Chiral orbital order of ultracold bosons without higher bands

Nathan Goldman

Marco Di Liberto and NG, arXiv:2111.13572 (+ new results)

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Chiral orbital order of ultracold bosons without higher bands

Marco Di Liberto and NG, arXiv:2111.13572

UNIVERSITÉ LIBRE DE BRUXELLES, 🚺 UNIVERSITÉ D'EUROPE

- I. Brief reminder : p band physics and breaking of time-reversal symmetry
- II. The pi-flux plaquette building block
- III. Collective mode on the plaquette
- IV. From the building block to an extended lattice (BBH model)

- V. Another extended lattice : towards topological superfluids (in progress)
- VI. Strong interactions and chiral Mott phases (in progress)

VII. Going beyond 2D (a few thoughts to trigger curiosity ...)

I. Brief reminder : p band physics and breaking of time-reversal symmetry

• Breaking time-reversal symmetry ... by driving !

Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. '18

• Breaking time-reversal symmetry ... by driving !

Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. '18

- Breaking time-reversal symmetry without driving?
- \longrightarrow combine orbital degrees of freedom and interactions

Breaking time-reversal symmetry ... by driving !

Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. '18

- Breaking time-reversal symmetry without driving?
- \longrightarrow combine orbital degrees of freedom and interactions

In cold atoms : load into higher orbital Bloch bands of an optical lattice

• Loading interacting bosonic atoms into p bands :

⇒ a vortex on each site, breaking TRS locally (on each site of the lattice)!

• Loading interacting bosonic atoms into p bands :

⇒ a vortex on each site, breaking TRS locally (on each site of the lattice)!

• Why? The Hubbard (on-site) interactions become

$$\hat{H}_{\rm int} = \frac{U}{2} \sum_{\boldsymbol{r}} \left(\hat{n}_{\boldsymbol{r}}^2 - \frac{1}{3} \hat{L}_{z,\boldsymbol{r}}^2 \right), \qquad U > 0 \ (\text{repulsive})$$

where $\hat{L}_{z,r} = -i \left(\hat{p}_{x,r}^{\dagger} \hat{p}_{y,r} - \hat{p}_{y,r}^{\dagger} \hat{p}_{x,r} \right)$: orbital angular momentum

 \implies ground state maximizes $|L_z|$ on each site, breaking TRS (locally)!

Review : Congjun Wu, Mod. Phys. Lett. B'09

• P-band physics : Assembling vortices on a lattice

• P-band physics : Assembling vortices on a lattice

Review : X. Li and W. V. Liu, Rep. Prog. Phys. '16

Limitation of this p-band approach :

• Loading into higher Bloch bands \rightarrow Limited lifetime !

Here : a novel route towards chiral orbital order that does not rely on higher bands

II. The pi-flux plaquette building block

• Ingredient 1 : a square plaquette with π flux

• Ingredient 1 : a square plaquette with π flux

• Ingredient 2 : N bosons with Hubbard (on-site) interactions

$$\hat{H}_{int} = \frac{U}{2} \sum_{i=1}^{4} \hat{n}_i (\hat{n}_i - 1), \qquad U > 0, \quad g \equiv UN \ll J$$

Ingredient 1 : a square plaquette with π flux

Ingredient 2 : N bosons with Hubbard (on-site) interactions

$$\hat{H}_{int} = \frac{U}{2} \sum_{i=1}^{4} \hat{n}_i (\hat{n}_i - 1), \qquad U > 0, \quad g \equiv UN \ll J$$

• Trick : Project onto the low-energy orbitals $\{|d_1\rangle, |d_2\rangle\}$

$$\hat{H}_{\rm eff} = -\left(\sqrt{2}J + \frac{U}{8} + \mu\right)\hat{n} + \frac{3U}{16}\hat{n}^2 - \frac{U}{16}\hat{L}_z^2$$

where $\hat{n} = \hat{d}_1^{\dagger} \hat{d}_1 + \hat{d}_2^{\dagger} \hat{d}_2$ is the number operator in the subspace, and $\hat{L}_z = i(\hat{d}_1^{\dagger} \hat{d}_2 - \hat{d}_2^{\dagger} \hat{d}_1)$ is the "orbital angular momentum"

