is very similar two an ordinary Lie algebra, except that it has
an infinite number of generators, {Ln, n ∈ Z}. Another characteristic feature is the presence
of the constant term c̄

12
m(m2 − 1)δm+n,0, which commutes with all the generators; such a

term is called a central extension of the algebra.
Finally a finite sub-algebra of the Virasoro algebra is obtained from the generators

{L−1, L0, L1}:
[L0, L±1] = ∓L±1 , [L−1, L1] = 2L0 , (3.81)

which is isomorphic to sl(2,C); this is nothing but the Lie algebra of the Möbius group,
the group of globally defined conformal transformations on the sphere C̄, i.e. of projective
transformations z �→ az+b

cz+d
, a, b, c, d ∈ C, already discussed in subsection 2.3.3.

3.5.3 Conformally invariant vacuum and Casimir energy

When a conformal field theory theory is formulated on the cylinder, it is natural to expand
the components of the stress energy tensor in terms of its Fourier modes:

Tww = −
�

n∈Z
Tne

inw (3.82a)

Tw̄w̄ = −
�

n∈Z

�Tne−inw̄ (3.82b)

with

Tn = −

�
dσ1

2π
e−inσ1Tww(σ1, 0) , (3.83a)

�Tn = −

�
dσ1

2π
einσ1Tw̄w̄(σ1, 0) . (3.83b)

The conformal mapping (3.11) from the cylinder to the complex plane gives, using equa-
tions (3.70) and (3.71):

Tww(w) = −z2Tzz(z) +
c

24
(3.84a)

Tw̄w̄(w̄) = −z̄2Tz̄z̄(z̄) +
c̄

24
(3.84b)

Hence the expansion (3.72) on the plane in terms of Laurent coefficients and the expan-
sion (3.82) on the cylinder in terms of Fourier modes are related through

Tn = Ln −
c

24
δn,0 , �Tn = �Ln −

c̄

24
δn,0 . (3.85)

In particular, the Hamiltonian of the conformal field theory on the cylinder is by definition
the conserved charge associated with time translations:

H =

�
dσ1

2π
Tσ2σ2 = −

�
dσ1

2π

�
Tww + Tw̄w̄

�
= L0 + �L0 −

c+ c̄

24
. (3.86)
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Conformally invariant vacuum

In radial quantization, the natural vacuum state of the conformal field theory on the complex
plane, |0�, is defined by inserting the identity operator at the origin z = 0.

According to the definition (3.72) of the Virasoro generators, in order for the components
of the stress-tensor to be non-singular at the origin, one should have

Ln|0� = 0 , �Ln|0� = 0 , ∀n � −2 . (3.87)

In particular, the vacuum is invariant under the action of {L−1, L0, L1} and {�L−1, �L0, �L1}, i.e.
under global conformal transformations. For this reason, it is called the SL(2,C)-invariant
vacuum.

If we consider a two-dimensional CFT in the PSL(2,C)-invariant vacuum on the plane,
equation (3.86) indicates that the corresponding energy of the ground state on the cylinder
is given by

Ecyl = −
c+ c̄

24
, (3.88)

which is interpreted as the Casimir energy of the QFT on the cylinder; notice that no regu-
larization of high-energy divergences was needed to obtain this result. This remark provides
another interpretation of the central charges of a conformal field theory.

3.5.4 Conformal primaries revisited

Primary operators were defined by the operator product expansion (3.53) with the stress-
energy tensor. Let us consider some primary operator Oh,h̄. Plugging in the decomposi-
tions (3.73) in terms of Laurent modes, one finds that the corresponding state |O� is annihi-
lated by all positive modes of the Virasoro generators:

∀n > 0 , Ln|h, h̄� = 0 , �Ln|h, h̄� = 0 . (3.89)

Hence primary operators play the same role w.r.t. the Virasoro algebra as the highest
weight vectors in representation theory of Lie algebras. For this reason they are also referred
to as highest weight states of the Virasoro algebra.

The other states in the Virasoro representation associated with the highest weight state
|h, h̄� are obtained by applying repeatedly the the negative Virasoro modes {L−n, n > 0}

(there is a similar story for anti-holomorphic generator). This generates what is known as a
Verma module, that may or may not be an irreducible representation of the Virasoro algebra
depending on the values of h and the central charge c.

The conformal dimension of these descendant states, obtained from the highest weight
state using lowering operators L−n, is easily computed:

L0L−n|h, h̄� = nL−n|h, h̄�+ L−nL0|h, h̄� = (h+ n)|h, h̄�, n > 0 . (3.90)

I would certainly agree with the reader that would tell me that the primary states should be
called lowest dimension states rather than highest weight states!
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3.5.5 Unitarity constraints

One important constraint on sensible quantum field theories is unitarity, the conservation
of probabilities over time. The time evolution on the cylinder is given by the Hamiltonian
density (with Minkowskian signature on the worldsheet):

H = −(Tww + Tw̄w̄) =
�

n∈Z

�
Tne

in(σ1+τ) + �Tne−in(σ1−τ)
�

=
�

n∈Z

�
Lne

in(σ1+τ) + �Lne
−in(σ1−τ)

�
−

c+ c̄

24
. (3.91)

Hence unitarity gives the constraints

(Ln)
† = L−n ,

�
�Ln

�†
= �L−n . (3.92)

These unitarity relations have two immediate consequences:

• consider a primary state |h, h̄� of conformal dimensions (h, h̄) in a unitary CFT.

||L−1|h, h̄�||2 = �h, h̄|[L1, L−1]|h, h̄� = 2�h, h̄|L0|h, h̄� , (3.93)

hence in a unitary QFT the conformal dimensions (h, h̄) of primary operators – and,
consequently, of all descendant states – should be non-negative. The unique state
with h = h̄ = 0 in a unitary CFT is the SL(2,C)-invariant vacuum since it satisfies

L−1|0, 0� = �L−1|0, 0� = 0 which means in operator language ∂O0,0 = ∂̄O(0, 0) = 0.

