From hyperbolic drum... ... towards hyperbolic topological matter

Tomáš Bzdušek

at Sorbonne Université, Paris 20 October, 2022

Thanks to my collaborators

Titus Neupert Patrick Lenggenhager David Urwyler Achim Vollhardt

Ronny Thomale Alex Stegmaier Lavi Upreti Martin Greiter **Tobias Hofmann Tobias Helbig Tobias Kießling Stefan Imhof** Hauke Brand

Igor Boettcher Joseph Maciejko Anffany Chen

Ching Hua Lee

Curved spaces

 $\alpha + \beta + \gamma > \pi$

$$\alpha + \beta + \gamma = \pi$$

 $\alpha + \beta + \gamma < \pi$

Curved spaces

Sphere, K > 0(constant curvature) Euclidean plane, K = 0

(constant curvature)

Saddle, K < 0

non-constant curvature

 $\alpha + \beta + \gamma < \pi$

 $\alpha + \beta + \gamma > \pi$

$$\alpha + \beta + \gamma = \pi$$

Sphere: points of constant <u>Euclidean</u> distance from the origin

Sphere: points of constant <u>Euclidean</u> distance from the origin

Hyperbolic plane: points of constant <u>Minkowski</u> distance from the origin

Sphere: points of constant <u>Euclidean</u> distance from the origin

Hyperbolic plane: points of constant <u>Minkowski</u> distance from the origin

Sphere: points of constant <u>Euclidean</u> distance from the origin

Hyperbolic plane: points of constant <u>Minkowski</u> distance from the origin

Hilbert's theorem

There exists no complete regular surface of constant negative Gaussian curvature immersed in \mathbb{R}^3 .

Hilbert's theorem

There exists no complete regular surface of constant negative Gaussian curvature immersed in \mathbb{R}^3 .

The hyperbolic plane cannot be "realized" in laboratory space.

Hilbert's theorem

Euclidean "{6,3}" tessellation

Generate your own hyperbolic tiling! – http://www.malinc.se/m/ImageTiling.php

Generate your own hyperbolic tiling! – http://www.malinc.se/m/ImageTiling.php

Realization in 'metamaterials' (such as circuit QED): Coupling strength on bonds engineered to be *the same irrespective of the bond length* – only the *graph* matters! Deform the graph while respecting the coupling strength on each bond

Electric-circuit simulations of hyperbolic lattices

hyperbolic continuum

hyperbolic momentum space

hyperbolic Haldane model

Lenggenhager, <u>TB</u>, et al., *Nat. Commun.* **13**, 4373 (2022) Chen, <u>TB</u>, et al., arXiv:2205.05106 (2022)

Lenggenhager, <u>TB</u>, et al., *Nat. Commun.* **13**, 4373 (2022) Chen, <u>TB</u>, et al., arXiv:2205.05106 (2022)

Lenggenhager, <u>TB</u>, et al., *Nat. Commun.* **13**, 4373 (2022) Chen, <u>TB</u>, et al., arXiv:2205.05106 (2022)

Lenggenhager, <u>TB</u>, et al., *Nat. Commun.* **13**, 4373 (2022) Chen, <u>TB</u>, et al., arXiv:2205.05106 (2022)

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the *adjacency matrix* of the graph

Discrete (lattice) Hamiltonian:

$$\sum_{j} A_{ij} f_j = \lambda f_i$$

I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, A. V. Gorshkov, Phys. Rev. A 102, 032208 (2020)

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the *adjacency matrix* of the graph

Discrete (lattice) Hamiltonian: $\sum_{i} A_{ij} f_j = \lambda f_i$

BUT, assume that $f_j = f(z_j)$ are particular values of a *smooth function on the Poincare disk*. Then:

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \triangle_g f(z_i) + \mathcal{O}(h^3)$$

I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, A. V. Gorshkov, Phys. Rev. A 102, 032208 (2020)

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the *adjacency matrix* of the graph

Discrete (lattice) Hamiltonian:

n:
$$\sum_{j} A_{ij} f_j = \lambda f_i$$

BUT, assume that $f_j = f(z_j)$ are particular values of a *smooth function on the Poincare disk*. Then:

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \Delta_g f(z_i) + \mathcal{O}(h^3)$$

$$\approx 0.276...$$

I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, A. V. Gorshkov, Phys. Rev. A 102, 032208 (2020)

NN-hopping Hamiltonian is the *adjacency matrix* of the graph

Discrete (lattice) Hamiltonian: $\sum_{i} A_{ij} f_j = f_i$

BUT, assume that $f_j = f(z_j)$ are particular values of a *smooth function on the Poincare disk*. Then:

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \triangle_g f(z_i) + \mathcal{O}(h^3)$$

$$\approx 0.276...$$

operator in continuum

Euclidean drum

 $\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \Delta_g f(z_i) + \mathcal{O}(h^3)$ Laplace-Beltrami \approx 0.276. operator in continuum

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \triangle_g f(z_i) + \mathcal{O}(h^3)$$

$$\approx 0.276...$$

The closer the radius is to r=1, the stronger is the re-ordering!

