Thermoelectric Transport in Disordered and Nanosystems (Patent Pending)

Yoseph Imry, Weizmann Institute

Based on:
Uri Sivan and YI, Phys Rev B33, 551 (1986) [Landauer, M-I]; YI and A. Amir, in "50 Years of Anderson Localization" and ArXiv (2010) [near Anderson transition]
O. Entin-Wohlman, YI and A. Aharony, PRB 2010, and ArXiv [molecular junctions].
J-H Jiang, O. Entin-Wohlman and YI, PRB 2012 [molecular jcts, hopping, nano] and ArXiv; p-n junctions, submitted to PRB.

T. Seebeck-deflection of a compass needle (circa 1823)

J. C. A. Peltier

W. Thomson
(Lord Kelvin)

A. F. Ioffe
semiconductors
and figure of merit

Oil burning lamp powering a radio using the first commercial thermoelectric generator containing ZnSb built in USSR, circa 1948
I. General Considerations.
II. Thermopower near the Anderson Transition.
III. Three (special) terminals thermoelectric transport in a vibrating molecular junction.
IV. Hopping thermopower in disordered twosite, and longer, chains, dominance of edges.

Long-Range Motivation:

Use understanding of CM physics to achieve:

LARGE THERMOELECTRIC EFFECTS

In the process: info on critical behavior around the Anderson transition, insights on 3-terminal and on hopping thermoelectricity.

Themoelectric energy conversion and manipulation, using "nondiagonal" (Onsager-type) transport to cool, convert heat to energy, etc.

Can use the nondiagonals to convert heat to electricity, to make it flow "from cold to hot" terminals...

Need large thermopower and conductivity, small thermal conductivity.

Definitions and simple considerations

- Thermopower, $\mathrm{S}=$ voltage/temp difference $(\mathrm{I}=0)$.
- "Fig of merit", ZT

$$
\mathrm{Z}=\mathrm{S}^{2} \sigma / \mathrm{K}
$$

Best current values, $\mathrm{ZT} \sim 3$.

- Good to increase S ! and reduce K of phonons.
- Without phonons (best), Wiedemann-Franz gives:

$$
\mathrm{ZT}=\left(3 / \pi^{2}\right) \mathrm{s}^{2}, \quad \mathrm{~s}=\mathrm{Sk}_{\mathrm{B}} / \mathrm{e}
$$

$\mathrm{k}_{\mathrm{B}} / \mathrm{e}=85-86 \mu \mathrm{~V} / \mathrm{K}$, natural unit for thermopower
WF: $\sigma T / K=\left(3 / \pi^{2}\right)\left(e / k_{B}\right)^{2}$, roughly valid (for e's) often. Seek to invalidate WF!!!

Example: Reduction of thermodynamic

 Carnot efficiency, $1-\mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{H}}$For conversion of heat to electricity:

$$
\gamma=\frac{\sqrt{(1+Z T)}-1}{\sqrt{(1+Z T)}+\frac{T_{C}}{T_{H}}}
$$

Example: $\mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{H}}=1 / 2, \mathrm{ZT}=3$. Efficiency reduction . 4 .
Increasing S by a factor of two makes reduction ~ . 63 .

How to get large thermopowers

- Since an electron with energy E carries heat (see later)

$$
\mathbf{E}-\mu:
$$

Choosing $\mu=0$:

$$
S \equiv \frac{V}{\Delta T}=-\frac{L_{12}}{L_{11}}=\frac{\int d E E \sigma(E) \frac{\partial f}{\partial E}}{e T \int d E \sigma(E) \frac{\partial f}{\partial E} .} \begin{aligned}
& \text { Mott-Cutler } \\
& \text { Phys Rev 181, } \\
& 1336(1969)
\end{aligned}
$$

Sivan and Imry, 1986, from Landauer Electrons and holes contribute opposite signs! Want sharp, asymmetric $\sigma(E)$

II. Thermopower near the Anderson Transition

Need sharply changing $\sigma(E)$! and no e-h symmetry

- M-I transition: $\sigma(\mathbb{E}) \sim\left(\mathbb{E}-\mathbb{E}_{\mathrm{m}}\right)^{x}$, near $\mathbb{E}_{\mathrm{m} 1}$

