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I. Brief reminder : p band physics and breaking of time-reversal symmetry



• Breaking time-reversal symmetry ... by driving !

Rotation Circular shaking

gas

Complex hopping engineering

Review : Aidelsburger, Nascimbene & NG, Comptes Rendus Phys. ’18

• Breaking time-reversal symmetry without driving?

−→ combine orbital degrees of freedom and interactions

Hidden phase in cuprates

from Mielke et al., Nature 2022

(Varma model ‘97)

In cold atoms : load into higher orbital Bloch bands of an optical lattice

Review : X. Li and W. V. Liu, Rep. Prog. Phys. ’16
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• Loading interacting bosonic atoms into p bands :

chiral orbital order

phase

=⇒ a vortex on each site, breaking TRS locally (on each site of the lattice) !

• Why? The Hubbard (on-site) interactions become

Ĥint =
U

2

∑
r

(
n̂2
r −

1

3
L̂2
z,r

)
, U > 0 (repulsive)

where L̂z,r = −i
(
p̂†x,r p̂y,r − p̂†y,r p̂x,r

)
: orbital angular momentum

=⇒ ground state maximizes |Lz | on each site, breaking TRS (locally) !

Review : Congjun Wu, Mod. Phys. Lett. B ’09
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• P-band physics : Assembling vortices on a lattice

phase

a single site

2D lattice

- topological superfluids 

Ref: Wang et al. Nature 596, 227 (2021)

TRS-broken phases (local/global) : 

- chiral superfluids, chiral Mott insulators

Review : X. Li and W. V. Liu, Rep. Prog. Phys. ’16
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Limitation of this p-band approach :

• Loading into higher Bloch bands→ Limited lifetime !

Here : a novel route towards chiral orbital order that does not rely on higher bands



II. The pi-flux plaquette building block



• Ingredient 1 : a square plaquette with π flux
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TRS

• Ingredient 2 : N bosons with Hubbard (on-site) interactions

Ĥint =
U

2

4∑
i=1

n̂i(n̂i − 1), U > 0, g ≡ UN � J

• Trick : Project onto the low-energy orbitals {|d1〉, |d2〉}

Ĥeff = −
(√

2J +
U

8
+ µ

)
n̂+

3U

16
n̂2−

U

16
L̂2
z

where n̂ = d̂†1d̂1 + d̂†2d̂2 is the number operator in the subspace,

and L̂z = i(d̂†1d̂2 − d̂
†
2d̂1) is the “orbital angular momentum”

−→ reminiscent of interacting bosons in p-bands =⇒ chiral orbital order !
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Ĥeff = −
(√

2J +
U

8
+ µ

)
n̂+

3U

16
n̂2−

U

16
L̂2
z

where n̂ = d̂†1d̂1 + d̂†2d̂2 is the number operator in the subspace,

and L̂z = i(d̂†1d̂2 − d̂
†
2d̂1) is the “orbital angular momentum”

−→ reminiscent of interacting bosons in p-bands =⇒ chiral orbital order !



• The ground-state : We note that [Ĥeff, L̂z ] = 0

=⇒ we use eigenstates L̂z |±〉 = (±1) |±〉 , where |±〉 = (|d1〉 ± i|d2〉)/
√

2

A generic many-body eigenstate of Ĥeff reads

|n+, n−〉 =
1√

n+!n−!
(d̂†+)n+ (d̂†−)n− |0〉, n+ + n− = N

with eigenenergy

Eeff(n+, n−) = −
U

16
(n+ − n−)2 + constant

=⇒ two degenerate ground states (n+ = N or n− = N )

|ψGS〉+ ∼
(
d̂†+

)N
|0〉, |ψGS〉− ∼

(
d̂†−

)N
|0〉

with opposite angular momentum 〈L̂z〉/N = ±1 (Z2 symmetry/TRS)

=⇒ spontaneous TRS breaking
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• In real space : the complex orbitals show a vortex structure on the plaquette
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• The two degenerate many-body ground-states :

|ψGS〉± ∼
(
d̂†1 ± id̂

†
2

)N
|0〉 =⇒ chiral orbital order

=⇒ two degenerate solutions with opposite superfluid currents



III. Collective mode on the plaquette



• A generic many-body eigenstate of Ĥeff reads

|n+, n−〉 =
1√

n+!n−!
(d̂†+)n+ (d̂†−)n− |0〉, n+ + n− = N

with eigenenergy

Eeff(n+, n−) = −
U

16
(n+ − n−)2 + constant

• Take one ground state |ψGS〉+ and move one particle from |+〉 −→ |−〉

Energy cost : Eexc =
UN

4
−
U

4

=
g

4
in the mean-field limit (N →∞, g = UN � J)

=⇒ low-energy gapped mode (single-particle excitation)

• More insight from a hydrodynamic approach?
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• We introduce two mean-field variables (g ≡ UN � J) :

〈d̂1〉 =
√
ρ1 , 〈d̂2〉 = eiθ

√
ρ2 , ρ1 + ρ2 = N

• Ground state corresponds to ρ1,2 = N/2 and relative phase θ = ±π/2

• Collective mode : We study the dynamics of fluctuations

ρ1 = N/2 +δρ, ρ2 = N/2−δρ, θ = π/2 +δθ (δρ, δθ small)

Solving the equations of motion for the variables (δρ, δθ) yield the proper mode :

