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Landau level
The Landau Hamiltonian is the operator Ĥ acting on L2(R2)

Ĥ = 1
2(π2x + π2y ) with πx = 1

i ∂x + B
2 y , πy = 1

i ∂y −
B
2 x

= B(a∗a + 1
2) with a = 1√

2B
(−πy + iπx), [a, a∗] = 1

The spectrum of Ĥ is {B(n + 1
2)/ n ∈ N}. Its eigenspaces are the

Landau levels

Ker(Ĥ − B(n + 1
2)) = (a∗)n Ker(H − B

2 )

If we restrict Ĥ to span{(a∗)n|1〉, n ∈ N} with |1〉 = e−
B
4
(x2+y2),

same spectrum but simple eigenvalues.

Goal
I define Landau levels for Bochner Laplacian of compact

manifold, understand influence of topology and geometry

I dimension of Landau levels in terms of characteristic classes,
propagation, density of states.



Bochner Laplacian

Datas:

I (M, g) compact riemannian manifold with ∂M = ∅
I L→ M hermitian line bundle with a connection ∇

The Bochner Laplacian, or Schrödinger operator with magnetic
field ω = i courb(∇) is

∆ = 1
2∇
∗∇ = − 1

2
√
g∇i (g

ij√g∇j)

acting on C∞(M, L) with ∇i = ∂xi + 1
i ai where d(aidxi ) = ω.

Semiclassical limit k = ~−1, k →∞
take k ∈ N and replace L by Lk = L⊗k , ∇ by ∇Lk and set

Ĥk = k−2

2 (∇Lk )∗∇Lk = 1
2g

ijπiπj + bik
−1πi

with πi = 1
ik ∂xi − ai , the dynamical moments, ik[πi , πj ] = ωij .



Landau level for surfaces

Assume that ω is non degenerate and M is a surface.
Write ω = B volg with B ∈ C∞(M,R) positive.

Iengo-Li (94)

If B and the Gaussian curvature S are constant, then for any n,
when k is sufficiently large,

1. the n-th eigenvalue of Ĥk is k−1B(n + 1
2) + k−2S n(n+1)

2

2. its multiplicity is k
2π

∫
M ω + (12 + n)χ(M)

1
2π

∫
M ω is the degree of L.

Proof by Riemann-Roch formula and ladder operators.

What can be said when B is not constant and when we add a
potential k−1V ∈ C∞(M,R) ?
Answer: effective hamiltonian λn = B(n + 1

2) + V on the phase
space (M, ω).



Recall that λn = B(n + 1
2) + V with ω = B volg and

Ĥk = k−2

2 (∇Lk )∗∇Lk + k−1V .

Choose E < E ′ and set dk(E ,E ′) = rank 1[E ,E ′](kĤk) .
Then

1. if maxλn < E < E ′ < minλn+1, then when k is large

dk(E ,E ′) = 0.

2. if maxλn−1 < E < minλn and maxλn < E ′ < minλn+1, then
when k is large,

dk(E ,E ′) = k
2π

∫
Mω + (12 + n)χ(M).

3. in general except for a countable set of E , E ′,

dk(E ,E ′) = k
2π

∑
n vol(E < λn < E ′) + o(k)

1. and 2. seem to be new, proof of 2. by a semiclassical
construction of ladder operator. 3. is due to Demailly (85).



Dynamics in Landau levels

Set Hn = Im 1[E−,E+](kĤk) with λn−1 < E− < λn < E+ < λn+1.

Let Ψ ∈ Hn and define

Ψ(t) = exp(itkĤk)Ψ, t ∈ R

The L2-norm of Ψ(t) is (
∫
M |Ψ(t)|2(x)d volg (x))1/2, so if

‖Ψ‖ = 1, |Ψ(t)|2 is the probability density function of the
particle’s position.

Theorem (C, 21)

|Ψ(kt)|2 volg = (Φt)∗(|Ψ|2 volg ) +O(k−1)

where (Φt) is the Hamiltonian flow of λn in (M, ω).

More precisely, for any f ∈ C∞(M,R),∫
|Ψ(kt)|2f volg =

∫
|Ψ|2(f ◦ Φt) volg +Of (k−1) and the O is

uniform when t remains bounded.



Toeplitz quantization
Recall that in the geometric quantization of (M, ω) :

1. the space H0(M, Lk) of holomorphic sections is the quantum
space

2. to any f ∈ C∞(M) is associated the Toeplitz operator Tk(f )
acting on H0(M, Lk) such that 〈Tk(f )Ψ,Ψ′〉 = 〈f Ψ,Ψ′〉.

We have the usual semi-classical properties:

Tk(f )Tk(g) ≡ Tk(fg), ik[Tk(f ),Tk(g)] ≡ Tk({f , g})
modulo O(k−1).