Basic theory: add thermal transport to the Thouless picture of conduction between two "blocks" Thouless, D. J. (1977) Phys. Rev. Lett. 39, 1167.
$\mathrm{eV}=\mu_{1}-\mu_{\mathrm{r}}$
$\Delta \mathrm{T}=\mathrm{T}_{1}-\mathrm{T}_{\mathrm{r}}$,
Golden rule for interblock electron,
Energy, heat transfer

Fundamental result: a particle leaving a system at energy E, carries heat (TdS)

$$
\text { of } E-\mu
$$

Entropy in that state is:

$$
S_{E}=-k_{B}[f \ln f+(1 \pm f) \ln (1 \pm f)],
$$

Bosons
Fermions
when the population, f , changes:

$$
\dot{S}_{E}=-k_{B} \dot{f} \ln \frac{f}{1 \pm f}=-\frac{E}{T} \dot{f},
$$

(using equilibrium f,E measured from μ)

Two connected systems with voltage V and temp difference ΔT

$$
\binom{I}{I_{Q}}=\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)\binom{V}{\Delta T},
$$

I and I_{Q} conserved (no inelastic scattering). But, due to V and $\Delta \mathrm{T}$ get entropy production:

$$
\mathrm{TdS} / \mathrm{dT}=\mathrm{IV}+\mathrm{I}_{\mathrm{Q}} \Delta \mathrm{~T} / \mathrm{T}
$$

Rate of dissipation, generalizing Joule

Check: for photons/phonons, $\mu=0$.

Thermal conductance "quantum", per mode in a (ballistic) waveguide is:

$$
k_{B}^{2} T \pi /(6 \hbar) \text { (per mode) }
$$

Kirczenow and Rego, 1998; cf YI derivation of $\mathrm{e}^{2} / \mathrm{h}$ conductance quantum for electrons (1986).

- Derived full 2 x 2 "thermoelectric" matrix,
- Checked Onsager relations (incl magnetic field), (follow as identities)
- Wiedemann-Franz for (e's) low-T thermal conductivity,
- Cutler-Mott for thermoelectric power.

Evaluating Mott-Cutler expression

 near Anderson M-I transition (no serious interactions).No inelastic scattering, no hopping cond.

$$
\begin{gathered}
S_{\text {high }} \approx \frac{1}{e}[2 \log (2)+\mathrm{x}] . \\
S_{\text {low }} \approx \frac{\pi^{2} x T}{3 e\left(\mu-E_{m}\right)}+O\left(T^{3}\right) . \\
\begin{array}{l}
\text { And } \mathbf{S} \text { Scales (only } \\
\text { deloc electrons): }
\end{array}
\end{gathered}
$$

$$
S=Y\left(\frac{\mu-E_{M}}{T}\right)
$$

How to determine the critical exponent

 x ?- Usually, low temp σ_{0} is plotted vs control parameter prop to $\mu-\mathrm{E}_{\mathrm{m}}$ (when both are small enough...)
- We suggest looking at low-temp slope of S, and eliminating $\mu-\mathrm{E}_{\mathrm{m}}$ between it and σ (no need to know $\left.\mu-E_{m}\right):$

$$
\frac{d S}{d T}_{T \rightarrow 0} \sim[\sigma(T=0)]^{-1 / x}
$$

Applying this to existing data: Ovadyahu, J Phys C19, 5187 (1986), on $\mathrm{InO}_{\mathrm{x}}$

Get $\mathbf{x} \sim \mathbf{1 - 1 . 2}$, need lower T, but good start!

See also; Lauinger and Baumann, J. Phys Cond Matt 7, 1305 (1995)

$$
\text { Taken } \mathrm{x}=1
$$

Figure 8. Low-temperature slope of S or S_{D} versus $\rho(0)$ for amorphous $\mathrm{Au}_{x} \mathrm{Sb}_{1001-x}$. For samples with $9 \leqslant x \leqslant 14.2 \mathrm{at}$. \% the values of $S(T) /\left.T\right|_{T \rightarrow 0}$ are shown, while for samples with $x>14.2 \mathrm{at}$. \% the values of $S_{\mathrm{D}}(T) /\left.T\right|_{T \rightarrow 0}$ taken from the fitting procedure are shown. All data were measured after annealing at 60 K . The solid line is a fit according to equation (5). The dashed line corresponds to the resistivity of a sample with $x=14.2 \mathrm{at} . \%$.

