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e Classical optimization problem : quantum 1/2 spins, Hamiltonian i:lp
diagonal in ®0%, eigenbasis. One wants to find the ground-state of
Hp.

e In particular any classical optimization problem on Ising spins can be
written in this form. May be very hard to minimize (frustration).

e One can consider a more general operator of the Hilbert space, by
adding a “kinetic energy” that induces quantum fluctuations
(transverse field for instance)
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Quantum annealing : [Kadowaki, Nishimori 98, Farhi et al 01]

H(s) = (1—5)Za;+sf4p (F=(1-15s)/s)

Prepare the system in its ground-state at s = 0 (easy).
Slowly increase s up to s = 1 — evolution following Schrodinger
equation

i dor(s) _ o
T = HE)or(s))

T is the evolution time. If T is large enough, the system should
remain in its instantaneous ground-state at any time.

How large T should be ?
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e Adiabatic theorem (in a nutshell) : the total evolution time T must
be large compared to A~2, with A the minimal gap between the
ground-state and the first-excited state during the evolution.

eigenvalues

s=0 s=1

Scaling of T with the system size N 7 Roughly:
e Second-order phase transition : A o< 1/N?, T = poly(N)
e First-order phase transition : A oc e™@N, T = exp[O(N)]

For optimization problems :
e scaling of the adiabatic time (exact algorithm)

e residual energy for non-adiabatic evolutions
(approximation algorithm)
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Definition of the model

e Toy model : mean-field fully-connected model for Iflp.

e Depends only on average magnetizations

N N
T
N - 1 N - 1

=1 i=1

p-spin ferromagnetic model :

H(s) = —Ns(m?)? — N(1 — s)m*

e not a hard optimization problem of course
e yet shares some of their phenomenology
e with much simpler analytical computations

related to Lipkin-Meshkov-Glick model [Ribeiro, Vidal, Mosseri, Filippone,
Dusuel], [Jorg, Krzakala, Kurchan, Maggs, Pujos 10]
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@ Static properties
@ Thermodynamic properties (and their consequences on the spectrum)
@ Computation of small gaps
@ Density of states
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rmodynamic properties

e Free-energy per spin can be computed exactly at all temperatures

e Groundstate energy per spin:

egs(s) = inf [—s mP —(1—3s)V/1— mz]

me[—1,1]

e First-order phase transition (p > 3):
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Consequences on the spectrum

° H(s) commute with the total spin operator LN block-diagonal

1

-0.5

here the N + 1 dimensional block of maximal spin
(the relevant one for the dynamics)
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e metastable continuations of the groundstates (zooming in)
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e avoided crossing at the transition (zooming in more)
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Computation of the gap at the transition (1/3)

e At the first-order phase transition,

1

i 1
m —
N—oo N

| = li |

og(gap) = lim —log |{dr[ép)]
where |¢f) (resp |¢p)) is the analytic continuation of the
ferromagnetic (resp. paramagnetic) ground-state eigenvector
[Krzakala, Kurchan et al.].

— one needs to compute the eigenvectors.

e Action of 5* on an eigenvector |S, M), of 52 52

~ 1
5%|S, M), :5%9(5 F1) - MM+1)|S,M+1),+

SVSE D) - MM 1) [S,M 1),
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Computation of the gap at the transition (2/3)

e Eigenvalue equation on |¢) = > &(m)|m):

cofm = -smro(m) — (oD 1m0 ¢<m+%)

One dimensional equation with m playing the role of a space coordinate.

e In the large N limit, semi-classical (WKB like) Ansatz:
H(m) = el

(semi-classical was done before with instantons, and coherent states)

e The eigenvalue equation on |¢) becomes a differential equation on :

e=—smP — (1 —s)V1— m?cosh (2¢'(m))
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Computation of the gap at the transition (3/3)

e At the transition, two quasi-degenerate groundstates
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explicit formula for the exponential rate of the gap
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Computation of the gap along one metastable line

e This construction can be repeated to compute the gap along the
metastable continuation of the paramagnetic ground-state.
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e Gap on this line as a function of the interpolation parameter.
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Computation of the density of states

e for excited states the large deviation function p(m) takes complex
values

e this is indeed a “one-dimensional” problem: the ground-state wave
function is real, the n-th excited state has n nodes

e this translates into [Ribeiro, Vidal, Mosseri 08]:

1 1
Dis.e) = / 15/ (m, s, €)|dm

for the integrated density of states
e cigenenergy E,(s) becomes an iso-D line

e allows also to compute finite gaps, and polynomially small gaps at
second-order (or spinodal) transition points through matching
arguments [Botet, Jullien 83]
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Outline

9 Dynamic properties
@ General behaviour
@ Exponentially large times scales
@ Constant times scales
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Behaviour under quantum annealing: general properties

e A schematic view of annealing through a first-order phase transition:
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Evolution on exponentially large times scale (T = e™")

e In the thermodynamic limit, exponentially small gaps can be seen as
independant and the probability of excitation at a given crossing
becomes 0 or 1.

e The condition T > gap~? is equivalent to
T= % log T > —% log gap.
This selects a turning point on the curve 7(s).
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e After the turn, no more level crossings — conservation of the
excitation (integrated density of states).
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e One can also consider an annealing starting from the ferromagnet:
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TN)

Evolution on exponentially large times scale (T = e

Variaous asymptotics can be computed for the extreme cases of this
regime:

e Close to adiabaticity (7 — Taap),

Tadb — T

€An\T — Tadb) — €GS X 7—F—
ol adb) [ In(Tadb — 7)|

e In the opposite limit, in the presence of a spinodal point, es,(7) has a
non-trivial limit &z, when 7 — 0, and one has:

Eﬁn(T) — éﬁn X —T%
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Evolution on constant times scale (N — oo, T finite)

e As for the eigenvalue equation, semi-classical approximation:
lpr(m,s)) = e~ Ner(m,s)

e Leads to classical Hamilton equations on gr(s) := arg min,, po7(m,s)
and its conjugated momentum.

e The classical Hamiltonian is obtained from the quantum one by the
canonical substitution [Biroli, Sciolla 11]

e Allows to compute the residual energy on this time scale:
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Large (finite) times

e Particle evolving in a time dependent potential.
e Large evolution time limit: classical adiabatic theory; conservation of
the (classical) adiabatic invariant.

2 T

e Formally equivalent to the excitation conservation. Breaks down
when crossing a separatrix < at the the spinodal point.
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Large (finite) times

e A more refined analysis is mandatory to understand what happens
near the separatrix crossing.

e Matching with a Painleve equation (y = T%°(q — qsp),
t=T*5(u— ugy)) .

— T—r-mo
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o Allows to characterize the decay of the residual energy on large (constant)
times:

eﬁn(T) — 8ap X T_%
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Conclusion

e Simplified model with no disorder

e methods remain valid for any Hamiltonian with site permutation
symmetry

e Link between static and dynamic properties can be made explicit

e Common features with more realistic mean-field random optimization
problems : first-order transition, spinodals

. 4 . _4
€an(7) — &in x —75 ,  en(T) — &n x T 5

could be “universal” results for mean-field models crossing a spinodal
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