Ingredient 1 : a square plaquette with π flux

Ingredient 2 : N bosons with Hubbard (on-site) interactions

$$\hat{H}_{int} = \frac{U}{2} \sum_{i=1}^{4} \hat{n}_i (\hat{n}_i - 1), \qquad U > 0, \quad g \equiv UN \ll J$$

• Trick : Project onto the low-energy orbitals $\{|d_1\rangle, |d_2\rangle\}$

$$\hat{H}_{\rm eff} = -\left(\sqrt{2}J + \frac{U}{8} + \mu\right)\hat{n} + \frac{3U}{16}\hat{n}^2 - \frac{U}{16}\hat{L}_z^2$$

where $\hat{n} = \hat{d}_1^{\dagger} \hat{d}_1 + \hat{d}_2^{\dagger} \hat{d}_2$ is the number operator in the subspace, and $\hat{L}_z = i(\hat{d}_1^{\dagger} \hat{d}_2 - \hat{d}_2^{\dagger} \hat{d}_1)$ is the "orbital angular momentum"

• The ground-state : We note that $[\hat{H}_{\text{eff}}, \hat{L}_z] = 0$

 \Longrightarrow we use eigenstates $\hat{L}_z|\pm\rangle=(\pm1)\,|\pm\rangle$, where $|\pm\rangle=(|d_1\rangle\pm i|d_2\rangle)/\sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\rm eff}$ reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}! n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+} + n_{-} = N$$

with eigenenergy

$$E_{\text{eff}}(n_+, n_-) = -\frac{U}{16}(n_+ - n_-)^2 + \text{constant}$$

• The ground-state : We note that $[\hat{H}_{eff}, \hat{L}_z] = 0$

 \implies we use eigenstates $\hat{L}_z |\pm\rangle = (\pm 1) |\pm\rangle$, where $|\pm\rangle = (|d_1\rangle \pm i |d_2\rangle)/\sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\rm eff}$ reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}! n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+} + n_{-} = N$$

with eigenenergy

$$E_{\text{eff}}(n_+, n_-) = -\frac{U}{16}(n_+ - n_-)^2 + \text{constant}$$

 \implies two degenerate ground states ($n_+ = N$ or $n_- = N$)

$$|\psi_{\rm GS}\rangle_+ \sim \left(\hat{d}^{\dagger}_+\right)^N |0
angle, \qquad |\psi_{\rm GS}\rangle_- \sim \left(\hat{d}^{\dagger}_-\right)^N |0
angle$$

with opposite angular momentum $\langle \hat{L}_z \rangle / N = \pm 1$ (Z₂ symmetry/TRS)

• The ground-state : We note that $[\hat{H}_{eff}, \hat{L}_z] = 0$

 \implies we use eigenstates $\hat{L}_z |\pm\rangle = (\pm 1) |\pm\rangle$, where $|\pm\rangle = (|d_1\rangle \pm i |d_2\rangle)/\sqrt{2}$

A generic many-body eigenstate of $\hat{H}_{\rm eff}$ reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}!\,n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+}+n_{-}=N$$

with eigenenergy

$$E_{\text{eff}}(n_+, n_-) = -\frac{U}{16}(n_+ - n_-)^2 + \text{constant}$$

 \implies two degenerate ground states ($n_+ = N$ or $n_- = N$)

$$|\psi_{\rm GS}\rangle_+ \sim \left(\hat{d}^{\dagger}_+\right)^N |0
angle, \qquad |\psi_{\rm GS}
angle_- \sim \left(\hat{d}^{\dagger}_-\right)^N |0
angle$$

with opposite angular momentum $\langle \hat{L}_z \rangle / N = \pm 1$ (Z₂ symmetry/TRS)

⇒ spontaneous TRS breaking

• In real space : the complex orbitals show a vortex structure on the plaquette

The two degenerate many-body ground-states :

$$|\psi_{\rm GS}
angle_{\pm} \sim \left(\hat{d}_1^\dagger \pm i \hat{d}_2^\dagger
ight)^N |0
angle \quad \Longrightarrow {
m chiral \ orbital \ order}$$

 \implies two degenerate solutions with opposite superfluid currents

III. Collective mode on the plaquette

• A generic many-body eigenstate of \hat{H}_{eff} reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}!n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+} + n_{-} = N$$

with eigenenergy

$$E_{\rm eff}(n_+,n_-) = -\frac{U}{16}(n_+-n_-)^2 + {\rm constant}$$

• A generic many-body eigenstate of \hat{H}_{eff} reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}!n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+} + n_{-} = N$$

with eigenenergy

$$E_{\text{eff}}(n_+, n_-) = -\frac{U}{16}(n_+ - n_-)^2 + \text{constant}$$

• Take one ground state $|\psi_{\rm GS}
angle_+$ and move one particle from $|+
angle \longrightarrow |angle$