From exp papers:

Figure 7. Thermockectrie power as a function of tempcreture for a batch of crystalline indium oxide samples (thickness $-1000 \AA$). The different curves were obtained by successively heat treating the as-prepared sample (designated by open circles) that had $\rho_{\mathrm{RT}}=1.7 \times 10^{-3} \Omega \mathrm{~cm}$ to obtain samples $\begin{gathered}\text { ith } p_{\text {WT }}\end{gathered}=2.6 \times 10^{-1}, 3.4 \times 10^{-2}, 1.25 \times 10^{-1}, 2 \times 10^{-2} \mathrm{\Omega} \mathrm{~cm}$ (designated by crosses, full circtes, squares and triangles respective.y).

FIG. 2. The dependence of the extrapolated, zerotemperature conductivity, σ_{0}, on disorder. The solid line is given by $\sigma_{0}=141\left(K_{F} 1-0.80\right)^{0.75}$.

Ovadyahu, J Phys C (1986)
Ovadyahu and Tousson Phys. Rev. B 38, 12290 (1988).

Critical behaviour of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFETs

What about full scaling of S ?

Nice, but takes us away from the QPT and hopping is involved at the higher temps.

Good fit, but $\mathrm{x} \sim .1$ is unacceptable!
We believe that hopping below E_{m} reduces high T values.

Conclusion: Metal-Insulator Transition

 near "mobility edge":$$
\sigma_{0}(E)=A\left(E-E_{m}\right)^{x}
$$

Offers a way to both:

1. Get large S, and at low temps.
2. Obtain valuable info on the critical behavior near the Anderson QPT.

Many more ideas to increase S!!!

III. Thermoelectric 3-terminal Transport in Molecular Junctions.

Molecular Junctions

- with Ora Entin-Wohlman,Amnon Aharony. PRB (2010)
- Including molecular vibrations and coupling to "substrate phonons"

thermoelectric transport through molecular bridges

$$
T d S=d E-\mu d N
$$

dissipation at reservoirs:

$$
\dot{S}_{\mathrm{L}(\mathrm{R})}=\frac{1}{T_{\mathrm{L}(\mathrm{R})}}\left(\dot{E}_{\mathrm{L}(\mathrm{R})}-\mu_{\mathrm{L}(\mathrm{R})} \dot{N}_{\mathrm{L}(\mathrm{R})}\right)
$$

entropy production of phonon

$$
\dot{S}_{\mathrm{P}}=\frac{1}{T_{\mathrm{P}}} \dot{E}_{\mathrm{P}}
$$ bath:

Transport relations and entropy production

$$
\begin{gathered}
T_{\mathrm{L}(\mathrm{R})}=T \pm \frac{\Delta T}{2} \\
T_{\mathrm{P}}=T+\Delta T_{\mathrm{P}} \\
\mu_{\mathrm{L}(\mathrm{R})}=\mu \pm \frac{\Delta \mu}{2} \\
\hline \dot{S}_{\mathrm{P}}+\dot{S}_{\mathrm{L}}+\dot{S}_{\mathrm{R}}=\frac{\Delta T_{\mathrm{P}}}{T^{2}} I_{\mathrm{QP}}+\frac{\Delta \mu / e}{T} I+\frac{\Delta T}{T^{2}} I_{\mathrm{Q}} \\
\mu_{\mathrm{L}} \\
I=-\frac{e}{2}\left(\dot{N}_{\mathrm{L}}-\dot{N}_{\mathrm{R}}\right) \\
I_{\mathrm{Q}}=I_{\mathrm{E}}-\frac{\mu}{e} I, \quad I_{\mathrm{E}}=-\frac{1}{2}\left(\dot{E}_{\mathrm{L}}-\dot{E}_{\mathrm{R}}\right) \\
I_{\mathrm{QP}}=-\dot{E}_{\mathrm{P}}=\dot{E}_{\mathrm{L}}+\dot{E}_{\mathrm{R}}
\end{gathered}
$$

