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Abstract

In this thesis, I summarise two main directions of my recent research in the field of 2d
critical phenomena, both related to operators in critical models. The first axis is concerned
with the systematic construction, through the underlying quantum group structure, of
discretely holomorphic parafermions, a class of lattice objects which satisfy a discrete
version of the Cauchy-Riemann equations. The second axis is the development of the
analytic 2d conformal bootstrap in the context of non-rational Conformal Field Theories
with Virasoro or WN symmetry, which include non-scalar primary operators in their
spectrum.
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Introduction

Since their early developments in the 80’s, the rich algebraic structures of quantum
groups [1, 2, 3, 4, 5, 6] and Conformal Field Theory (CFT) [7, 8, 9] have found impor-
tant motivations and applications in the field of two-dimensional (2d) critical phenomena
in Statistical Mechanics. The minimal models of conformal invariance have provided a
classification scheme for 2d phase transitions with a finite number of “basic” local opera-
tors, whereas the notions of quantum groups and quantum inverse scattering [10] (i) have
emerged as a formal framework to describe the exact solutions [11] of lattice models found
before, especially the Bethe Ansatz [12, 13, 14, 15, 16, 17, 18], (ii) have allowed the sys-
tematic construction of new families of exactly solvable lattice models [19, 20, 21, 22, 23],
and (iii) have provided powerful tools to study correlation functions on the lattice [24].

A particular class of non-local problems, associated to critical interfaces, has led to
interesting developments. Indeed, correlation functions of non-local objects may be con-
sidered even in the context of statistical models with short-range interactions, such as
the Ising model with nearest-neighbour interaction. Typical examples are the geometry
of Ising domain walls, percolation clusters, polymers and self-avoiding walks. All these
examples are encoded in the O(n) loop model [25, 26]. First, on the lattice, the study
of these extended objects has motivated the introduction of diagram algebras, such as
the Temperley-Lieb algebra [27, 28], which turn out to play an important role [2] in the
quantum group underlying the lattice model. Also, they constitute a typical situation
where the (imaginary-time) evolution operator becomes non-diagonalisable, which is the
defining feature of a logarithmic CFT (see the review [29] and references therein). Fi-
nally, they are a well-suited setting where the relation between boundary CFT [30] and
the theory of Schramm-Loewner evolution (SLE) [31] can be established.

In this thesis, I summarise two main directions of my own research in the field of 2d
critical phenomena.

Lattice parafermions. In classical Statistical Mechanics, parafermions are operators
whose correlation functions pick up a non-trivial phase (different from 1 and −1) when one
winds around the other. They where identified in clock models with ZN symmetry [32],
and later, the corresponding critical points were described in terms of a parafermionic
conformal algebra [33]. At the lattice level, it was noticed that, at the critical point, some
of these operators satisfy local linear relations analogous to the Cauchy-Riemann equa-
tions: they are thus called discretely holomorphic operators (see [34]). This observation
dates back to [35] for fermions associated to the Ising model, and it was rediscovered
and extended, in particular, to Ising [36], loop [37] and clock models [38]. The main
motivation for the latter studies was to provide the basic ingredient for rigorous proofs of
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the conformal invariance of critical lattice models. The main steps of such proofs are as
follows:

1. Exhibit a discretely holomorphic operator ψ(z) coupled to a critical interface γ.

2. Prove that the lattice average value 〈ψ(z) . . . 〉 converges to a holomorphic function
F (z) in the scaling limit, and solve the boundary-value problem for F (z).

3. Construct from F (z) a martingale associated to the random curve γ, and charac-
terise γ as an SLE process (or one of its variants).

This program has been fully realised only for the percolation [39] and Ising [36] models,
where specific additional features are used in the argument. In more general cases, e.g.
clock models with ZN symmetry or the O(n) loop model with n 6= 1, the main obstruction
to complete this type of rigorous proof can be stated very simply. On a portion of the
square lattice consisting of N faces, the lattice parafermions live on edges, and the discrete
Cauchy-Riemann equations are associated to faces, so we get an underdetermined system
of N equations for 2N unknowns – except for the Ising model and the percolation problem
on the triangular lattice, where additional linear relations hold trivially. The practical
consequence is that one does not control the convergence of 〈ψ(z) . . . 〉 well enough to
prove holomorphicity in the scaling limit. Hence, finding the “missing half” of discrete
Cauchy-Riemann equations remains an important open problem, whose solution would
open the way to the completion of the above program for a large variety of 2d critical
models.

The Ising model is certainly the one for which the consequences of discrete holomor-
phicity have been exploited to give the most fruitful studies. This approach was used
to prove rigorously conformal invariance of interfaces [36] and the covariance of spin and
energy correlation functions [40]. Isoradial lattices were first considered, but much more
general lattices can actually be treated, leading especially to the concept of S-embeddings.
This is a currently active subject for the Probability Theory community working on Sta-
tistical Mechanics: see [41] and references therein.

In [42], following [36, 37, 38] we empirically found some new discretely holomorphic
parafermions in a variety of integrable loop models. At that stage it became clear that
discrete holomorphicity was related to integrability. In a subsequent series of papers
[43, 44, 45], we proved that the discretely holomorphic parafermions could be obtained
from the non-local conserved currents of the underlying quantum group symmetry, fol-
lowing a general construction introduced by [46] in a different context. This provides
a systematic way of deriving the discretely holomorphic parafermions in an integrable
model, as opposed to the empirical approach of earlier studies.

The operator algebra in non-rational CFTs. The most studied critical models
(Ising, Potts, RSOS . . . ) correspond to rational CFTs in the scaling limit [7], i.e. models
with a finite number of primary fields, organised in the Kac table. In contrast, examples
of non-rational CFTs have been known for a long time. Their spectrum of conformal
dimensions may be continuous, as for the Liouville CFT (see [47] and references therein),
or discrete, as in the case of the CFT associated to the O(n) loop model [48].

The recent renewal of interest for non-rational models in the Statistical Mechanics
community is related to the introduction of the imaginary (or timelike) Liouville CFT [49,

4



50, 51] and its study through the analytical conformal bootstrap [52, 53, 54, 55]: indeed,
the range for the central charge of this model is c ≤ 1, which coincides with the typical
critical lattice models quoted above. Moreover, Delfino and Viti [56] made the important
observation that the three-point amplitude for percolation cluster connectivity is correctly
predicted by the OPE structure constant of imaginary Liouville CFT at central charge c =
0. This was, in my opinion, a surprising and stimulating result, since the CFT describing
these percolation cluster connectivities is known to have a discrete spectrum [48], and its
conformal bootstrap analysis is clearly not the same as in imaginary Liouville.

The discovery of Delfino and Viti motivated further studies of three- and four-point
correlation functions of cluster connectivities in the Fortuin-Kasteleyn (FK) cluster model
[57], and in the O(n) loop model [58]. Also, the conformal bootstrap approach for the
quantum Liouville CFT was further developped: existence of a solution to crossing sym-
metry equations for complex values of the central charge [59], rigorous construction of
vertex correlation functions for c ≤ 25 [60].

Inspired by some of these ideas, in [61] we studied the operator algebra of the O(n) loop
model for generic values of n: the corresponding CFT is non-rational, with a discrete, non-
diagonal spectrum: some of the primary operators are non-scalar, i.e. they have distinct
holomorphic and anti-holomorphic conformal dimensions h 6= h̄. Our study shows that
the OPEs are consistent with the presence of a single degenerate operator Φ21 at level
two (and not Φ12), as predicted in [48]. As an important consequence, after imposing
crossing symmetry on four-point functions, only one shift equation is obtained for the
OPE coefficients, instead of two equations as in the standard Liouville case. Nevertheless,
we were able to derive analytically some OPE coefficients by adapting the bootstrap
approach to this non-diagonal situation: for a certain class of non-scalar operators, the
OPE coefficients are simply given by the geometric mean of the holomorphic and anti-
holomorphic parts.

Another line of research that we followed, was the investigation of the conformal
bootstrap for abstract CFTs (i.e. possibly not related to a critical lattice model) with
non-diagonal spectra, and as many primary fields as possible. This was initiated in [62] for
the case of the Virasoro algebra, where a classification of primary fields according to their
fusion rules with Φ12 and Φ21 was proposed. Considering the case of the Wn algebra, which
encodes an internal Sn permutation symmetry group, we generalised these ideas [63], and
showed that the primary fields are classified by the conjugacy classes of Sn.

Outline. This manuscript is organised as follows. In Chapter 1 are recalled, using
examples, the main elements of formalism that are useful for the rest of the text, namely (i)
quantum groups and the various types of associated lattice models, (ii) the Coulomb-Gas
approach to derive the CFT description of critical models in the scaling limit, and (iii) the
analytical conformal bootstrap to compute OPE coefficients from the crossing symmetry
constraints. In Chapter 2, the construction of lattice parafermions as quantum-group
conserved currents is explained, and the cases of vertex, loop, face and clock models are
treated. In Chapter 3, the study of OPEs in two types of non-rational CFTs is exposed:
the scaling theory of the O(n) loop model, and the non-diagonal imaginary Toda CFT.
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Chapter 1

General background

1.1 Lattice models

1.1.1 Vertex models and quantum affine algebras

The six-vertex model

ω1 ω2 ω3 ω4 ω5 ω6

Figure 1.1: The configurations of the six-vertex model.

Vertex models are lattice models where the degrees of freedom live on the edges of the
lattice, and the rules (and weights) for the allowed configurations are defined around the
vertices. Let us describe the simplest example: the six-vertex (6V) model [15, 16, 17],
shown in Fig. 1.1. The configurations of a vertex can be encoded in the R-matrix, oriented
from bottom to top, in the basis (| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉):

R =


ω1 0 0 0
0 ω3 ω5 0
0 ω6 ω4 0
0 0 0 ω2

 . (1.1)

This matrix is an endomorphism of V1 ⊗ V2, where V1 and V2 are two-dimensional vector
spaces generated by | ↑〉 and | ↓〉. A related object is the Ř-matrix, given by Ř = πR,
where π is the permutation of V1 and V2. If properly parametrised, this Ř-matrix becomes
an intertwiner of evaluation representations of the Uq(ŝl2) quantum affine algebra [1].
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The Uq(ŝl2) quantum affine algebra

The Uq(ŝl2) is a Hopf algebra, generated by {e0, e1, f0, f1, t0, t1} subject to the relations:

tit
−1
i = t−1

i ti = 1 , t0t1 = t1t0 ,

tiejt
−1
i = qdiAijej , tifjt

−1
i = q−diAijfj , [ei, fj] = δij

ti − t−1
i

qdi − q−di
,

1−Aij∑
k=0

(−1)k
[

1− Aij
k

]
qdi

e
1−Aij−k
i ej e

k
i = 0 ,

1−Aij∑
k=0

(−1)k
[

1− Aij
k

]
qdi

f
1−Aij−k
i fj f

k
i = 0 ,

(1.2)

where the Cartan matrix A and the gradation d are

A =

(
2 −2
−2 2

)
, d0 = d1 = 1 , (1.3)

and we have used the q-binomial coefficients:[
m
n

]
q

=
(qm − q−m) . . . (qm−n+1 − q−m+n−1)

(qn − q−n) . . . (q − q−1)
. (1.4)

The coproduct in Uq(ŝl2) is given by:

∆(ei) = ei ⊗ 1 + ti ⊗ ei , ∆(fi) = fi ⊗ t−1
i + 1⊗ fi , ∆(ti) = ti ⊗ ti . (1.5)

The evaluation representations πz are a family of two-dimensional irreducible represen-
tations of Uq(ŝl2), labelled by a complex number z (the spectral parameter), with the
matrices:

πz(e0) =

(
0 0
z 0

)
, πz(f0) =

(
0 z−1

0 0

)
, πz(t0) =

(
q−1 0
0 q

)
,

πz(e1) =

(
0 z
0 0

)
, πz(f1) =

(
0 0
z−1 0

)
, πz(t1) =

(
q 0
0 q−1

)
.

(1.6)

We denote by Vz the two-dimensional space for the representation πz.
To describe the intertwining relation, we denote the tensor-product representations

as:
π12 = (πz1 ⊗ πz2) ◦∆ , and π21 = (πz2 ⊗ πz1) ◦∆ . (1.7)

The R-matrix

The Ř-matrix given by

Ř(z) =


qz − (qz)−1 0 0 0

0 q − q−1 z − z−1 0
0 z − z−1 q − q−1 0
0 0 0 qz − (qz)−1

 (1.8)

7



shall be depicted as

Ř(z/w) = α

z w

w z

. (1.9)

A discussion on the opening angle α can be found in the next paragraph. The Ř-matrix
satisfies the intertwining relation

∀x ∈ Uq(ŝl2) , Ř(z1/z2) π12(x) = π21(x) Ř(z1/z2) . (1.10)

More generally, for two representations V, V ′ of Uq(ŝl2), the matrix ŘV,V ′ is the inter-
twiner, with the defining property

∀x ∈ Uq(ŝl2) , ŘV,V ′ [(πV ⊗ πV ′)∆(x)] = [(πV ′ ⊗ πV )∆(x)] ŘV,V ′ . (1.11)

Note that this intertwiner does not always exist (for instance, in the case of cyclic repre-
sentations).

An important property of the Ř-matrix is the Yang-Baxter equation, which is actually
a consistency relation for intertwiners of the quantum affine algebra Uq(ŝl2):

(Ř(z)⊗ 1)(1⊗ Ř(zw))(Ř(w)⊗ 1) = (1⊗ Ř(w))(Ř(zw)⊗ 1)(1⊗ Ř(z)) . (1.12)

More general solutions of the Yang-Baxter equation can be constructed from the inter-
twiners of representations of algebras Uq(ĝ), where g is a semi-simple Lie algebra, or a Lie
superalgebra.

Finally, let us mention the “crossing symmetry” under z 7→ −(qz)−1. The weights of
the transformed matrix

Ř′(z) = Ř[−(qz)−1] =


z − z−1 0 0 0

0 q − q−1 qz − (qz)−1 0
0 qz − (qz)−1 q − q−1 0
0 0 0 z − z−1

 (1.13)

correspond to those of the original matrix Ř(z), rotated by 90◦. The corresponding picture
is

Ř(−w/(qz)) =

z

−w/q
α

z

−w/q

. (1.14)

The K-matrices

Integrable boundary Boltzmann weights are encoded by K-matrices [64]. In this thesis,
we shall only consider diagonal K-matrices of the form

K(z; b) =

(
z + bz−1 0

0 z−1 + bz

)
, (1.15)
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where z is the spectral parameter and b is an external boundary parameter. We shall
depict it on the left and right boundary, respectively, as

K`(z; b) =

z

z−1

, Kr(z; b) =

z−1

z

. (1.16)

This matrix is not an intertwiner between representations of Uq(ŝl2). Indeed, the general
property defining a K-matrix is that it should intertwine between representations of a
coideal subalgebra of Uq(ŝl2). A subalgebra B of a Hopf algebra A is a left (resp. right)
coideal iff it satisfies the stability property ∆ : B → B ⊗ A (resp. ∆ : B → A ⊗ B). In

the case of A = Uq(ŝl2), the subalgebras B
(`)
b , B

(r)
b generated by

{ t0 , t1 , µ` = e1 + bqt0f0 , µ̄` = qt1f1 + be0 } ,
{ t0 , t1 , µr = be1 + q−1t1f0 , µ̄r = bq−1t0f1 + e0 } ,

(1.17)

are, respectively, left and right coideals. The intertwining properties then read:

∀x ∈ B(`)
b , K(z; b) πz−1(x) = πz(x)K(z; b) ,

∀x ∈ B(r)
b , K(z; b) πz(x) = πz−1(x)K(z; b) .

