Chiral orbital order of ultracold bosons without higher bands

Nathan Goldman

Marco Di Liberto and NG, arXiv:2111.13572 (+ new results)

Chiral orbital order of ultracold bosons without higher bands

Marco Di Liberto and NG, arXiv:2111.13572
I. Brief reminder : p band physics and breaking of time-reversal symmetry
II. The pi-flux plaquette building block
III. Collective mode on the plaquette
IV. From the building block to an extended lattice (BBH model)
V. Another extended lattice : towards topological superfluids (in progress)
VI. Strong interactions and chiral Mott phases (in progress)
VII. Going beyond 2D (a few thoughts to trigger curiosity ...)
I. Brief reminder : p band physics and breaking of time-reversal symmetry

- Breaking time-reversal symmetry ... by driving!

Rotation
Circular shaking
Complex hopping engineering

Review : Aidelsburger, Nascimbene \& NG, Comptes Rendus Phys. '18

- Breaking time-reversal symmetry ... by driving!

Rotation Circular shaking Complex hopping engineering

Review : Aidelsburger, Nascimbene \& NG, Comptes Rendus Phys. '18

- Breaking time-reversal symmetry without driving?
\longrightarrow combine orbital degrees of freedom and interactions

Hidden phase in cuprates (Varma model '97)

- Breaking time-reversal symmetry ... by driving!

Rotation
Circular shaking
Complex hopping engineering

Review : Aidelsburger, Nascimbene \& NG, Comptes Rendus Phys. '18

- Breaking time-reversal symmetry without driving?
\longrightarrow combine orbital degrees of freedom and interactions

In cold atoms : load into higher orbital Bloch bands of an optical lattice

- Loading interacting bosonic atoms into p bands :

$$
\psi_{p_{x}}(\boldsymbol{x}) \pm i \psi_{p_{y}}(\boldsymbol{x}) \approx x \pm i y
$$

\Longrightarrow a vortex on each site, breaking TRS locally (on each site of the lattice)!

- Loading interacting bosonic atoms into p bands :

chiral orbital order

$$
\psi_{p_{x}}(\boldsymbol{x}) \pm i \psi_{p_{y}}(\boldsymbol{x}) \approx x \pm i y
$$

\Longrightarrow a vortex on each site, breaking TRS locally (on each site of the lattice)!

- Why? The Hubbard (on-site) interactions become

$$
\hat{H}_{\mathrm{int}}=\frac{U}{2} \sum_{\boldsymbol{r}}\left(\hat{n}_{\boldsymbol{r}}^{2}-\frac{1}{3} \hat{L}_{z, \boldsymbol{r}}^{2}\right), \quad U>0 \text { (repulsive) }
$$

where $\hat{L}_{z, r}=-i\left(\hat{p}_{x, r}^{\dagger} \hat{p}_{y, \boldsymbol{r}}-\hat{p}_{y, r}^{\dagger} \hat{p}_{x, \boldsymbol{r}}\right)$: orbital angular momentum
\Longrightarrow ground state maximizes $\left|L_{z}\right|$ on each site, breaking TRS (locally)!

- P-band physics : Assembling vortices on a lattice
- P-band physics : Assembling vortices on a lattice

Limitation of this p-band approach :

- Loading into higher Bloch bands \rightarrow Limited lifetime !

Here : a novel route towards chiral orbital order that does not rely on higher bands
II. The pi-flux plaquette building block

- Ingredient 1 : a square plaquette with π flux

- Ingredient 1 : a square plaquette with π flux

$$
\begin{aligned}
& -\quad \epsilon_{3,4}=\sqrt{2} J \\
& -\quad \epsilon_{1,2}=-\sqrt{2} J
\end{aligned}
$$

TRS

- Ingredient 2 : N bosons with Hubbard (on-site) interactions

$$
\hat{H}_{\mathrm{int}}=\frac{U}{2} \sum_{i=1}^{4} \hat{n}_{i}\left(\hat{n}_{i}-1\right), \quad U>0, \quad g \equiv U N \ll J
$$

