
Introduction to CFT TD5 26/02/2024

One-dimensional non-interacting lattice fermions

1 Tight-binding Hamiltonian, low energy spectrum

1. We consider a system of non-interacting fermions in one space dimension, on a lattice of
N sites. The lattice Hamiltonian, with parameters λ > 0 and µ, is given by

H =
N∑

j=1

[
−λ(c†

jcj+1 + c†
j+1cj) − µc†

jcj

]
, (1)

where c†
j is the fermion creation operator on site j. We impose antiperiodic boundary

conditions:
cN+1 := −c1 , c†

N+1 := −c†
1 . (2)

▶ Give the physical interpretation of the parameters λ and µ.

2. Such a quadratic model is straightforward to solve. In terms of the Fourier modes

ĉ†
k =

1√
N

N∑
j=1

eikjc†
j (3)

the Hamiltonian is diagonal

H =
∑

k

εkĉ
†
kĉk . (4)

▶ For a single-particle state, what are the possible values of the momentum k?

▶ Compute the associated dispersion relation εk.

3. The ground state of H is given by the Fermi sea, i.e. the many-particle state where all
modes with negative energy are occupied.

▶ For what values of the parameters λ and µ is the model gapped ? Gapless ?

4. We will focus on the gapless case, and we will argue that the low energy/long distance
behaviour is captured by a conformal field theory.

▶ Argue that the low energy/long distance physics is dominated by the momenta k close
to the Fermi surface, and therefore one can linearise the dispersion relation :

ε±kF +δk ∼ ±vF δk , (5)

for small enough δk. Compute the Fermi velocity vF .

For the rest of the problem we set µ = 0 (thus kF = π/2), and we assume that the system
size is a multiple of four : N = 4n.
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5. ▶What is the ground state of the system ? Using the Euler-MacLaurin formula, show that
the finite-size behaviour of the ground-state energy corresponds to the CFT expectation:

E0(N) = Ne0 − πvF c

6N
+O(N−2) , (6)

where e0 is the ground-state energy density per lattice site and c is the central charge.
Give e0 in the form of a single integral.

▶ What is the value of the central charge c ? Can you explain the appearance of the
Fermi velocity in the above formula ?

6. Consider the excited state |ϕp⟩ obtained from the ground state by shifting all momenta
k → k + 2πp/N , where p ≪ N is a finite integer. Compute the total momentum of this
state. Show that its energy is of the form:

Ep(N) = E0(N) +
2πvFp

2

N
+O(1/N2) . (7)

From these results, determine the conformal dimensions (h2πp, h̄2πp) associated to the
state |ϕp⟩ in the scaling limit. Is this state degenerate under the Virasoro algebra ? Can
you think of a way to change boundary conditions to allow real values of the parameter
p = α/(2π)?

2 Effective low-energy Hamiltonian

We are concerned with the thermodynamic limit of this simple model of one-dimensional
fermions. Before taking the thermodynamic limit, we introduce the lattice spacing a, so that
sites are located at positions x = aj with j = 1, 2, . . . , N , and the total chain length is L = Na.
The Fermi velocity now acquires the correct dimension vF → avF . The thermodynamic limit
of a correlation function of local operators ⟨O1(j1) . . . Om(jm)⟩ is obtained by taking a → 0,
N → ∞, keeping xi = aji and L constant. We label the momenta close to the Fermi surface as
k = ±π/2 + aq.

In order to capture the low energy/long distance physics, we drop the fast moving degrees
of freedom and only keep the low-energy terms in the Fourier expansion of the fermion operator

cj =
1√
N

∑
k

ĉke
ikj →

√
a

L

(
ei π

2
j
∑

q

ĉπ
2
+aqe

iqx + e−i π
2

j
∑

q

ĉ− π
2
+aqe

iqx

)
,

where x = ja and the sum over q should be understood as a sum over all values of q in a ”small
enough window” (for δk = aq) around the Fermi surface k = ±π/2. But as we send a → 0 this
”small window” contains more and more values of q, and in the thermodynamic limit this sum
becomes an infinite one.

Through this procedure, we get a left moving fermion field around k = −π
2
, and a right moving

one around k = π
2
. The reason they are called left (resp. right) moving will become clear in
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question 9.

ΨR(x) =

√
1

L

∑
q

ĉπ
2
+aq︸ ︷︷ ︸

ĉR(q)

eiqx, ΨL(x) =

√
1

L

∑
q

ĉ− π
2
+aq︸ ︷︷ ︸

ĉL(q)

eiqx

Thus

cj =
√
a
[
e−iπj/2ΨL(x) + eiπj/2ΨR(x)

]
, x = ja .

7. Check that Ψη(x+L) = −Ψη(x), where η stands for L or R. In the thermodynamic limit
N → ∞, the sum over q becomes an infinite sum. Check that the two fermions ΨL and
ΨR obey

{Ψ†
η(x),Ψη′(x′)} = δη,η′δ(x− x′)

that is, they become fully fledged fermionic operators in the continuum. Thus the lattice
fermion operator cj yields two fermion fields in the continuum ! This phenomenon, which
goes under the name of fermion doubling, is due to the fact that there are two momentum
regions in the low-energy limit.