(1.18)

Rhombic embedding

The relation between the spectral parameters and opening angle α defining the rhombic
embedding (1.9) is fixed by demanding that the YBE equation (1.12) be represented by
adjacent rhombi, and by the crossing symmetry described above. The YBE equation can
be depicted as:

β

α α+ β
=

α+ β

β

α

, (1.19)

which imposes a relation of the form z/w = exp(uα), where u is some constant. Crossing
symmetry under z 7→ −(qz)−1 in turn yields the correct value of u. As a results, one gets
for the opening angle corresponding to Ř(z/w) (1.9):

z/w = eiλα/π , (1.20)

where we have set q = −e−iλ with 0 < λ < π.

Relation with Uq(sl2) and the Temperley-Lieb algebra

When q is generic (i.e. q is not a root of unity), the Ř-matrix (1.8) can also be analysed
in terms of the underlying Uq(sl2) quantum group symmetry as follows. Let us recall first

9



the defining relations of Uq(sl2), with generators {e, f, t}:

t.t−1 = t−1.t = 1 , t.e.t−1 = q2e ,

t.f.t−1 = q−2f , [e, f ] =
t− t−1

q − q−1
,

(1.21)

and the coproduct:

∆(e) = e⊗ 1 + t⊗ e , ∆(f) = f ⊗ t−1 + 1⊗ f , ∆(t±1) = t±1 ⊗ t±1 . (1.22)

For generic q, the irreducible representations and the fusion rules of Uq(sl2) are the same
as those of sl2, but they are not unitary. Denoting by V` the (2` + 1)-dimensional repre-
sentation of Uq(sl2), we have:

Vk ⊗ V`
∼
= Vk+` ⊕ Vk+`−1 ⊕ · · · ⊕ V|k−`| . (1.23)

In particular, the two-dimensional representation V1/2 is given by the matrices:

π1/2(e) = σ+ , π1/2(f) = σ− , π1/2(t) = qσ
z

. (1.24)

The product of two representations V1/2 decomposes as

V1/2 ⊗ V1/2
∼
= V0 ⊕ V1 , (1.25)

and we denote the corresponding projectors as |0〉〈0| and P1. The “singlet” state |0〉 and
its dual are:

|0〉 = | ↑↓〉 − q| ↓↑〉 , 〈0| = 1

q + q−1
(q−1〈↑↓ | − 〈↓↑ |) , (1.26)

and the projector onto the V1 part reads, in the basis (| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉):

P1 =
1

q + q−1


q + q−1 0 0 0

0 q 1 0
0 1 q−1 0
0 0 0 q + q−1

 . (1.27)

After a change of basis Uij = Uzi ⊗ Uzj , where Uw = wσ
z/2 on each rapidity line, the

Ř-matrix takes the form:

U−1
21 Ř(z)U12 =


qz − (qz)−1 0 0 0

0 (q − q−1)z z − z−1 0
0 z − z−1 (q − q−1)z−1 0
0 0 0 qz − (qz)−1

 , z = z1/z2 .

(1.28)
In this form, it admits the decomposition:

U−1
21 Ř(z)U12 = (qz − (qz)−1) 1− (z − z−1)(q + q−1)|0〉〈0| . (1.29)

An interesting fact is that, on a chain of L “spins” in representation V ⊗L1/2 , the operators

ej acting as ej = −(q + q−1)|0〉〈0| on spins j and j + 1 obey the Temperley-Lieb (TL)
algebra [27]:

e2
j = −(q + q−1)ej ,

ejej±1ej = ej ,

ejek = ekej if |j − k| > 1.

(1.30)

As we shall see below, the TL algebra is an example of a diagram algebra, naturally
associated to a loop model.
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a b

(a) (b)

Figure 1.2: (a) An example configuration of the Temperley-Lieb loop model, with reflect-
ing boundary conditions. (b) The two types of elementary plaquettes of the Temperley-
Lieb loop model.

1.1.2 Loop models

Loop models [26] are lattice models of closed polygon configurations satisfying certain
local rules, and with Boltzmann weights associated to the number of polygons. The
simplest example is the Temperley-Lieb (TL) loop model, and it is related to the six-
vertex model. The TL loop model is defined on the square lattice, with two possible
elementary plaquettes: see an example configuration in Fig. 1.2. The Boltzmann weight
of a lattice configuration is given by:

n#closed loops aNa bNb , (1.31)

where n is the loop fugacity, a and b are the local Boltzmann weights, and Na (resp. Nb)
denotes the number of plaquettes of type a (resp. b). It will be convenient to introduce
the parameterisation of the loop model weights:

n = 2 cosλ , q = −e−iλ , a = qz − (qz)−1 , b = z − z−1 . (1.32)

The direct relation [11] between the TL loop model and the 6V model works on a
rhombic embedding of the square lattice on the plane: see (1.20). We start from the
TL loop model with the above weights. Each loop may be oriented independently anti-
clockwise or clockwise, and we give it the corresponding factor eiλ or e−iλ, respectively, so
that the total loop weight is indeed n = 2 cosλ. These turning factors can be distributed
locally : any left (resp. right) loop turn with angle 2πδ is assigned the factor eiλδ (resp.
e−iλδ). Each plaquette then carries a configuration of the 6V model, together with a
pairing of the midedges. When summing over these pairings, and keeping track of the
turning factors, one obtains exactly the 6V model with weights (1.8). Note that we
have taken the convention that the loop lines enter/leave orthogonally to the sides of the
rhombus.
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1.1.3 Face models

Unrestricted Solid-On-Solid models

Face models [also known as Interaction-Round-a-Face (IRF) or Solid-On-Solid (SOS) mod-
els] are lattice models with spins (or heights) living on the sites of a square lattice, and
Boltzmann weights are defined around the faces [65, 66, 67, 68, 69, 22]. The allowed
height configurations are given through an adjacency graph G: two heights sitting on
neighbouring sites of the square lattice must take two adjacent values on G. The face
weights

W

(
a b
d c

∣∣∣∣u) =

a

u

d c

b

(1.33)

are then chosen in such a way that they satisfy the Yang-Baxter equation:∑
g

W

(
f g
e d

∣∣∣∣ v)W( a b
f g

∣∣∣∣u+ v

)
W

(
b c
g d

∣∣∣∣u)
=
∑
g

W

(
a g
f e

∣∣∣∣u)W( g c
e d

∣∣∣∣u+ v

)
W

(
a b
g c

∣∣∣∣ v) . (1.34)

where the sums run over the allowed heights, i.e. the vertices of G. The Yang-Baxter
equation may be depicted as:

∑
g

cb

a
u

d

ef

v
u+ v g =

∑
g

cb

a d

ef

u

v
u+ vg . (1.35)

The simplest choice for the adjacency graph is G = a0 + Z, where a0 is an arbitrary
complex number. This gives rise to the unrestricted SOS models. A solution of (1.34)
with trigonometric functions is then given by [22]

W

(
a a± 1

a± 1 a± 2

∣∣∣∣u) = sin(u+ η) ,

W

(
a a± 1

a∓ 1 a

∣∣∣∣u) =
sinu sin[(a± 1)η]

sin(aη)
,

W

(
a a± 1

a± 1 a

∣∣∣∣u) =
sin η sin(aη ∓ u)

sin(aη)
.

(1.36)

These weights are related to the 6V ones through the vertex-IRF correspondence. The
central objects for this correspondence are the Baxter’s intertwiners [70] and their duals
(see also [71]):

φ(a, a± 1|u) =

[
exp i

2
(−u± aη)

exp i
2
(+u∓ aη)

]
, (1.37)

φ∗(a, a± 1|u) =
±1

2 sin aη

[
exp

i

2
(+iu± iaη) − exp

i

2
(−iu∓ iaη)

]
. (1.38)
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If we set q = eiη and z = eiu, the six-vertex R-matrix related to (1.8) and the Baxter
intertwiners obey the following relations

R(u− v) [φ(a, b|u)⊗ φ(b, c|v)] =
∑
d

[φ(d, c|u)⊗ φ(a, d|v)] W

(
a b
d c

∣∣∣∣u− v) , (1.39)

[φ∗(d, c|u)⊗ φ∗(a, d|v)]R(u− v) =
∑
b

W

(
a b
d c

∣∣∣∣u− v) [φ∗(a, b|u)⊗ φ∗(b, c|v)] . (1.40)

Restricted Solid-On-Solid models

In the case η = πp′/p, where p, p′ are coprime integers, if we set a0 = 0 the weights (1.36)
vanish if 1 ≤ a, c, d ≤ p− 1 and b = 0 or b = p. Hence, if the boundary heights are fixed
in the interval {1, . . . , p − 1}, all the heights on the lattice also have this property: this
is the restriction mechanism. Then the weights (1.36) also provide a solution to the YBE
for the adjacency graph G = Ap−1 :

Ap−1 =
1 2 . . . p− 1

.

The corresponding face model is known as the Andrews-Baxter-Forrester (ABF) model
[65], or Ap−1 Restricted Solid-On-Solid (RSOS) model. However, the intertwining rela-
tions (1.39–1.40) do not hold for this RSOS model.

Cyclic Solid-On-Solid models

Still in the case η = πp′/p, if we keep a0 nonzero, we can notice that the weights (1.36) are
periodic under a 7→ a+p. Thus, an SOS model may be defined on a circle a ∈ a0 +Z/pZ,
with the Boltzmann weights given by the same expression as (1.36). This defines the
Cyclic Solid-On-Solid model (CSOS) [72].

Relation to the TL algebra

This paragraph summarises the Pasquier construction [66, 67]. Face models can also be
used to construct representations of the TL algebra. Consider a generic, finite adjacency
graph G, and denote by A its adjacency matrix:

Aab =

{
1 if a and b are adjacent on G,

0 otherwise.
(1.41)

Since A is a real, symmetric matrix, it admits an orthogonal basis of eigenvectors {S(p′)},
and we denote by βp′ the corresponding eigenvalues:∑

b

Aab S
(p′)
b = βp′ S

(p′)
a . (1.42)

If G is the Dynkin diagram of an algebra in the ADE family, then the eigenvalues take
the form:

βp′ = −2 cos
πp′

p
, (1.43)
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where p is associated to the rank of the algebra, and p′ can only take integer values. If
we choose an eigenvector S(p′) and define the face “operator” E as

E

(
a b
d c

)
= δac

√
S

(p′)
b S

(p′)
d

S
(p′)
a

, (1.44)

then it is easy to show that the E’s acting at various locations on the lattice generate a
TL algebra with loop fugacity βp′ :∑

e

E

(
a b
e c

)
E

(
a e
d c

)
= βp′ E

(
a b
d c

)
,

∑
e

E

(
a b
e c

)
E

(
e c
c′ f

)
E

(
a e
d c

)
=
∑
e

E

(
a b
e c

)
E

(
f c
c′ e

)
E

(
a e
d c

)
= δcc′ E

(
a b
d c

)
.

(1.45)

We introduce the parameterisation η = πp′/p. Then, the face weight is defined as

W

(
a b
d c

∣∣∣∣u) = sin(η + u) δbd + sinuE

(
a b
d c

)
, (1.46)

and it satisfies the YBE (1.34). Thus, any choice of a finite graph G and an eigenvector of
its adjacency matrix A defines an RSOS model with an underlying TL algebra. In other
words, the graphical cluster expansion of the RSOS model following (1.46) gives rise to
the TL loop model.

1.1.4 Summary of equivalences

The 6V, loop and face models all provide representations of the TL algebra: this is
apparent in expressions (1.29) and (1.46). Note that these equivalences are strictly valid
only on planar domains, but may become more complicated or even invalid on curved or
higher-genus surfaces.

The direct equivalences between these three models can be summarised as follows:

6V SOS

RSOSloop

vertex-IRF

restrictionturning factors

cluster
expansion
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1.1.5 Clock models and the chiral Potts model

Clock models and the Kramers-Wannier duality

Generically, a ZN clock model [32] is a lattice model where the spins ni ∈ ZN live on the
sites of the lattice, and the Boltzmann weights are given by the interaction functions (or
edge weights) Wij on the edges of the lattice:∏

〈ij〉
Wij(ni − nj) ,

and the edge weight Wij is N -periodic. In the simplest case, Wij is taken as an even
function, and the model is defined on any unoriented lattice. The local symmetry of
Boltzmann weights is then enhanced to the dihedral group DN . However, the case when
the Wij’s are not even functions is also interesting, since it describes phase transitions
with intrisically chiral degrees of freedom.

We introduce the notation: ω = exp(2iπ/N), and the discrete Fourier transform:

Ŵ (k) =
N−1∑
n=0

ω−knW (n) , W (n) =
1

N

N−1∑
k=0

ωkn Ŵ (k) . (1.47)

Consider for simplicity the case of the square lattice L. One can show that the following
partition functions are equal:∑

{ni}

∏
〈ij〉

Wij(ni − nj) =
∑
{ki}

∏
〈ij〉

Ŵij(ki − kj) , (1.48)

where the spins ni (resp. ki) live on the sites (resp. dual sites) of L.

The Ũq(ŝl2) algebra and its cyclic representations

The underlying symmetry of the chiral Potts model [73, 74, 75] is the Uq(ŝl2) quantum

affine algebra [76]. More precisely, it is a slight generalisation [23], called the Ũq(ŝl2), with
the deformation parameter

q = − exp(iπ/N) .

It is a Hopf algebra generated by {e0, e1, f0, f1, t0, t1, z0, z1} with multiplication rules (1.2)

from the standard Uq(ŝl2), and where z0, z1 are two central elements, and the coproduct
is

∆(ei) = ei ⊗ 1 + ziti ⊗ ei ,
∆(fi) = fi ⊗ t−1

i + z−1
i ⊗ fi ,

∆(ti) = ti ⊗ ti ,
∆(zi) = zi ⊗ zi .

(1.49)

Note that the evaluation representation (1.6) associated to the 6V model can be promoted

to a representation of Ũq(ŝl2) by taking πz(zi) = ci1, where ci is any constant.
The representations relevant to the chiral Potts model are N -dimensional cyclic rep-

resentations [23] denoted Vaa′ and parametrised by a pair of points (a, a′) ∈ Ck×Ck. Here
Ck is the algebraic curve given by a = (x, y, µ) ∈ C3 such that

xN + yN = k(1 + xNyN) , µN =
k′

1− kxN
=

1− kyN

k′
, (1.50)
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where k2 + k′2 = 1. If a = (x, y, µ) and a′ = (x′, y′, µ′) are two elements of Ck, then the
representation on Vaa′ is given by

πaa′(e0) =
q

(q2 − 1)2
X−1

(
y

µµ′
Z−1 − x′1

)
, πaa′(t0) =

1

c0µµ′
Z−1 ,

πaa′(f0) =

(
c0µµ

′

x′
Z − q2

c0y
1

)
X , πaa′(z0) = c01 ,

πaa′(e1) =
q

(q2 − 1)2
(xµµ′Z − y′1)X , πaa′(t1) = c0µµ

′Z ,

πaa′(f1) =
c0

xx′µµ′
X−1(yZ−1 − x′µµ′1) , πaa′(z1) = c−1

0 1 ,

(1.51)

where c0 = q
√

xx′

yy′
. Here, the objects X and Z are N ×N matrices, such that

ZX = ωXZ , XN = ZN = 1 , ω = exp

(
2iπ

N

)
.