- Ingredient 1 : a square plaquette with π flux

$$
-\longrightarrow \epsilon_{3,4}=\sqrt{2} J
$$

$$
-\quad \epsilon_{1,2}=-\sqrt{2} J
$$

- Ingredient $2: N$ bosons with Hubbard (on-site) interactions

$$
\hat{H}_{\mathrm{int}}=\frac{U}{2} \sum_{i=1}^{4} \hat{n}_{i}\left(\hat{n}_{i}-1\right), \quad U>0, \quad g \equiv U N \ll J
$$

- Trick : Project onto the low-energy orbitals $\left\{\left|d_{1}\right\rangle,\left|d_{2}\right\rangle\right\}$

$$
\hat{H}_{\mathrm{eff}}=-\left(\sqrt{2} J+\frac{U}{8}+\mu\right) \hat{n}+\frac{3 U}{16} \hat{n}^{2}-\frac{U}{16} \hat{L}_{z}^{2}
$$

where $\hat{n}=\hat{d}_{1}^{\dagger} \hat{d}_{1}+\hat{d}_{2}^{\dagger} \hat{d}_{2}$ is the number operator in the subspace, and $\hat{L}_{z}=i\left(\hat{d}_{1}^{\dagger} \hat{d}_{2}-\hat{d}_{2}^{\dagger} \hat{d}_{1}\right)$ is the "orbital angular momentum"

- Ingredient 1 : a square plaquette with π flux

$$
-\quad \epsilon_{3,4}=\sqrt{2} J
$$

$$
-\longrightarrow \epsilon_{1,2}=-\sqrt{2} J
$$

- Ingredient 2 : N bosons with Hubbard (on-site) interactions

$$
\hat{H}_{\mathrm{int}}=\frac{U}{2} \sum_{i=1}^{4} \hat{n}_{i}\left(\hat{n}_{i}-1\right), \quad U>0, \quad g \equiv U N \ll J
$$

- Trick : Project onto the low-energy orbitals $\left\{\left|d_{1}\right\rangle,\left|d_{2}\right\rangle\right\}$

$$
\hat{H}_{\text {eff }}=-\left(\sqrt{2} J+\frac{U}{8}+\mu\right) \hat{n}+\frac{3 U}{16} \hat{n}^{2}-\frac{U}{16} \hat{L}_{z}^{2}
$$

where $\hat{n}=\hat{d}_{1}^{\dagger} \hat{d}_{1}+\hat{d}_{2}^{\dagger} \hat{d}_{2}$ is the number operator in the subspace, and $\hat{L}_{z}=i\left(\hat{d}_{1}^{\dagger} \hat{d}_{2}-\hat{d}_{2}^{\dagger} \hat{d}_{1}\right)$ is the "orbital angular momentum"
\longrightarrow reminiscent of interacting bosons in p-bands \Longrightarrow chiral orbital order!

- The ground-state : We note that $\left[\hat{H}_{\text {eff }}, \hat{L}_{z}\right]=0$
\Longrightarrow we use eigenstates $\hat{L}_{z}| \pm\rangle=(\pm 1)| \pm\rangle$, where $| \pm\rangle=\left(\left|d_{1}\right\rangle \pm i\left|d_{2}\right\rangle\right) / \sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\text {eff }}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

- The ground-state : We note that $\left[\hat{H}_{\text {eff }}, \hat{L}_{z}\right]=0$
\Longrightarrow we use eigenstates $\hat{L}_{z}| \pm\rangle=(\pm 1)| \pm\rangle$, where $| \pm\rangle=\left(\left|d_{1}\right\rangle \pm i\left|d_{2}\right\rangle\right) / \sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\text {eff }}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

\Longrightarrow two degenerate ground states ($n_{+}=N$ or $n_{-}=N$)

$$
\left|\psi_{\mathrm{GS}}\right\rangle_{+} \sim\left(\hat{d}_{+}^{\dagger}\right)^{N}|0\rangle, \quad\left|\psi_{\mathrm{GS}}\right\rangle_{-} \sim\left(\hat{d}_{-}^{\dagger}\right)^{N}|0\rangle
$$

with opposite angular momentum $\left\langle\hat{L}_{z}\right\rangle / N= \pm 1$
(Z_{2} symmetry/TRS)