δθ = A cosω0t , δρ = −(AN/2) sinω0t , with frequency ω0 =g/4 = UN/4

=⇒ oscillation of relative phase and population with π/2 phase difference

=⇒ a gapped collective mode above the ground state

• Exciting the mode?
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• Exciting the mode : Achieved by modulating the relative population at ω ≈ ω0

V̂ (t) =
f(t)

2
(d̂†1d̂1 − d̂

†
2d̂2) ≈ f(t)(b̂†3b̂3 − b̂

†
2b̂2)

1 3

2 4

• Numerical analysis within linear response (V0 = 10−4g)
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• Real space picture :

Exciting the gapped mode corresponds to injecting angular momentum

Ĥeff ∼ L̂2
z =⇒ δE ∼ 2LzδLz

−→ activating the mode leads to chiral current on the plaquette

• Illustration : We quench a small impurity potential Ĥimp = −∆b̂†1b1 → δθ 6= 0

−→ chiral motion on the plaquette of frequency ω ≈ ω0 = g/4
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IV. From the building block to an extended lattice



• P-band physics : Assembling vortices on a lattice

phase

a single site

2D lattice

- topological superfluids 

Ref: Wang et al. Nature 596, 227 (2021)

TRS-broken phases (local/global) : 

- chiral superfluids, chiral Mott insulators

=⇒ Let us build a lattice using our building block (pi-flux plaquette) . . .



• Building the extended lattice : the BBH model with interacting bosons

a «super-site»

2D lattice

ph
as

e

Benalcazar-Bernevig-Hughes (BBH) model

The ground state is a uniform condensate (Γ point) forming a superfluid vortex lattice

=⇒ chiral superfluid
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• The excitation spectrum is obtained within Bogoliubov theory

-π π/2 0 π/2 π

kxa

0.0

0.1

0.2

0.3

ω
k
/J

non-int.

• Goldstone mode : ω1,k ≈ cs|k|, with sound velocity cs ∼
√
J ′g

• Massive mode : ω2,k = g/4 + ξk −→ gap = ω0 (chiral mode on plaquette)

• When g � J ′ : Decay channel |β2,k=0〉 −→ |β1,k, β1,−k〉

• The decay rate Γ is estimated beyond the Bogoliubov approximation

Long-lived gapped mode : Γ < ω0 = g/4 =⇒ U . 18 J ′

• Open question : Transfer of topology from the BBH band to Bogoliubov excit. ?
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V. Another extended lattice : towards topological matter (in progress)



• P-band physics and topological superfluids :

phase

a single site

2D lattice
topological superfluids (chiral edge modes)

TRS-broken phases (global) 

Ref: Wang et al. Nature 596, 227 (2021)

=⇒ ”Similar” lattices using our building block?
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momentum
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momentum

Lattice and single-particle spectrum :

Bogoliubov spectrum

chiral edge modes

(preliminary results by BoYe Sun)



VI. Strong interactions and chiral Mott phases (in progress)



• Mott phases with orbital order in p bands (for integer filling ν > 1)

phase

a single site

1D lattice

staggered Mott

chiral Mott

- - -+ +

+ + + + +

Review : X. Li and W. V. Liu, Rep. Prog. Phys. ’16



• Consider a ladder of pi-flux “super-sites” connected by weak links

• GS in mean-field limit : superfluid vortex lattice (global TRS-breaking)

• We now consider a filling factor ν = 1/2 (i.e. 2 bosons per plaquette)

Note : equivalent to ν = 2 in p-bands (within the effective two-orbital model !)

=⇒ we explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U

• What do we expect?

- U/J � 1 : chiral superfluid (vortex lattice)

- U/J � 1 : normal superfluid (breakdown of effective two-orbital model) ?

- U/J ∼ 1 : chiral Mott ... ?
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• We explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U
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• Transition takes place around U ≈ J

two-orbital effective model still valid =⇒ chiral Mott phase (to be confirmed)

• Transition to the normal superfluid at larger U ? (to be confirmed)

Marco Di Liberto and NG, arXiv : 2111.13572, to be updated soon ...



• We explore a “chiral superfluid to chiral Mott” transition by varying Hubbard U

chiral super�uid
chiral Mott(compressible)

(incompressible)Fi
de

lit
y 

su
sc

ep
tib

ili
ty

1 
/ c

om
pr

es
si

bi
lit

y

U/J U/J

• Transition takes place around U ≈ J

two-orbital effective model still valid =⇒ chiral Mott phase (to be confirmed)

• Transition to the normal superfluid at larger U ? (to be confirmed)

Marco Di Liberto and NG, arXiv : 2111.13572, to be updated soon ...



VII. Going beyond 2D (a few thoughts to trigger curiosity ... )



• Outlook : Higher-dimensional building blocks with d > 2 degenerate orbitals

en
er

gy

en
er

gy

• Degenerate |ψGS〉’s for N interacting bosons

=⇒ Generalized angular momentum operator? Symmetry breaking?

=⇒ Interaction-induced chirality / TRS-breaking? Nature of collective modes?

• Outlook : Build an extended lattice from 3D building blocks :

Ex: 3D Benalcazar-Bernevig-Hughes (BBH) model

Bogoliubov modes ? Topology ?

Other extended models of interest ?

Exotic Mott phases and superfluids ?
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Today on arXiv !


