Topics in string amplitudes

Harold Erbin

MIT (USA) & CEA-List (France)

In collaboration with:

- Corinne de Lacroix
- Juan Maldacena
- Ashoke Sen
- Dimitri Skliros

arXiv: 1810.07197, 1906.06051
Outline: 1. Introduction

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion
Properties of string theory

String theory = theory of extended objects

▷ consistency? (unitarity, crossing symmetry...)
▷ differences with local point-particle QFT?
▷ non-locality?
Properties of string theory

String theory = theory of extended objects
- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Point-particle QFT
- consistency assessed from S-matrix
- locality \sim analyticity of S-matrix
Properties of string theory

String theory = theory of extended objects
 ▶ consistency? (unitarity, crossing symmetry. . .)
 ▶ differences with local point-particle QFT?
 ▶ non-locality?

Point-particle QFT
 ▶ consistency assessed from S-matrix
 ▶ locality \sim analyticity of S-matrix

String theory properties

1. if possible, direct proof
2. otherwise, prove property consequence \rightarrow indirect test
Properties of string theory

String theory = theory of extended objects
- consistency? (unitarity, crossing symmetry...)
- differences with local point-particle QFT?
- non-locality?

Point-particle QFT
- consistency assessed from S-matrix
- locality \sim analyticity of S-matrix

String theory properties

1. if possible, direct proof
2. otherwise, prove property consequence \rightarrow indirect test

Natural framework: string field theory (off-shell, renormalization...
Properties of (super)string amplitudes:

1. Tree-level 2-point amplitude
 with: Juan Maldacena, Dimitri Skliros [1906.06051]

2. Analyticity and crossing symmetry at all loops
 with: Corinne de Lacroix, Ashoke Sen [1810.07197]
Outline: 2. Two-point amplitude

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion
2-point amplitude

- QFT

\[A_2(k, k') = 2k^0 (2\pi)^{D-1} \delta^{(D-1)}(k - k') \]

(1-particle state normalization, cluster decomposition)
2-point amplitude

- **QFT**

 $$A_2(k, k') = 2k^0(2\pi)^{D-1} \delta^{(D-1)}(k - k')$$

 (1-particle state normalization, cluster decomposition)

- **string theory**

 $$A_2 \sim \frac{1}{\text{Vol } SL(2, \mathbb{C})} \int d^2z d^2z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2}$$

 $$\sim \frac{1}{\text{Vol } \mathbb{R}_+} \langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2}$$
2-point amplitude

- **QFT**

\[
A_2(k, k') = 2k^0(2\pi)^{D-1} \delta^{(D-1)}(k - k')
\]

(1-particle state normalization, cluster decomposition)

- **String theory** (standard lore)

\[
A_2 \sim \frac{1}{\text{Vol} \ SL(2, \mathbb{C})} \int d^2z d^2z' \langle V_k(z, \bar{z})V_{k'}(z', \bar{z}') \rangle_{S^2}
\]

\[
\sim \frac{1}{\text{Vol} \ \mathbb{R}_+} \langle V_k(\infty, \infty)V_{k'}(0, 0) \rangle_{S^2} = 0
\]

BRST point of view: need \(N_{gh} = 6 \) but only 2 operators \(c\bar{c}V \)
2-point amplitude

- **QFT**

\[A_2(k, k') = 2k^0 (2\pi)^{D-1} \delta^{(D-1)}(k - k') \]

(1-particle state normalization, cluster decomposition)

- **String theory (standard lore)**

\[A_2 \sim \frac{1}{\text{Vol SL}(2, \mathbb{C})} \int d^2z d^2z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2} \]

\[\sim \frac{1}{\text{Vol } \mathbb{R}_+} \langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2} = 0 \]

BRST point of view: need \(N_{gh} = 6 \) but only 2 operators \(c\bar{c}V \)

QFT result is universal \(\rightarrow \) how to resolve contradiction?
2-point amplitude

- **QFT**
 \[A_2(k, k') = 2k^0(2\pi)^{D-1} \delta^{(D-1)}(k - k') \]

 (1-particle state normalization, cluster decomposition)

- **string theory (standard lore)**
 \[A_2 \sim \frac{1}{\text{Vol SL}(2, \mathbb{C})} \int d^2 z d^2 z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2} \]

 \[\sim \frac{1}{\text{Vol} \mathbb{R}_+^+} \langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2} = 0 \]

 BRST point of view: need \(N_{gh} = 6 \) but only 2 operators \(c \bar{c} V \)

QFT result is **universal** → how to resolve contradiction?

\[\langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2} \propto \delta(0) \delta^{(D-1)}(k - k') = \infty \]

from on-shell + momentum conservation

→ ambiguous, need regularization / better gauge fixing
Gauge-fixed amplitude

- 2-point amplitude

\[A_{0,2}(k, k') = \frac{8\pi \alpha'^{-1}}{\text{Vol} \, \mathcal{K}_0} \int d^2 z d^2 z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2} \]

\[\mathcal{K}_0 := \text{PSL}(2, \mathbb{C}) \]
Gauge-fixed amplitude

- 2-point amplitude

\[
A_{0,2}(k, k') = \frac{8\pi\alpha'^{-1}}{\text{Vol } \mathcal{K}_0} \int d^2z d^2z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2}
\]

\[\mathcal{K}_0 := \text{PSL}(2, \mathbb{C})\]

