Quantum annealing and the Sign Problem

Gustavo Düring and Jorge Kurchan

PMMH-ESPCI, Paris

jorge@pmmh.espci.fr
http://www.pmmh.espci.fr/~jorge

IHP 2012

1. The sign problem

We are asked to compute averages over configurations s

$$\langle O \rangle = \frac{\sum_{s} e^{-W(s)} O(s)}{\sum_{s} e^{-W(s)}}$$

and $W = W_R + iW_I$ is not real.

 Quantum mechanics / Field Theory with real time or θ-terms

• Hubbard-Stratonovich decoupling $W=W_o-b\sum C_{\alpha}^2$

$$Z = \sum_{s} e^{-W_o(s) - b \sum C_\alpha^2} = \sum_{s} \int d\lambda \ e^{-W_o(s) + \sqrt{b}\lambda_\alpha C_\alpha - \frac{\lambda_\alpha^2}{2}}$$

The Hubbard-Stratonovich transformation above introduces an imaginary term $W_I=\sqrt{|b|}\sum \lambda_{\alpha}C_{\alpha}$ in the repulsive case b<0.

In solid state theory the sign problem is the main obstacle for giving a numerical answer to very urgent questions.

e.g. Hubbard model
$$H=-t\sum_{< ij>,\sigma}(c^{\dagger}_{i\sigma}c_{j\sigma}+h.c.)+U\sum_{i}n_{i\uparrow}n_{i\downarrow}$$

For definiteness: $W_I = ih_I M(s)$

where M(s) is an integer-valued:

$$Z = \sum_{M} Z_{M} e^{-ih_{I}M}$$

$$Z_{M} = e^{-\beta F(M)} = \sum_{s} \delta(M(s) - M) e^{-W_{R}}$$

- Field theory with θ terms. M= a topological number $^{\circ}$ t Hooft, Haldane,...
- Fermion systems: M = Fermion world-line crossings Muramatsu et al
- Hubbard model: M = the number of up Hirsch spins [with a variant of Hubbard-Stratonovich transformation, see: DeForcrand, Batrounil

Also: If we knew how to deal with the sign problem, we would know how to compute numerically averaged disordered models

using identities of the form

$$\frac{1}{x} = -\lim_{\lambda \to \infty} \frac{1 - e^{-\lambda x}}{x} = -\lim_{\lambda \to \infty} \sum_{1}^{\infty} (-1)^n \frac{\lambda^n}{n!} x^{n-1}$$

$$\overline{\langle E \rangle} = -\overline{Z^{-1} \, \frac{\partial Z}{\partial \beta}} = - \mathrm{lim}_{\lambda \to \infty} \frac{\partial}{\partial \beta} \, \, \sum_{1}^{\infty} \frac{(-1)^n}{n} \frac{\lambda^n}{n!} \overline{Z^n}$$

In practice, what we can do is to compute

$$\langle \mathbf{O} \rangle = \frac{\langle \mathbf{e^{-iW_I}} \ \mathbf{O} \rangle_{\mathrm{R}}}{\langle \mathbf{e^{-iW_I}} \rangle_{\mathrm{R}}} \quad ; \quad \text{ where } \quad \langle \bullet \rangle_{\mathrm{R}} = \frac{\sum \bullet \ e^{-W_R(s)}}{\sum e^{-W_R(s)}}$$

Note that Monte Carlo is only really good to calculate $\langle O \rangle$ for O non-exponential

and not for

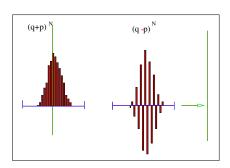
$$\langle O \rangle = \frac{\langle e^{-B} \, O \rangle_{\rm A}}{\langle e^{-B} \rangle_{\rm A}}$$

if, e.g. B is exponential in N

An example:

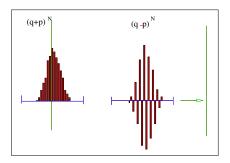
Non-interacting spins in a magnetic field $h_R+irac{\pi}{2}$

$$Z = \left(e^{-h - i\frac{\pi}{2}} + e^{h + i\frac{\pi}{2}}\right)^N = e^{-i\frac{N\pi}{2}} \left(e^{-h} - e^h\right)^N$$



$$(q+p)^N = \sum_r \frac{N!}{r!(N-r)!} q^{N-r} p^r$$

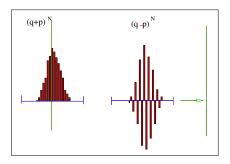
$$(q-p)^N = \sum_r \frac{N!}{r!(N-r)!} \ (-1)^r q^{N-r} p^r$$



put $x = \frac{r}{N}$ and use Stirling:

$$(q+p)^N = \int_0^1 dx \ e^{N[-x \ln x - (1-x) \ln(1-x) + (1-x) \ln q + x \ln p]}$$