linear-response thermoelectric transport

$$
\begin{gathered}
{\left[\begin{array}{c}
I \\
I_{\mathrm{Q}} \\
I_{\mathrm{QP}}
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
\Delta \mu / e \\
\Delta T / T \\
\Delta T_{\mathrm{P}} / T
\end{array}\right]} \\
\mathcal{M}=\left[\begin{array}{ccc}
\mathrm{G} & \mathrm{~K} & \mathrm{~S}^{\mathrm{P}} \\
\mathrm{~K} & \mathrm{~K}_{2}+\mathrm{K}_{2}^{\mathrm{P}} & \widetilde{\mathrm{~S}}^{\mathrm{P}} \\
\mathrm{~S}^{\mathrm{P}} & \widetilde{\mathrm{~S}}^{\mathrm{P}} & \mathrm{C}^{\mathrm{P}}
\end{array}\right]
\end{gathered}
$$

Onsager relations OK

$$
\begin{gathered}
\mathrm{G}=\mathrm{G}^{\mathrm{el}}+\mathrm{G}^{\mathrm{inel}}, \\
\mathrm{G}^{\mathrm{el}}=\frac{e^{2}}{2 \pi} \int d \omega F^{\mathrm{el}}(\omega) \Gamma_{\mathrm{L}}(\omega) \Gamma_{\mathrm{R}}(\omega), \\
\mathrm{G}^{\text {inel }}=\frac{e^{2}}{2 \pi} \int d \omega F^{\mathrm{inel}}(\omega) \\
\times\left(\Gamma_{\mathrm{L}}\left(\omega_{+}\right) \Gamma_{\mathrm{R}}\left(\omega_{-}\right)+\Gamma_{\mathrm{L}}\left(\omega_{-}\right) \Gamma_{\mathrm{R}}\left(\omega_{+}\right)\right) .
\end{gathered}
$$

Thermoelectric transport coefficients (like 2-t)

$$
\begin{aligned}
& \mathrm{K}=\mathrm{K}^{\mathrm{el}}+\mathrm{K}^{\mathrm{inel}}, \\
& {\left[\begin{array}{c}
I \\
I_{\mathrm{Q}} \\
I_{\mathrm{QP}}
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
\Delta \mu / e \\
\Delta T / T \\
\Delta T_{\mathrm{P}} / T
\end{array}\right]} \\
& \mathrm{K}_{2}=\mathrm{K}_{2}^{\mathrm{el}}+\mathrm{K}_{2}^{\mathrm{inel}} \text {, } \\
& \text { with } \\
& \mathrm{K}^{\mathrm{el}}=\frac{e}{2 \pi} \int d \omega F^{\mathrm{el}}(\omega)(\omega-\mu) \Gamma_{\mathrm{L}}(\omega) \Gamma_{\mathrm{R}}(\omega), \\
& \mathrm{K}^{\text {inel }}=\frac{e}{2 \pi} \int d \omega F^{\text {inel }}(\omega)(\omega-\mu) \\
& \times\left(\Gamma_{\mathrm{L}}\left(\omega_{+}\right) \Gamma_{\mathrm{R}}\left(\omega_{-}\right)+\Gamma_{\mathrm{L}}\left(\omega_{-}\right) \Gamma_{\mathrm{R}}\left(\omega_{+}\right)\right) \text {, } \\
& \text { and } \\
& T_{\mathrm{L}(\mathrm{R})}=T \pm \frac{\Delta T}{2} \\
& T_{\mathrm{P}}=T+\Delta T_{\mathrm{P}} \\
& \mu_{\mathrm{L}(\mathrm{R})}=\mu \pm \frac{\Delta \mu}{2} \\
& F^{\mathrm{inel}}(\omega)=\beta \frac{\gamma^{2}}{e^{\beta \omega_{0}-1}}\left|G\left(\omega_{+}\right)\right|^{2}\left|G\left(\omega_{-}\right)\right|^{2} f\left(\omega_{-}\right)\left[1-f\left(\omega_{+}\right)\right] \\
& \omega_{ \pm}=\omega \pm \frac{\omega_{0}}{2}
\end{aligned}
$$