- simple gauge-fixing

\[
A_{0,2}(k, k') = \frac{8\pi\alpha'^{-1}}{\text{Vol } \mathcal{K}_2} \langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2}
\]

\[\mathcal{K}_2 := \text{U}(1) \times \mathbb{R}_+ = \text{dilatation} \times \text{rotation}\]
Gauge-fixed amplitude

- 2-point amplitude

\[A_{0,2}(k, k') = \frac{8\pi \alpha'^{-1}}{\text{Vol} \mathcal{K}_0} \int d^2z d^2z' \langle V_k(z, \bar{z}) V_{k'}(z', \bar{z}') \rangle_{S^2} \]

\[\mathcal{K}_0 := \text{PSL}(2, \mathbb{C}) \]

- simple gauge-fixing

\[A_{0,2}(k, k') = \frac{8\pi \alpha'^{-1}}{\text{Vol} \mathcal{K}_2} \langle V_k(\infty, \infty) V_{k'}(0, 0) \rangle_{S^2} \]

\[\mathcal{K}_2 := U(1) \times \mathbb{R}_+ = \text{dilatation} \times \text{rotation} \]

- evaluate CFT correlation function + regularize zero-modes

\[A_2(k, k') = \lim_{\kappa^0 \to 0} (2\pi)^{D-1} \delta^{(D-1)}(k + k') \frac{16\pi^2 i \delta(\kappa^0)}{\alpha' \text{Vol} \mathcal{K}_2} \]

Normalization: \[\langle V_k(z, \bar{z}) V_{k'}(z', \bar{z'}) \rangle_{S^2} = \frac{i (2\pi)^D \delta^D(k + k')}{|z - z'|^4}. \]

numerator = zero-modes \(e^{i(k + k') \cdot x} \) for Lorentzian target spacetime
Compute CKV volume (1)

Volume regularization

\[
\text{Vol} \mathcal{K}_2 = \int \frac{d^2 z}{|z|^2} = 2 \int_0^{2\pi} d\theta \int_0^\infty \frac{dr}{r} = 4\pi \int_\infty^{-\infty} d\tau = 4\pi \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} d\tau e^{i\varepsilon \tau}
\]

\[
\text{Vol}_\varepsilon \mathcal{K}_2 = 8\pi^2 \delta(\varepsilon)
\]

(\tau, \varepsilon) Euclidean worldsheet (time, energy) on the cylinder (dimensionless)

problem: Lorentzian spacetime, dimensionful energy

\[\rightarrow\] need Wick rotation and rescaling
Compute CKV volume (2)

1. worldsheet Wick rotation

\[\tau = it, \quad \varepsilon = -iE \]

2. Lorentzian regularized volume

\[\text{Vol}_{M,E} \mathcal{K}_2 = 8\pi^2 i \delta(E) \]

3. Lorentzian mode expansion

\[X^0 = x^0 + \alpha' k^0 t \]

4. scale between spacetime and worldsheet times / energies

\[t = \frac{\xi^0}{\alpha' k^0} \quad \Rightarrow \quad E = \alpha' k^0 \kappa^0 \]

\((\xi^0, \kappa^0)\) dimensionful worldsheet variables

5. regularized Lorentzian volume

\[\text{Vol}_{M,\kappa^0} \mathcal{K}_2 = \frac{8\pi^2 i \delta(\kappa^0)}{\alpha' k^0} \]
Result

\[
A_2(k, k') = \lim_{\kappa^0 \to 0} (2\pi)^{D-1} \delta^{(D-1)}(k + k') \frac{16\pi^2 i \delta(\kappa^0)}{\alpha' \text{Vol}_{M,\kappa^0} K_2}
\]

\[
\text{Vol}_{M,\kappa^0} K_2 = \frac{8\pi^2 i \delta(\kappa^0)}{\alpha' k^0}
\]

Recover QFT result:

\[
A_2(k, k') = 2k^0 (2\pi)^{D-1} \delta^{(D-1)}(k + k')
\]
Result

\[A_2(k, k') = \lim_{\kappa^0 \to 0} (2\pi)^{D-1} \delta^{(D-1)}(k + k') \frac{16\pi^2 i \delta(\kappa^0)}{\alpha' \text{Vol}_{M, \kappa^0} \mathcal{K}_2} \]

\[\text{Vol}_{M, \kappa^0} \mathcal{K}_2 = \frac{8\pi^2 i \delta(\kappa^0)}{\alpha' k^0} \]

Recover QFT result:

\[A_2(k, k') = 2k^0 (2\pi)^{D-1} \delta^{(D-1)}(k + k') \]

