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|. Brief reminder : p band physics and breaking of time-reversal symmetry



® Breaking time-reversal symmetry ... by driving!
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T Dot Vo (3 )
@D | D
gas @ &
Y\_/
D) |\ D) | D

Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. 18
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® Breaking time-reversal symmetry ... by driving!

Rotation Circular shaking Complex hopping engineering
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Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. 18
¢ Breaking time-reversal symmetry without driving? N e oy

— combine orbital degrees of freedom and interactions

from Mielke et al., Nature 2022

In cold atoms : load into higher orbital Bloch bands of an optical lattice

Review : X. Li and W. V. Liu, Rep. Prog. Phys.’'16



® Loading interacting bosonic atoms into p bands :
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— a vortex on each site, breaking TRS locally (on each site of the lattice)!



® Loading interacting bosonic atoms into p bands :
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chiral orbital order ‘ .
Vp, (T) T iy, (T) =z iy

= a vortex on each site, breaking TRS locally (on each site of the lattice) !
® Why ? The Hubbard (on-site) interactions become

. U 1. ,
Hing 3 Z (ni - ng,r) ) U > 0 (repulsive)

™
where iz,r = —1 (ﬁ;rﬁym - ﬁz,rﬁzm) : orbital angular momentum

—> ground state maximizes |L.| on each site, breaking TRS (locally)!

Review : Congjun Wu, Mod. Phys. Lett. B’09



® P-band physics : Assembling vortices on a lattice



® P-band physics : Assembling vortices on a lattice
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TRS-broken phases (local/global) :
- chiral superfluids, chiral Mott insulators

- topological superfluids

Ref: Wang et al. Nature 596, 227 (2021)

Review : X. Li and W. V. Liu, Rep. Prog. Phys.’16



Limitation of this p-band approach :

® Loading into higher Bloch bands — Limited lifetime!

Here : a novel route towards chiral orbital order that does not rely on higher bands



II. The pi-flux plaquette building block



® Ingredient 1 : a square plaquette with 7 flux

-J
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® Ingredient 1 : a square plaquette with 7 flux

—-J
€34 = V2J

energy

€12 =—V2J TRS .~

® Ingredient 2 : N bosons with Hubbard (on-site) interactions

4
. U A .
HintZEl:EITLi(nifl), U>0, g=UNKJ



® Ingredient 1 : a square plaquette with 7 flux

—J
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energy
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® Ingredient 2 : N bosons with Hubbard (on-site) interactions
U 4
Hiny = 52::1"(” -1), U>0, g=UN<J
® Trick : Project onto the low-energy orbitals {|d1), |d2)}
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where 7 = dld, + d,d, is the number operator in the subspace,

and L. = i(dld, — did, ) is the “orbital angular momentum”



® Ingredient 1 : a square plaquette with 7 flux
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€34 =V2J

energy

€12 = —V2J TRS \/

® Ingredient 2 : N bosons with Hubbard (on-site) interactions
U 4
Hiny = 52::1"(” -1), U>0, g=UN<J
® Trick : Project onto the low-energy orbitals {|d1), |d2)}

. U 33U U .
Hep = — (V27 + = h+ —n2——1L2
off (\[ + 3 +u>n+ 16” 6%

where 7 = dld, + d,d, is the number operator in the subspace,

and L. = i(dld, — did, ) is the “orbital angular momentum”

— reminiscent of interacting bosons in p-bands —>- chiral orbital order !



* The ground-state : We note that [Hyg, L.] = 0

— we use eigenstates L. |+) = (+1) |+) , where |+) = (|d1) £ i|d2))/v2

A generic many-body eigenstate of He reads
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with eigenenergy

U
Eeg(ny,n_) = —1—6(n+ —n_)? 4 constant
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with opposite angular momentum (L.)/N = +1 (Z2 symmetry/TRS)



* The ground-state : We note that [Hyg, L.] = 0

— we use eigenstates L. |+) = (+1) |+) , where |+) = (|d1) £ i|d2))/v2

A generic many-body eigenstate of He reads

1

Inains) = ———
nyln_!

with eigenenergy

(d )"+ (@d)"=10), ny+n_=N

U
Eeg(ny,n_) = —1—6(mr —n_)? 4 constant

— two degenerate ground states (n = N orn_ = N)
N N N N
was)+ ~ (d}) " 10, Ives)— ~ (d")" o)
with opposite angular momentum (L.)/N = +1 (Z2 symmetry/TRS)

— spontaneous TRS breaking



*® In real space : the complex orbitals show a vortex structure on the plaquette
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® The two degenerate many-body ground-states :