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \triangle_g f(z_i) + \mathcal{O}(h^3)$$

$$\approx 0.276...$$

operator in continuum

The closer the radius is to r=1, the stronger is the re-ordering!

Can we experimentally reproduce this spectral re-ordering?

$$\sum_{j} A_{ij} f(z_j) = 3f(z_i) + \frac{3}{4}h^2 \triangle_g f(z_i) + \mathcal{O}(h^3)$$

$$\approx 0.276...$$

operator in continuum

Modelling of a "hyperbolic drum" ($R_0 = 0.99$)

Modelling of a "hyperbolic drum" ($R_0 = 0.99$)

Spectral reversal: $\lambda^{\beta} = \frac{1}{7\pi^2 h^2 LC} \frac{1}{(f^{\beta})^2}$

All modes visible at sites "14" and "18".

Experiment #2 – Measuring eigenmode profiles

Experiment #3 – Pulse propagation

Euclidean drum

Hyperbolic drum

geodesics, wave fronts

Experiment #3 – Pulse propagation

8

geodesics, wave fronts

Experiment #3 – Pulse propagation

8

6

Complexified data obtained from **Hilbert's transform**:

 $t \,[\mu s]$

-3

0

2

$$v(t) = V(t) + \frac{\mathrm{i}}{\pi} \int_{-\infty}^{+\infty} \mathrm{d}\tau \frac{V(\tau)}{t - \tau}$$

geodesics, wave fronts

 $t = 2.032 \,\mu s$

Isometries of Euclidean plane $\,SE(2)\,$

Isometries of sphere $\ SO(3)\cong PSU(2)$

Isometries of Euclidean plane $\,SE(2)\,$

Isometries of sphere $\ SO(3)\cong PSU(2)$

Isometries of Euclidean plane $\,SE(2)\,$

Isometries of hyperbolic plane $SO(2,1)\cong PSL(2,\mathbb{R})\cong PSU(1,1)$

Isometries of sphere $\ SO(3)\cong PSU(2)$

Isometries of Euclidean plane SE(2)Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $SO(2,1)\cong PSL(2,\mathbb{R})\cong PSU(1,1)$

Isometries of sphere $SO(3)\cong PSU(2)$ Discrete subgroups *point groups*

Isometries of Euclidean plane SE(2)Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $SO(2,1)\cong PSL(2,\mathbb{R})\cong PSU(1,1)$

Isometries of sphere $SO(3)\cong PSU(2)$ Discrete subgroups *point groups*

Isometries of Euclidean plane SE(2)Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $SO(2,1)\cong PSL(2,\mathbb{R})\cong PSU(1,1)$ Discrete subgroups Fuchsian groups

Four translation generators on {8,3} lattice:

Four translation generators on {8,3} lattice:

$$\gamma_1 \gamma_2^{-1} \gamma_3 = \text{rotation by } \frac{2\pi}{8}$$

Define hyperbolic translation group: *maximal torsion-free (normal) subgroup*.

J. Maciejko and S. Rayan, *Hyperbolic band theory*, Sci. Adv. 7, abe9170 (2021)

J. Maciejko and S. Rayan, *Hyperbolic band theory*, Sci. Adv. 7, abe9170 (2021)

$$\langle \gamma_1, \gamma_2, \gamma_3, \gamma_4: \gamma_1 \gamma_2^{-1} \gamma_3 \gamma_4^{-1} \gamma_1^{-1} \gamma_2 \gamma_3^{-1} \gamma_4 = 1 \rangle$$

Trivially fulfilled if Abelianized.