Remarks:

▶ regularization ambiguous → fixed from unitarity
▶ can **always** insert 6 ghosts, for example (derivation below):

\[A_2(k, k') = \frac{8\pi \alpha'^{-1}}{\text{Vol} \mathcal{K}_2} \langle c \bar{c} V_k(\infty, \infty) c_0 \bar{c}_0 \ c \bar{c} V_{k'}(0, 0) \rangle_{S^2} \]

using \(\langle 0 | c_{-1} \bar{c}_{-1} c_0 \bar{c}_0 c_{1} \bar{c}_1 | 0 \rangle = 1 \)

▶ operator approach (open string) [1909.03672, Seki-Takahashi]

10 / 45
Improved gauge fixing (1)

- improved gauge fixing: no need for regularization
 → no ambiguity

- idea: gauge fix X^0, i.e. just fix another object transforming under $SL(2, \mathbb{C})$

- $SL(2, \mathbb{C})$ transformation

\[
\delta z = \beta + \alpha z + \gamma z^2
\]

\[
\delta X(z, \bar{z}) = \delta z \partial X(z, \bar{z}) + \delta \bar{z} \bar{\partial} X(z, \bar{z})
\]
Improved gauge fixing (2)

Procedure (for closed string, unpublished):

1. gauge fix the two vertices \((z^0 \rightarrow \infty)\):

 \[
 f_1 = z - z^0, \quad \bar{f}_1 = \bar{z} - \bar{z}^0, \quad f_2 = z', \quad \bar{f}_2 = \bar{z}'
 \]

 residual group: \(\mathcal{K}_2 := U(1) \times \mathbb{R}_+\)

2. introduce new coordinate system

 \[
 z = r \, e^{i\sigma}, \quad \delta r = \lambda r, \quad \delta \sigma = \theta, \quad \alpha := \lambda e^{i\theta}
 \]

 \[
 \delta X(r, \theta) = \lambda r \, \partial_r X(r, \theta) + \theta \, \partial_\sigma X(r, \theta)
 \]

3. enforce level-matching condition: introduce identity for new coordinate \(\tilde{z} = (0, \tilde{\sigma})\) and gauge fix:

 \[
 1 = \frac{1}{2\pi} \int_0^{2\pi} d\tilde{\sigma}, \quad f_3 = \tilde{\sigma}
 \]
Improved gauge fixing (3)

4. gauge fix X^0 (need rotation invariant condition)

$$f_4 = \frac{1}{2\pi} \int_0^{2\pi} d\sigma \ X^0(r, \sigma)$$

5. Faddeev–Popov procedure:

$$\Delta(z^0, \bar{z}^0, X^0) = |z^0|^4 \int \frac{d\sigma}{2\pi} r \partial_r X^0 = \alpha' \hat{p}^\mu |z^0|^4$$

6. insert $\delta(f_1)$, etc., and Δ in amplitude:

$$A_2(k, k') = \frac{8\pi \alpha'^{-1}}{4\pi} |z^0|^4 \left\langle \delta(x^0) \hat{p}^0 V_k(z^0, \bar{z}^0) V_{k'}(0, 0) \right\rangle_{S^2}$$

$$= 2k^0 (2\pi)^{D-1} \delta^{(D-1)}(k - k')$$
Improved gauge fixing: ghosts

1. BV: introduce ghost-antighost for residual symmetry
to $\forall f_i$, introduce (α_i, a_i) and regulator R_i

\[Q\alpha_i = a_i, \quad Qa_i = 0, \quad R_i := e^{iQ(\alpha_i f_i)} = e^{ia_i f_i - i\alpha_i Qf_i} \]

α_i fermionic, a_i bosonic, amplitude invariant since $QV_k = 0$
[Marnelius-Ogren '91; hep-th/0503038, Craps-Skenderis; Berkovits, unpublished]

2. integrate over (α_i, a_i)

\[\int da_i d\alpha_i R_i = \delta(f_i) \delta_B f_i \]

3. BRST variation

\[\delta_B \mathcal{O}(z, \bar{z}) = c(z) \delta_z \mathcal{O}(z, \bar{z}) + \bar{c}(\bar{z}) \delta_{\bar{z}} \mathcal{O}(z, \bar{z}) \]
Improved gauge fixing: ghosts (2)

4. vary the gauge-fixing conditions:

\[\delta(f_1) \delta_B f_1 = c(z^0) \rightarrow c_{-1}, \quad \delta(f_2) \delta_B f_2 = c(z = 0) \rightarrow c_1 \]
\[\delta(f_3) \delta_B f_3 = c(\tilde{\sigma} = 0) - \bar{c}(\tilde{\sigma} = 0) \rightarrow 2c_0^- \]

\[\delta(f_4) \delta_B f_4 = \delta(x^0) \int \frac{d\sigma}{2\pi} \left(c(\sigma) + \bar{c}(\sigma) \right) r \partial_r X^0 \rightarrow \alpha' \hat{p}^0 c_0^+ \]