Theorem (C, 21)

There exists unitary isomorphisms

Uk : Hn = Im 1[E−,E+](kĤk)→ H0(M, Lk ⊗ K−n), k ∈ N

with K the canonical bundle of M such that

Uk(kĤk)U∗k ≡ Tk(λn), Uk f U
∗
k ≡ Tk(f ), ∀f ∈ C∞(M)

modulo O(k−1).



Generalization in higher dimension
There exists a semi-classical theory where

1. Ĥk is a semi-classical differential operator with symbol
H ∈ C∞(T ∗M) equal to H(x , ξ) = 1

2g
ij(x)ξiξj .

2. the phase space is T ∗M with the symplectic form
Ω =

∑
dξi ∧ dxi − ω (minimal coupling).

In particular the Weyl law holds:

rank 1]−∞,E ](Ĥk) =
( k

2π

)m′
(vol({H 6 E}) + o(1))

with m′ = dimM.
The spectrum of Ĥk in a window [E − Ck−1,E + Ck−1] can be
described in terms of the closed hamiltonian orbits of H in the
level set {H = E}, for instance with

1. the Bohr-Sommerfeld conditions when H is integrable

2. Gutzwiller trace formula when the orbits are non-degenerate.

Here, the Landau levels are in windows [−Ck−1,Ck−1], {H = 0} is
the null-section of T ∗M, the flow is stationnary...



From now on, assume ω is non degenerate, dimM = 2m and
let 0 < B1(y) 6 . . . 6 Bm(y) be the g -eigenvalues of ω at y ∈ M.
1 These functions are continuous.

In his paper on holomorphic Morse inequalities, Demailly proved
that for almost any E ,

rank 1(−∞,E)(kĤk) =
( k

2π

)m∑
α

vol(λα 6 E ) + o(km)

where vol is the volume in M for µL = ω∧m/m! and for any
α ∈ Nm, λα =

∑
i Bi (

1
2 + α(i)) + V .

{λα(y), α ∈ Nm} is the spectrum of the Landau Hamiltonian

LH(y) := 1
2g

ij(y)πi (y)πj(y) + V (y)

acting on TyM ' R2m with πi (y) = 1
i ∂xi + 1

2ωij(y)xj .

1With good coordinates gij(y) = δij and
ω|y = B1(y)dx1 ∧ dx2 + . . .+ Bm(y)dx2m−1 ∧ dx2m



Beyond Demailly Weyl law

Ground state: |1〉y = exp(−1
2 g̃ij(y)xixj) with g̃ the normalised

metric 2.
The restriction L̃H(y) of LH(y) to span(πi1(y) . . . πi`(y)|1〉y ) has
the same spectrum with finite multiplicities.

Theorem (C 21)

Assume that [E ,E ′] ∩ spec(LH(y)) = ∅ for every y ∈ M.
Then when k is large, spec(kĤk) ∩ [E ,E ′] = ∅ and

rank 1]−∞,E ](kĤk) =

∫
M

Ch(Lk ⊗ F ) Todd(M)

=
( k

2π

)m
vol(M) rank(F ) +O(km−1)

with F → M the vector bundle with Fy = Im 1]−∞,E ](L̃H(y)).

2With good coordinates gij(y) = δij and
ω|y = B1(y)dx1 ∧ dx2 + . . .+ Bm(y)dx2m−1 ∧ dx2m,
g̃ |y = B1(y)(dx

2
1 + dx2

2 ) + . . .+ Bm(y)(dx
2
2m−1 + dx2

2m)



Corollary (n-th Landau level)

When B1 = . . . = Bm = B and E−, E+ are such that
λn−1 < E− < λn < E+ < λn+1 with λn = B(n + m

2 ) + V ,
we have for large k

rank(1(E−,E+)(kĤk)) =

∫
M

Ch(Lk ⊗ Symn(T 1,0M)) ToddM

Earlier results for B1 = . . . = Bm = 1 and V = 0 so
spec LH(x) = m

2 + N:

1. Lowest Landau level (n = 0): when ω is Kähler, this follows
from Riemann-Roch-Hirzebruch theorem and Kodaira
vanishing theorem. In the symplectic case, this is a theorem of
Guillemin-Uribe (88) and Borthwick-Uribe (96).

2. Higher levels: the existence of gaps was proved by Faure-Tsuji
(15)



Density of states

Let (ψk,i ) be an onb of eigenvectors, Ĥkψk,i = Ek,iψk,i .
For any E ∈ R and x ∈ M, set

N(x ,E , k) =
∑

i , kEk,i6E

|ψk,i (x)|2

Theorem (C. 21)

if [E−,E+] ∩ spec LH(x) = ∅, then

N(x ,E−, k) =N(x ,E+, k) +O(k−∞)

=
( k

2π

)m ∞∑
`=0

a`k
−` +O(k−∞)

with a0 = ]((−∞,E−] ∩ spec L̃H(x)).

This is proved only for E+ < E with E ∈ R \
⋃

x∈M spec(LH(x)).
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