We shall fix X and Z as

X =


1 0 0 · · · 0 0
0 ω 0 · · · 0 0
0 0 ω2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 ωN−1

 , Z =


0 1 0 · · · 0 0
0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

 . (1.52)

The intertwiner between two representations Vaa′ and Vbb′ has the factorised form

Ř(aa′, bb′) = Sa′b(Ta′b′ ⊗ Tab)Sab′ , (1.53)

where

Sab′ :

{
Vaa′ ⊗ Vbb′ → Vb′a′ ⊗ Vba
|m〉 ⊗ |n〉 7→ Wab(n−m) |m〉 ⊗ |n〉

, Tab :

{
Vba → Vab

|m〉 7→
∑N−1

n=0 W ab(m− n)|n〉
(1.54)

and

Wab(n) =

(
µa
µb

)n
×

n∏
`=1

yb − xaω`

ya − xbω`
, W ab(n) = (µaµb)

n ×
n∏
`=1

xaω − xbω`

yb − yaω`
. (1.55)

Graphically, we represent them as:

Wab(m− n) = m n

a b

, W ab(m− n) =

a b

n

m

. (1.56)
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The R-matrix (1.53) is depicted as:

Ř(aa′, bb′) =

a

ba′

b′

. (1.57)

Parameterisation of the spectral curve

A convenient parameterisation of a triplet a = (x, y, µ) on the curve Ck (1.50) is given by:

x = ei(u+φ)/N , y = ei(u−φ+π)/N , µ = ei(φ̄−φ)/N , (1.58)

where the variables φ, φ̄, u are now related by

sinφ = −k sinu , sin φ̄ = −ik
k′

cosu , cosφ = k′ cos φ̄ . (1.59)

The isotropic, critical case

In the case k = 0, we have φ = φ̄ = 0, and the curve Ck=0 = C. If we write xa = eiu/N

and xb = eiv/N , then the Boltzmann weights take the form:

W (n) =
n∏
`=1

sin (2`−1)π+u−v
2N

sin (2`−1)π−u+v
2N

, W (n) =
n∏
`=1

sin (2`−2)π−u+v
2N

sin 2`−π+u−v
2N

. (1.60)

These are the weights of the Fateev-Zamolodchikov ZN model [77]. They are self-dual
under Kramers-Wannier transformation, and reflection symmetric [W (−n) = W (n)]. The
continuum limit of this model is described by the ZN -parafermionic CFT [33], with central
charge c = 2(N − 1)/(N + 2). Together with the stress-energy tensor T (z), this CFT
possesses (N−1) additional holomorphic currents ψ1, . . . ψN−1, with fusion rules reflecting
the ZN symmetry:

ψp × ψp′ →

{
ψp+p′ if p+ p′ 6= 0 mod N ,

1 otherwise,
(1.61)

and the conformal dimension of ψp is p(N − p)/N .

1.2 The Coulomb-Gas approach

1.2.1 The compactified boson and the 6V model

Compact boson action

We take the 6V model with weights (1.8):

ω1 = ω2 = sin(λ− u) , ω3 = ω4 = sinu , ω5 = ω6 = sinλ , (1.62)
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and embed it on the rhombic lattice as in (1.20). To any vertex configuration, we associate
a height configuration {ϕj} living on face centers, such that two neighbouring heights vary
by ±πb according to the arrow between them. In the scaling limit, the discrete height ϕ
renormalises [78] to a free compactified boson φ(r) governed by the action1 :

A0[φ] =
1

2π

∫
d2r
√
hhµν ∂µφ ∂νφ ,

φ ≡ φ+ 2πb ,

(1.63)

where hµν is the metric. This model has central charge c = 1. The value of b is not fixed
by the present argument. By comparing, e.g. the energy exponent with exact lattice
computation of the singular part of the free energy [11], one obtains the relation:

b2 =
π − λ
π

. (1.64)

Operator content

We denote by Vα the vertex operators, and by ∆α their conformal dimensions:

Vα = :exp(2iαφ) : ∆α = α2 . (1.65)

Due to the compactification condition, the vertex charges (or spin-waves) which are al-
lowed in the spectrum of the transfer matrix are of the form Ve/2b with e ∈ Z. A vortex
of charge m ∈ Z placed at position r is a winding configuration where the field under-
goes a shift φ → φ + 2πmb around r, and the corresponding operator has dimension
∆̂m = m2b2/4.

A generic primary operator, denoted Wem, is given by the combination of a spin-wave
of charge e and a vortex operator of charge m, and has conformal dimensions:

∆e,m =
1

4

(e
b
−mb

)2

, ∆̄e,m =
1

4

(e
b

+mb
)2

. (1.66)

The full operator content of the 6V model in the continuum limit is

{Wem , (e,m) ∈ Z2} . (1.67)

This operator content is similar to that of the XY model at the Kosterlitz-Thouless
transition point: see [78].

Fractional vertex charges

The fractional vertex charges α = κ/2b with κ /∈ Z do not appear in the spectrum.
However, in the 6V model, they are generated non-locally by inserting a twist line made
of a chain of eiπκσ

z
operators. Consider for instance the two-point function of these

operators:
〈Vκ/2b(0)V−κ/2b(r)〉0 .

Due to the commutation relation:

(eiπκσ
z ⊗ eiπκσz)R(u) = R(u) (eiπκσ

z ⊗ eiπκσz) , (1.68)

1The elementary defect is produced by flipping a single arrow, and hence it has an amplitude δϕ = 2πb.
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the correlation function is independent of the choice of path joining 0 and r. More
generally, any correlation function of the form:

〈Vκ1/2b(r1)Vκ2/2b(r2) . . . VκN/2b(rN)〉0 (1.69)

with the neutrality condition κ1 +κ2 + . . . κN = 0 can be represented by a configuration of
twist lines in the 6V model. Note that the lattice operator eiκϕ/2b inserting the endpoint
of a twist line only depends on πκ modulo π. Hence, in the scaling limit, it generates all
the vertex operators with charge α ∈ (κ+ Z)/2b.

1.2.2 The Coulomb-Gas formalism for the loop model

Coulomb-Gas action

On a planar domain, the TL loop model is equivalent to the 6V model through the
turning factor trick (see Sec. 1.1.2). Hence, the compactified boson action (1.63) captures
correctly the loop fluctuations on a flat surface. However, on a generic surface, any loop
enclosing a non-trivial curvature R is associated to a turning factor e±iλ(1−R) rather than
the wanted factor e±iλ. This discrepancy can be corrected by inserting a factor

exp[iλR(r)φ(r)]

into the Boltzmann weight. Moreover, a generic 2πb-periodic potential on the lattice
generates vertices of the form Vα∈Z/2b in the action. In the scaling limit, one obtains the
action [8, 79]

AL[φ] =
1

2π

∫
d2r
√
h

(
hµν ∂µφ ∂νφ+

iQ

2
Rφ+ µb e

2iφ/b

)
,

φ ≡ φ+ 2πb ,

(1.70)

where µb is a non-universal coupling constant. The term e2iφ/b is the called a screening
charge, and should be marginal (the other possible terms Vα∈Z/2b are either relevant, in
which case their critical coupling constant is zero, or irrelevant – in both cases, they are
not included in the action). The model has central charge

c = 1− 24Q2 . (1.71)

The vertex operators and their conformal dimensions read:

Vα = :exp(2iαφ) : hα = α(α− 2Q) . (1.72)

The screening charge V1/b is marginal under the condition:

2Q = b−1 − b , (1.73)

and b is given by (1.64).

Operator content of the loop model

Because of the compactification condition in (1.70), the spectrum of primary operators
is discrete, like in the 6V model. Let us use the Kac notations for vertex charges and
conformal dimensions:

αrs =
(1− r)

2b
− (1− s)b

2
, hrs =

(r/b− sb)2 − (1/b− b)2

4
. (1.74)

The spectrum of primary operators of the TL loop model is given by [48]:
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• Vertex operators Vαr,1 where r ∈ Z, with dimensions (hr,1, hr,1).

• Mixed operators, Wem with dimensions (hem, he,−m), where the vortex charge is
m ∈ {1, 2, 3, . . . } and the spin-wave (or vertex charge) is e ∈ Z/m.

Let us discuss the case of vertex operators Vα which do not belong to the above
spectrum. Let us denote the lattice vertex operators as

vκ = exp(iκϕ/b) .

Through the turning factor argument, one sees that vκ(r) changes the turning factors of
any loop surrounding r to exp[±i(λ−πκ)], instead of exp(±iλ). Hence, this class of loops
has a modified fugacity 2 cos(λ− πκ). Since this effect is unchanged (up to a sign) under
κ→ κ+ 1, in the scaling limit vκ generates all the vertex operators Vα with charges

α =
κ+ `

2b
, ` ∈ Z . (1.75)

Note that the lattice operators vκ and v2λ/π−κ have the same effect on the Boltzmann
weights, consistently with the invariance of hα under α→ 2Q− α.

1.2.3 RSOS models and minimal models

The Virasoro minimal model M(p, p′), with p′ < p coprime integers, is realised on the
lattice by the Ap−1 RSOS model with weights (1.36) and parameter η = πp′/p. This is
nicely seen from the Pasquier construction [66, 67, 68] described in the end of Sec. 1.1.3.

First, for the partition function, the graphical expansion of this RSOS model is a TL
model with loop weight n = −2 cosπp′/p (see Sec. 1.1.2), whose scaling limit is a CFT
with central charge (1.71):

c = 1− 6(p− p′)2

pp′
, (1.76)

where we have used b =
√
p′/p. Let us now look at the operator content of the RSOS

model. A basis of local operators acting on a single site of the RSOS model is given by:

v(k)
a =

S
(k)
a

S
(p′)
a

. (1.77)

The key identity satisfied by these operators is:∑
e

E

(
a b
e c

)
v(k)
e E

(
a e
d c

)
= βk v

(k)
a E

(
a b
d c

)
. (1.78)

This means that, in the loop expansion, any loop enclosing an operator v(k) gets a modified
fugacity βk = −2 cos(πk/p). Thus, in terms of the Coulomb-Gas action (1.70), v(k) acts as
a vertex operator Vκ/2b with κ = 1 + k/p: see (1.75). Since p and p′ are coprime, from the
Bézout theorem, one may write the integer k as k = (s− 1)p′− rp, with r and s integers.

The associated vertex charge is αrs: this shows that the local operators v
(k)
a scale to the

degenerate fields Φrs of the minimal model M(p, p′).
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1.2.4 The Coulomb Gas on Riemann surfaces

The Riemann sphere and the cylinder

For a compact Riemann surface Σ of genus g, the Gauss-Bonnet theorem relates the total
curvature to the Euler characteristics χ = 2(1− g):

1

8π

∫
Σ

d2r
√
hR = 1− g . (1.79)

Hence, a vertex correlation function 〈Vα1(r1)Vα2(r2) . . . VαN (rN)〉 in the imaginary Liou-
ville model must satisfy the neutrality condition:

N∑
j=1

αj + 2(g − 1)Q = 0 , (1.80)

where 2(g − 1)Q is the “background charge” corresponding to the total vertex charge
generated by the term iQRφ/2 in the CG action (1.70).

In the case g = 0, the surface Σ is conformally equivalent to a sphere, and the back-
ground charge is −2Q. The partition function is obtained by inserting the operator
V+2Q ≡ 1 with dimension h = 0 at any point, e.g. at the origin:

ZΣ = 〈V+2Q(0)〉 (genus zero) . (1.81)

More specifically, if we start from the Riemann sphere with a metric such that
√
hR(z) =

8πδ(z−z∞), where z∞ is the point located at infinity, and we apply the change of variable
z 7→ w = L

2π
log z, we obtain the infinite cylinder, with curvature limM→∞[4πδ(w −M) +

4πδ(w + M)], corresponding to vertex charges −Q at ±M . The operator V+2Q(z =
e−2πM/L → 0) is mapped to w = −M , and hence the partition function on the cylinder
reads:

Zcyl ∼ 〈VQ(−M)V−Q(M)〉0 , (1.82)

where ±M are the endpoints of the cylinder, and 〈. . . 〉0 denotes the averaging with respect
to the free boson action (1.63). On the lattice, this corresponds to the six-vertex model
with twisted boundary conditions κ = λ/π.

The torus

In the case g = 1, the surface Σ is conformally equivalent to a torus, and the background
charge is zero. If we consider the torus of periods 1 and τ , with the flat metric, the
curvature and screening terms in (1.70) do not contribute, and the partition function
with periodic boundary conditions simply reads:

Z0(b) =

∫
φ periodic

[Dφ] exp(−A0) =
b√

Im τ η(q) η(q̄)
.

To take the compactification condition φ ≡ φ + 2πb into account, one needs to sum over
the possible windings of φ around the two periods of the torus:

ZC(b) =
∑

m,m′∈Z2

Zm,m′(b) , Zm,m′(b) :=

∫
φ(z+1)=φ+2πmb

φ(z+τ)=φ+2πm′b

[Dφ] exp(−A0) .
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A Poisson summation gives:

ZC(b) =
1

η(q) η(q̄)

∑
(e,m)∈Z2

q∆em q̄∆̄em , (1.83)

where ∆em and ∆̄em have been defined in (1.66). This is the toroidal partition function
of the imaginary Liouville model with compactified φ.

Consider the loop model on the torus, with loop fugacity n = −q − q−1 = 2 cosλ for
contractible loops, and ñ = 2 cos πκ for non-contractible loops. To find the loop partition
function, it turns out that one needs to insert a “topological factor” cos[πκ(m ∧ m′)],
where

x ∧ y =


gcd(|x|, |y|) if x 6= 0 and y 6= 0,

x if y = 0,

y if x = 0.

The loop partition function reads [48]:

Zloop(λ, κ) =
∑

m,m′∈Z2

Zm,m′(b) cos[πκ(m ∧m′)] , b =

√
π − λ
π

. (1.84)

The Poisson summation is now much more involved. It reproduces the spectrum of the
loop model exposed in Sec. 1.2.2, and takes the form:

Zloop(λ, κ) =
1

η(q) η(q̄)

∑
r∈Z

(qq̄)hr1 +
∑

m∈Z\{0}

∑
e∈Z/m

Nem qhem q̄he,−m

 , (1.85)

where the conformal dimensions hem are given in (1.74). The coefficients Nem have a
complicated expression in terms of β = 2 cos πκ, and in general Nem is not an integer.
The coefficient Nem should thus be interpreted as the “quantum multiplicity” of the
module with dimensions (hem, he,−m) in the Hilbert space of the loop model. In fact, the
structure of these modules, even for generic λ, is quite involved, due to the fact that the
evolution operator L0 + L̄0 is not diagonalisable (see [80]).

1.3 Structure constants of the operator algebra

1.3.1 The Operator Product Expansion (OPE) in CFT

In a CFT, the Operator Product Expansion of the primary operators {Φa} takes the form,
as z → 0:

Φa(0)Φb(z, z̄) =
∑
c

Cc
ab z
−ha−hb+hc z̄−h̄a−h̄b+h̄c Φc(0, 0) + descendants. (1.86)

The structure constants Cc
ab, together with the set of conformal dimensions (ha, h̄a), con-

stitute the basic data from which all the correlation functions may be reconstructed. The
Cc
ab’s are related simply to the three-point functions. Let us denote by Φ∗a the charge-

conjugate of Φa:
〈Φ∗a(0)Φa(z, z̄)〉 = z−2ha z̄−2h̄a .
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Then we have:
Cc∗

ab = 〈Φa(0)Φb(1)Φc(∞)〉 := C(Φa,Φb,Φc) , (1.87)

and the above quantity is symmetric under any permutation of {a, b, c}. The standard way
to derive the structure constants is to consider a four-point function of primary operators
including one degenerate operator, and exploit the constraints imposed by the invariance
under a monodromy transformation. This procedure is called conformal bootstrap.

1.3.2 The conformal bootstrap in 2d CFT

Since the 1990’s, an important activity was devoted to the full determination of structure
constants of the Liouville CFT: see [52, 53, 54, 55]. In particular, it was shown in [55]
that a careful analysis of four-point correlation functions through the conformal bootstrap
yielded enough constraints to determine completely these constants. In this section, we
review the approach of [55], but we adapt it to (rational and non-rational) CFTs with
c ≤ 1. In the rational case, this coincides with the early work of [8], whereas in the
non-rational case, we recover the results on the imaginary Liouville CFT [49, 50, 51].