5. plug in the amplitude

\[A_2(k, k') = 4 \left\langle \delta(x^0) \hat{p}^0 c\bar{c} V_k(z^0, \bar{z}^0) c_{0}^- c_{0}^+ c\bar{c} V_{k'}(0, 0) \right\rangle_{S^2} \]

6. note: natural result from SFT
Zero-point amplitude

Next step

Generalization to 0-point function \(\rightarrow \) compute on-shell action

\[A_0[\mathcal{M}] \sim \frac{\delta^{(D)}(0)}{\text{Vol SL}(2, \mathbb{C})} = \infty \]

- zero-point amplitude for Minkowski spacetime \(\mathcal{M} \):
Zero-point amplitude

Next step

Generalization to 0-point function \rightarrow compute on-shell action

- zero-point amplitude for Minkowski spacetime \mathcal{M}:

$$A_0[\mathcal{M}] \sim \frac{\delta^{(D)}(0)}{\text{Vol} \, \text{SL}(2, \mathbb{C})} \equiv \infty$$

- (curved) background X:

$$e^{-(S_{\text{EH}}[X] - S_{\text{EH}}[\mathcal{M}])} = \frac{A_0[X]}{A_0[\mathcal{M}]} \equiv \text{finite}$$

(à la Gibbons–Hawking–York)

- consider $X = \text{black hole, Rindler space}$?
Outline: 3. Crossing symmetry: QFT

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion
Analyticity and crossing symmetry

Analyticity of \(n \)-point amplitude \(A_n(k_1, \ldots, k_n) \)

- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality
Analyticity and crossing symmetry

Analyticity of n-point amplitude $A_n(k_1, \ldots, k_n)$
- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality

Crossing symmetry:
- relations between amplitudes with exchange of particles/anti-particles in initial/final states
- often assumed or observed (scattering amplitude program...)

Why a general proof?
- ensure observed examples not accident of simple amplitudes
- learn about fundamental properties of QFT
Analyticity and crossing symmetry

Analyticity of \(n \)-point amplitude \(A_n(k_1, \ldots, k_n) \)
- starting point for other properties (crossing symmetry, dispersion relations)
- related to locality and causality

Crossing symmetry:
- relations between amplitudes with exchange of particles/anti-particles in initial/final states
- often assumed or observed (scattering amplitude program...)

Why a general proof?
- ensure observed examples not accident of simple amplitudes
- learn about fundamental properties of QFT
Method

Idea of proof in QFT [Bros-Epstein-Glaser, ’64-65]:

1. prove analyticity of S-matrix in “primitive domain” Δ from locality
2. analytic extension $\mathcal{H}(\Delta)$
3. show that 2) \Rightarrow crossing symmetry
Method

Idea of proof in QFT [Bros-Epstein-Glaser, ’64-65]:

1. prove **analyticity** of S-matrix in “primitive domain” Δ
 from locality

2. analytic extension $\mathcal{H}(\Delta)$

3. show that 2) \Rightarrow crossing symmetry

Remarks:

- 1) is non-perturbative (full S-matrix)
- 2) and 3) are **general statements** from theory of several complex variables
Method

Idea of proof in QFT [Bros-Epstein-Glaser, ’64-65]:

1. prove **analyticity** of S-matrix in “**primitive domain**” Δ from locality
2. analytic extension $\mathcal{H}(\Delta)$
3. show that 2) \Rightarrow crossing symmetry

Remarks:

- 1) is non-perturbative (full S-matrix)
- 2) and 3) are **general statements** from theory of several complex variables

String theory:

- non-local interactions \rightarrow no position space Green functions
- prove 1) perturbatively from Feynman diagrams
Amplitude and Green functions

4-point scattering process

\[p_a = (E_a, p_a) \in \mathbb{C}, \ a = 1, \ldots, 4: \text{external momenta} \]

\[\text{momentum conservation: } p_1 + \cdots + p_4 = 0 \]

\[\text{on-shell condition: } p_a^2 = -m_a^2 \]
Amplitude and Green functions

4-point scattering process

- $p_a = (E_a, \mathbf{p}_a) \in \mathbb{C}$, $a = 1, \ldots, 4$: external momenta
- momentum conservation: $p_1 + \cdots + p_4 = 0$
- on-shell condition: $p_a^2 = -m_a^2$

Green functions:

off-shell $G(p_1, \ldots, p_4) =$

truncated $\tilde{G}(p_1, \ldots, p_4) = G(p_1, \ldots, p_4) \prod_{a=1}^{4} (p_a^2 + m_a^2)$

on-shell $A(p_1, \ldots, p_4) = \lim_{p_a^2 \to -m_a^2} \tilde{G}(p_1, \ldots, p_4)$

QFT: $G =$ sum of Feynman diagrams
Physical amplitudes

Mandelstam variables

\[s = - (p_1 + p_2)^2, \quad t = - (p_1 + p_3)^2, \quad u = - (p_1 + p_4)^2 \]

mass-shell: \(s + t + u = \sum_a m_a^2 \)
Physical amplitudes

Mandelstam variables

\[s = -(p_1 + p_2)^2, \quad t = -(p_1 + p_3)^2, \quad u = -(p_1 + p_4)^2 \]

mass-shell: \(s + t + u = \sum_a m_a^2 \)