. A\ N
[Yas)+ ~ (di + 1d£> |0) = chiral orbital order

— two degenerate solutions with opposite superfluid currents



Il. Collective mode on the plaquette



e A generic many-body eigenstate of Hyg reads

1 A N
o) = e @ L0, e
+. —
with eigenenergy

U
Eeg(ny,n_) = _E(n+ —n_)? 4 constant



e A generic many-body eigenstate of Hyg reads
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® Take one ground state |¢gs)+ and move one particle from |+) — |—)

Energy cost: Eexc = — — —

% in the mean-field limit (N — oo, g = UN < J)

= low-energy gapped mode (single-particle excitation)



e A generic many-body eigenstate of Hyg reads

1 A N
n,nfzidfmrdt "-0), ny+n_ =N
[n4,m-) \/m( ) (dl)"=10) +

with eigenenergy
v 2
Eeg(ng,n_) = _E(n+ — n_)~ 4+ constant

® Take one ground state |¢gs)+ and move one particle from |+) — |—)

Energy cost: Eexc = — — —

% in the mean-field limit (N — oo, g = UN < J)

= low-energy gapped mode (single-particle excitation)

® More insight from a hydrodynamic approach ?



® We introduce two mean-field variables (¢ = UN < J) :

(d) =/p1, (d2)=¢€"p2, p1+p2=N

® Ground state corresponds to p1,2 = N/2 and relative phase 0 = +7/2

® Collective mode : We study the dynamics of fluctuations
p1 = N/2+6p, p2=N/2-6p, 6 =m/2+560 (6p, 66 small)
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= oscillation of relative phase and population with /2 phase difference

—> a gapped collective mode above the ground state



® We introduce two mean-field variables (¢ = UN < J) :

(d) =/p1, (d2)=¢€"p2, p1+p2=N

® Ground state corresponds to p1,2 = N/2 and relative phase 0 = +7/2

® Collective mode : We study the dynamics of fluctuations
p1 = N/2+6p, p2=N/2-6p, 6 =m/2+560 (6p, 66 small)
Solving the equations of motion for the variables (dp, §6) yield the proper mode :
00 = Acoswot, dp=—(AN/2)sinwot, withfrequency wo=g/4=UN/4
= oscillation of relative phase and population with /2 phase difference

—> a gapped collective mode above the ground state

® Exciting the mode ?



* Exciting the mode : Achieved by modulating the relative population at w ~ wo

f®

V(t) = -~ (dldy — dids) = f(t)(blbs — bLb2)
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* Exciting the mode : Achieved by modulating the relative population at w ~ wo

V() = 10 d]d, ~ dlda) ~ 1) BB,  Blb)
—J

J =1 f(t) = Vosin(wt), wmwy=g/4
—J

* Numerical analysis within linear response (Vo = 10— %g)
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® Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

Heg ~ L2 = 6E ~ 2L.0L,

— activating the mode leads to chiral current on the plaquette



® Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

Heg ~ L2 = 6E ~ 2L.0L,

— activating the mode leads to chiral current on the plaquette

* lllustration : We quench a small impurity potential Himp = —Ablby — 66 # 0

— chiral motion on the plaquette of frequency w ~ wg = g/4
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IV. From the building block to an extended lattice



® P-band physics : Assembling vortices on a lattice

aseyd
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a single site
2D lattice

— Let us build a lattice using our building block (pi-flux plaquette) . ..

TRS-broken phases (local/global) :
- chiral superfluids, chiral Mott insulators

- topological superfluids

Ref: Wang et al. Nature 596, 227 (2021)



* Building the extended lattice : the BBH model with interacting bosons

phase
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J. Benalcazar-Bernevig-Hughes (BBH) model



® Building the extended lattice : the BBH model with interacting bosons

‘{ll,\'\ T /‘(]2’\ . O

R 1

phase

a «super-site»

The ground state is a uniform condensate (I" point) forming a superfluid vortex lattice

= chiral superfluid



® The excitation spectrum is obtained within Bogoliubov theory

® Goldstone mode : w; i = cs|k|, with sound velocity cs ~ /J'g

® Massive mode : w; i« = g/4 + & — gap = wo (chiral mode on plaquette)



® The excitation spectrum is obtained within Bogoliubov theory

® Goldstone mode : w; k ~ cs|k|, with sound velocity cs ~ +/J'g

® Massive mode : wy x = g/4 + £k — gap = wo (chiral mode on plaquette)

® When g <« J’ : Decay channel |82 x—0) — |B1,k, 81,—k)
® The decay rate I" is estimated beyond the Bogoliubov approximation

Long-lived gapped mode : T’ < wo = g/4 = U < 18.J’



® The excitation spectrum is obtained within Bogoliubov theory

® Goldstone mode : w; k ~ cs|k|, with sound velocity cs ~ +/J'g

® Massive mode : wy x = g/4 + £k — gap = wo (chiral mode on plaquette)

® When g <« J’ : Decay channel |82 x—0) — |B1,k, 81,—k)
® The decay rate I" is estimated beyond the Bogoliubov approximation

Long-lived gapped mode : T’ < wo = g/4 = U < 18.J’

® Open question : Transfer of topology from the BBH band to Bogoliubov excit. ?