{8,8} "Bolza" tessellation

J. Maciejko and S. Rayan, *Hyperbolic band theory*, Sci. Adv. **7**, abe9170 (2021)

$$\langle \gamma_1, \gamma_2, \gamma_3, \gamma_4: \gamma_1 \gamma_2^{-1} \gamma_3 \gamma_4^{-1} \gamma_1^{-1} \gamma_2 \gamma_3^{-1} \gamma_4 = 1 \rangle$$

Trivially fulfilled if Abelianized.

$$\gamma_{1} \mapsto e^{ik_{1}}$$
$$\gamma_{2} \mapsto e^{ik_{2}}$$
$$\gamma_{3} \mapsto e^{ik_{3}}$$
$$\gamma_{4} \mapsto e^{ik_{4}}$$

Four-dimensional Brillouin zone

J. Maciejko and S. Rayan, *Hyperbolic band theory*, Sci. Adv. **7**, abe9170 (2021)

 $\begin{aligned} \gamma_1 &\mapsto e^{ik_1} \\ \gamma_2 &\mapsto e^{ik_2} \\ \gamma_3 &\mapsto e^{ik_3} \\ \gamma_4 &\mapsto e^{ik_4} \end{aligned}$

Four-dimensional Brillouin zone

 $\gamma_{1} \mapsto e^{ik_{1}}$ $\gamma_{2} \mapsto e^{ik_{2}}$ $\gamma_{3} \mapsto e^{ik_{3}}$ $\gamma_{4} \mapsto e^{ik_{4}}$

Four-dimensional Brillouin zone

 $\gamma_{1} \mapsto e^{ik_{1}}$ $\gamma_{2} \mapsto e^{ik_{2}}$ $\gamma_{3} \mapsto e^{ik_{3}}$ $\gamma_{4} \mapsto e^{ik_{4}}$

Four-dimensional Brillouin zone

4D Brillouin zone

2D Brillouin zone

4D Brillouin zone

BUT! – The hyperbolic translation group is non-Abelian and also has *Brillouin zones of higher-dimensional representations*!

Crystallography of hyperbolic lattices

{10,5} 4D BZ

I. Boettcher et al., Crystallography of Hyperbolic Lattices, Phys. Rev. B 105, 125118 (2022)

Crystallography of hyperbolic lattices

I. Boettcher et al., Crystallography of Hyperbolic Lattices, Phys. Rev. B 105, 125118 (2022)

Discussed here:

D. M. Urwyler, P. M. Lenggenhager, I. Boettcher, R. Thomale, T. Neupert, <u>TB</u>, *"Hyperbolic topological band insulators"*, arXiv:2203.07292 (2022)

David M. Urwyler, "*Hyperbolic topological insulators*", Master's Thesis (2021), <u>http://dx.doi.org/10.13140/RG.2.2.34715.34081</u>

See also related works:

W. Zhang, H. Yuan, N. Sun, H. Sun, X. Zhang, *"Observation of novel topological states in hyperbolic lattices"*, Nat. Commun. **13**, 2937 (2022) (arXiv:2203.03214)

Z.-R. Liu, C.-B. Hua, T. Peng, B. Zhou, *"Chern insulator in a hyperbolic lattice"*, Phys. Rev. B **105**, 245301 (2022) (arXiv:2203.02101)

Replace hexagons of the honeycomb lattice by <u>octagons</u> -- this produces {8,3} lattice.

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

Replace hexagons of the honeycomb lattice by <u>octagons</u> -- this produces {8,3} lattice.

4 ingredients:

- NN hopping ($t_1 = 1$)
- NNN hopping (t_2)
- Magnetic flux (ϕ)
 - On-site potential (±M)

Replace hexagons of the honeycomb lattice by <u>octagons</u> -- this produces {8,3} lattice.

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

D. M. Urwyler, Master's thesis, University of Zürich (2021) D. M. Urwyler, *et al.*, arXiv:2203.07292 (2022)

Replace hexagons of the honeycomb lattice by <u>octagons</u> -- this produces {8,3} lattice.

 \rightarrow 16 energy bands in the 4D k-space

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Hyperbolic Haldane model

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Hyperbolic Haldane model

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Hyperbolic Haldane model

Model parameters:
$$t_1 = 1, t_2 = \frac{1}{6}, M = \frac{1}{3}, \phi = \frac{\pi}{2}$$

$C_{k_i,k_j}/N_{occ}$	$N_{occ} = 5$	$N_{occ} = 8$	$N_{occ} = 11$
C_{k_x,k_y}	-1	0	-1
C_{k_x,k_z}	1	0	1
C_{k_x,k_w}	-1	0	-1
C_{k_y,k_z}	-1	0	-1
C_{k_y,k_w}	1	0	1
C_{k_z,k_w}	-1	0	-1