Physical regions

- **S (s-channel):** \(s \geq \sum_a m_a^2, \quad t, u \leq 0 \)
- **T (t-channel):** \(t \geq \sum_a m_a^2, \quad s, u \leq 0 \)
- **U (u-channel):** \(u \geq \sum_a m_a^2, \quad s, t \leq 0 \)

Physical amplitudes

\[A_{S,T,U}(p_1, \ldots, p_4) = \lim_{p_a \in S, T, U} A(p_1, \ldots, p_4) \]
Mandelstam plane

\[p_a \in \mathbb{R} \text{ on-shell} \]
Statement of crossing symmetry

Crossing symmetry

\[
S: \ 1 + 2 \rightarrow 3 + 4
\]

The processes

\[
T: \ 1 + 3 \rightarrow \bar{2} + 4 \quad \text{(and CPT conjugates) are}
\]

\[
U: \ 1 + \bar{4} \rightarrow 3 + \bar{2}
\]
equivalent under analytic continuation on the complex mass-shell

\[
A_S(s, t) = A_T(t, s), \quad A_S(s, u) = A_U(u, s)
\]
Statement of crossing symmetry

Crossing symmetry

\[S : 1 + 2 \rightarrow 3 + 4 \]

The processes

\[T : 1 + \bar{3} \rightarrow \bar{2} + 4 \quad \text{(and CPT conjugates)} \]

\[U : 1 + \bar{4} \rightarrow 3 + \bar{2} \]

equivalent under analytic continuation on the complex mass-shell

\[A_S(s, t) = A_T(t, s), \quad A_S(s, u) = A_U(u, s) \]

- looks natural from LSZ: \(A_S, T, U \) all come from a single function \(A \)
- but: **not guaranteed** that \(A \) is analytic in a domain with paths between \(S, T, U \)
QFT proof (1)

Outline of proof [Bros-Epstein-Glaser ’64-65][Bros ’86]:

1. assumptions: $m^2_a > 0$, asymptotic states = stable particles
2. define the “primitive domains”

$$
\Delta_k = \bigcap_{A_\alpha} \left[\left\{ \text{Im } P(\alpha) \neq 0, (\text{Im } P(\alpha))^2 \leq 0 \right\} \cup \left\{ \text{Im } P(\alpha) = 0, -P^2(\alpha) < M^2_\alpha \right\} \right.
\left. \cap \left\{ \text{Im } p^i_a = 0, i = k, \ldots, D - 1 \right\} \right]
$$

$A_\alpha \subset \{1, \ldots, n\}$, $P(\alpha) = \sum_{a \in A_\alpha} p_a$, M_α: production threshold

In words: p_a with k possible complex components s.t. all P_α have:
1) non-zero imaginary timelike part, or 2) real momentum squared below multi-particle threshold in channel A_α
QFT proof (2)

3. prove analyticity inside Δ_D of S-matrix from locality / micro-causality (fields commute at spacelike separations) [Araki, Burgoyne, Ruelle, Steimann, ’60-61]

problem: $\Delta_D \cap \text{mass-shell} = \emptyset$

4. compute the “envelope of holomorphy” $\mathcal{H}(\Delta_2)$ (= analytic extension)

$\rightarrow \mathcal{H}(\Delta_2) \cap \text{mass-shell} \neq \emptyset$

5. show \exists a path in $\mathcal{H}(\Delta_2) \cap \text{mass-shell}$ between all pairs of $i\epsilon$-neighbourhoods of physical regions

Notes:
- $\mathcal{H}(\Delta_2)$ is necessary
- 4) and 5) \Leftarrow theory of several complex variables only
- work with the complete S-matrix
QFT proof (2)

3. prove analyticity inside Δ_D of S-matrix from locality / micro-causality (fields commute at spacelike separations)
 [Araki, Burgoyne, Ruelle, Steimann, '60-61]
 problem: $\Delta_D \cap \text{mass-shell} = \emptyset$

4. compute the “envelope of holomorphy” $\mathcal{H}(\Delta_2)$ (= analytic extension)
 $\rightarrow \mathcal{H}(\Delta_2) \cap \text{mass-shell} \neq \emptyset$

5. show \exists a path in $\mathcal{H}(\Delta_2) \cap \text{mass-shell}$ between all pairs of $i\epsilon$-neighbourhoods of physical regions

Notes:

- only $\mathcal{H}(\Delta_2)$ is necessary
- 4) and 5) \Leftarrow theory of several complex variables only
- work with the complete S-matrix
Analyticity from locality: example

▶ micro-causality: fields commute at spacelike separation

\[[\phi(x), \phi(x')] = 0, \quad (x - x')^2 > 0 \]

