Introduction to CFT TD5 26/02/2024

One-dimensional non-interacting lattice fermions

1 Tight-binding Hamiltonian, low energy spectrum

1. We consider a system of non-interacting fermions in one space dimension, on a lattice of
N sites. The lattice Hamiltonian, with parameters A > 0 and p, is given by

N
H = Z [—)\(c;chrl + c}ch) — uc;cj , (1)

J=1

where c} is the fermion creation operator on site j. We impose antiperiodic boundary

conditions:
o T

CN1 = —C1, C}LVH = —c. (2)
» Give the physical interpretation of the parameters A and u.

2. Such a quadratic model is straightforward to solve. In terms of the Fourier modes

the Hamiltonian is diagonal

H=> &de,. (4)
k

» For a single-particle state, what are the possible values of the momentum k?
» Compute the associated dispersion relation .

3. The ground state of H is given by the Fermi sea, i.e. the many-particle state where all
modes with negative energy are occupied.
» For what values of the parameters A and p is the model gapped ? Gapless ?

4. We will focus on the gapless case, and we will argue that the low energy/long distance
behaviour is captured by a conformal field theory.

» Argue that the low energy/long distance physics is dominated by the momenta k close
to the Fermi surface, and therefore one can linearise the dispersion relation :

Exkptok ~ TUp Ok, (5)

for small enough dk. Compute the Fermi velocity vg.

For the rest of the problem we set © = 0 (thus kr = 7/2), and we assume that the system
size is a multiple of four : N = 4n.



5. » What is the ground state of the system ? Using the Euler-MacLaurin formula, show that
the finite-size behaviour of the ground-state energy corresponds to the CF'T expectation:

TURC

6N

Ey(N) = Neg — +O(N7?%), (6)
where ¢q is the ground-state energy density per lattice site and c¢ is the central charge.
Give eq in the form of a single integral.

» What is the value of the central charge ¢ 7 Can you explain the appearance of the
Fermi velocity in the above formula ?

6. Consider the excited state |¢,) obtained from the ground state by shifting all momenta
k — k+ 2mp/N, where p < N is a finite integer. Compute the total momentum of this
state. Show that its energy is of the form:

2TV pp?
N

E,(N) = Eo(N) + +O(1/N?). (7)
From these results, determine the conformal dimensions (hg,rp,i_zz,,p) associated to the
state |¢,) in the scaling limit. Is this state degenerate under the Virasoro algebra ? Can
you think of a way to change boundary conditions to allow real values of the parameter

p=a/(2m)?

2 Effective low-energy Hamiltonian

We are concerned with the thermodynamic limit of this simple model of one-dimensional
fermions. Before taking the thermodynamic limit, we introduce the lattice spacing a, so that
sites are located at positions x = aj with j = 1,2,..., N, and the total chain length is L = Na.
The Fermi velocity now acquires the correct dimension vp — avp. The thermodynamic limit
of a correlation function of local operators (O1(j1)...0On(jm)) is obtained by taking a — 0,
N — o0, keeping x; = aj; and L constant. We label the momenta close to the Fermi surface as
k==+m/2+ aq.

In order to capture the low energy/long distance physics, we drop the fast moving degrees
of freedom and only keep the low-energy terms in the Fourier expansion of the fermion operator

1 o a s R . Ty . .
Cj = —= E ce™ = | el E Cgﬂqelqz +e "2 g C,gﬂqelq“ ,
N k L q q

where x = ja and the sum over ¢ should be understood as a sum over all values of ¢ in a ”"small
enough window” (for 0k = aq) around the Fermi surface k = £7/2. But as we send a — 0 this
”small window” contains more and more values of ¢, and in the thermodynamic limit this sum
becomes an infinite one.

Through this procedure, we get a left moving fermion field around k = —7, and a right moving

one around k = 7. The reason they are called left (resp. right) moving will become clear in



question 9.

/1 ) 1 .
\I[R(l‘) = — E A£+aq equ, \IIL({L') = \/i E /C\_£+aq et
L=~ L =—
cr(q) cr(q)
Thus

c;=+a [e’iﬂj/Q\IlL(a:) + e”j/Q\IfR(a:)] : T =ja.

7. Check that ¥, (v + L) = —V, (x), where n stands for L or R. In the thermodynamic limit
N — o0, the sum over ¢ becomes an infinite sum. Check that the two fermions ¥, and
VR obey

{Uh(2), Uy ()} = byapd(x — ')

that is, they become fully fledged fermionic operators in the continuum. Thus the lattice
fermion operator ¢; yields two fermion fields in the continuum ! This phenomenon, which
goes under the name of fermion doubling, is due to the fact that there are two momentum
regions in the low-energy limit.