Model parameters:
$$t_1 = 1, t_2 = \frac{1}{6}, M = \frac{1}{3}, \phi = \frac{\pi}{2}$$

$C_{ki,k_J}/N_{occ}$	$N_{occ} = 5$	$N_{occ} = 8$	$N_{occ} = 11$
C_{k_x,k_y}	-1	0	-1
C_{k_x,k_z}	1	0	1
C_{k_x,k_w}	-1	0	-1
C_{k_y,k_z}	-1	0	-1
C_{k_y,k_w}	1	0	1
C_{k_z,k_w}	-1	0	-1

Model parameters: $t_1 = 1, t_2 = \frac{1}{6}, M = \frac{1}{3}, \phi = \frac{\pi}{2}$

$C_{ki,k_J}/N_{occ}$	$N_{occ} = 5$	$N_{occ} = 8$	$N_{occ} = 11$
C_{k_x,k_y}	-1	0	-1
C_{k_x,k_z}	1	0	1
C_{k_x,k_w}	-1	0	-1
C_{k_y,k_z}	-1	0	-1
C_{k_y,k_w}	1	0	1
C_{k_z,k_w}	-1	0	-1

Model parameters: $t_1 = 1, t_2 = \frac{1}{6}, M = \frac{1}{3}, \phi = \frac{\pi}{2}$

$C_{ki,k_J}/N_{occ}$	$N_{occ} = 5$	$N_{occ} = 8$	$N_{occ} = 11$
C_{k_x,k_y}	-1	0	-1
C_{k_x,k_z}	1	0	1
C_{k_x,k_w}	-1	0	-1
C_{k_y,k_z}	-1	0	-1
C_{k_y,k_w}	1	0	1
C_{k_z,k_w}	-1	0	-1

$$C_{RS} = 12\pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C} \left(\mathbf{P}_{jk} \mathbf{P}_{kl} \mathbf{P}_{jl} - \mathbf{P}_{jl} \mathbf{P}_{lk} \mathbf{P}_{kj} \right)$$

A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. **321**, 2–111 (2006)

$$C_{RS} = 12\pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C} \left(\mathbf{P}_{jk} \mathbf{P}_{kl} \mathbf{P}_{jl} - \mathbf{P}_{jl} \mathbf{P}_{lk} \mathbf{P}_{kj} \right)$$

Result:		Haldane		
f	μ	C_{xy}	C_{xz}	C_{RS}
5/16	-1.3	-1	1	-0.986
8/16	0	0	0	0
11/16	+1.3	-1	1	-0.986

A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. **321**, 2–111 (2006)

$$C_{RS} = 12\pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C} \left(\mathbf{P}_{jk} \mathbf{P}_{kl} \mathbf{P}_{jl} - \mathbf{P}_{jl} \mathbf{P}_{lk} \mathbf{P}_{kj} \right)$$

Result:		Haldane		
f	μ	C_{xy}	C_{xz}	C_{RS}
5/16	-1.3	-1	1	-0.986
8/16	0	0	0	0
11/16	+1.3	-1	1	-0.986

Is there a universal relation between Chern numbers in real space vs. in momentum space?

A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2–111 (2006)

Chiral edge states on the hyperbolic boundary

Wave packet motion along the boundary.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Flat bands in hyperbolic frustrated-hopping models

Discussed here:

<u>TB</u> and Joseph Maciejko, "Flat bands and band touching from real-space topology in hyperbolic lattices", arXiv:2205.11571 (2022)

See also related work:

R. Mosseri, R. Vogeler, J. Vidal, "*Aharonov-Bohm cages, flat bands, and gap labeling in hyperbolic tilings*", Phys. Rev. B **106**, 155120 (2022) (arXiv:2206.04543)

Flat bands on octagon kagome lattice (with PBC)

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Flat bands on octagon kagome lattice (with PBC)

 \rightarrow 24N states per N cells

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Flat bands on octagon kagome lattice (with PBC)

24 sites (orbitals) per Bolza cell \rightarrow 24*N* states per *N* cells

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

24 sites (orbitals) per Bolza cell \rightarrow 24N states per N cells

6 flat-band states per Bolza cell \rightarrow 6N flat-band states per N cells

<u>TB</u> and Joseph Maciejko, arXiv:2205.11571 (2022)

24 sites (orbitals) per Bolza cell \rightarrow 24N states per N cells

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

6 flat-band states per Bolza cell
→ 6N flat-band states per N cells
→ 6N - 1 linearly independent states!