▶ relation Feynman propagator and commutator

\[\text{Re} \ G_F(x, x') = 2i \text{sign}(t - t') \langle 0 | [\phi(x), \phi(x')] | 0 \rangle \]

▶ 2-point Green function

\[G(k) = \int d^d x \ e^{-i k x} G_F(x, 0) \neq 0 \quad \text{if} \ x^2 \leq 0 \ (\text{timelike}) \]

▶ exponential damping → analyticity in the primitive tube

\[k \in \mathbb{R}^d + iV^+ \]

\[V^+ : \text{future light-cone} \]
Analyticity from locality: general case

[Araki, Burgoyne, Ruelle, Steimann, ’60-61; Bros-Epstein-Glaser ’64]

▶ main idea: distribution support in $x \Leftrightarrow$ analyticity in k
▶ consider generalized advanced/retarded Green functions
▶ locality and micro-causality \Rightarrow analyticity in primitive tubes

$$\text{Im } P(\alpha) \neq 0, \quad (\text{Im } P(\alpha))^2 \leq 0$$

▶ coincidence of some Green functions below mass threshold: no singularity \rightarrow analyticity

$$\text{Im } P(\alpha) = 0, \quad -P^2(\alpha) < M^2_\alpha$$

▶ edge-of-the-wedge theorem: generalized advanced/retarded Green functions are boundary values from a unique function, analytic in the primitive domain Δ_D
Proof that $\Delta_D \cap \text{mass-shell} = \emptyset$:

1. **complex mass-shell:**

 \[
 \text{Re } p_a \cdot \text{Im } p_a = 0, \quad (\text{Re } p_a)^2 - (\text{Im } p_a)^2 + m_a^2 = 0
 \]

2. if $\text{Im } p_a$ timelike, $(\text{Im } p_a)^2 \leq 0$, then need $\text{Re } p_a$ timelike, $(\text{Re } p_a)^2 < 0$, for 2nd condition, but violates 1st condition

3. if $\text{Im } p_a = 0$, then $-P_{(\alpha)}^2 \geq M_\alpha^2$
More on the envelope of holomorphy:

- consider \(f(z_1, \ldots, z_n) \) analytic in \(\Delta \)
- analyticity in several variables \(\Rightarrow \) constrain shape of \(\Delta \)
- if shape not arbitrary: analyticity in \(\Delta \) \(\Rightarrow \) analyticity in \(\mathcal{H}(\Delta) \)
- given \(\Delta \), \(\mathcal{H}(\Delta) \) is independent of \(f \)
- typically: use edge-of-the-wedge theorem (Bogoliubov)
Outline: 4. Crossing symmetry: string theory

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion
String field theory

- field theory (second-quantization)
- rigorous, constructive formulation [hep-th/9206084, Zwiebach]
- make gauge invariance explicit (\mathcal{L}_∞ algebras et al.)
- use standard QFT techniques (renormalization, analyticity...) → prove consistency (Cutkosky rules, unitarity, soft theorems, background independence...) [Sen ’14-19]
- study backgrounds (= classical solutions), marginal and RR fluxes deformations, instantons [1811.00032, Cho-Collier-Yin; Sen ’19-21]
- access collective, non-perturbative, thermal, dynamical effects (dream goal)
Shameless advertisement
SFT in a nutshell

\[\text{SFT} = \text{standard QFT s.t.:} \]

- infinite number of fields (of all spins)
- infinite number of interactions
- non-local interactions \(\propto e^{-\#k^2} \)
- reproduce worldsheet amplitudes (if well-defined)

review: [1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]
SFT in a nutshell

SFT = standard QFT s.t.:
- infinite number of fields (of all spins)
- infinite number of interactions
- non-local interactions $\propto e^{-\# k^2}$
- reproduce worldsheet amplitudes (if well-defined)

review: [1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]

Consequences of non-locality:
- cannot use position representation
- cannot use assumptions from local QFT (micro-causality. . .)
- cannot derive analyticity like in QFT
SFT in a nutshell

SFT = standard QFT s.t.:

▶ infinite number of fields (of all spins)
▶ infinite number of interactions
▶ non-local interactions $\propto e^{-\#k^2}$
▶ reproduce worldsheet amplitudes (if well-defined)

review: [1703.06410, De Lacroix-HE-Kashyap-Sen-Verma]

Consequences of non-locality:

▶ cannot use position representation
▶ cannot use assumptions from local QFT (micro-causality...)
▶ cannot derive analyticity like in QFT

→ study Green function singularities from Feynman diagrams in momentum space
Action and Feynman diagrams

- gauge-fixed action

\[S = \frac{1}{2} \langle \psi | c_0^- c_0^+ L_0^+ | \psi \rangle + \sum_{g,n \geq 0} \frac{\hbar g g_s^{2g-2+n}}{n!} \mathcal{V}_{g,n}(\Psi^n) \]
Action and Feynman diagrams