The Coulomb-Gas parameterisation of a CFT

Consider a generic CFT, where the spectrum-generating algebra is simply the Virasoro
algebra, so that a primary field is specified by its conformal dimensions h, h̄. Scalar
primary fields will be denoted as Φh. When studying the correlation functions, it will
be convenient to use the CG parameterisation [8] of the central charge and conformal
dimensions:

Q :=
1

2
(b−1 − b) , c = 1− 24Q2 , hα = α(α− 2Q) . (1.88)

The charges α associated to degenerate dimensions are given by the Kac formula:

αrs =
(1− r)b−1

2
− (1− s)b

2
, (1.89)

and we denote by Φrs(z, z̄) the corresponding scalar primary field.

Four-point function satisfying a differential equation

We assume that the CFT under consideration contains the degenerate field Φ12. We
consider the correlation function of Φ12 with three scalar primary operators:

G(z, z̄) = 〈Φ1(∞)Φ2(1)Φ3(z, z̄)Φ12(0)〉 , (1.90)

and we denote by h1, h2, h3 the conformal dimensions and α1, α2, α3 the parameters asso-
ciated to Φ1,Φ2,Φ3 respectively. The primary field Φ12 is degenerate at level 2:

(L−2 − b−2L2
−1)Φ12 = 0 , (1.91)

and, for any four-point function 〈Φ1(∞)Φ2(1)Φ3(z, z̄)Φ4(0)〉 where Φ2 and Φ3 are primary
operators, the Virasoro modes act as differential operators:

〈Φ1(∞)Φ2(1)Φ3(z, z̄)(LnΦ4)(0)〉 − 〈(L−nΦ1)(∞)Φ2(1)Φ3(z, z̄)Φ4(0)〉

=
{

(1− zn)[z∂z + (n+ 1)h3]

+ (h4 − h1)− n(h2 + h3)
}
〈Φ1(∞)Φ2(1)Φ3(z, z̄)Φ4(0)〉 . (1.92)
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Thus, we get the second-order differential equation for (1.90):

z2(z − 1)2∂2
zG+ z(z − 1)[(2A1 + 1)z − b2]∂zG+ (A2z

2 − b2h3)G = 0 , (1.93)

where

A1 = h2 + h3 − h1 +
b2

4
, A2 = A2

1 − b2h2 −
(b2 − 1)2

4
,

and a similar equation with (z, ∂z) replaced by (z̄, ∂z̄).

As a guide to simplify the calculation, we can use the expected fusion rule:

Φ12 × Φhα → Φhα−b/2 + Φhα+b/2
. (1.94)

Moreover, we have the simple identity hα+β = hα+hβ+2αβ. Hence, in the limit z → 0, we
expect one of the solutions to behave as z−h12−h3+hα3+b/2 = zbα3 . Similarly, the behaviour
(1− z)−h2−h3+hα1+b/2 = (1− z)h12−h2−h3+h1+bα1 is expected. We thus introduce:

G(z, z̄) = |z|2bα3 |1− z|2(h12−h2−h3+h1+bα1) g(z, z̄) . (1.95)

The function g(z, z̄) satisfies the hypergeometric differential equation:

z(1− z)∂2
zg + [C − (A+B + 1)z]∂zg − AB g = 0 , (1.96)

with parameters
A = 2h12 + b(α1 + α2 + α3) ,

B = 2h12 + b[α1 + (2Q− α2) + α3] ,

C = b2 + 2bα3 .

(1.97)

Conformal blocks

The space of holomorphic solutions to (1.96) has basis:

I1(z) = 2F1(A,B;C|z) ,

I2(z) = z1−C
2F1(1 + A− C, 1 +B − C, 2− C|z) ,

(1.98)

where 2F1(a, b; c|z) is the hypergeometric series

2F1(a, b; c|z) =
∞∑
n=0

(a)n (bn)

n! (c)n
zn , (x)n = x(x+ 1) . . . (x+ n− 1) . (1.99)

After a change of variables z → 1− z, one gets a different basis of solutions to (1.96)

J1(z) = 2F1(A,B;A+B − C + 1|1− z) ,

J2(z) = zC−A−B 2F1(C −B,C − A,C − A−B + 1|1− z) .
(1.100)

The change of basis between {I1, I2} and {J1, J2} is well known:

Ii(z) =
2∑
j=1

pij Jj(z) , (1.101)
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where the pij’s are the entries of the fusion matrix:

P =

[
Γ(C)Γ(D)

Γ(C−A)Γ(C−B)
Γ(C)Γ(−D)
Γ(A)Γ(B)

Γ(2−C)Γ(D)
Γ(1−A)Γ(1−B)

Γ(2−C)Γ(−D)
Γ(1−C+A)Γ(1−C+B)

]
, (1.102)

with inverse:

P−1 =

[
Γ(1−C)Γ(1−D)

Γ(1−C+A)Γ(1−C+B)
Γ(C−1)Γ(1−D)

Γ(A)Γ(B)
Γ(1−C)Γ(1+D)
Γ(1−A)Γ(1−B)

Γ(C−1)Γ(1+D)
Γ(C−A)Γ(C−B)

]
, (1.103)

and where D := C − A−B = 1− b2 − 2bα1.

Crossing symmetry

The physical solution g(z, z̄) must be a bilinear combination of the form:

g(z, z̄) =
∑
i,j

Xij Ii(z) Ij(z) . (1.104)

This expression corresponds the conformal-block decomposition of G(z, z̄) in the channel
z → 0. Similarly, in the channel z → 1, we have

g(z, z̄) =
∑
k,`

Yk` Jk(z) J`(z) . (1.105)

From these two decompositions, and using (1.101), one gets the matrix relation Y =
P †XP . Imposing a diagonal form for X and Y , and using the fact that the entries of P
are real, one gets the linear relation for X1 := X11 and X2 := X22

p11p12X1 + p21p22X2 = 0 . (1.106)

Similarly, one gets a linear relation between Y1 := Y11 and Y2 := Y22. Finally, one obtains
the ratios:

xb(α1, α2, α3) :=
X1

X2

=
γ(2− C)

γ(C)
× γ(A)γ(B)γ(C − A)γ(C −B) ,

yb(α1, α2, α3) :=
Y1

Y2

=
γ(1 +D)

γ(1−D)
× γ(A)γ(B)

γ(C − A)γ(C −B)
.

(1.107)

where γ(x) = Γ(x)/Γ(1− x). After proper substitution of (1.97) into (1.107), one finds:

xb(α1, α2, α3 + b/2) =
γ(2− b2 − 2bα3)

γ(b2 + 2bα3)
× γ(2b2 − 1 + bα123)γ(b2 + bα2

13)γ(b2 + bα1
23)

γ(bα3
12)

,

(1.108)
where we have used the short-hand notations α123 := α1 +α2 +α3, and αkij := αi+αj−αk.

Shift equations

The ratios (1.107) are related to the structure constants by

xb(α1, α2, α3) =
C(Φ12,Φ3,Φ3+)C(Φ3+,Φ2,Φ1)

C(Φ12,Φ3,Φ3−)C(Φ3−,Φ2,Φ1)
,

yb(α1, α2, α3) =
C(Φ12,Φ1,Φ1+)C(Φ1+,Φ2,Φ3)

C(Φ12,Φ1,Φ1−)C(Φ1−,Φ2,Φ3)
,

(1.109)
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where we have used the short-hand notation Φj± = Φhαj±b/2
. By combining appropriately

the ratios, we obtain the shift equation for the structure constants:

C(Φ1,Φ2,Φhα3+b
)

C(Φ1,Φ2,Φh3)
=

xb(α1, α2, α3 + b/2)√
xb(α12, α3 + b/2, α3 + b/2)

(1.110)

= Kb(α3)× γ(2b2 − 1 + bα123)γ(b2 + bα2
13)γ(b2 + bα1

23)

γ(bα3
12)

, (1.111)

where we have gathered the factors depending only on α3 into the function

Kb(α) :=

√
γ(2− b2 − 2bα)γ(2− 3b2 − 2bα)

γ(b2 + 2bα)
. (1.112)

1.3.3 Structure constants of minimal models

In the minimal model M(p, p′), the spectrum is discrete, and hence the shift equa-
tion (1.111) can be considered as a recursion equation, and solved completely [8]. Let
us discuss it in the case of the subalgebra of operators Φ1s:

Cmin(Φ1s1 ,Φ1s2 ,Φ1,s3+2)

Cmin(Φ1s1 ,Φ1s2 ,Φ1s3)
=
γ[ b

2

2
(s123 + 1)− 1]γ[ b

2

2
(s2

13 + 1)]γ[ b
2

2
(s1

23 + 1)]

γ[ b
2

2
(s3

12 − 1)]
×Kb(α1s3) ,

(1.113)
where s123 = s1 + s2 + s3 and skij = si + sj − sk.

For example, the coefficients in the OPE:

Φ1s × Φ1s →
s∑

k=1

Φ1,2k−1 (1.114)

are determined by the initial condition Cmin(Φ1s,Φ1s,Φ11) = 1, and the recursion relation:

Cmin(Φ1s,Φ1s,Φ1,2k+1)

Cmin(Φ1s,Φ1s,Φ1,2k−1)
=
γ2(b2k)

√
γ[2− b2(2k − 1)] γ[2− b2(2k + 1)]

γ[2− b2(s+ k)] γ[b2(s− k)] γ[b2(2k − 1)]
. (1.115)

More general structure constants can be obtained by using also the shift equation associ-
ated to Φ21.

1.3.4 Structure constants of the imaginary Liouville CFT

The imaginary Liouville CFT

The imaginary Liouville theory is defined [50] as the CFT with a given central charge
c < 1, whose spectrum is generated by the Virasoro algebra from all the scalar primary
fields Φh(α) with real parameter α.

Expression of the structure constants

In the context of the imaginary Liouville CFT, the shift equation (1.111) should be con-
sidered as a functional equation for the structure constant. To solve this problem, the
main tool is the special function Υb, defined for 0 < Re(x) < b+ b−1 as

Υb(x) = exp

∫ ∞
0

dt

t

(b+ b−1

2
− x
)2

e−t −
sinh2

(
b+b−1

2
− x
)
t
2

sinh bt
2

sinh t
2b

 . (1.116)
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It satisfies the functional relations for any real x:

Υb(x+ b) = γ(bx) b1−2bx Υb(x) ,

Υb(x+ b−1) = γ(x/b) b−1+2x/b Υb(x) ,

Υb(b+ b−1 − x) = Υb(x) .

(1.117)

A solution to (1.111) can be obtained from the following product of Υ functions:

U(α1, α2, α3) := Υb(2b− b−1 + α123)Υb(b+ α3
12)Υb(b+ α2

13)Υb(b+ α1
23) , (1.118)

which obeys the relation:

U(α1, α2, α3 + b)

U(α1, α2, α3)
= b4(1−2b2−2bα3) γ(2b2 − 1 + bα123)γ(b2 + bα2

13)γ(b2 + bα1
23)

γ(bα3
12)

. (1.119)

Note that U(α1, α2, α3) is invariant under any permutation of the αj’s. It is natural to
look for a solution to (1.111) of the form

CIL(α1, α2, α3) =
U(α1, α2, α3)

W (α1)W (α2)W (α3)
, (1.120)

where W (α) is chosen to ensure the correct α3-dependent normalisation as in (1.111).
This is equivalent to the condition:

CIL(α, α, 0) = 1 , (1.121)

which fixes the function W :

W (α) =

√
Υb(2b− b−1 + 2α)Υb(b+ 2α)

A
1/3
b

, Ab :=

√
Υb(2b− b−1)

Υb(b)3
. (1.122)

The final expression for the imaginary Liouville structure constant is [49, 50, 51]:

CIL(α1, α2, α3) =
Ab Υb(2b− b−1 + α123)

∏
〈ijk〉Υb(b+ αkij)∏

i

√
Υb(b+ 2αi) Υb(2b− b−1 + 2αi)

, (1.123)

where the product in the numerator is over the cyclic permutations of {1, 2, 3}.

Unicity of the solution

The shift equation (1.119) only determines the function U(α1, α2, α3) up to a b-periodic
multiplicative factor. The existence of the degenerate operator Φ21 = V−b−1/2 produces a
second shift equation, obtained from (1.119) by the change b 7→ −b−1:

U(α1, α2, α3 − b−1)

U(α1, α2, α3)
= b4(−1+2b−2−2α3/b)

γ(2b−2 − 1− α123

b
)γ(b−2 − α2

13

b
)γ(b−2 − α1

23

b
)

γ(−α3
12/b)

.

(1.124)
Using (1.117), one can rewrite (1.118) as:

U(α1, α2, α3) = Υb(2b
−1 − b− α123)Υb(b

−1 − α3
12)Υb(b

−1 − α2
13)Υb(b

−1 − α1
23) , (1.125)

and it is straightforward to check that U satisfies both shift equations (1.119) and (1.124).
For generic values of the central charge, b2 is not rational, and the periods b and b−1 of
the shift equations are incommensurate, which ensures the unicity of the solution (1.118–
1.123).
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1.4 The W3 extended conformal algebra

1.4.1 Motivation from Statistical Mechanics

In the description of 2d critical models, the symmetry under the Virasoro algebra expresses
the conformal covariance of correlation functions. The series of CFT models M(p, p′),
which are rational with respect to the Virasoro algebra, enjoy a Z2 symmetry for their
primary operators Φrs ≡ Φp′−r,p−s, and a Z2 conservation rule in their operator algebra.
From the lattice point of view, this can actually be traced back to the Z2 symmetry
a 7→ p − a in the Boltzmann weights of the corresponding Ap−1 RSOS models. (In the
simple case of the Ising model A3, this symmetry corresponds to spin reversal.)

For lattice models with a different symmetry group, in the scaling limit, one naturally
expects a CFT description with a spectrum-generating algebra larger than Virasoro, i.e.
the algebra should include additional holomorphic currents: this is called an extended
conformal algebra. In this text, we review one of the simplest examples of such an object,
namely the W3 conformal algebra [81], which relates to lattice models with Z3 symmetric
Boltzmann weights.

1.4.2 Basic representation theory of the sl3 Lie algebra

Roots and weights. Let us first fix some conventions for the roots and weights of the
sl3 Lie algebra. The root vectors {±e1,±e2,±(e1+e2)} are the shifts associated to raising
and lowering operators. The simple roots are {e1, e2}. The positive roots {e1, e2, e1 +e2}
are obtained by summing one or several distinct simple roots. The dual basis of (e1, e2)
is given by the fundamental weights (ω1,ω2). We have the relations:

ω2
1 = ω2

2 =
2

3
, ω1 · ω2 =

1

3
, (1.126)

e2
1 = e2

2 = 2 , e1 · e2 = −1 , (1.127)

e1 = 2ω1 − ω2 , e2 = 2ω2 − ω1 , ei · ωj = δij . (1.128)

The Weyl vector is ρ = e1 + e2 = ω1 + ω2. We shall denote by R and R∗ the root and
weight lattices, respectively:

R = Ze1 + Ze2 , R∗ = Zω1 + Zω2 . (1.129)

Irreducible representations. An irreducible representation (irrep) [λ] is specified by
a highest weight vector

λ = (λ1, λ2) = λ1ω1 + λ2ω2 , λ1, λ2 = 0, 1, 2, . . . (1.130)

The set of weight vectors of [λ] is constructed recursively, starting from the highest weight
λ, by the algorithm:

∀λ′ = (λ′1,λ
′
2) ∈ [λ] , if λi > 0 then λ′ − ei, . . . ,λ′ − λ′iei ∈ [λ] . (1.131)

The multiplicity of the weight λ′ in [λ] is denoted mλ(λ′), and is obtained by the Freuden-
thal recursion.
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Conjugation. The conjugate of an irrep is obtained by the reflection around ρ, i.e. the
exchange of ω1 and ω2:

(λ1, λ2)∗ = (λ2, λ1) . (1.132)

Some simple representations. The representations associated to the fundamental
weights are three-dimensional. One has

[ω1] = {h1,h2,h3} , [ω2] = {−h1,−h2,−h3} , (1.133)

with
h1 = ω1 , h2 = ω2 − ω1 , h3 = −ω2 . (1.134)

Let us describe two other simple irreps:

[ρ] = {±e1,±e2,±ρ, 0} , (1.135)

[2ω1] = {2h1, 2h2, 2h3,−h1,−h2,−h3} . (1.136)

The representation [ρ] has one non-trivial multiplicity: mρ(0) = 2, whereas the weights
of [2ω1] have no degeneracy.