V. Another extended lattice : towards topological matter (in progress)



® P-band physics and topological superfluids :
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— "Similar” lattices using our building block ?
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Ref: Wang et al. Nature 596, 227 (2021)



e Lattice and single-particle spectrum :
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momentum (preliminary results by BoYe Sun)



VI. Strong interactions and chiral Mott phases (in progress)



* Mott phases with orbital order in p bands (for integer filling v > 1)
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Review : X. Li and W. V. Liu, Rep. Prog. Phys. '16



® Consider a ladder of pi-flux “super-sites” connected by weak links

I J < J

® GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
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® We now consider a filling factor v = 1/2 (i.e. 2 bosons per plaquette)

Note : equivalent to v = 2 in p-bands (within the effective two-orbital model!)

= we explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U



® Consider a ladder of pi-flux “super-sites” connected by weak links

I J < J

® GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)

® We now consider a filling factor v = 1/2 (i.e. 2 bosons per plaquette)

Note : equivalent to v = 2 in p-bands (within the effective two-orbital model!)

= we explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U
® What do we expect ?

-U/J < 1 : chiral superfluid (vortex lattice)
-U/J > 1 :normal superfluid (breakdown of effective two-orbital model) ?
-U/J ~ 1 :chiral Mott ... ?



® We explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U
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® Transition takes place around U =~ J
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two-orbital effective model still valid = chiral Mott phase (to be confirmed)




® We explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U
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® Transition takes place around U =~ J

1=1.0,),=0.1,n=1/2
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(compressible) x =
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0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
u/J)

two-orbital effective model still valid = chiral Mott phase (to be confirmed)

® Transition to the normal superfluid at larger U ? (to be confirmed)

Marco Di Liberto and NG, arXiv :2111.13572, to be updated soon ...




VII. Going beyond 2D (a few thoughts to trigger curiosity ... )



® Qutlook : Higher-dimensional building blocks with d > 2 degenerate orbitals

energy
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® Degenerate |[¢gg)’s for N interacting bosons

= Generalized angular momentum operator ? Symmetry breaking ?
= Interaction-induced chirality / TRS-breaking ? Nature of collective modes ?



® Qutlook : Higher-dimensional building blocks with d > 2 degenerate orbitals

energy

=
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energy
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® Degenerate |[¢gg)’s for N interacting bosons

= Generalized angular momentum operator ? Symmetry breaking ?

= Interaction-induced chirality / TRS-breaking ? Nature of collective modes ?

® Outlook : Build an extended lattice from 3D building blocks :
@ Ex: 3D Benalcazar-Bernevig-Hughes (BBH) model
@ Bogoliubov modes ? Topology ?

@ Exotic Mott phases and superfluids ?
@ Other extended models of interest ?
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Strongly interacting topological matter [1] ex-
hibits fund ally new ph with po-
tential applications in quantum information tech-
nology [2, 3]. Emblematic instances are frac-
tional quantum Hall states [4], where the inter-
play of magnetic fields and strong interactions
gives rise to fractionally charged quasl—partlcles,
long-ranged ent 1 and
statistics. Progress in engineering synthetic mag-
netic fields [5-21] has raised the hope to cre-
ate these exotic states in controlled quantum
systems. However, except for a recent Laugh-
lin state of light [22], preparing fractional quan-
tum Hall states in engineered systems remains
elusive. Here, we realize a fractional quantum
Hall (FQH) state with ultracold atoms in an op-
tical lattice. The state is a lattice version of
a bosonic v = 1/2 Laughlin state [4, 23] with
two particles on sixteen sites. This minimal sys-
tem already captures many hallmark features of
Laughlin-type FQH states [24-28]: we observe a
suppression of two-body interactions, we find a
distinctive vortex structure in the density corre-
lations, and we measure a fractional Hall conduc-
tivity of on/oy = 0.6(2) via the bulk response to
a magnetic perturbation. Furthermore, by tun-

tanglement, and anyonic exchange statistics [4].

The desire to study these phenomena in a controlled
environment has triggered effort to realize FQH states
in quantum-engineered systems. Since the constituents
of those platforms are typically charge neutral, synthetic
magnetic fields are introduced through the Coriolis force
in rotating systems [5-8, 20, 35, or by engineering ge-
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