Energy cost :
$$E_{exc} = \frac{UN}{4} - \frac{U}{4}$$

= $\frac{g}{4}$ in the mean-field limit $(N \to \infty, g = UN \ll J)$

 \implies low-energy gapped mode (single-particle excitation)

• A generic many-body eigenstate of \hat{H}_{eff} reads

$$|n_{+},n_{-}\rangle = \frac{1}{\sqrt{n_{+}!n_{-}!}} (\hat{d}_{+}^{\dagger})^{n_{+}} (\hat{d}_{-}^{\dagger})^{n_{-}} |0\rangle, \qquad n_{+} + n_{-} = N$$

with eigenenergy

$$E_{\text{eff}}(n_+, n_-) = -\frac{U}{16}(n_+ - n_-)^2 + \text{constant}$$

- Take one ground state $|\psi_{\rm GS}\rangle_+$ and move one particle from $|+\rangle \longrightarrow |-\rangle$

Energy cost :
$$E_{\text{exc}} = \frac{UN}{4} - \frac{U}{4}$$

= $\frac{g}{4}$ in the mean-field limit $(N \to \infty, g = UN \ll J)$

 \implies low-energy gapped mode (single-particle excitation)

• More insight from a hydrodynamic approach?

• We introduce two mean-field variables ($g \equiv UN \ll J$) :

$$\langle \hat{d}_1 \rangle = \sqrt{\rho_1}, \quad \langle \hat{d}_2 \rangle = e^{i\theta} \sqrt{\rho_2}, \qquad \rho_1 + \rho_2 = N$$

- Ground state corresponds to $\rho_{1,2}=N/2$ and relative phase $\theta=\pm\pi/2$
- Collective mode : We study the dynamics of fluctuations

$$\rho_1 = N/2 + \delta \rho, \quad \rho_2 = N/2 - \delta \rho, \quad \theta = \pi/2 + \delta \theta \quad (\delta \rho, \delta \theta \text{ small})$$

• We introduce two mean-field variables ($g \equiv UN \ll J$) :

$$\langle \hat{d}_1 \rangle = \sqrt{\rho_1}, \quad \langle \hat{d}_2 \rangle = e^{i\theta} \sqrt{\rho_2}, \qquad \rho_1 + \rho_2 = N$$

- Ground state corresponds to $\rho_{1,2} = N/2$ and relative phase $\theta = \pm \pi/2$
- Collective mode : We study the dynamics of fluctuations

$$\rho_1 = N/2 + \delta \rho, \quad \rho_2 = N/2 - \delta \rho, \quad \theta = \pi/2 + \delta \theta \quad (\delta \rho, \delta \theta \text{ small})$$

Solving the equations of motion for the variables $(\delta \rho, \delta \theta)$ yield the proper mode :

$$\delta\theta = \mathcal{A}\cos\omega_0 t$$
, $\delta\rho = -(\mathcal{A}N/2)\sin\omega_0 t$, with frequency $\omega_0 = g/4 = UN/4$

 \implies oscillation of relative phase and population with $\pi/2$ phase difference

 \implies a **gapped collective mode** above the ground state

• We introduce two mean-field variables ($g \equiv UN \ll J$):

$$\langle \hat{d}_1 \rangle = \sqrt{\rho_1}, \quad \langle \hat{d}_2 \rangle = e^{i\theta} \sqrt{\rho_2}, \qquad \rho_1 + \rho_2 = N$$

- Ground state corresponds to $\rho_{1,2} = N/2$ and relative phase $\theta = \pm \pi/2$
- Collective mode : We study the dynamics of fluctuations

$$\rho_1 = N/2 + \delta \rho, \quad \rho_2 = N/2 - \delta \rho, \quad \theta = \pi/2 + \delta \theta \quad (\delta \rho, \delta \theta \text{ small})$$

Solving the equations of motion for the variables $(\delta \rho, \delta \theta)$ yield the proper mode :

$$\delta\theta = \mathcal{A}\cos\omega_0 t$$
, $\delta\rho = -(\mathcal{A}N/2)\sin\omega_0 t$, with frequency $\omega_0 = g/4 = UN/4$

 \implies oscillation of relative phase and population with $\pi/2$ phase difference

 \implies a **gapped collective mode** above the ground state

• Exciting the mode?