▶ gauge-fixed action

\[S = \frac{1}{2} \langle \psi | c_0^- c_0^+ L_0^+ | \psi \rangle + \sum_{g,n \geq 0} \frac{\hbar g g_s^{2g-2+n}}{n!} V_{g,n}(\Psi^n) \]

▶ propagator

\[\langle A_1 | b_0^+ L_0^- b_0^- | A_2 \rangle = A_1 \quad \text{---} \quad A_2 \]

▶ fundamental g-loop n-point vertex

\[V_{g,n}(A_1, \ldots, A_n) = A_1 \quad \text{---}^g \quad \ldots \quad A_n \]

defined s.t. sum of all graphs \Rightarrow recover worldsheet amplitudes
Momentum representation (1)

- string field Fourier expansion

\[|\psi\rangle = \sum_A \int \frac{d^D k}{(2\pi)^D} \phi_A(k) |A, k\rangle \]

\(k \): \(D \)-dimensional momentum
\(A \): discrete labels (Lorentz indices, group repr., KK modes. . .)

- 1PI action

\[S = \frac{1}{2} \int d^D k \phi_A(k) K_{AB}(k) \phi_B(-k) \]

\[+ \sum_n \int d^D k_1 \cdots d^D k_n V_{A_1,\ldots,A_n}^{(n)}(k_1, \ldots, k_n) \phi_{A_1}(k_1) \cdots \phi_{A_n}(k_n) \]
Momentum representation (2)

Propagator

\[K_{AB}(k)^{-1} = \frac{-i M_{AB}}{k^2 + m_A^2} Q_A(k) \]

- \(M_{AB} \) mixing matrix for states of equal mass
- \(Q_A \) polynomial
Momentum representation (3)

Vertices

\[-iV_{A_1,\ldots,A_n}^{(n)}(k_1,\ldots,k_n) = -i \int dt e^{-g_{ij}^{\{A_a\}}(t) k_i \cdot k_j - c \sum_{a=1}^{n} m_a^2} \times P_{A_1,\ldots,A_n}(k_1,\ldots,k_n; t)\]

- \(t \) moduli parameters
- \(P_{\{A_a\}} \) polynomial
- \(c > 0 \rightarrow \) damping in sum over states
- \(g_{ij} \) positive definite

- no singularity for \(k_i \in \mathbb{C} \) (finite)
- \(\lim_{k^0 \to \pm i\infty} V^{(n)} = 0 \)
- \(\lim_{k^0 \to \pm \infty} V^{(n)} = \infty \)
Green function

Truncated Green function = sum of Feynman diagrams of the form

\[
\mathcal{F}(p_1, \ldots, p_n) \sim \int dT \prod_s d^D \ell_s e^{-G_{rs}(T) \ell_r \cdot \ell_s - 2H_{ra}(T) \ell_r \cdot p_a - F_{ab}(T) p_a \cdot p_b} \\
\times \prod_i \frac{1}{k_i^2 + m_i^2} \mathcal{P}(p_a, \ell_r; T)
\]

\(T\), moduli parameters, \(\mathcal{P}\), polynomial in \((p_a, \ell_r)\)

▷ momenta:
 ▷ external \(\{p_a\}\)
 ▷ internal \(\{k_i\}\)
 ▷ loop \(\{\ell_s\}\)

\(k_i = \) linear combination of \(\{p_a, \ell_s\}\)

▷ \(G_{rs}\) positive definite
 ▷ integrations over spatial loop momenta \(\ell_r\) converge
 ▷ integrations over loop energies \(\ell_r^0\) diverge
Momentum integration

Prescription = generalized Wick rotation [1604.01783, Pius-Sen]:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.
 ▶ keep poles on the same side
 ▶ keep ends at ±i∞

→ analyticity for $p_a \in \mathbb{R}$, p_a^0 in first quadrant \(\text{Im } p_a^0 > 0, \text{Re } p_a^0 \geq 0 \)
Momentum integration

Prescription = generalized Wick rotation \cite{1604.01783, Pius-Sen}:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.
 ▶ keep poles on the same side
 ▶ keep ends at \(\pm i \infty \)

\(\rightarrow \) analyticity for \(p_a \in \mathbb{R}, \ p_a^0 \) in first quadrant \(\text{Im} \ p_a^0 > 0, \text{Re} \ p_a^0 \geq 0 \)
Momentum integration

Prescription = generalized Wick rotation [1604.01783, Pius-Sen]:

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration contour s.t.
 ▶ keep poles on the same side
 ▶ keep ends at ±i∞

→ analyticity for \(p_a \in \mathbb{R}, \ p_0^a \) in first quadrant \(\text{Im} \ p_0^a > 0, \text{Re} \ p_0^a \geq 0 \)

▶ Cutkosky rules, unitarity, spacetime and moduli space
 \(i\epsilon \)-prescriptions [Pius, Sen]
▶ timelike Liouville theory [1905.12689, Bautista-Dabholkar-HE]
Analyticity for string theory (1)

Result

Analyticity inside Δ_2 of n-point superstring Green functions at all loop orders:

- implies crossing symmetry for $n = 4$
- identical analyticity properties for QFT and string theory