- The ground-state : We note that $\left[\hat{H}_{\text {eff }}, \hat{L}_{z}\right]=0$
\Longrightarrow we use eigenstates $\hat{L}_{z}| \pm\rangle=(\pm 1)| \pm\rangle$, where $| \pm\rangle=\left(\left|d_{1}\right\rangle \pm i\left|d_{2}\right\rangle\right) / \sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\text {eff }}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

\Longrightarrow two degenerate ground states ($n_{+}=N$ or $n_{-}=N$)

$$
\left|\psi_{\mathrm{GS}}\right\rangle_{+} \sim\left(\hat{d}_{+}^{\dagger}\right)^{N}|0\rangle, \quad\left|\psi_{\mathrm{GS}}\right\rangle_{-} \sim\left(\hat{d}_{-}^{\dagger}\right)^{N}|0\rangle
$$

with opposite angular momentum $\left\langle\hat{L}_{z}\right\rangle / N= \pm 1$
(Z_{2} symmetry/TRS)

- In real space : the complex orbitals show a vortex structure on the plaquette

- The two degenerate many-body ground-states :

$$
\left|\psi_{\mathrm{GS}}\right\rangle_{ \pm} \sim\left(\hat{d}_{1}^{\dagger} \pm i \hat{d}_{2}^{\dagger}\right)^{N}|0\rangle \quad \Longrightarrow \text { chiral orbital order }
$$

\Longrightarrow two degenerate solutions with opposite superfluid currents
III. Collective mode on the plaquette

- A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\mathrm{eff}}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

- A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\text {eff }}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

- Take one ground state $\left|\psi_{\mathrm{GS}}\right\rangle_{+}$and move one particle from $|+\rangle \longrightarrow|-\rangle$

$$
\text { Energy cost : } \begin{aligned}
E_{\mathrm{exc}} & =\frac{U N}{4}-\frac{U}{4} \\
& =\frac{g}{4} \text { in the mean-field limit }(N \rightarrow \infty, g=U N \ll J)
\end{aligned}
$$

\Longrightarrow low-energy gapped mode (single-particle excitation)

- A generic many-body eigenstate of $\hat{H}_{\text {eff }}$ reads

$$
\left|n_{+}, n_{-}\right\rangle=\frac{1}{\sqrt{n_{+}!n_{-}!}}\left(\hat{d}_{+}^{\dagger}\right)^{n_{+}}\left(\hat{d}_{-}^{\dagger}\right)^{n_{-}}|0\rangle, \quad n_{+}+n_{-}=N
$$

with eigenenergy

$$
E_{\text {eff }}\left(n_{+}, n_{-}\right)=-\frac{U}{16}\left(n_{+}-n_{-}\right)^{2}+\text { constant }
$$

- Take one ground state $\left|\psi_{G S}\right\rangle_{+}$and move one particle from $|+\rangle \longrightarrow|-\rangle$

$$
\begin{aligned}
& \text { Energy cost : } \begin{aligned}
& E_{\mathrm{exc}}=\frac{U N}{4}-\frac{U}{4} \\
&=\frac{g}{4} \text { in the mean-field limit }(N \rightarrow \infty, g=U N \ll J) \\
& \Longrightarrow \text { low-energy gapped mode (single-particle excitation) }
\end{aligned}
\end{aligned}
$$

- More insight from a hydrodynamic approach?
- We introduce two mean-field variables $(g \equiv U N \ll J)$:

$$
\left\langle\hat{d}_{1}\right\rangle=\sqrt{\rho_{1}}, \quad\left\langle\hat{d}_{2}\right\rangle=e^{i \theta} \sqrt{\rho_{2}}, \quad \rho_{1}+\rho_{2}=N
$$

