Topological fracton quantum phase transitions from exact tensor network deformations

Topological Quantum Phases of Matter Beyond Two Dimensions Sorbonne Université Paris, October 2022

intrinsic topological order

topological quantum liquids

1D

symmetry protected topological state

intrinsic topological order & **anyons**

2D

vector gauge field

3D

geometric topological order & fractons

tensor gauge field

Reviews: Wen 2019; Nandkishore, Hermele 2018; Pretko, Chen, You 2020

fracton order

- fracton excitation: restricted mobility
- robust quantum memory against temperature

3D generalizations

string-net condensate

Chamon 05; Haah 11; Yoshida 13; Vijay, Haah, Fu, 16; Pretko 17; ...

X-Cube model

Vijay, Haah, Fu 2016

X-Cube model

dual to plaquette Ising model

ground states

Vijay, Haah, Fu 2016

exactly solvable

subextensive manifold

tensor network state representation He, Zheng, Bernevig, Regnault 2018

X-Cube model

dual to plaquette Ising model

electric scalar charge

excitations

Vijay, Haah, Fu 2016

exactly solvable

magnetic vector monopole

- **Higgs** $U(1) \rightarrow Z_2 = X$ cube

anyon condensation

2D toric code layers

(building blocks)

e & m anyons

(bound in layers)

Ma, Lake, Chen, Hermele 2017; Vijay 2017

© Simon Trebst

Interesting phase transitions?

University of Cologne

arXiv:2203.00015

meet the team

Sun Yat-sen University, Guangzhou

wavefunction deformations

 $|\psi(t,h)\rangle = \exp\left(\frac{1}{2}\sum_{l}h\mu_{l}^{z} + t\sigma_{l}^{x}\right)|\psi_{0}\rangle$

m-loop condensation

arXiv:2203.00015

wavefunction deformations

tensor network wavefunction

$$|\psi(t,h)\rangle = \exp\left(\frac{1}{2}\sum_{l}h\mu_{l}^{z} + t\sigma_{l}^{x}\right)|\psi_{0}\rangle$$

3D X-cube fracton-free

(tensor gauge **Gauss law**)

(dual cubic lattice)

 $|\psi_0\rangle \sim |2\text{D Toric Code}\rangle^{\otimes L_x + L_y + L_z}$ physical indices $\mu^{z} = (-1)^{n_1 - n_2 - n_3 + n_4}$ $\sigma^z = (-1)^{n_4 - n_3}$

virtual indices n = 0, 1

solvable limits

 $|\psi(t,h)\rangle = \exp\left(\frac{1}{2}\sum_{l}h\mu_{l}^{z} + t\sigma_{l}^{x}\right)|\psi_{0}\rangle$

tensor network calculations

tensor network compression

3D PEPS

wavefunction

3D tensor network

"classical" model

tensor network state representation He, Zheng, Bernevig, Regnault 2018

2D iPEPS optimization Vanderstraeten, Haegeman, Corboz & Verstraete 2016

© Simon Trebst

2D iPEPS

1D MPS

0D number

boundary fixed point

boundary fixed point

order parameter

classical models & factorization

3D Ising gauge model describes m-loop fluctuation

$$s = \pm 1, \tau =$$

 $t' \equiv \frac{1}{2} \ln c$

dual 3D plaquette Ising model describes fracton confinement

schematic phase diagram

quantum-classical mapping & diagnostics

Z₂ model

m-loop condensation

deconfined charge fraction (dual Ising order)

P

iPEPS D=3, vuMPS chi=72

Z_N mode

Z_N toric code star stabilizer

(vector gauge Gauss law)

e.g.
$$Z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Z_N X-cube stabilizer

(tensor gauge Gauss law)

Z_N wavefunction

$$|\psi(t,h)\rangle = \exp\left(\frac{1}{2}\sum_{l}h\mu_{l}^{z} + t\sigma_{l}^{x}\right)|\psi_{0}\rangle$$

physical indices

$$\mu^{z} = (-1)^{n_{1} - n_{2} - n_{3} + n_{4}}$$

$$\sigma^{z} = (-1)^{n_{4} - n_{3}}$$

virtual indices $n = 0, 1, \dots, N - 1$

m-loop condensation

3D Z_N vector gauge model

- N=2, Ising*
- N=3, weak 1st order
- N=4, Ising*^2
- N>4, XY*

dual to 3D Z₅ clock model

iPEPS D=2, chi=80

Bhanot & Creutz, 1980 Borisenko, Chelnokov, Cortese, Gravina, Papa & Surzhikov, 2014

fracton confinement

fracton confinement

confinement length scale diverges linearly at critical point

continuous phase transition

non-LGW transition

A **finite** phase region for deconfined fracton phase even in limit $N \to \infty$

 $N \to \infty$

fracton quadrupole **vanishes quadratically** at critical point

monopole condensate **keeps jumping** to a finite constant (?)

Phase diagram

exact tensor network wavefunctions

h-perturbation confines fractons into dipole

• **exact** tensor network state phase diagram

spatial **conformal** quantum critical points

• fracton confinement

first-order to **continuous** transition

deconfined QCP

m-loop condensation

continuous transition separates **deconfined** fracton & toric codes **non-LGW** transition

- Outlook ullet
 - direct calculation for U(1) fracton QPT?
 - generalise to **fractal** liquid or **twisted** fracton order
 - **Hamiltonian** deformation path?
 - realization in **quantum processor**?

summary

arXiv:2203.00015

