Edge modes and counting statistics in the 2D and 4D Quantum Hall effects

Jean-Marie Stéphan

Camille Jordan Institute, University of Lyon 1 \& CNRS, France

> Topological Quantum Phases of Matter Beyond Two Dimensions, Jussieu 2022
[Estienne \& JMS, Phys. Rev. B 101, 2019]
[Estienne, Oblak \& JMS, Scipost Physics 11, 2021]
[Estienne, JMS \& Witczak-Krempa, Nat. Comm. 13, 2022]

Slides + Chalk

Outline

(1) Simple 2d Integer Quantum Hall wavefunctions
(2) Simple 4d Integer Quantum Hall wavefunctions
(3) Counting statistics and related problems

Hamiltonian in a magnetic field + trapping potential

$$
H=\frac{1}{2}(\mathbf{p}-\mathbf{A})^{2}+\frac{k}{2}\left(x^{2}+y^{2}\right)
$$

Symmetric gauge

$$
\mathbf{A}=\frac{B}{2}\binom{-y}{x}
$$

leads -after lowest Landau level projection- to singleparticle wave functions

$$
\phi_{m}(z)=\frac{z^{m}}{\sqrt{\pi m!}} e^{-\left|z^{2}\right| / 2}
$$

with single particle energies $\epsilon_{m}=\hbar \omega m$ with $\omega=\frac{k}{B}$.

Two-point function/correlation kernel

$$
\begin{aligned}
K_{N}\left(z, z^{\prime}\right) & =\sum_{m=0}^{N-1} \phi_{m}^{*}(z) \phi_{m}\left(z^{\prime}\right) \\
& =\sum_{m=0}^{N-1} \frac{\left(z^{*} z^{\prime}\right)^{m}}{\pi m!} e^{-\left(|z|^{2}+\left|z^{\prime}\right|^{2}\right) / 2}
\end{aligned}
$$

Density profile for large but finite N

Two-point function (correlation kernel)

4d Quantum Hall effect

$(x, y, u, v) \in \mathbb{R}^{4}$. Simplest generalization of the previous model:

$$
H=(\mathbf{p}-\mathbf{A})^{2}+\frac{k}{2}\left(x^{2}+y^{2}\right)+\frac{k^{\prime}}{2}\left(u^{2}+v^{2}\right)
$$

with vector potential

$$
\mathbf{A}=\frac{B}{2}\left(\begin{array}{c}
-y \\
x \\
-v \\
u
\end{array}\right)
$$

leads to ($z=x+i y, w=u+i v$ up to some units)

$$
\phi_{m, n}(z, w)=\frac{z^{m} w^{n}}{\sqrt{\pi^{2} m!n!}} e^{-\left(|z|^{2}+|w|^{2}\right) / 2}
$$

with energies $\epsilon_{m, n}=\hbar\left(\omega m+\omega^{\prime} n\right)$ with $\omega=\frac{k}{B}, \omega^{\prime}=\frac{k^{\prime}}{B}$

Generalizations of QHE to 4d predict anisotropic edge modes
[Zhang \& Hu, Science 2001]
[Karabali \& Nair, Nucl. Phys. B 2002]
[Helvang \& Polschinski, CRP 2003]

Possible experimental realisations by engineering synthetic dimensions (quasicrystals, internal states, photonics,...)
[Kraus, Ringel \& Zilberberg, PRL 2013]
[Price, Zilberberg, Ozawa, Carusotto \& Goldman, PRL 2015]
[Lohse, Schweizer, Price, Zilberberg \& Bloch Nature 2018]
[Bouhiron et al., arXiv:2210.06322] (see previous talk by Nascimbene)

$$
K_{N}\left(z, w \mid z^{\prime}, w^{\prime}\right)=\sum_{m+\Delta n<N} \frac{\left(z^{*} z^{\prime}\right)^{m}\left(w^{*} w^{\prime}\right)^{n}}{\pi^{2} m!n!} e^{-\left(|z|^{2}+|w|^{2}+\left|z^{\prime}\right|^{2}+\left|w^{\prime 2}\right|\right) / 2}
$$

$$
\Delta=\frac{\omega^{\prime}}{\omega}
$$

Edge modes on the torus

$$
\Delta=1
$$

Edge modes on the torus

$$
\Delta=3 / 2
$$

Edge modes on the torus

$$
\Delta=5 / 3
$$

Edge modes on the torus

$$
\Delta=7 / 5
$$

Edge modes on the torus

$$
\Delta=41 / 29
$$

1d slices at $\beta=0$

$\Delta=17 / 12$

1d slices at $\beta=0$

$$
\Delta=\sqrt{2}
$$

1d slices at $\beta=0$

$$
\Delta=\sqrt{2}
$$

Counting statistics and related problems

Thank you!