8. Show that in the continuum limit, the non-interacting fermionic Hamiltonian becomes

H = ivF

∫ L

0

dx
(
Ψ†

L(x)∂xΨL(x) − Ψ†
R(x)∂xΨR(x)

)
, (8)

= vF

∑
q

q
(
c†

R(q)cR(q) − c†
L(q)cL(q)

)
. (9)

9. In the Heisenberg picture (with Planck’s constant ℏ = 1), show that

ΨR(x, t) = ΨR(x− vF t), ΨL(x, t) = ΨL(x+ vF t) , (10)

where t denotes time. In imaginary time τ = it this means that the operators Ψ = ΨR

and Ψ = ΨL are respectively holomorphic and anti-holomorphic in the complex variable
z = x+ ivF τ .

10. This effective Hamiltonian has two U(1) symmetries : both left and right fermion numbers
are conserved. Is it surprising considering the initial lattice model ?

3 The complex fermion

We admit that the associated Euclidean action is given by the “complex fermion”:

S =
1

4π

∫
d2r
(
Ψ†∂z̄Ψ+Ψ∂z̄Ψ

† + Ψ̄†∂zΨ̄ + Ψ̄∂zΨ̄
†) , (11)

where

Ψ = ψ1 + iψ2 , Ψ̄ = ψ̄1 + iψ̄2 , (12)

Ψ† = ψ1 − iψ2 , Ψ̄† = ψ̄1 − iψ̄2 , (13)

with independent Grassmann variables ψ1, ψ2, ψ̄1, ψ̄2.
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11. At the classical level, what should be the scale dimension of the fields Ψ and Ψ so that
one gets a scale invariant action ?

Inside a correlation function, the ψj’s are holomorphic, and the ψ̄j’s are antiholomorphic,
and so we write them as ψj(z) and ψ̄j(z̄), and similarly for Ψ,Ψ†, Ψ̄, Ψ̄†. From the above
quadratic action, one can show (by standard integration over Grassmann variables) that
the two-point functions are

⟨ψ1(z)ψ1(w)⟩ = ⟨ψ2(z)ψ2(w)⟩ =
1

z − w
, ⟨ψ1(z)ψ2(w)⟩ = 0 , (14)

and similarly for ψ̄1, ψ̄2. Compute ⟨Ψ(z)Ψ(w)⟩,
〈
Ψ†(z)Ψ†(w)

〉
and

〈
Ψ(z)†Ψ(w)

〉
. What

are the left and right conformal dimensions of Ψ and Ψ† ?

12. The corresponding stress-energy tensor is

T (z) = −1

4

[
:Ψ†(z)∂zΨ(z): + :Ψ(z)∂zΨ

†(z):
]
. (15)

Using Wick’s theorem, compute explicitly (i) the OPEs T (z).Ψ(w) and T (z).Ψ†(w), and
(ii) the OPE T (z).T (w). Show that Ψ and Ψ† are primary, and that the results are
consistent with the value of the central charge c = 1.

13. Show that this action has a U(1) symmetry. What is the physical meaning of this sym-
metry ? Check that the associated current is

J(z) = :Ψ†(z)Ψ(z): , J(z̄) = :Ψ
†
(z̄)Ψ(z̄): . (16)

What is its conformal dimension? Is it surprising ?

4 Charge fluctuation

14. We consider the periodic system defined in the first question, with system size L = Na,
where a is the lattice step. We are interested in the “full-counting statistics”, i.e. the
quantum statistics of the number of fermions in a given interval. If m ≤ m′ are two points
on midedges of the lattice (m,m′ ∈ {1/2, 3/2, . . . , N − 1/2}), we introduce

nf (m,m
′) =

m′−1/2∑
j=m+1/2

(c†
jcj − 1/2) . (17)

We consider the scaling regime, where both N and |m′ −m| tend to infinity, a → 0, with
both physical lengths L = Na and ℓ = (m′ − m)a staying fixed and finite. We admit
that, for any α ∈ [−π, π], the quantity exp[iα nf (m,m

′)] is given by a product of scaling
operators Vα(m)V−α(m

′), where V±α(m) scales to a primary operator v±α, with conformal
dimensions hα = h̄α = (α/π)2/8. Relate the probability distribution of nf (m,m

′) in the
ground-state, to the CFT two-point correlation function ⟨vαv−α⟩ on an infinite cylinder.
Compute this function explicitly, and deduce that this probability distribution tends to
a Gaussian. What is the variance ?

15. Let |Φ⟩ be an excited state of the periodic system. We assume |Φ⟩ scales to a scalar
primary state |ϕh⟩ in the CFT limit. Express the expectation value ⟨Φ|Vα(m)V−α(m

′)|Φ⟩
as a CFT correlation function on an infinite cylinder, and relate it to the four-point
correlation function on the complex plane:

⟨ϕh(∞)vα(1)v−α(z, z̄)ϕh(0)⟩ , (18)
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and express the variable z in terms of the physical lengths ℓ and L. If ϕh is degenerate
under the Virasoro algebra, express this correlation function in terms of conformal blocks.

16. Using a similar argument, compute explicitly the expectation value ⟨T |Vα(m)V−α(m
′)|T ⟩,

where |T ⟩ is the excited state corresponding to L−2|0⟩ in the scaling limit.
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