• Exciting the mode : Achieved by modulating the relative population at $\omega \approx \omega_0$

$$\hat{V}(t) = \frac{f(t)}{2} (\hat{d}_1^{\dagger} \hat{d}_1 - \hat{d}_2^{\dagger} \hat{d}_2) \approx f(t) (\hat{b}_3^{\dagger} \hat{b}_3 - \hat{b}_2^{\dagger} \hat{b}_2)$$

$$J = \int J = \int J = V_0 \sin(\omega t), \qquad \omega \approx \omega_0 = g/4$$

• Exciting the mode : Achieved by modulating the relative population at $\omega \approx \omega_0$

• Numerical analysis within linear response $(V_0 = 10^{-4}g)$

• Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

$$\hat{H}_{\text{eff}} \sim \hat{L}_z^2 \Longrightarrow \delta E \sim 2L_z \delta L_z$$

 \longrightarrow activating the mode leads to chiral current on the plaquette

• Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

$$\hat{H}_{\text{eff}} \sim \hat{L}_z^2 \Longrightarrow \delta E \sim 2L_z \delta L_z$$

 \rightarrow activating the mode leads to chiral current on the plaquette

• Illustration : We quench a small impurity potential $\hat{H}_{imp} = -\Delta \hat{b}_1^{\dagger} b_1 \rightarrow \delta \theta \neq 0$

 \rightarrow chiral motion on the plaquette of frequency $\omega \approx \omega_0 = g/4$

IV. From the building block to an extended lattice

• P-band physics : Assembling vortices on a lattice

 \implies Let us build a lattice using our **building block** (pi-flux plaquette) ...

· Building the extended lattice : the BBH model with interacting bosons

· Building the extended lattice : the BBH model with interacting bosons

The ground state is a uniform condensate (Γ point) forming a **superfluid vortex lattice** \implies chiral superfluid

• The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1,{\bf k}}\approx c_s |{\bf k}|,$ with sound velocity $c_s\sim \sqrt{J'g}$
- Massive mode : $\omega_{2,\mathbf{k}} = g/4 + \xi_{\mathbf{k}} \longrightarrow gap = \omega_0$ (chiral mode on plaquette)

The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1,{\bf k}} \approx c_s |{\bf k}|$, with sound velocity $c_s \sim \sqrt{J'g}$
- Massive mode : $\omega_{2,\mathbf{k}} = g/4 + \xi_{\mathbf{k}} \longrightarrow gap = \omega_0$ (chiral mode on plaquette)
- When $g \ll J'$: Decay channel $|\beta_{2,\mathbf{k}=\mathbf{0}}\rangle \longrightarrow |\beta_{1,\mathbf{k}},\beta_{1,-\mathbf{k}}\rangle$
- The decay rate Γ is estimated beyond the Bogoliubov approximation

Long-lived gapped mode :
$$\Gamma < \omega_0 = g/4 \Longrightarrow U \lesssim 18\,J'$$

The excitation spectrum is obtained within Bogoliubov theory

- Goldstone mode : $\omega_{1,\mathbf{k}} \approx c_s |\mathbf{k}|$, with sound velocity $c_s \sim \sqrt{J'g}$
- Massive mode : $\omega_{2,\mathbf{k}} = g/4 + \xi_{\mathbf{k}} \longrightarrow gap = \omega_0$ (chiral mode on plaquette)
- When $g \ll J'$: Decay channel $|\beta_{2,\mathbf{k}=\mathbf{0}}\rangle \longrightarrow |\beta_{1,\mathbf{k}},\beta_{1,-\mathbf{k}}\rangle$
- The decay rate Γ is estimated beyond the Bogoliubov approximation

Long-lived gapped mode : $\Gamma < \omega_0 = g/4 \Longrightarrow U \lesssim 18 J'$

Open question : Transfer of topology from the BBH band to Bogoliubov excit. ?

V. Another extended lattice : towards topological matter (in progress)

• P-band physics and topological superfluids :

 \implies "Similar" lattices using our **building block**?