• ∀n > 1, one has

||Ln|h, h̄�||2 = �h, h̄|[L−n, Ln]|h, h̄� =
c

12
n(n2 − 1) , (3.94)

and similarly for �Ln|h, h̄�, hence a unitary CFT has positive central charges: c > 0 and
c̄ > 0. The only unitary CFT with c = c̄ = 0 is trivial and contains just the identity
operator.

3.6 The Weyl anomaly

The failure of the components (T, �T) of the stress-energy tensor to be primary operators
w.r.t. generic two-dimensional conformal transformations is a just a characteristic feature of
conformal field theories. In the string theory context however, it leads to a potential disaster.

String theory was defined as a two-dimensional theory of gravity coupled to a set of
scalar matter fields {xµ(σi)}. The theory has an enormous redundancy, since its gauge group
corresponds to two-dimensional diffeomorphisms and Weyl transformations. After a suitable
gauge-fixing procedure, we have obtained a path integral defined over a gauge slice, i.e. with
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a reference metric depending only on a handful of parameters. All this beautiful construction
falls apart if the classical gauge symmetry of the theory is not satisfied at the quantum level.

The potential clash between gauge symmetry and quantum effects is associated with Weyl
transformations. Heuristically it is not difficult to understand why. Computations in the
two-dimensional quantum field theory we are dealing with have divergences, as in any other
QFT, that should be regularized. If one uses dimensional regularization, the invariance under
Weyl rescalings is lost, since it depends crucially on being in dimension two, see eqn. (2.79).
Using alternatively a Pauli-Villars regularization, one would introduce a scale in the theory
breaking explicitly scale invariance. As any sensible regulator breaks the Weyl symmetry, one
may wonder if at the end of the computation, which is not covariant w.r.t. the Weyl gauge
transformations, the invariance would be miraculously restored. It turns out not to be the
case and the Weyl symmetry has potentially an anomaly of the gauge symmetry signaling
the inconsistency of the theory.

To characterize this anomaly, one considers that the background geometry is fixed to some
reference metric and consider whether the classical conservation laws associated with the
symmetries of the theory are truly independent of the choice of reference metric. Classically,
Weyl-invariance implies that the stress-energy tensor is traceless, see eqn. (3.20). Because of
general covariance of the theory, a quantum violation of this condition is very restricted. In
the quantum field theory context, one would like to see whether the operator T i

i inserted in
an arbitrary correlation function gives zero. The more general parametrization is:

�T i
i · · · � = aR[γ̂]�· · · � , (3.95)

where R[γ̂] is the Ricci scalar computed for the reference worldsheet metric γ̂, given that the
right-hand side of the equation should be a local expression, and of scaling dimension two;
the parameter a is dimensionless.

Since the diffeomorphism symmetry is not anomalous, one can work in the conformal
gauge, ds2 = exp(2ω)dwdw̄, in which case, the anomaly equation becomes, using eqn. (2.80b),

�Tww̄ · · · � = −a∇2ω . (3.96)

The conservation of the stress-energy tensor gives ∇w̄Tww̄ + ∇wTww = 0. Hence taking the
derivative of (3.96) with ∇w̄ one reaches the equation:

�∇wTww · · · � = 2a∇w̄∇2ω�· · · � . (3.97)

Let us now consider an infinitesimal Weyl rescaling around the flat metric, i.e. ω = 1 +
δω(w, w̄), and compare the variations of the left- and right-hand sides of eqn. (3.97).

In the previous section we have considered the transformation of the components of the
stress-tensor under an infinitesimal conformal transformation, i.e. the combination of a
coordinate transformation w �→ w + ε(w), w �→ w + ε(w) and of a Weyl transformation
δω = 1

2
(∂ε+ ∂̄ε̄):

−δT(w) =
c

12
ε ���(w)

� �� �
Weyl

+ 2ε �(w)T(w) + ε(w)∂T(w)
� �� �

diffeomorphism

, (3.98)
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where we have indicated that the last two terms correspond to the coordinate transformation
(i.e. the transformation of the tensor T ij(xk) �→ T̃ ij(x̃k) = (∂x̃i/∂xm)(∂x̃j/∂xn)Tmn(xk)),
hence the first term corresponds to the effect of the Weyl transformation:

δδωT = −
c

6
∂2
wδω . (3.99)

Plugging into eqn. (3.97) one finds, using ∇z = 2∂w̄ and ∇2 = 4∂w∂w̄,

−
c

3
∂w̄∂

2
wδω = 4a∂2

w∂w̄δω =⇒ a = −
c

12
. (3.100)

The conclusion of this computation is that

�T i
i · · · � = −

c

12
R[γ̂]�· · · � . (3.101)

This result is not problematic if one considers a conformal field theory outside of the string
theory context, however in the present context it indicates that the theory is inconsistent
unless c = 0. As we shall see this constraint will have far-reaching consequences.

A careful reader may have noticed that we could do exactly the same computation using
∇wTww̄+∇w̄Tw̄w̄ = 0, in which case we will reach the same equation as (3.101) with c replaced
by c̄. These two equations are not consistent with each other unless c = c̄. It turns out that a
conformal field theory with c �= c̄ cannot be coupled consistently to two-dimensional gravity;
on top of the Weyl anomaly discussed here it has also a gravitational anomaly.
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