- Ground state corresponds to $\rho_{1,2}=N / 2$ and relative phase $\theta= \pm \pi / 2$
- Collective mode : We study the dynamics of fluctuations

$$
\rho_{1}=N / 2+\delta \rho, \quad \rho_{2}=N / 2-\delta \rho, \quad \theta=\pi / 2+\delta \theta \quad(\delta \rho, \delta \theta \text { small })
$$

- We introduce two mean-field variables $(g \equiv U N \ll J)$:

$$
\left\langle\hat{d}_{1}\right\rangle=\sqrt{\rho_{1}}, \quad\left\langle\hat{d}_{2}\right\rangle=e^{i \theta} \sqrt{\rho_{2}}, \quad \rho_{1}+\rho_{2}=N
$$

- Ground state corresponds to $\rho_{1,2}=N / 2$ and relative phase $\theta= \pm \pi / 2$
- Collective mode : We study the dynamics of fluctuations

$$
\rho_{1}=N / 2+\delta \rho, \quad \rho_{2}=N / 2-\delta \rho, \quad \theta=\pi / 2+\delta \theta \quad(\delta \rho, \delta \theta \text { small })
$$

Solving the equations of motion for the variables $(\delta \rho, \delta \theta)$ yield the proper mode :

$$
\delta \theta=\mathcal{A} \cos \omega_{0} t, \quad \delta \rho=-(\mathcal{A N} / 2) \sin \omega_{0} t, \quad \text { with frequency } \omega_{0}=g / 4=U N / 4
$$

\Longrightarrow oscillation of relative phase and population with $\pi / 2$ phase difference
\Longrightarrow a gapped collective mode above the ground state

- We introduce two mean-field variables $(g \equiv U N \ll J)$:

$$
\left\langle\hat{d}_{1}\right\rangle=\sqrt{\rho_{1}}, \quad\left\langle\hat{d}_{2}\right\rangle=e^{i \theta} \sqrt{\rho_{2}}, \quad \rho_{1}+\rho_{2}=N
$$

- Ground state corresponds to $\rho_{1,2}=N / 2$ and relative phase $\theta= \pm \pi / 2$
- Collective mode : We study the dynamics of fluctuations

$$
\rho_{1}=N / 2+\delta \rho, \quad \rho_{2}=N / 2-\delta \rho, \quad \theta=\pi / 2+\delta \theta \quad(\delta \rho, \delta \theta \text { small })
$$

Solving the equations of motion for the variables $(\delta \rho, \delta \theta)$ yield the proper mode :

$$
\delta \theta=\mathcal{A} \cos \omega_{0} t, \quad \delta \rho=-(\mathcal{A N} / 2) \sin \omega_{0} t, \quad \text { with frequency } \omega_{0}=g / 4=U N / 4
$$

\Longrightarrow oscillation of relative phase and population with $\pi / 2$ phase difference
\Longrightarrow a gapped collective mode above the ground state

- Exciting the mode?
- Exciting the mode : Achieved by modulating the relative population at $\omega \approx \omega_{0}$

$$
\hat{V}(t)=\frac{f(t)}{2}\left(\hat{d}_{1}^{\dagger} \hat{d}_{1}-\hat{d}_{2}^{\dagger} \hat{d}_{2}\right) \approx f(t)\left(\hat{b}_{3}^{\dagger} \hat{b}_{3}-\hat{b}_{2}^{\dagger} \hat{b}_{2}\right)
$$

- Exciting the mode : Achieved by modulating the relative population at $\omega \approx \omega_{0}$

$$
\hat{V}(t)=\frac{f(t)}{2}\left(\hat{d}_{1}^{\dagger} \hat{d}_{1}-\hat{d}_{2}^{\dagger} \hat{d}_{2}\right) \approx f(t)\left(\hat{b}_{3}^{\dagger} \hat{b}_{3}-\hat{b}_{2}^{\dagger} \hat{b}_{2}\right)
$$

- Numerical analysis within linear response $\left(V_{0}=10^{-4} g\right)$

- Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

$$
\hat{H}_{\text {eff }} \sim \hat{L}_{z}^{2} \Longrightarrow \delta E \sim 2 L_{z} \delta L_{z}
$$