thermoelectric transport coefficients (novel - 3 t)

$$
\left[\begin{array}{c}
I \\
I_{\mathrm{Q}} \\
I_{\mathrm{QP}}
\end{array}\right]=\mathcal{M}\left[\begin{array}{c}
\Delta \mu / e \\
\Delta T / T \\
\Delta T_{\mathrm{P}} / T
\end{array}\right] \quad \mathrm{S}^{\mathrm{P}}=\frac{e \omega_{0}}{2 \pi} \int d \omega F^{\mathrm{inel}}(\omega)
$$

$$
\times\left(\Gamma_{\mathrm{R}}\left(\omega_{+}\right) \Gamma_{\mathrm{L}}\left(\omega_{-}\right)-\Gamma_{\mathrm{L}}\left(\omega_{+}\right) \Gamma_{\mathrm{R}}\left(\omega_{-}\right)\right)
$$

$\mathcal{M}=\left[\begin{array}{ccc}G & \mathrm{~K} & \mathrm{~S}^{\mathrm{P}} \\ \mathrm{K} & \mathrm{K}_{2}+\mathrm{K}_{2}^{\mathrm{P}} & \widetilde{\mathrm{S}}^{\mathrm{P}} \\ \mathrm{S}^{\mathrm{P}} & \widetilde{\mathrm{S}}^{\mathrm{P}} & \mathrm{C}^{\mathrm{P}}\end{array}\right]$

$$
\begin{gathered}
T_{\mathrm{L}(\mathrm{R})}=T \pm \frac{\Delta T}{2} \\
T_{\mathrm{P}}=T+\Delta T_{\mathrm{P}} \\
\mu_{\mathrm{L}(\mathrm{R})}=\mu \pm \frac{\Delta \mu}{2}
\end{gathered}
$$

IV, Hopping 3t Thermoelectrity

- Two-site case
- Longer chains, dominance of edges

role of inelastic interactions

to force electrons transported through a junction, e.g., one-dimensional nanosystems, to take relatively large and well-defined energy from the phonons and deliver it to another bath or to an electronic reservoir, as a heat or as a (charge) current.

Generalization of Mahan-Sofo!

three-terminal realization of Mahan-Sofo

 new element: inelastic processes$$
\begin{aligned}
\sigma & =\int d E \sigma(E)[-\partial f(E) / \partial E] \\
\mathrm{T} \sigma S & =\frac{1}{e} \int d E E \sigma(E)[-\partial f(E) / \partial E] \\
\mathrm{T} \kappa_{2} & =\frac{1}{e^{2}} \int d E E^{2} \sigma(E)[-\partial f(E) / \partial E]
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{\mathrm{e}}=\kappa_{2}-\sigma S^{2} \mathrm{~T} \\
& \kappa_{\mathrm{e}} \rightarrow\left\langle E^{2}\right\rangle-\langle E\rangle^{2}
\end{aligned}
$$

$$
Z \mathrm{~T}=\mathrm{T} \sigma S^{2} /\left(\kappa_{\mathrm{e}}+\kappa_{\mathrm{ph}}\right) \rightarrow \mathrm{T} \sigma S^{2} / \kappa_{\mathrm{ph}}
$$

limited by thermal conductivity of the phonons, Wiedmann-Franz law not in action; fails totally, $\mathrm{Ke}=0$, with very narrow transport energy-band

Kharpai,Ludwig,Kotthous,Tra nitz,Wegscheider, Phys. Rev. Lett. 97, 176803 (2006): Ratchet converting phononinduced excitations into dc current in QPC's

FIG. 1 (color online). QDR energies in the cooling regime. Thermal broadening in the three 2DEGs (source, center and drain) is shown by the light shading around their electrochemical potentials $\left(\mu_{S}, \mu_{C}, \mu_{D}\right)$. The net flow of an electron from source to drain removes an energy $E_{B}-E_{A}$ from the center. $E_{A}\left(E_{B}\right)$ is the ground state addition energy of $\operatorname{dot} A(B)$.