The Weyl group. The Weyl group W is generated by the reflections about the vectors
hj. It preserves the set of root vectors. It acts on the hj’s as the symmetric group S3.

Fusion. The tensor product of two irreps can be decomposed as a direct sum of irreps:

[λ]⊗ [µ] =
⊕
ν

Nν
λµ . [ν] , (1.137)

where the fusion coefficients Nν
λµ denotes the multiplicity of [ν] in the decomposition.

The Z3 charge of an irrep is defined as the difference:

qλ = λ1 − λ2 . (1.138)

The fusion coefficient obey a Z3 symmetry:

if Nν
λµ 6= 0 then qλ + qµ ≡ qν mod 3 . (1.139)

Let us give some fusion rules between simple irreps:

(1, 0)⊗ (1, 0) = (2, 0)⊕ (0, 1) ,

(1, 0)⊗ (0, 1) = (0, 0)⊕ (1, 1) ,

(1, 1)⊗ (1, 1) = (0, 0)⊕ (1, 1)⊕ (1, 1)⊕ (2, 2)⊕ (0, 3)⊕ (3, 0) ,

(2, 0)⊗ (2, 0) = (4, 0)⊕ (2, 1)⊕ (0, 2) ,

(2, 0)⊗ (0, 2) = (0, 0)⊕ (1, 1)⊕ (2, 2) ,

(1, 0)⊗ (2, 0) = (3, 0)⊕ (1, 1) .

(1.140)
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1.4.3 The W3 algebra

The W3 algebra is generated by the modes of the stress-energy tensor T (z), together
with an additional holomorphic current W (z) of dimension three [82, 81]. The mode
decomposition reads

T (z) =
+∞∑

n=−∞
Ln z

−n−2 , W (z) =
+∞∑

n=−∞
Wn z

−n−3 , (1.141)

and the W3 commutation relations are given by:

[Ln, Lm] = (m− n)Ln+m +
c

12
(n3 − n)δn+m,0 ,

[Ln,Wm] = (2n−m)Wn+m ,

[Wn,Wm] =
c

3× 5!
(n2 − 4)(n3 − n)δn+m,0 + β2(n−m)Λn+m

+ (n−m)

[
1

15
(n+m+ 2)(n+m+ 3)− 1

6
(n+ 2)(m+ 2)

]
Ln+m ,

(1.142)
where

β =

√
16

22 + 5c
,

Λn =
+∞∑

k=−∞
:LkLn−k: +

xn
5
Ln , :LnLm:=

{
LnLm if n ≤ m

LmLn if n > m

x2` = (1 + `)(1− `) , x2`+1 = (2 + `)(1− `) .

(1.143)

A Coulomb-Gas parameterisation of the W3 algebra, similar to the Virasoro case but
based on a two-dimensional bosonic field, is provided by the relations:

Q = (b−1 − b)ρ , c = 2− 12Q2 , β =
2√

8− 15Q2
. (1.144)

1.4.4 Primary fields

The representation theory of the W3 algebra is expressed in terms of the sl3, and hence
we shall use many notations from Sec. 1.4.2 in the subsequent discussion.

A primary field Φh,w is a highest-weight state for the algebra:

Ln>0Φh,w = Wn>0Φh,w = 0 , L0Φh,w = hΦh,w , W0Φh,w = wΦh,w . (1.145)

In the CG parameterisation, a primary field is represented as the vertex operator Vα
defined by two-dimensional vertex charge α, with the relations:

hα =
1

2
α · (α− 2Q) , wα = β

√
3

3∏
j=1

[(α−Q) · hj] . (1.146)

A primary field is completely degenerate if it has a two-dimensional space of primary
descendants [81]. The corresponding vertex charges are of the form:

α

(
n1 m1

n2 m2

)
=
[
(1− n1)b−1 − (1−m1)b

]
ω1 +

[
(1− n2)b−1 − (1−m2)b

]
ω2 , (1.147)
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with n1, n2,m1,m2 positive integers. It will be convenient to introduce the pair (λ,µ) of
highest-weight vectors of sl3 irreducible representations associated to a degenerate primary
field, and to denote:

Φ

(
n1 m1

n2 m2

)
= Φλ,µ , where λi = ni − 1, µi = mi − 1 . (1.148)

The fusion rule of a degenerate primary field with a generic one is given by:

Φλ,µ × Vα →
∑

λ′∈[λ], µ′∈[µ]

mλ(λ′)mµ(µ′) . Vα−b−1λ′+bµ′ , (1.149)

where mλ(λ′),mµ(µ′) are the weight multiplicities. The fusion rule of two completely
degenerate fields has the form [81]

Φλ,µ × Φλ′,µ′ →
∑
λ′′,µ′′

Nλ′′

λλ′ N
µ′′

µµ′ .Φλ′′,µ′′ , (1.150)

where Nλ′′

λλ′ and Nµ′′

µµ′ are the fusion coefficients of sl3 representations.

1.4.5 Correlation functions

In the original paper [81], a Coulomb-Gas formalism similar to the Virasoro one exposed in
Sec. 1.2 was developed. It provides an integral representation of the four-point conformal
blocks of fully degenerate primary operators, and it allows for the computation of the
structure constants of these operators.

For the study of correlation functions in non-rational W3 CFTs, such as the Toda CFT,
the bootstrap program involves the knowledge of conformal blocks of one fully degenerate

operator, say Φ

(
1 2
1 1

)
, with generic primary operators:

F (z) = 〈Φ1(∞)Φ2(1)Φ3(z)Φ(
1 2

1 1

)(0)〉 . (1.151)

In contrast with the Virasoro case, the presence of a single fully degenerate operator
is not sufficient to infer an ordinary differential equation (ODE) for F (z). However,
such an ODE can be obtained [83] when one of the fields Φ1,Φ2,Φ3 is semi-degenerate,
i.e. it admits at least one primary descendant under the W -algebra: in this case, the
function F (z) satisfies the generalised hypergeometric ODE of order three. This property
of conformal blocks was then used to apply the conformal bootstrap program, and obtain
a formula for the three-point amplitudes [84, 85]. It was derived in the context of W3

CFTs with central charge c > 50, where the relevant parameterisation is

c = 2 + 24(b+ b−1)

and Q = (b + b−1)ρ (in contrast with the above discussion for c < 2). The result for the
three-point amplitude is [85]:

CToda(α1,α2, κω2) =
A(α1)A(α2)B(κ)∏3

k,`=1 Υb

[
(α1 −Q) · hk + (α2 −Q) · h` + κ

3

] , (1.152)

where A(α) and B(κ) are some appropriate normalising factors. This formula is the direct
higher-rank analog of the DOZZ one [52, 53, 54, 55]. Note that a similar approach was
used for the W4 algebra in [86].
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Chapter 2

Lattice parafermions

2.1 Introduction: parafermions from spin and disor-

der operators

Parafermions are operators which obey a non-trivial monodromy with each other:

ψ(r)ψ(0)→ e−2iπs ψ(r)ψ(0) (2.1)

when r is taken along a continuous anti-clockwise circuit around 0, and where s is called
the conformal spin. A simple way to construct such operators in a lattice model is by
using spin and “disorder” operators. Let us describe this construction in the context of
ZN clock models (see Sec. 1.1.5 for notations). The spin operators are simply given by:

σq(rj) = exp

(
2iπqnj
N

)
, (2.2)

where rj is a lattice site, and nj is the ZN variable assigned to this site. The disorder
operators µp are defined [32] through their correlation functions:

〈µp(r̃1)µ−p(r̃2)X〉 =
1

Z

∑
{ni}

 ∏
〈ij〉/∈γ⊥

W (ni − nj)

 ∏
〈ij〉∈γ⊥

W (ni − nj + p)

X[{ni}] ,

(2.3)
where r̃1 and r̃2 are two points on the dual lattice, γ is an oriented path from r̃1 to r̃2 on
the dual lattice, and X is any function of the spin variables. By convention, in (2.3) the
condition 〈ij〉 ∈ γ⊥ means that the edge 〈ij〉 crosses γ, and ni is the spin sitting on the
left of γ.

Let us consider the typical case when X is a product of spin operators:

X = σq1(r1) . . . σqm(rm) . (2.4)

From the ZN symmetry of Boltzmann weights, we see that (2.3) is invariant under a
deformation of γ, unless one of the rj’s is crossed. So the correlation function (2.3) is a well-
defined function of r1, . . . , rm on the N -sheeted covering of the lattice, with branch points
at r̃1 and r̃2. The n-point functions of the operators {µp} are defined in an analogous way,
and the correlation function 〈µp1 . . . µpnX〉 is nonzero only if p1+· · ·+pn = q1+· · ·+qm = 0
mod N .
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ψ(x1) ψ(x4)

ψ(x3)ψ(x2)

(a) (b)

Figure 2.1: (a) The spin lattice (full lines) and its covering lattice (dotted lines). The spin
variables (resp.) are represented as black (resp. white) dots. (b) A face of the covering
lattice, and the corresponding locations (indicated by crosses) of parafermionic operators
ψp(x1), . . . ψp(x4) in discrete Cauchy-Riemann equations (2.7–2.8).

Discrete parafermions are defined on the covering lattice, defined in Fig. 2.1a. For
any spin and disorder variables σ(ri) and µ(r̃j) adjacent to a given edge of the covering
lattice, we denote by xij the midpoint of this edge and θij its angle with the horizontal
axis, and we define the operator:

ψp(xij) = e−ispθij σp(ri)µp(r̃j) , ψ̄p(xij) = e+ispθij σp(ri)µ−p(r̃j) . (2.5)

From the definition of the spin and disorder operators, the conformal spin sp appearing
in the monodromy (2.1) is always of the form sp ∈ Z− p2/N .

Let us now specialise the discussion to the case of the critical, integrable ZN clock
model: the Fateev-Zamolodchikov model [77]. The analysis of the scaling limit [33] shows
that the spin of ψp is

sp =
p(N − p)

N
(2.6)

In [38] it was shown that for p = 1, if one inserts the value s = 1− 1/N in (2.5), then the
lattice parafermions defined above satisfy simple linear relations around any face of the
covering lattice (see Fig. 2.1):

ψ1(x1) δz1 + ψ1(x2) δz2 + ψ1(x3) δz3 + ψ1(x4) δz4 = 0 , (2.7)

ψ̄1(x1) δz̄1 + ψ̄1(x2) δz̄2 + ψ̄1(x3) δz̄3 + ψ̄1(x4) δz̄4 = 0 , (2.8)

where δz1, . . . δz4 are the anticlockwise complex displacements along the edges of the face.
These equations are a lattice version of the Cauchy-Riemann equations, and hence ψ1(x)
and ψ̄1(x) can be identified as the lattice analogs of the (anti-)holomorphic currents ψ1(z)
and ψ̄1(z̄) in the ZN -parafermion CFT.

In the following we will show how to use the quantum affine symmetry underlying
integrable lattice models (see Sec. 1.1.1), to construct systematically this type of discrete
holomorphic parafermions.
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2.2 Bernard-Felder conserved currents

2.2.1 Basic assumptions and graphical notations

The fundamental ingredient for the construction of discrete holomorphic parafermions is
given by the Bernard-Felder (BF) currents associated to a quantum algebra [46]. One
considers a vertex model defined by the R-matrix between representations of a Hopf
algebra A, and one assumes that the generators of A are {Ja, θab, θ̂ab}, with the following
specific form of the coproduct, antipode and co-unit:

∆(Ja) = Ja ⊗ 1 +
∑
b

θab ⊗ Jb , S(Ja) = −
∑
b

θ̂abJb , ε(Ja) = 0 ,

∆(θab) =
∑
c

θac ⊗ θcb , S(θab) = θ̂ab , ε(θab) = δab ,

∆(θ̂ab) =
∑
c

θ̂cb ⊗ θ̂ac , S(θ̂ab) = θab , ε(θ̂ab) = δab .

(2.9)

As a consequence of (2.9) and the defining relations of a Hopf algebra, one gets the
inversion relations ∑

c

θac θ̂cb =
∑
c

θ̂ca θbc = δab 1 . (2.10)

Moreover, one assumes the commutation rules1∑
b

θ̂ab Jb =
∑
b,c

αab Jc θ̂bc ,
∑
c

θac αcb =
∑
c

αac θcb , (2.11)

where α is some given matrix with complex entries. In the following, we represent the
generators as blue objects, while a black oriented line carries a representation of A:

Ja = a , θab = a b , θ̂ab = a b .

For instance, the inversion relations (2.10) are drawn as:

a
b

= a
b

= δab ,

and the commutation rules:

a =
∑
b

αab
b
,

where the internal indices are summed over, and not depicted.

1The relations (2.11) do not appear in [46]. We have added this assumption in order to ensure the
parafermionic nature of the currents in a general way.
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2.2.2 Intertwiners

To simplify the discussion, we consider the situation of a lattice where the lines can carry
one of the two representations V, V ′ of the algebra A, with corresponding homomorphisms
πV , πV ′ . We represent the associated Ř- and K-matrices as:

ŘV V ′ =

V ′V

, KV V ′ =

V ′

V

, KV ′V =

V

V ′

. (2.12)

The Ř-matrix intertwines between tensor-product representations of A:

∀x ∈ A , ŘV V ′ (πV ⊗ πV ′)∆(x) = (πV ′ ⊗ πV )∆(x) ŘV V ′ , (2.13)

whereas the K-matrices are the intertwiners of a left and a right coideal subalgebra (B`
and Br, respectively) – see Sec. 1.1.1 :

∀x ∈ B` , KV V ′ πV ′(x) = πV (x)KV V ′ ,

∀x ∈ Br , KV ′V πV (x) = πV ′(x)KV ′V .
(2.14)

In the following, we shall choose boundary conditions so that the “tail operators” θab and
θ̂ab belong respectively to the left and right coideal subalgebra B`,r. In contrast, the Ja’s
do not belong to B`,r in general.

In the following, to ligthen the notations, we shall sometimes write Ř := ŘV V ′ , K` :=
KV V ′ and Kr := KV ′V . Similarly, for any element x of the algebra A, we shall write x
instead of πV (x) or πV ′(x) whenever the space on which x acts is clearly specified by the
context.

From (2.13–2.14), we get the commutation relations in the bulk:

Ř(Ja ⊗ 1 + θab ⊗ Jb) = (Ja ⊗ 1 + θab ⊗ Jb)Ř , (2.15)

Ř(θab ⊗ θbc) = (θab ⊗ θbc)Ř , (2.16)

At the boundary, only the tail operators commute with K-matrices:

K`θab = θabK` , Krθ̂ab = θ̂abKr . (2.17)

The Ja’s do not commute in general with the K-matrices, so we introduce two families of
matrices K`,a and Kr,a, defined as:

K`,a := [K`, Ja] , Kr,a := [Kr, Ja] . (2.18)
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2.2.3 “Conserved” charges

The simplest formulation of the associated conserved currents appears in the context of
the diagonal-to-diagonal transfer matrix, which builds the lattice for a vertex model:

. (2.19)

The diagonal-to-diagonal transfer matrix is

t(V, V ′) =
[
KV V ′ ⊗ (ŘV V ′)

⊗(L−1) ⊗KV ′V

]
(ŘV V ′)

⊗L , (2.20)

acting on the space (V ⊗ V ′)⊗L.