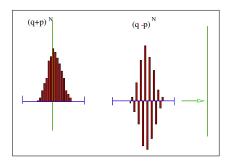
saddle:
$$\left(\frac{x^*}{1-x^*}\right) = \left(\frac{p}{q}\right) \in [0,1]$$



put $x = \frac{r}{N}$ and use Stirling:

$$(q-p)^N = \int_0^1 dx \ e^{N[-x \ln x - (1-x) \ln(1-x) + (1-x) \ln q + x \ln p + i\pi x]}$$

saddle:
$$\left(\frac{x^*}{1-x^*}\right) = -\left(\frac{p}{q}\right)$$
 not $\in [0,1]$

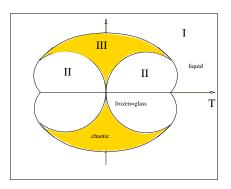


Monte Carlo Sampling of the same problem:

$$(q-p)^N \sim \sum_r \left\{ \frac{N!}{r!(N-r)!} + \sqrt{\frac{N!}{r!(N-r)!}} \eta(r) \right\} \quad (-1)^r q^{N-r} p^r = 0$$

$$(q-p)^N \sim \sum_r \left\{ e^{NS(r)} + e^{Nrac{S(r)}{2}} \eta(r)
ight\} \qquad ext{(-1)}^r q^{N-r} p^r \qquad ext{who wins?}$$

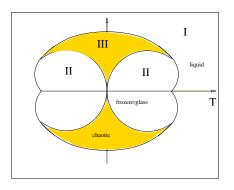
Random Energy Model



Energy levels $E_a = 1, ..., 2^N$ chosen independently from a random Gaussian distribution

and
$$Z = e^{-\beta E_a}$$

Glass models with complex temperature Derrida, Moukarzel, Parga



- I Liquid: many states contribute coherently
- II Frozen: the lowest states contribute
- III Chaotic: many states contribute incoherently. Dense Lee-Yang zeroes.

Simulation time $\frac{T}{\tau} \sim R$ \rightarrow $R = e^{\gamma N}$ independent variables

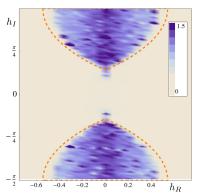
Chosen with distribution $P(s) \sim e^{-W_R}$

Compute the averages:
$$\langle O \rangle_{estd.} = \frac{\sum_{a=1}^R e^{-A(s_a)-iW_I(s_a)}O(s_a)}{\sum_{a'=1}^R e^{-A(s_{a'})-iW_I(s_{a'})}}$$

A random energy model, generated by partition function

$$\overline{\ln |\mathcal{Z}(j)|} = \sum_{s_1,...,s_R} \Pi_{a=1}^R P(s_a) \ln |\mathcal{Z}_j(s_1,...,s_R)| = \overline{\ln |\sum e^{-iW_I(s)}|}$$

There are three phases, dominated by the boundary (II), by the incoherent noise (III) or by the true saddle (I)



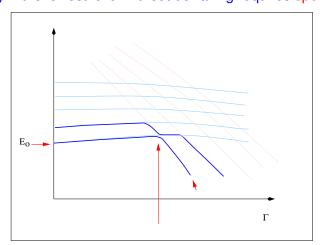
Mean-field ferromagnet in complex magnetic field: the error.

The boundary of the phases is:
$$\frac{Z(\beta,h)}{\sqrt{Z(2\beta_R,2h_R)}}=e^{N\frac{\gamma}{2}}=R^{\frac{1}{2}}$$

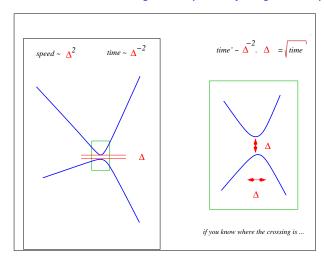
2. Grover-ish advantages

$$\mathcal{H}(\{\sigma\}) = E(\{\sigma^z\}) + \Gamma \sum_{i=1}^{N} \sigma_i^x = \mathcal{H}_0 + \Gamma V \tag{1}$$

Staying in the lowest level without de-railing requires speed Δ^{-2}

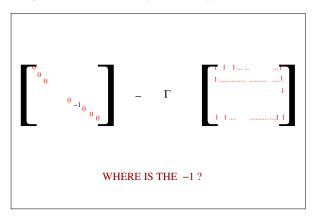


If you know where the crossing takes place, you gain a square root



Grover

Finding a needle in a haystack, if you know its color...



you may find where the -1 is in $\sqrt{\text{dimension}}$

More generally: quantum amplification Brassard, Hoyer, Mosca, Tapp

For given $|-\rangle$ and output $|\psi\rangle$ you are interested in measuring $|\langle -|\psi\rangle|$

put

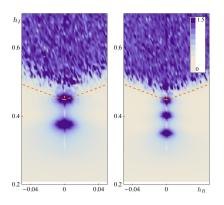
$$\mathcal{H}(\{\sigma\}) = |-\rangle\langle -| + \Gamma |\psi\rangle\langle\psi|$$

using the fact that the gap is $|\langle -|\psi\rangle|$, you conclude that you may measure this value in $O(|\langle -|\psi\rangle|)$

i.e. you gained a square-root

The role of the Lee-Yang zeroes

of the original model



is surprisingly not great