\longrightarrow activating the mode leads to chiral current on the plaquette

- Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

$$
\hat{H}_{\mathrm{eff}} \sim \hat{L}_{z}^{2} \Longrightarrow \delta E \sim 2 L_{z} \delta L_{z}
$$

\longrightarrow activating the mode leads to chiral current on the plaquette

- Illustration : We quench a small impurity potential $\hat{H}_{\text {imp }}=-\Delta \hat{b}_{1}^{\dagger} b_{1} \rightarrow \delta \theta \neq 0$

\longrightarrow chiral motion on the plaquette of frequency $\omega \approx \omega_{0}=g / 4$
IV. From the building block to an extended lattice
- P-band physics : Assembling vortices on a lattice

\Longrightarrow Let us build a lattice using our building block (pi-flux plaquette) ...
- Building the extended lattice : the BBH model with interacting bosons

Benalcazar-Bernevig-Hughes (BBH) model

- Building the extended lattice : the BBH model with interacting bosons

The ground state is a uniform condensate (Γ point) forming a superfluid vortex lattice
\Longrightarrow chiral superfluid

- The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1, \mathbf{k}} \approx c_{s}|\mathbf{k}|$, with sound velocity $c_{s} \sim \sqrt{J^{\prime} g}$
- Massive mode : $\omega_{2, \mathbf{k}}=g / 4+\xi_{\mathbf{k}} \longrightarrow$ gap $=\omega_{0}$ (chiral mode on plaquette)
- The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1, \mathbf{k}} \approx c_{s}|\mathbf{k}|$, with sound velocity $c_{s} \sim \sqrt{J^{\prime} g}$
- Massive mode $: \omega_{2, \mathbf{k}}=g / 4+\xi_{\mathbf{k}} \longrightarrow$ gap $=\omega_{0}$ (chiral mode on plaquette)
- When $g \ll J^{\prime}$: Decay channel $\left|\beta_{2, \mathbf{k}=\mathbf{0}}\right\rangle \longrightarrow\left|\beta_{1, \mathbf{k}}, \beta_{1,-\mathbf{k}}\right\rangle$
- The decay rate Γ is estimated beyond the Bogoliubov approximation

$$
\text { Long-lived gapped mode : } \Gamma<\omega_{0}=g / 4 \Longrightarrow U \lesssim 18 J^{\prime}
$$

- The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1, \mathbf{k}} \approx c_{s}|\mathbf{k}|$, with sound velocity $c_{s} \sim \sqrt{J^{\prime} g}$
- Massive mode $: \omega_{2, \mathbf{k}}=g / 4+\xi_{\mathbf{k}} \longrightarrow$ gap $=\omega_{0}$ (chiral mode on plaquette)
- When $g \ll J^{\prime}$: Decay channel $\left|\beta_{2, \mathbf{k}=\mathbf{0}}\right\rangle \longrightarrow\left|\beta_{1, \mathbf{k}}, \beta_{1,-\mathbf{k}}\right\rangle$
- The decay rate Γ is estimated beyond the Bogoliubov approximation

$$
\text { Long-lived gapped mode : } \Gamma<\omega_{0}=g / 4 \Longrightarrow U \lesssim 18 J^{\prime}
$$

- Open question : Transfer of topology from the BBH band to Bogoliubov excit. ?
V. Another extended lattice : towards topological matter (in progress)
- P-band physics and topological superfluids :

\Longrightarrow "Similar" lattices using our building block?
- Lattice and single-particle spectrum :

- Bogoliubov spectrum

VI. Strong interactions and chiral Mott phases (in progress)
- Mott phases with orbital order in p bands (for integer filling $\nu>1$)

Review : X. Li and W. V. Liu, Rep. Prog. Phys. '16

- Consider a ladder of pi-flux "super-sites" connected by weak links

- GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
- Consider a ladder of pi-flux "super-sites" connected by weak links

- GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
- We now consider a filling factor $\nu=1 / 2$ (i.e. 2 bosons per plaquette)