Comments:

- Feynman graphs \rightarrow perturbative computations
- valid for states with any spin
- technical assumptions: mass gap, stable external states
- regularization of massless states: removes IR non-analyticity (identical to QFT)

$[2009.03375$, Bhattacharya-Mahanta$]$: analytic extension to Δ^D for 3- and 4-point functions
Analyticity for string theory (1)

Result

Analyticity inside Δ_2 of n-point superstring Green functions at all loop orders:

- implies crossing symmetry for $n = 4$
- identical analyticity properties for QFT and string theory

Comments:

- Feynman graphs \rightarrow perturbative computations
- valid for states with any spin
- technical assumptions: mass gap, stable external states
- regularization of massless states: removes IR non-analyticity (identical to QFT)
- [2009.03375, Bhattacharya-Mahanta]: analytic extension to Δ_D for 3- and 4-point functions
Method to study singularity:

1. start with some $p_a = p_a^{(1)}$, $\ell_r^0 \in i\mathbb{R}$, $\ell_r \in \mathbb{R}$ s.t. no singularity
2. find a path $p_a = p_a^{(1)} \rightarrow$ desired $p_a = p_a^{(2)}$
3. deform the integral contour as the poles move
4. assume \exists singularity $=$ on-shell internal propagator
 pinching $=$ collision of two poles from opposite sides
5. analyze reduced diagram, display an inconsistency
Analyticity for string theory (2)

Method to study singularity:

1. start with some \(p_a = p_a^{(1)} \), \(\ell^0_r \in i\mathbb{R} \), \(\ell_r \in \mathbb{R} \) s.t. no singularity
2. find a path \(p_a = p_a^{(1)} \rightarrow \) desired \(p_a = p_a^{(2)} \)
3. deform the integral contour as the poles move
4. assume \(\exists \) singularity = on-shell internal propagator
 pinching = collision of two poles from opposite sides
5. analyze reduced diagram, display an inconsistency

Proceed by steps:

1. analyticity in \(\Delta_1 \): go from \(p_a = 0 \) to desired \(\text{Re } p_a \) and \(\text{Im } p_a^0 \)
 (keep \(\text{Im } p_a = 0 \))
2. analyticity in \(\Delta_2 \): go from \(p_a \in \Delta_1 \) to desired \(\text{Im } p_a^1 \) (keep
 \(\text{Im } p_a^i = 0 \) \(\forall i \geq 2 \))
First step

- \(p_a^0 \in \mathbb{C}, \ p_a \in \mathbb{R} \)
- pinching implies reduced graph:

\[k_i^2 = -m_i^2, \text{ arrow = sign of } k_i^0 \]
- \(p_a, \ell_r \in \mathbb{R} \Rightarrow k_i \in \mathbb{R}, \text{ then } k_i^2 = -m_i^2 \Rightarrow k_i \in \mathbb{R} \)
- one can prove \(\forall i : k_i^0 > 0 \)
- implies

\[P(\alpha) = \sum_{i} k_i \in \mathbb{R}, \quad k_i^2 = -m_i^2 \quad \Rightarrow \quad -P^2(\alpha) \geq M^2_{\alpha} \]

\(\rightarrow \) contradiction – one must have \(-P^2(\alpha) < M^2_{\alpha} \)
Second step

- \(p_a^\parallel = (p_0^a, p_1^a) \in \mathbb{C}, \ p_a^\perp \in \mathbb{R} \)
- pinching implies reduced graph:

\[
\begin{align*}
\text{arrow} &= \text{sign of } \text{Im} \ k_i^1 \\
\text{one can prove } \forall i : \text{Im} \ k_i^1 > 0, \ \text{and} \\
k_i^2 = -m_i^2 &\Rightarrow \text{Im} \ k_i^\parallel \in W^+ \Rightarrow \text{Im} \ P(\alpha) = \sum_i \text{Im} \ k_i \in W^+ \\
\text{→ contradiction – one must have } \text{Im} \ P(\alpha) \text{ timelike}
\end{align*}
\]
Outline: 5. Conclusion

Introduction

Two-point amplitude

Crossing symmetry: QFT

Crossing symmetry: string theory

Conclusion
Conclusion

Results:
- tree-level 2-point amplitude computation consistent with QFT
- analyticity of superstring n-point amplitudes in Δ_2
- proof of crossing symmetry for 4-point superstring amplitudes at the same level as in QFT
- show that, in some sense, string theory behaves like local QFT
- new proof of analyticity valid for more general QFTs
Conclusion

Results:
▶ tree-level 2-point amplitude computation consistent with QFT
▶ analyticity of superstring n-point amplitudes in Δ_2
▶ proof of crossing symmetry for 4-point superstring amplitudes at the same level as in QFT
▶ show that, in some sense, string theory behaves like local QFT
▶ new proof of analyticity valid for more general QFTs

Outlook:
▶ tree-level 0-point function for generic background
▶ CPT theorem
▶ explore non-locality from SFT