By iterating the coproduct (2.9), one constructs the representation of Ja, θab and θ̂ab
on the tensor-product space:

Qa = ∆2L−1(Ja) =
2L∑
k=1

θab1 ⊗ θb1b2 ⊗ . . . θbj−2bk−1
⊗ Jbk−1

⊗ 1⊗ . . .1 ,

Θab = ∆2L−1(θab) = θac1 ⊗ θc1c2 ⊗ . . . θc2L−1b ,

Θ̂ab = ∆2L−1(θ̂ab) = θ̂ac1 ⊗ θ̂c1c2 ⊗ . . . θ̂c2L−1b ,

(2.21)

where the summation of {bk} and {ck} is implied.

The local commutation relations yield:

t(V, V ′)Qa = Qa t(V, V
′) + t`,a(V, V

′) + tr,a(V, V
′) , (2.22)

t(V, V ′) Θab = Θab t(V, V
′) , (2.23)

t(V, V ′) Θ̂ab = Θ̂ab t(V, V
′) , (2.24)

where
t`,a(V, V

′) :=
[
K`,a ⊗ Ř⊗(L−1) ⊗Kr

]
Ř⊗L ,

tr,a(V, V
′) :=

[
K` ⊗ Ř⊗(L−1) ⊗Kr,a

]
Ř⊗L .

(2.25)

In the scaling limit L→∞, the terms t`,a(V, V
′) and tr,a(V, V

′) in (2.23) may be considered
as boundary contributions. In this sense, Qa can be considered as a conserved charge, up
to boundary terms.
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2.2.4 Disorder operators

The BF analog of the ZN disorder operators of Sec. 2.1 is given by the family of operators
{µab} (resp. {µ̂ab}) which insert a “tail”of θ operators:

µab(k) =
∑
{cj}

θac1 ⊗ θc1c2 ⊗ · · · ⊗ θck−1b ⊗ 1⊗ · · · ⊗ 1 ,

µ̂ab(k) =
∑
{cj}

θ̂c1b ⊗ θ̂c2c1 ⊗ · · · ⊗ θ̂ack−1
⊗ 1⊗ · · · ⊗ 1 .

(2.26)

Extending the notation, we may write µab(r̃) [resp. µ̃ab(r̃)] for the action of µab (resp. µ̃ab)
on the face at position r̃. Using the inversion and intertwining relations for the θ’s, we
see that the two-point function of the disorder operators consists in inserting an arbitrary
path between the two points:

∑
c

〈µ̂ac(r̃1)µcb(r̃2)〉 =

b

ã

r1

r̃2 .

2.2.5 Discrete parafermions

Now we notice that each term in the sum for Qa (2.21), which we depict as

Qa =
∑
k

a

(k-th)

,

has a form very similar to the lattice ZN parafermions constructed as ψ = µ × σ in
Sec. 2.1. This suggests the following construction of discrete parafermions in the vertex
model associated to A. The local representation of the Ja’s play the role of spin operators:

σa(k) = 1⊗ · · · ⊗ 1⊗ Ja
(k-th)

⊗ 1⊗ · · · ⊗ 1 . (2.27)

We consider a rhombic embedding of the square lattice, defined by the angle α as follows:

α

V V ′

x1 x4

x3x2
. (2.28)

We denote by α(xj) the angle between the horizontal axis and the dual edge (dotted lines)
passing through xj, and oriented to the right. In (2.28), we have:

α(x1) = α(x3) =
α

2
, α(x2) = α(x4) = −α

2
. (2.29)
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With these conventions, the lattice parafermions operators {ψa} are defined on the edges
of the lattice as

ψa(xj) = e−iα(xj)
∑
b

µab(r̃j)σb(rj) , (2.30)

where rj and r̃j are site and dual site adjacent to xj. The conserved charges Qa are simply
recovered by “integrating” ψa along a horizontal line:

Qa =
∑

x∈ horizontal row

ψa(x) δ`x ,

where δ`x stands for the complex displacement along the dual edges, oriented from left
to right [the dotted lines in (2.28)].

The intertwining relation (2.15) for x = Ja yields the discrete Cauchy-Riemann equa-
tion around a face of the dual lattice:

ψa(x1) δz1 + ψa(x2) δz2 + ψa(x3) δz3 + ψa(x4) δz4 = 0 , (2.31)

where the δzj’s are the anti-clockwise displacements along the dual edges.

The parafermionic nature of ψa is a consequence of the commutation rules (2.11),
which yield:

a
=
∑
b

αab b . (2.32)

Hence the matrix α in (2.11) is nothing but the monodromy matrix of the “disorder”
operators µab’s around a “spin” operator σb.

Thus, the Bernard-Felder construction [46] naturally produces discretely holomorphic
operators ψa for integrable vertex models. Due to the identity (2.32), these operators are
parafermionic, i.e. they transform with a monodromy matrix αab when one operator is
moved around another one within a correlation function.

2.2.6 Application to the six-vertex model

Let us describe explicitly the BF construction in the simple example of the six-vertex
model. The six-vertex model (1.8) with q = eiη is based on the Uq(ŝl2) algebra (1.2) and its
two-dimensional representation (1.6). On the lattice (2.19), we take the representations:

V = Ve−iu/2 , V ′ = Ve+iu/2 . (2.33)

The Uq(ŝl2) algebra satisfies the BF requirements (2.9–2.11) if we organise the gener-
ators as:

Ji = ei , J̄i = ēi := qtifi , (2.34)

θi = θ̄i = ti , θ̂i = ̂̄θi = t−1
i , (2.35)

for i = 0, 1. The “tail operators” take the simple form:

µi(k) = ti ⊗ · · · ⊗ ti
k−th
⊗ 1⊗ · · · ⊗ 1 . (2.36)
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The BF commutation rules (2.11) are given by (1.2):

t−1
i ei = q−2 eit

−1
i , t−1

i ēi = q2 ēit
−1
i . (2.37)

It turns out that it is convenient to associate the generators ei to holomorphic operators,
and the ēi’s to anti-holomorphic operators2. Hence, we write:

ψi(x) = e−iαr µi(r̃) ei(r) , ψ̄i(x) = e+iαr µi(r̃) ēi(r) , (2.38)

with the same conventions as in (2.30). From the commutation rules (2.37), their respec-
tive internal spins satisfy:

exp(2iπsi) = exp(2iη) , exp(2iπs̄i) = exp(−2iη) . (2.39)

Let us describe the explicit form of ψ0:

ψ0(k) =


e+iα × q−σz ⊗ · · · ⊗ q−σz ⊗ e−iu/2σ−

(k−th)
⊗ 1⊗ · · · ⊗ 1

e−iα × q−σz ⊗ · · · ⊗ q−σz ⊗ e+iu/2σ−
(k−th)

⊗ 1⊗ · · · ⊗ 1
(2.40)

if the edge k carries the representation V = Ve−iu/2 or V ′ = Ve+iu/2 , respectively. We can
use the relation between the spectral parameter and the opening angle: α = πu/λ. Hence
we can write

ψ0(k) = e−is0αk × q−σz ⊗ · · · ⊗ q−σz ⊗ σ−
(k−th)

⊗ 1⊗ · · · ⊗ 1 , (2.41)

where s0 = 1− λ
π

= η
π
. This is compatible with the monodromy property (2.39). Similarly,

we have
s0 = s1 =

η

π
, s̄0 = s̄1 = −η

π
. (2.42)

Finally, let us discuss the interpretation of the parafermionic operators in the scaling
limit of the 6V model, i.e. the compactified boson theory (1.63). Since e0, ē1 (resp. e1, ē0)
lower (resp. raise) the magnetisation by one unit, the parafermions ψ0, ψ̄1 (resp. ψ1, ψ̄0)
carry a vortex charge m = −1 (resp. m = +1). Due to the non-local nature of the µi
operators, the vertex charge e for these parafermions is allowed to be non-integer. The
internal spin is given by s = em, which yields the value of the “electric charge” e0 = −η/π
and e1 = +η/π for the operators We,m (1.66) corresponding to the parafermions:

ψ0 ∝ We0,−1 , ψ̄0 ∝ We0,+1 ,

ψ1 ∝ We1,+1 , ψ̄1 ∝ We1,−1 .
(2.43)

In the subsequent sections, we shall use the 6V conserved currents (2.38) to construct
discretely holomorphic parafermions in loop and face models, by applying the exact map-
pings of Sec. 1.1.4.

2.3 Discrete parafermions in integrable lattice mod-

els

2.3.1 Loop models

The Temperley-Lieb (TL) loop model with loop weight n = −2 cos η is related to the
6V model by the exact mapping described in Sec. 1.1.2. Let us use this mapping to

2Note that this is a matter of convention, since the discrete Cauchy-Riemann relations (2.31) actually
form an underdetermined linear system for the ψa’s on the full lattice.
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a

b

Figure 2.2: The one-point function of the parafermionic current ψ0 in the TL loop model
with reflecting boundary conditions.

translate the 6V conserved currents (2.38) into discrete parafermions for the TL loop
model. For simplicity, we describe the one-point function of parafermions in a simply-
connected domain, but the construction extends naturally to n-point correlation functions,
and more general surfaces.

We consider the TL loop model on a domain of the square lattice, with reflecting
boundary conditions everywhere, except at two given boundary points a and b, where a
single path γ is inserted: see Fig. 2.2. By applying the mapping of Sec. 1.1.2, the following
correlation function can be shown [43] to correspond to the one-point function 〈ψ0(x)〉 in
the 6V model with appropriate boundary conditions:

〈ψ0(x)〉loop :=
1

Z

∑
C|x∈γ

W (C) ei(1−2η/π)θx(C) , (2.44)

where the sum is over every loop configuration C such that the path γ (in red and green
in Fig. 2.2) passes through x, W (C) is the Boltzmann weight (1.31), and θx(C) is the
winding angle of the path γ from the boundary point a to x. Similarly, the average value
of the discrete parafermions associated to ē0, e1, ē1 are:

〈ψ̄0(x)〉loop :=
1

Z

∑
C|x∈γ

W (C) e−i(1−2η/π)θx(C) ,

〈ψ1(x)〉loop :=
1

Z

∑
C|x∈γ

W (C) e−iθx(C) ,

〈ψ̄1(x)〉loop :=
1

Z

∑
C|x∈γ

W (C) e+iθx(C) .

(2.45)

In a general correlation function, one may define 〈ψi(x) . . . 〉 and 〈ψ̄i(x) . . . 〉 as the inser-
tion of two open paths starting at x, with a phase factor associated to the winding of
these paths. These objects satisfy the discrete Cauchy-Riemann equations (2.7–2.8) as
operators. The internal spins of these operators are, respectively:

σ0 = 1− 2η

π
, σ1 = −1 +

2η

π
, σ̄0 = +1 , σ̄1 = −1 . (2.46)
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In terms of the CG action (1.70) associated to the loop model in the scaling limit,
one can identify the parafermionic operators with the chiral degenerate operators and
screening charges:

ψ0 ∝ φ13(z) , ψ̄0 ∝ φ̄13(z̄) ,

ψ1 ∝ φ1,−1(z) , ψ̄1 ∝ φ̄1,−1(z̄) .
(2.47)

Interestingly, the parafermions ψ0 and ψ̄0 have the conformal dimension of the boundary
two-leg operator, i.e. the operator inserting two open paths at a boundary point. This
is easy to interpret, from the basic principles of boundary CFT [30]. Let us consider
the half-plane geometry to simplify this argument. The correlation functions of the bulk
operator ψ0(z, z̄) = φ13(z) × 1(z̄) on the upper half-plane H are obtained through the
method of images:

〈ψ0(z, z̄) . . . 〉H = 〈φ13(z)1(z̄) . . . 〉C = 〈φ13(z) . . . 〉C .

As we approach z to a boundary point z → zB ∈ R, the operator ψ0(z, z̄) thus behaves like
φ13(zB). Consistently, on the lattice, as x approaches the boundary, the phase factors in
(2.44) are all fixed to the same value, and ψ0(x) reduces to the boundary two-leg operator.

2.3.2 Face models

In this section, we explain the construction [45] of discrete parafermions in unrestricted
SOS models, by applying the vertex-IRF correspondence (1.39–1.40) to the BF conserved
currents of the 6V model. At this point it is convenient to introduce a graphical convention
for the Baxter’s intertwiners [70, 71]:

φ(a, b|u) = a b

u

, φ−(a, b|u) = a b
u

, φ+(a, b|u) = a b
u

.

The building blocks for discrete parafermions in the SOS model will then be the “dressed”
Chevalley generators defined as:

u

b

c

a
= Fi

(
a
b
c

∣∣∣∣u) = φ−(a, c|u) fi φ(a, b|u) , (2.48)

u

b

c

a
= F̄i

(
a
b
c

∣∣∣∣u) = φ−(a, c|u) f̄i φ(a, b|u) , (2.49)

a

d c

b

u = T+
i

(
a b
d c

∣∣∣∣u) = φ+(d, c|u) ti φ(a, b|u) , (2.50)

a

d c

b

u = T−i

(
a b
d c

∣∣∣∣u) = φ−(d, c|u) t−1
i φ(a, b|u) , (2.51)
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where f̄i = ei t
−1
i .

Consider the SOS model on a simply-connected domain with fixed boundary condi-
tions. The one-point function of lattice parafermions ψi(r) (resp. ψ̄i(r)) are defined by
the insertion of an Fi (resp. F̄i) plaquette at position r, together with a path of T±i
connecting r to a reference point on the boundary:

〈ψ0(x)〉SOS = . (2.52)

Through the vertex-IRF correspondence, this one-point function can be shown to corre-
spond to 〈ψ0〉 in the 6V model. Analogous arguments can be made to construct multi-
point correlation functions of the ψi’s and ψ̄i’s in the unrestricted SOS model. The internal
spins for ψ0, ψ̄0, ψ1, ψ̄1 are, respectively:

τ0 = 1 , τ̄0 = −1 , τ1 = 1− 2η

π
, τ̄0 = −1 +

2η

π
. (2.53)

The general CFT interpretation of these operators is quite a subtle issue, in particular
because the CFT describing the scaling limit of unrestricted SOS models is not well
understood. In the rational case when η = πp′/p, where p and p′ are coprime integers,
the Boltzmann weights become periodic under a 7→ a + p, and one obtains the Cyclic
Solid-On-Solid (CSOS) model: see Sec. 1.1.3. The latter has a finite number of height
configurations, and a well-defined scaling limit, with the same central charge as the RSOS
model (see Sec. 1.2.3), but a different operator content. In this context, the operators
ψ1 and ψ̄1 have conformal dimensions corresponding to the degenerate operators φ13 and
φ̄13, similarly to ψ0, ψ̄0 in the loop model.

N.B. : The above construction does not extend directly to the case of RSOS models,
because the vertex-IRF local relations (1.39–1.40) are only valid for the unrestricted SOS
models.

2.3.3 Clock models

Unlike the Temperley-Lieb loop and the SOS models, the chiral Potts model is not based
on the evaluation representation of the Uq(ŝl2) algebra, but on the cyclic representa-
tion (1.51), which only exists at roots of unity q = −eiπ/N . The construction of lattice
conserved currents associated to the Chevalley generators in this family of representa-
tions, even though it is more technical, is very similar to that of 6V conserved currents
explained in Sec. 2.2.6. Let us outline the main results of this construction [44].