8. Show that in the continuum limit, the non-interacting fermionic Hamiltonian becomes

H = ivp /0 i (WTL(x)ax\IIL(w) - xpjri(x)ax\p,%(x)) , 8)

—vr > q (@) — L)eya)) - (9)

9. In the Heisenberg picture (with Planck’s constant i = 1), show that
@R(xvt) = \IJR(:E - UFt)a \I/L(x7t) = \IJL(‘T + UFt) ) (10)

where t denotes time. In imaginary time 7 = ¢t this means that the operators ¥ = Up
and ¥ = U are respectively holomorphic and anti-holomorphic in the complex variable
Z =T+ UpT.

10. This effective Hamiltonian has two U(1) symmetries : both left and right fermion numbers
are conserved. Is it surprising considering the initial lattice model ?

3 The complex fermion

We admit that the associated Euclidean action is given by the “complex fermion”:

g— 4i / Pr (V0.9 + Vo0 + 10,0 + 9. 37) | (11)
T
where
U = +ithy, U =y + ity (12)
Ut = 4y — ity T =gy — i)y, (13)

with independent Grassmann variables )q, ¥, 11, 5.



11.

12.

13.

14.

15.

At the classical level, what should be the scale dimension of the fields ¥ and ¥ so that
one gets a scale invariant action ?

Inside a correlation function, the v;’s are holomorphic, and the f@j’s are antiholomorphic,
and so we write them as t;(z) and ;(2), and similarly for ¥, ¥f, ¥ ¥T. From the above
quadratic action, one can show (by standard integration over Grassmann variables) that
the two-point functions are

(Y1 (2)(w)) = (Pa(2)dha(w)) = - (Y1 (2)1ha(w)) =0, (14)

Z—w

and similarly for ¢1,1,. Compute (¥(2)¥(w)), (¥'(2)¥T(w)) and (¥(z)"¥(w)). What

are the left and right conformal dimensions of ¥ and W' ?

The corresponding stress-energy tensor is

zx@__—ipwu@aﬂu@:+:@@ﬁ%wu@q. (15)

Using Wick’s theorem, compute explicitly (i) the OPEs T'(z).¥(w) and T(z).¥(w), and
(ii) the OPE T(z).T(w). Show that ¥ and W' are primary, and that the results are
consistent with the value of the central charge ¢ = 1.

Show that this action has a U(1) symmetry. What is the physical meaning of this sym-
metry 7 Check that the associated current is

J(2) =W ()U(2):,  T(E) =T (2)T(2): . (16)

What is its conformal dimension? Is it surprising ?

Charge fluctuation

We consider the periodic system defined in the first question, with system size L = Na,
where a is the lattice step. We are interested in the “full-counting statistics”, i.e. the
quantum statistics of the number of fermions in a given interval. If m < m’ are two points
on midedges of the lattice (m,m’ € {1/2,3/2,..., N —1/2}), we introduce

m/—1/2

np(m,m') =Y (che; —1/2). (17)

j=m+1/2

We consider the scaling regime, where both N and |m’ — m| tend to infinity, a — 0, with
both physical lengths L = Na and ¢ = (m’ — m)a staying fixed and finite. We admit
that, for any o € [—m, 7], the quantity exp[ians(m,m’)] is given by a product of scaling
operators V,(m)V_,(m'), where Vi, (m) scales to a primary operator v,, with conformal
dimensions h, = h, = (a/m)?/8. Relate the probability distribution of nf(m,m’) in the
ground-state, to the CFT two-point correlation function (v,v_,) on an infinite cylinder.
Compute this function explicitly, and deduce that this probability distribution tends to
a Gaussian. What is the variance ?

Let |®) be an excited state of the periodic system. We assume |®) scales to a scalar
primary state |¢p,) in the CFT limit. Express the expectation value (®|V,(m)V_,(m’)|®)
as a CFT correlation function on an infinite cylinder, and relate it to the four-point
correlation function on the complex plane:

(dn(00)va(l)v-a(2,2)0n(0)) , (18)
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16.

and express the variable z in terms of the physical lengths ¢ and L. If ¢, is degenerate
under the Virasoro algebra, express this correlation function in terms of conformal blocks.

Using a similar argument, compute explicitly the expectation value (T'|V,,(m)V_,(m")|T),
where |T') is the excited state corresponding to L_5|0) in the scaling limit.
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