· Lattice and single-particle spectrum :

Bogoliubov spectrum

VI. Strong interactions and chiral Mott phases (in progress)

• Mott phases with orbital order in p bands (for integer filling $\nu > 1$)

Review : X. Li and W. V. Liu, Rep. Prog. Phys. '16

· Consider a ladder of pi-flux "super-sites" connected by weak links

• GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)

· Consider a ladder of pi-flux "super-sites" connected by weak links

- GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
- We now consider a filling factor $\nu = 1/2$ (i.e. 2 bosons per plaquette)

Note : equivalent to $\nu = 2$ in p-bands (within the effective two-orbital model !)

 \implies we explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

Consider a ladder of pi-flux "super-sites" connected by weak links

- GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)
- We now consider a filling factor $\nu = 1/2$ (i.e. 2 bosons per plaquette)

Note : equivalent to $\nu = 2$ in p-bands (within the effective two-orbital model !)

- \implies we explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U
 - What do we expect?
 - $U/J \ll 1$: chiral superfluid (vortex lattice)
 - $U/J \gg 1$: normal superfluid (breakdown of effective two-orbital model) ?
 - $U/J \sim 1$: chiral Mott ... ?

• We explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

• Transition takes place around $U \approx J$

two-orbital effective model still valid \Longrightarrow chiral Mott phase (to be confirmed)

• We explore a "chiral superfluid to chiral Mott" transition by varying Hubbard U

• Transition takes place around $U \approx J$

two-orbital effective model still valid \Longrightarrow chiral Mott phase (to be confirmed)

Transition to the normal superfluid at larger U? (to be confirmed)

Marco Di Liberto and NG, arXiv : 2111.13572, to be updated soon ...

VII. Going beyond 2D (a few thoughts to trigger curiosity ...)

• **Outlook** : Higher-dimensional building blocks with d > 2 degenerate orbitals

• Degenerate $|\psi_{GS}\rangle$'s for N interacting bosons

 \implies Generalized angular momentum operator ? Symmetry breaking ?

 \implies Interaction-induced chirality / TRS-breaking? Nature of collective modes?

• Outlook : Higher-dimensional building blocks with d > 2 degenerate orbitals

- Degenerate $|\psi_{GS}\rangle$'s for N interacting bosons
 - \implies Generalized angular momentum operator ? Symmetry breaking ?
 - \implies Interaction-induced chirality / TRS-breaking? Nature of collective modes?
- Outlook : Build an extended lattice from 3D building blocks :

Ex: 3D Benalcazar-Bernevig-Hughes (BBH) model

Bogoliubov modes ? Topology ?

Exotic Mott phases and superfluids ?

Other extended models of interest ?

Today on arXiv !

Realization of a fractional quantum Hall state with ultracold atoms

Julian Léonard,^{1,}* Sooshin Kim,¹ Joyce Kwan,¹ Perrin Segura,¹

Fabian Grusdt,^{2,3} Cécile Repellin,⁴ Nathan Goldman,⁵ and Markus Greiner¹

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

²Department of Physics and ASC, LMU München, Theresienstr. 37, München D-80333, Germany

³Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany

⁴Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France

⁵CENOLI, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium

Strongly interacting topological matter [1] exhibits fundamentally new phenomena with potential applications in quantum information technology [2, 3]. Emblematic instances are fractional quantum Hall states [4], where the interplay of magnetic fields and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement, and anyonic exchange statistics. Progress in engineering synthetic magnetic fields [5-21] has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light [22], preparing fractional quantum Hall states in engineered systems remains elusive. Here, we realize a fractional quantum Hall (FQH) state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic $\nu = 1/2$ Laughlin state [4, 23] with two particles on sixteen sites. This minimal system already captures many hallmark features of Laughlin-type FOH states [24-28]: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations, and we measure a fractional Hall conductivity of $\sigma_{\rm H}/\sigma_0 = 0.6(2)$ via the bulk response to a magnetic perturbation. Furthermore, by tuntanglement, and anyonic exchange statistics [4].

The desire to study these phenomena in a controlled environment has triggered effort to realize FQH states in quantum-engineered systems. Since the constituents of those platforms are typically charge neutral, synthetic magnetic fields are introduced through the Coriolis force in rotating systems [5–8, 20, 25], or by engineering ge-

FIG. 1. Realizing a fractional quantum Hall state in an optical lattice. a, Without magnetic field, a two-