Due to the form of the operators ei, fi, ti in the cyclic representation (1.51), when
applying the BF construction, the “tail” operators associated to the ti’s insert a ZN defect
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path of matrices Z (1.52), precisely like the ZN disorder operators described in Sec. 2.1,
whereas the ei’s and fi’s measure the local spin through the matrix X, and correspond to
spin operators (and they also include a defect contribution Z corresponding to the end of
the “tail”).

At the isotropic critical point, where the chiral Potts model reduces to the critical FZ
lattice model [77], the parafermions obtained by the BF procedure from the generators ei
and ēi are exactly the ψp’s and ψ̄p’s (2.5) with p = 1. Hence, the discrete Cauchy-Riemann
relations (2.7–2.8), which were observed empirically in [38], are in fact a consequence of

the intertwining relations of the underlying Uq(ŝl2) algebra.

An interesting feature of the chiral Potts model is that it remains integrable and ZN
invariant outside the critical point k = 0. However, outside criticality, the embedding
of star-triangle relations into adjacent rhombi, which relies on the additivity of spectral
parameters, does not hold anymore. Let us extend the rhombic embedding from the
critical FZ model to a generic value of k: a plaquette with incoming spectral parameters
a and b has an opening angle α = ua − ub. In [44], we proposed the following definition
of off-critical parafermions:

ψi(x) = e−iαx−iεxφ/N µi(r̃) ei(r) , ψ̄i(x) = e+iαx+iφ/N µi(r̃) ēi(r) , (2.54)

for i = 0, 1, and where εx = ±1, depending on the parity of the edge x. With this
definition, the overall dependence on spectral parameters reduces to a factor e±isαx , where
s = 1 − 1/N is the internal spin of the parafermion (2.5) with ZN charge p = 1. These
off-critical lattice parafermions then obey twisted discrete Cauchy Riemann relations:

e+ iφa
N ψi(x1) δz1 + e+

iφb
N ψi(x2) δz2 + e−

iφa
N ψi(x3) δz3 + e−

iφb
N ψi(x4) δz4 = 0 , (2.55)

e−
iφa
N ψ̄i(x1) δz̄1 + e−

iφb
N ψ̄i(x2) δz̄2 + e+ iφa

N ψ̄i(x3) δz̄3 + e+
iφb
N ψ̄i(x4) δz̄4 = 0 . (2.56)

At the critical, isotropic point k = 0, we have φ = φ̄ = 0, and we recover the discrete
Cauchy-Riemann equations (2.7–2.8).

For small deviations from criticality, in the scaling limit, the chiral Potts model can be
shown [87] to correspond to a perturbation of the FZ parafermionic CFT by the energy
operator ε with conformal dimension hε = 2/(N +2) and its descendants W−1ε and W̄−1ε
under the WN algebra :

S = SFZ +

∫
d2r
(
g0 ε+ g1W−1ε+ ḡ1 W̄−1ε

)
, (2.57)

where g0, g1, ḡ1 are some effective coupling constants.
From a general perturbation theory argument (see [88]), one expects the off-critical

currents to satisfy the massive Cauchy-Riemann equations:

∂̄ψ = πg0χ+ πg1W−1χ+ πḡ1W̄−1χ , (2.58)

where χ is the operator in the 1/z term of the OPE ψ(z)ε(0) in the unperturbed FZ CFT:

ψ(z)ε(0) = · · ·+ χ(0)

z
+ . . . (2.59)

By a simple dimensional analysis, we see that this operator must have conformal dimen-
sions:

hχ = hψ + hε − 1 , h̄χ = hε . (2.60)
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In particular, χ should have conformal spin sχ = hχ − h̄χ = hψ − 1 = 1/N . Hence, in
the RHS of (2.58), we expect primary operators with conformal spins 1/N , 1/N + 1 and
1/N−1. It can be checked explicitly that the twisted CR relations (2.55), when expanded
around k = φ = φ̄ = 0, produce lattice operators with exactly these three values of the
internal spin. Hence, (2.55) can be considered as a lattice analog of the massive CR
equation (2.58).

44



Chapter 3

Operator algebra of non-rational
CFTs

3.1 The operator algebra for loop models

3.1.1 The conformal bootstrap for non-scalar operators

Loop models such as the Temperley-Lieb and O(n) model have a discrete, infinite spec-
trum of conformal dimensions: see Sec. 1.2.2. This spectrum includes non-scalar opera-
tors, namely the mixed operators Wem with dimensions (h, h̄) = (hem, he,−m), where m
is a positive integer, and e ∈ Z/m. Let us examine the consistency of the bootstrap
approach in this context [61].

From the chiral fusion rules of the degenerate field Φ21, with the Coulomb Gas param-
eterisation h(α) = α(α− 2Q), we can a priori expect four terms in the OPE:

Φ21 × Φh(α),h(ᾱ) →
∑

(ε,ε̄)∈{−1,1}2
Φ
h(α−ε b−1

2
), h(ᾱ−ε̄ b−1

2
)
. (3.1)

In the OPE Φ21(0)Φh(α),h(ᾱ)(z, z̄), as z → 0, the term (ε, ε̄) comes with a factor:

z−h21−h(α)+h(α−εb−1/2) z̄ −h21−h(ᾱ)+h(ᾱ−ε̄b−1/2) . (3.2)

The factor picked by this term under the monodromy (z, z̄) → (e2iπz, e−2iπz̄) is e2iπη(ε,ε̄),
where the monodromy exponent η is given by:

η(ε, ε̄) := [h(α− εb−1/2)− h(α)]− [h(ᾱ− ε̄b−1/2)− h(ᾱ)] (3.3)

= −b−1[ε(α−Q)− ε̄(ᾱ−Q)] . (3.4)

Inside a correlation function 〈Φ21(0)Φh,h̄(z, z̄) . . . 〉, if several terms from the RHS of (3.1)
are included, they should have the same monodromy factor e2iπη, so that the correlation
function has a well-defined monodromy around z = 0.

In the loop model, we shall parameterise the primary fields as:

Φr1 = Φh(αr1),h(αr1) , Wem = Φh(αem),h(αe,−m) . (3.5)

We obtain the monodromy exponents:

η(ε, ε̄) =

{
(ε− ε̄) rb−2−1

2
for Φr1 ,

(ε− ε̄) eb−2

2
− (ε+ ε̄)m

2
for Wem .

(3.6)
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We restrict to the case of a generic central charge, i.e. when b2 is not a rational. For
the “energy-like” operators Φr1 with r = 2, 3, 4 . . . and for mixed operators Wem with
both e and m nonzero, only the terms with ε = ε̄ can coexist in a correlation function,
corresponding to the fusion rules1:

Φ21 × Φr1 → Φr−1,1 + Φr+1,1 , (3.7)

Φ21 ×Wem → We−1,m +We+1,m (e 6= 0,m 6= 0) . (3.8)

3.1.2 Non-scalar shift equation

We consider the four-point function:

G(z, z̄) = 〈Φ1(∞)Φ2(1)Φ3(z, z̄)Φ21(0)〉 , (3.9)

where Φ1,Φ2,Φ3 can be any (scalar or non-scalar) primary fields of the loop model, except
those of the form W0m. The analysis of (3.9) is similar to the case of scalar operators
developed in Sec. 1.3.2, except that the holomorphic and anti-holomorphic parts may
carry distinct exponents [61]. First, the null-vector equations for Φ21 are:

(L−2 − b2 L2
−1)Φ21 = 0 , (L̄−2 − b2 L̄2

−1)Φ21 = 0 . (3.10)

After the rescaling:

G(z, z̄) = z−
α3
b z̄ −

ᾱ3
b (1− z)h21−h2−h3−α1

b (1− z̄)h21−h̄2−h̄3− ᾱ1
b × g(z, z̄) , (3.11)

we obtain the hypergeometric equations:

z(1− z)∂2
zg + [C − (A+B + 1)z]∂zg − AB g = 0 ,

z̄(1− z̄)∂2
z̄g + [C̄ − (Ā+ B̄ + 1)z̄]∂z̄g − ĀB̄ g = 0 ,

(3.12)

with parameters

A = 2h21 − (α1 + α2 + α3)/b , Ā = 2h21 − (ᾱ1 + ᾱ2 + ᾱ3)/b ,

B = 2h21 − [α1 + (2Q− α2) + α3]/b , B̄ = 2h21 − [ᾱ1 + (2Q− ᾱ2) + ᾱ3]/b ,

C = b−2 − 2α3/b , C̄ = b−2 − 2ᾱ3/b .

(3.13)

We denote by {I1, I2} and {Ī1, Ī2} the holomorphic and anti-holomorphic bases of solutions
converging on the disc |z| < 1, and {J1, J2} and {J̄1, J̄2} the analogous solutions for
|z − 1| < 1 : see (1.98–1.100). The physical correlation is given by the bilinear forms:

g(z, z̄) =
∑
i,j

Xij Īi(z̄) Ij(z) =
∑
k,`

Yk` J̄k(z̄) J`(z) . (3.14)

1In the limiting case of mixed operators W0m with m = 1, 2, 3 . . . all the terms (ε, ε̄) in the OPE
Φ21 ×W0m have integer monodromy exponent η. This suggests the presence of unconventional terms in
the fusion rule:

Φ21 ×W0m →W1m +W−1,m + . . .

The logarithmic nature (i.e. the non-diagonalisable nature of the evolution operator L0 + L̄0) should be
taken into account to properly analyse this particular fusion rule, which goes beyond the scope of the
present study.
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Denoting by P (resp. P̄ ) the change of basis from {I1, I2} to {J1, J2} (resp. from {Ī1, Ī2}
to {J̄1, J̄2}), we have:

Y = P̄ tX P . (3.15)

From the above analysis of OPEs (3.7–3.8), only the diagonal terms i = j and k = ` are
allowed. This yields the linear system for X1 := X11 and X2 := X22:

p̄11p12X1 + p̄21p22X2 = 0 ,

p̄12p11X1 + p̄22p21X2 = 0 .
(3.16)

The determinant of this system is

det = g ḡ
[
s(C̄ − Ā)s(C̄ − B̄)s(A)s(B)− s(Ā)s(B̄)s(C − A)s(C −B)

]
, (3.17)

where s(x) := sin(πx)/π and

g := Γ(C)Γ(2− C)Γ(D)Γ(−D) , ḡ := Γ(C̄)Γ(2− C̄)Γ(D̄)Γ(−D̄) . (3.18)

For any j = 1, 2, 3, we introduce the integer number

mj =

{
0 if Φj = Φr1 ,

m if Φj = Wem .
(3.19)

We get:

Ā = A+m1 +m2 +m3 , B̄ = B +m1 −m2 +m3 , C̄ = C + 2m3 , (3.20)

and hence the determinant vanishes, and we can write the solution as:

X1

X2

= − p̄21p22

p̄11p12

= −p21p̄22

p11p̄12

=
√
x−1/b(α1, α2, α3)x−1/b(ᾱ1, ᾱ2, ᾱ3) , (3.21)

where

x−1/b(α1, α2, α3) =
γ(2− C)

γ(C)
× γ(A)γ(B)γ(C − A)γ(C −B) ,

x−1/b(ᾱ1, ᾱ2, ᾱ3) =
γ(2− C̄)

γ(C̄)
× γ(Ā)γ(B̄)γ(C̄ − Ā)γ(C̄ − B̄) .

(3.22)

This leads to shift equations where the RHS is the geometric mean of the holomorphic
and anti-holomorphic contributions:

C(Φ1,Φ2,Φ
′
3)

C(Φ1,Φ2,Φ3)
=
√
u−1/b(α1, α2, α3)K−1/b(α3)u−1/b(ᾱ1, ᾱ2, ᾱ3)K−1/b(ᾱ3) , (3.23)

where we have used the CG parameterisation:

Φ3 = Φh(α3),h(ᾱ3) , Φ′3 = Φh(α3−b−1),h(ᾱ3−b−1) =

{
Φr+2,1 if Φ3 = Φr1 ,

We+2,m if Φ3 = Wem , e 6= −1 ,

(3.24)
and the functions u−1/b and K−1/b are obtained from Sec. 1.3.2 by the change b→ −1/b.
We have

u−1/b(α1, α2, α3) =
γ(2b−2 − 1− α123/b)γ(b−2 − α2

13/b)γ(b−2 − α1
23/b)

γ(−α3
12/b)

, (3.25)

K−1/b =

√
γ(2− b−2 + 2α/b) γ(2− 3b−2 + 2α/b)

γ(b−2 − 2α/b)
, (3.26)

where α123 := α1 + α2 + α3, and αkij := αi + αj − αk.
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3.1.3 Expression of the structure constants

First, the energy-like operators Φr1 are all scalar and form a closed subalgebra. Their
structure constants can be treated like for the case of minimal models: see Sec. 1.3.3.
One has the fusion rules

Φr1 × Φr′1 →
r+r′−1∑

k=|r−r′|+1

k≡r+r−1 [2]

Φk1 . (3.27)

In particular, for r = r′, the structure constants are given by:

C(Φr1,Φr1,Φ2k+1,1) =
k∏
`=1

γ2(%`)
√
γ[2− %(2`− 1)] γ[2− %(2`+ 1)]

γ[2− %(r + `)] γ[%(r − `)] γ[%(2`− 1)]
, (3.28)

where % := b−2.

Through a similar argument, by solving the recursion equation (3.23), one gets the
structure constants of the form:

C(Wem,W−e,m,Φ2k+1,1) =
k∏
`=1

√
µe,m,` µ−e,m,` , (3.29)

µe,m,` :=
γ(`%−m) γ(`%+m)

√
γ[2− %(2`− 1)] γ[2− %(2`+ 1)]

γ[2− (e+ `)%] γ[(e− `)%] γ[%(2`− 1)]
. (3.30)

3.1.4 Generalised three-point amplitudes

Although the vertex operators in the CG description of the loop model are restricted to
the set of “energy-like” operators Φr1 by the compactification condition in (1.70), it is
possible to define two- and three-point correlation functions in the lattice model, which
relate to vertex operators with generic vertex charge.

As explained in Sec. 1.2.1 for the case of the 6V model, the two-point function of
vertex operators corresponds to the insertion of a twist line. For the loop model on the
sphere, the two-point function:

〈Vκ/2b(r1)V2Q−κ/2b(r2)〉CG (3.31)

changes the fugacity of non-contractible loops on the sphere punctured at r1 and r2 to
the value

n′ = 2 cos(λ− πκ) . (3.32)

We denote by Zn′(r1, r2) the corresponding modified loop partition function. In particular,
the charge α1/2,0 corresponds to πκ = λ − π/2 and n′ = 0. In this case, the two-
point function only counts the configurations with contractible loops on the punctured
sphere. In terms of the related Fortuin-Kasteleyn cluster model, these are the cluster
configurations where r1 and r2 sit on the same connected component.

In [56] it was suggested to extend these ideas to three-point functions, in the case of
critical percolation. Consider the three-point connectivity, i.e. the probability that three
given points r1, r2, r3 sit on the same percolation cluster. Naively, this should correspond
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to the CG three-point function of Vα1/2,0
, but, since it is impossible to obtain any neutral

combination of three charges α±1/2,0 (even by introducing screening charges V1/b), this
three-point function does not make sense in the CG formalism. Nevertheless, there is
strong numerical evidence that the three-point amplitude of connectivities coincides with
the imaginary Liouville OPE coefficient:

Pc(r1, r2, r3)√
Pc(r1, r2)Pc(r2, r3)Pc(r1, r3)

= CIL(α1/2,0, α1/2,0, α1/2,0) , (3.33)

where Pc(r1, . . . , rn) is the probability that r1, . . . , rn sit on the same percolation cluster,
and CIL is the c = 0 imaginary Liouville OPE coefficient (1.123).