Note : equivalent to $\nu=2$ in p-bands (within the effective two-orbital model !)
\Longrightarrow we explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

- Consider a ladder of pi-flux "super-sites" connected by weak links

- GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
- We now consider a filling factor $\nu=1 / 2$ (i.e. 2 bosons per plaquette)

Note : equivalent to $\nu=2$ in p-bands (within the effective two-orbital model !)
\Longrightarrow we explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

- What do we expect?
- $U / J \ll 1$: chiral superfluid (vortex lattice)
$-U / J \gg 1$: normal superfluid (breakdown of effective two-orbital model)?
$-U / J \sim 1$: chiral Mott ...?
- We explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

- Transition takes place around $U \approx J$
two-orbital effective model still valid \Longrightarrow chiral Mott phase (to be confirmed)
- We explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

- Transition takes place around $U \approx J$
two-orbital effective model still valid \Longrightarrow chiral Mott phase (to be confirmed)
- Transition to the normal superfluid at larger U ? (to be confirmed)

Marco Di Liberto and NG, arXiv :2111.13572, to be updated soon ..
VII. Going beyond 2D (a few thoughts to trigger curiosity ...)

- Outlook : Higher-dimensional building blocks with $d>2$ degenerate orbitals

- Degenerate $\left|\psi_{\mathrm{GS}}\right\rangle$'s for N interacting bosons
\Longrightarrow Generalized angular momentum operator? Symmetry breaking?
\Longrightarrow Interaction-induced chirality / TRS-breaking? Nature of collective modes?
- Outlook : Higher-dimensional building blocks with $d>2$ degenerate orbitals

- Degenerate $\left|\psi_{\mathrm{GS}}\right\rangle$'s for N interacting bosons
\Longrightarrow Generalized angular momentum operator? Symmetry breaking?
\Longrightarrow Interaction-induced chirality / TRS-breaking? Nature of collective modes?
- Outlook : Build an extended lattice from 3D building blocks :

Ex: 3D Benalcazar-Bernevig-Hughes (BBH) model

Bogoliubov modes ? Topology?

Exotic Mott phases and superfluids?

Other extended models of interest?

Today on arXiv !

Realization of a fractional quantum Hall state with ultracold atoms

Julian Léonard, ${ }^{1, *}$, Sooshin Kim, ${ }^{1}$ Joyce Kwan, ${ }^{1}$ Perrin Segura, ${ }^{1}$
Fabian Grusdt, ${ }^{2,3}$ Cécile Repellin, ${ }^{4}$ Nathan Goldman, ${ }^{5}$ and Markus Greiner ${ }^{1}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{2}$ Department of Physics and ASC, LMU München, Theresienstr. 37, München D-80333, Germany
${ }^{3}$ Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
${ }^{4}$ Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
${ }^{5}$ CENOLI, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium

Strongly interacting topological matter [1] exhibits fundamentally new phenomena with potential applications in quantum information technology [2, 3]. Emblematic instances are fractional quantum Hall states [4], where the interplay of magnetic fields and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement, and anyonic exchange statistics. Progress in engineering synthetic magnetic fields [5-21] has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light [22], preparing fractional quantum Hall states in engineered systems remains elusive. Here, we realize a fractional quantum Hall (FQH) state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic $\nu=1 / 2$ Laughlin state $[4,23]$ with two particles on sixteen sites. This minimal system already captures many hallmark features of Laughlin-type FQH states [24-28]: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations, and we measure a fractional Hall conductivity of $\sigma_{\mathrm{H}} / \sigma_{0}=0.6(2)$ via the bulk response to a magnetic perturbation. Furthermore, by tun-
tanglement, and anyonic exchange statistics [4].
The desire to study these phenomena in a controlled environment has triggered effort to realize FQH states in quantum-engineered systems. Since the constituents of those platforms are typically charge neutral, synthetic magnetic fields are introduced through the Coriolis force in rotating systems [5-8, 20, 35], or by engineering ge-

FIG. 1. Realizing a fractional quantum Hall state in an optical lattice. a, Without magnetic field, a two-