Prance,Smith,Griffiths,Chorley,And erson,Jones,Farrer,Ritchie, Phys. Rev. Lett. 102, 146602 (2009): Cooling 2DEG using Qdots, cool e's in hot e's out

Sanchez and Buttiker, Phys. Reł. B 83, 085428 (2011):Optimal conversion of heat into electric flow by coupling to quantized levels
tunneling conductance:

$$
\begin{aligned}
& G_{\text {tun }} \\
& \simeq e^{2} \frac{1}{E_{i}^{2} E_{j}^{2}} \nu_{L} \nu_{R}\left|\alpha_{e}\right|^{6} e^{-2 W / \xi}
\end{aligned}
$$

golden-rule transition rate (inelastic transitions):

$$
\Gamma_{i j}=2 \pi \Gamma_{\mathrm{in}} f_{i}\left(1-f_{j}\right) \mathrm{N}_{\mathrm{B}}\left(E_{j i}\right)
$$

distributions:

$$
\begin{aligned}
f_{i} & =\frac{1}{\exp \left(\frac{E_{i}-\mu_{i}}{k_{\mathrm{B}} \mathrm{~T}_{i}}\right)+1} \\
\mathrm{~N}_{\mathrm{B}} & =\frac{1}{\exp \left(\frac{\omega_{q}}{k_{\mathrm{B}} \mathrm{~T}_{\mathrm{ph}}}\right)+1}
\end{aligned}
$$

the two-site case
currents: $\quad I=e\left(\Gamma_{12}-\Gamma_{21}\right)$

$$
\begin{aligned}
I_{Q}^{\mathrm{e}} & =\bar{E}\left(\Gamma_{12}-\Gamma_{21}\right) \\
I_{Q}^{\mathrm{ph}} & =E_{21}\left(\Gamma_{12}-\Gamma_{21}\right)
\end{aligned}
$$

$$
\bar{E}=\left(E_{1}+E_{2}\right) / 2
$$

$$
E_{21}=E_{2}-E_{1}
$$

"ordinary" figure of merit:
limited by phonon heat conductivity

"new" figure of merit for the efficiency

$$
\begin{gathered}
\eta=I_{Q}^{\mathrm{ph}} /(e I V) \\
\widetilde{Z} \mathrm{~T} \rightarrow \infty
\end{gathered}
$$

$\begin{aligned} & \text { Onsager } \\ & \text { matrix: }\end{aligned}\left[\begin{array}{c}I \\ I_{Q}^{e} \\ I_{Q}^{\text {ph }}\end{array}\right]=G\left[\begin{array}{ccc}1 & \bar{E} / e & E_{21} / e \\ \bar{E} / e & \bar{E}^{2} / e^{2} & \bar{E} E_{21} / e^{2} \\ E_{21} / e & \bar{E} E_{21} / e^{2} & \bar{E}_{21}^{21} / e^{2}\end{array}\right]\left[\begin{array}{c}V \\ \Delta \mathrm{~T} / \mathrm{T} \\ \Delta \mathrm{T}_{\mathrm{ph}} / \mathrm{T}\end{array}\right]$
"new" figure of merit for the efficiency--more realistic case

$$
\eta=I_{Q}^{\mathrm{ph}} /(e I V)
$$

wasted work due to parasitic heat diffusion from the leads to the system being cooled, and elastic tunneling conductance

$$
\begin{aligned}
& \widetilde{Z} \mathrm{~T}=\left[\frac{G_{\mathrm{el}}}{G}+\frac{K_{\mathrm{pp}}}{K_{\mathrm{pe}}}+\frac{G_{\mathrm{el}} K_{\mathrm{pp}}}{G K_{\mathrm{pe}}}\right]^{-1} \\
& K_{p e}=\frac{G}{e^{2}} E_{21}^{2}
\end{aligned}
$$

the one-dimensional chain -- only edges matter

the conductance is sensitive to changes in the configuration within the sample, the thermopower is not!

Ongoing and future Work

Effect of breaking of time-reversal symmetry
S below mobilty edge and in Anderson
Insulator
$\mathrm{S}_{\mathrm{xy}}(\mathrm{B})$ (Nernst-Ettinghausen)

Phonon (and other bosons) drag

Effect of electron correlations.

THANK YOU!!!