Using the transfer-matrix approach, we have given further numerical evidence [58]
that this result generalises to the O(n) and TL loop models with any loop fugacity in the
critical regime −2 < n < 2, and for any triplet of modified loop fugacities. We introduce

nj = 2 cos(λ− πκj) , j = 1, 2, 3 , (3.34)

and we define Zn1,n2,n3(r1, r2, r3) as the partition function where the loops which separate
one point rj from the other two gets a modified fugacity nj. If we denote

αj =
κj
2b
, hj = αj(αj − 2Q) , (3.35)

our numerical studies on infinite cylinders show that, in the scaling limit

Znj(r1, r2)

Z
=

A(nj)

|r1 − r2|4hj
, (3.36)

Zn1,n2,n3(r1, r2, r3)

Z
=

A(n1)A(n2)A(n3)× CIL(α1, α2, α3)

|r1 − r2|2(h1+h2−h3) |r2 − r3|2(h2+h3−h1) |r1 − r3|2(h1+h3−h2)
, (3.37)

where A(nj) is the non-universal two-point amplitude associated to Znj .

3.2 Non-diagonal imaginary Liouville and Toda mod-

els

3.2.1 The Virasoro case

Consistency conditions on OPEs

We consider the non-diagonal imaginary Liouville CFT, i.e. the CFT with central charge
c ≤ 1, where the spectrum is generated by the Virasoro algebra acting on all possible
scalar or non-scalar primary operators, which we parameterise as vertex operators. It
contains, by assumption, the two degenerate fields Φ12 and Φ21. The central charge is
written as c = 1− 6(1/b− b)2, with b2 irrational. We want to examine the consistency of
OPEs of these degenerate fields with generic non-scalar vertex operators (see [62]). For
OPEs with Φ12, the possible terms are

Φ12 × Vα,ᾱ →
∑

ε,ε̄∈{−1,1}2
Vα+ εb

2
,ᾱ+ ε̄b

2
. (3.38)
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The monodromy exponent associated to the term (ε, ε̄) is

η(ε, ε̄) = b [ε(α−Q)− ε̄(ᾱ−Q)] . (3.39)

For a given value ε ∈ {−1, 1}, we have

η(ε, 1)− η(ε,−1) = −2b(ᾱ−Q) . (3.40)

If the two terms (ε, 1) and (ε,−1) coexist in an OPE, then the difference of their mon-
odromy exponents should be an integer, which forces ᾱ to be of the form ᾱ = α0s with
s ∈ Z. Similarly, the terms (1, ε̄) and (−1, ε̄) can only coexist if α = αr0. In the following,
we shall consider generic vertex operators, whose vertex charges α, ᾱ are not of the form
α0s or αr0.

Under this condition, the only possible coexisting terms in the RHS of (3.38) are
Vα+b/2,ᾱ+b/2 +Vα−b/2,ᾱ−b/2 and Vα+b/2,ᾱ−b/2 +Vα−b/2,ᾱ+b/2. The first possibility implies that
the difference (η(1, 1)−η(−1,−1)) is an integer, which yields the condition α− ᾱ ∈ Z/2b.
The second possibility can be reparameterised by using the identity h(2Q− α) = h(α) :

Φ12 × Vα,ᾱ → Vα+b/2,ᾱ−b/2 + Vα−b/2,ᾱ+b/2 ≡ V2Q−α−b/2,ᾱ−b/2 + V2Q−α+b/2,ᾱ+b/2 , (3.41)

which amounts to the previous case, with α replaced by α̂ = 2Q−α. Hence, without loss
of generality, we shall always consider the case:

Φ12 × Vα,ᾱ → Vα+b/2,ᾱ+b/2 + Vα−b/2,ᾱ−b/2 ,

α− ᾱ ∈ Z
2b
.

(3.42)

Once the conventional choice between α and 2Q − α has been made, the OPE with
the second degenerate field Φ21 has two genuinely different possible forms:

Φ21 × Vα,ᾱ →

{
Vα−b−1/2,ᾱ−b−1/2 + Vα+b−1/2,ᾱ+b−1/2 if α− ᾱ ∈ Zb/2
Vα−b−1/2,ᾱ+b−1/2 + Vα+b−1/2,ᾱ−b−1/2 if 2Q− α− ᾱ ∈ Zb/2

(3.43)

Spectrum of primary fields

The above argument leads to a classification of the primary fields of the model into two
classes V

(±)
α,ᾱ , according to their OPEs with Φ12 and Φ21:

Φ12 × V (ε)
α,ᾱ → V

(ε)
α+b/2,ᾱ+b/2 + V

(ε)
α−b/2,ᾱ−b/2 ,

Φ21 × V (ε)
α,ᾱ → V

(ε)

α−b−1/2,ᾱ−εb−1/2 + V
(ε)

α+b−1/2,ᾱ+εb−1/2 .
(3.44)

The charges for V
(+)
α,ᾱ satisfy α − ᾱ ∈ Z/2b ∩ Zb/2. Since b2 is irrational, this means

that α = ᾱ, and hence the operator is scalar. The charges for V
(−)
α,ᾱ satisfy

α− ᾱ = −e
b
, 2Q− α− ᾱ = −mb , (e,m) ∈ (Z/2)2 , (3.45)

which gives, in Kac notations:

α = αem , ᾱ = α−e,m . (3.46)

The dimensions of operators V
(−)
α,ᾱ have a form similar to the “mixed” operators Wem in

the loop model. However, the range of indices is quite different. In particular, for m 6= 0,
the fractional values e ∈ Z/m are not allowed in the non-diagonal imaginary Liouville
model.
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Structure constants

The structure constants of vertex operators satisfy two shift equations:

C(V1, V2, V
(ε3)
α3+b,ᾱ3+b)

C(V1, V2, V
(ε3)
α3,ᾱ3

)
=
√
ub(α1, α2, α3)Kb(α3)ub(ᾱ1, ᾱ2, ᾱ3)Kb(ᾱ3) , (3.47)

C(V1, V2, V
(ε3)
α3−ε3/b,ᾱ3−ε3/b)

C(V1, V2, V
(ε3)
α3,ᾱ3

)
=
√
u−1/b(α1, α2, α3)K−1/b(α3)u−1/b(ᾱ1, ᾱ2, ᾱ3)K−1/b(ᾱ3) ,

(3.48)

where the functions ub, Kb are defined in Sec. 1.3.2.
In the case ε3 = +1, α3 = ᾱ3, the operator V

(+)
α3,α3 is a scalar vertex operator with

unconstrained real vertex charge. The unique solution of the shift equations is then [62]

C(V1, V2, V
(+)

3 ) =
√
CIL(α1, α2, α3)CIL(ᾱ1, ᾱ2, α3) , (3.49)

where CIL is the imaginary Liouville OPE coefficient (1.123).

3.2.2 The W3 case

The imaginary Toda CFT

The imaginary Toda CFT is defined by the action:

A[φ] =

∫
d2x

8π

√
|g|
[
∂µφ · ∂µφ+ 2iR(x)Q · φ+ :eie1·φ/b: + :eie2·φ/b:

]
, (3.50)

where e1, e2 are the sl3 roots, ρ = e1 + e2, and Q = (1/b− b)ρ. It was shown in [81] that
the conserved currents for this action generate the W3 algebra.

The central charge is given by

c = 2− 12Q2 . (3.51)

The vertex operator Vα = :eiα·φ: has eigenvalues for L0 and W0:

hα =
1

2
α · (α− 2Q) , (3.52)

wα =

√
48

22 + 5c

3∏
j=1

[(α−Q) · hj] . (3.53)

We let the Weyl group W act on vertex charges as

∀x ∈ W , x ?α := Q+ x(α−Q) . (3.54)

The eigenvalues are then invariant under this action of W :

∀x ∈ W , (hx?α, wx?α) = (hα, wα) . (3.55)

The vertex charges associated to degenerate fields are of the form:

α

(
n1 m1

n2 m2

)
=
[
(1− n1)b−1 − (1−m1)b

]
ω1 +

[
(1− n2)b−1 − (1−m2)b

]
ω2 , (3.56)

with n1, n2,m1,m2 positive integers.
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Structure constants for scalar operators

Consider the correlation function of scalar operators

〈Vα1(∞)Vα2(1)Vα3(z, z̄)Φ(
1 2

1 1

)(0)〉 . (3.57)

If one of the vertex charges, say α3, is of the form α3 = κω1, then the null-vector condition

on Φ
(

1 2

1 1

)
translates into a generalised hypergeometric differential equation on (3.57),

and the conformal bootstrap approach can be applied [83, 84, 85]. The same can be done

with Φ
(

2 1

1 1

)
. Combining the resulting shift equations, one gets the unique solution [63]:

CIT(α1,α2, κω1) = M(κ)×
∏3

k,`=1 Υb[b− (α1 −Q) · hk − (α2 −Q) · h` + κ/3]√∏2
i=1

∏
e>0 Υb[b+ (αi −Q) · e]Υb[b− (αi −Q) · e]

,

(3.58)
where the product in the denominator is over positive roots e ∈ {e1, e2,ρ}, and the
normalising factor is

M(κ) =
1

Υb(b)3

√
Υb(b)Υb(3b−1 − 2b)

Υb(b+ κ)Υb(3b−1 − 2b− κ)
. (3.59)

Consistency of non-scalar OPEs

Like in the case of imaginary Liouville, one may consider non-scalar vertex operators

Vα,ᾱ, and examine the consistency of their OPEs with the degenerate operators Φ
(

1 2

1 1

)

and Φ
(

2 1

1 1

)
. Following an analogous argument to Sec. 3.2.1, we find that the vertex

operators are labelled by a pair of vertex charges (α, ᾱ), together with a permutation
σ ∈ S3, subject to the constraints:

α− ᾱ ∈ R∗/b , α− σ ? ᾱ ∈ bR∗ , (3.60)

where R∗ is the sl3 weight lattice defined above. The permutation σ characterises the
fusion rules as follows:

Φ

(
1 2
1 1

)
× V (σ)

α,ᾱ =
3∑
j=1

V
(σ)
α+bhj ,ᾱ+bhj

, (3.61)

Φ

(
2 1
1 1

)
× V (σ)

α,ᾱ =
3∑
j=1

V
(σ)
α−hσ(j)/b,ᾱ−hj/b . (3.62)

The reparameterisation (α, ᾱ, σ)→ (µ?α, µ ? ᾱ, µσµ−1) leaves the constraint (3.60) and
the rules (3.61–3.62) invariant, so the vertex operators are classified by the conjugacy
classes of σ in S3:

• The case σ = 1 corresponds to scalar operators α = ᾱ ∈ R2.
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• When σ is a cyclic permutation, say σ = (123), we get vertex charges of the form:

α = α

(
n1 m1

n2 m2

)
, ᾱ = α

(
n2 m1

−n1 − n2 m2

)
, (3.63)

where (n1, n2,m1,m2) ∈ (Z/3)4, with n1 −m1 ∈ Z and n2 −m2 ∈ Z.

• When σ is a transposition, say σ = (12), the constraints (3.60) translate into

α = Q+ β h3 + (−r/b+ sb) e1 , (3.64)

ᾱ = Q+ β h3 + (+r/b+ sb) e1 , (3.65)

with β ∈ R and (r, s) ∈ (Z/2)2. This is a mixed situation, where the h3 component
of the charge is unconstrained, whereas the e1 component is quantised.

Structure constants of non-scalar operators

From the analysis of the four-point functions

〈Vα1,ᾱ1Vα2,ᾱ2Vα3,ᾱ3Φ

(
1 2

1 1

)
〉 and 〈Vα1,ᾱ1Vα2,ᾱ2Vα3,ᾱ3Φ

(
2 1

1 1

)
〉 , (3.66)

with α3 = κω1, ᾱ3 = κ̄ω1, one gets shift equations on the structure constants

C(Vα1,ᾱ1 , Vα2,ᾱ2 , Vκω1,κ̄ω1) . (3.67)

Like in the non-diagonal imaginary Liouville case, if we further impose that one of the
fields is scalar, we get the simple result:

C(Vα1,α1 , Vα2,ᾱ2 , Vκω1,κ̄ω1) =
√
CIT(α1,α2, κω1)CIT(α1, ᾱ2, κ̄ω1) . (3.68)
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Conclusion

On the lattice, as far as discrete holomorphic parafermions are concerned, the series of pa-
pers [43, 44, 45] introduced a generic method for constructing these objects in many types
of integrable lattice models, using the underlying quantum group symmetry. This was an
important improvement over previous studies, where the lattice holomorphic parafermions
were found empirically by several authors [39, 36, 37, 38, 42, 89, 90]. It is a also a poten-
tial starting point for the systematic construction of more general discrete parafermions
in integrable lattice models. However, despite some substantial effort, the “missing half”
of the Cauchy-Riemann equations (see discussion in the Introduction), which would open
the way to mathematical proofs of convergence and conformal invariance in a variety of
lattice models, has not yet been found. One promising direction for solving this problem
could be to generalise the notion of S-embedding [41] to other models than Ising.

For the problem of scaling correlation functions in critical models, with the works
[61, 58, 91, 63, 92], we have contributed to a better understanding of the operator algebra
in non-rational CFTs. Some major aspects of these works are: the adaptation of the
analytical conformal bootstrap approach [55] to the case of non-scalar primary operators.
This applies particularly to the O(n) loop model, which has an infinity of such operators.
The major remaining challenge is to take into account the indecomposability of Virasoro
modules associated to some sectors of the O(n) model – leading to Logarithmic Conformal
Field Theory (LCFT): see [93] for a review. Some work in this direction has been initiated
in [94, 95] for Ising and critical percolation in the case of boundary correlation functions;
the logarithmic behaviour of bulk correlation functions has also been addressed recently
in [96, 97].

Another interesting perspective would be to describe systematically the operator alge-
bra and the related structure constants for the replicated CFTs [98] arising in the study
of entanglement entropies [99]. Indeed, in this context we have shown [100] how to ex-
ploit the null-vector equations to apply the conformal bootstrap and derive the four-point
functions related to Rényi entropies in minimal models. I think a more thorough analysis
of the operator algebra for these theories is possible, and would yield interesting results
on these entropies.
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minimal cyclic representations of Uq(ĝl(n,C)). Commun. Math. Phys., 137:133–147,
1991.

[24] V.E. Korepin, N.M. Bogoliubov, and A. G. Izergin. Quantum inverse scattering
method and correlation functions. Cambridge University Press, 1993.

[25] P.G. de Gennes. Exponents for the excluded volume problem as derived by the
Wilson method. Phys. Lett. A, 38:339, 1972.

[26] B. Nienhuis. Exact critical point and critical exponents of O(n) models in two
dimensions. Phys. Rev. Lett., 49:1062–1065, 1982.

[27] H.N.V Temperley and E.H. Lieb. Relations between the ‘percolation’ and ‘colour-
ing’ problem and other graph-theoretical problems associated with regular planar
lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. London
A, 322:251, 1971.

[28] V.R.F Jones. Index for subfactors. Inv. Math., 72:1–25, 1983.

[29] Th. Creutzig and D. Ridout. Logarithmic conformal field theory: beyond an intro-
duction. J. Phys. A: Math. Gen., 46:494006, 2013.

[30] J. L. Cardy. Boundary conditions, fusion rules and the Verlinde formula. Nucl.
Phys. B, 324:581–596, 1989.

[31] O. Schramm. A percolation formula. Electron. Commun. Probab., 6:115–120, 2001.

[32] E. Fradkin and L. P. Kadanoff. Disorder variables and parafermions in two-
dimensional statistical mechanics. Nucl. Phys. B, 170(1):1–15, 1980.

56



[33] A. B. Zamolodchikov and V. A. Fateev. Nonlocal (parafermion) currents in two-
dimensional conformal quantum field theory and self-dual critical points in ZN -
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