"string states" due to non-trivial homology of the compactified system?

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

6 flat-band states per Bolza cell
→ 6N flat-band states per N cells
→ 6N - 1 linearly independent states!

Single unit cell is (g = 2)-hole torus, which supports 4 non-trivial cycles.

"string states" due to non-trivial homology of the compactified system?

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Single unit cell is (g = 2)-hole torus, which supports 4 non-trivial cycles.

N-cell cluster (with compactified boundary) has genus *h* given by Riemann-Hurwitz theorem:

$$h = N(g-1) + 1$$

"string states" due to non-trivial homology of the compactified system?

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

"string states" due to non-trivial homology of the compactified system?

Single unit cell is (g = 2)-hole torus, which supports 4 non-trivial cycles.

N-cell cluster (with compactified boundary) has genus *h* given by Riemann-Hurwitz theorem:

$$h = N(g-1) + 1$$

h-hole torus has 2h = 2N + 2 non-trivial cycles, i.e., that many additional "string states".

<u>TB</u> and Joseph Maciejko, arXiv:2205.11571 (2022)

Of the 24N states, the number of linearly-independent states in the flat band is:

$$(6N-1) + (2N+2) = 8N+1$$

 \swarrow \checkmark \checkmark \checkmark single-octagon states string states total flat-band states

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Abelian vs. non-Abelian flat-band states

The real-space argument captures *the whole spectrum,* i.e., Abelian <u>and</u> non-Abelian irreps.

$$\mathrm{frac}_{\mathrm{all}}$$
 = 1/3

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Abelian vs. non-Abelian flat-band states

The real-space argument captures *the whole spectrum,* i.e., Abelian <u>and</u> non-Abelian irreps.

$$\operatorname{frac}_{\operatorname{all}}$$
 = 1/3

Diagonalization of momentum-space Hamiltonian (Abelian irreps) reveals 8 of the 24 bands are flat.

 $\mathrm{frac}_{\mathrm{Abel}}$ = 1/3

<u>TB</u> and Joseph Maciejko, arXiv:2205.11571 (2022)

Abelian vs. non-Abelian flat-band states

The real-space argument captures *the whole spectrum,* i.e., Abelian <u>and</u> non-Abelian irreps.

$$\operatorname{frac}_{\operatorname{all}}$$
 = 1/3

Diagonalization of momentum-space Hamiltonian (Abelian irreps) reveals 8 of the 24 bands are flat.

$$\mathrm{frac}_{\mathrm{Abel}}$$
 = 1/3

By taking the different, also 1/3 of the non-Abelian states lie at the flat-band energy.

$$\operatorname{frac}_{\operatorname{non-Ab.}} = 1/3$$

<u>TB</u> and Joseph Maciejko, arXiv:2205.11571 (2022)

Other hyperbolic frustrated-hopping models

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Other hyperbolic frustrated-hopping models

Summary

Thank you for your attention!

Tomáš Bzdušek: From hyperbolic drum towards hyperbolic topological matter

Sorbonne U. Paris 20. October, 2022:

University of Zurich^{UZH} Swiss National Science Foundation

Hyperbolic drum: Nat. Commun. 13, 4373 (2022)

Hyperbolic topological insulators: arXiv:2203.07292 (2022)

Mapping 4D *k*-space: arXiv:2205.05106 (2022)

Hyperbolic flat bands: arXiv:2205.11571 (2022)

Thank you for your attention!

Tomáš Bzdušek: From hyperbolic drum towards hyperbolic topological matter

Sorbonne U. Paris 20. October, 2022:

University of Zurich[™]

Swiss National Science Foundation

Hyperbolic drum: Nat. Commun. 13, 4373 (2022)

Hyperbolic topological insulators: arXiv:2203.07292 (2022)

Mapping 4D *k*-space: arXiv:2205.05106 (2022)

Hyperbolic flat bands: arXiv:2205.11571 (2022)

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

... with a fixed number of 275 sites

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

... with a fixed number of 275 sites

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

{10,5} 4D BZ

Graphene on {6,3} lattice

"Hyperbolic graphene" on {10,5} lattice Graphene on {6,3} lattice

"Hyperbolic graphene" on {10,5} lattice The model as a circuit with tunable k_1 , k_2 , k_3 , k_4 .

"Hyperbolic graphene" on {10,5} lattice The model as a circuit with tunable k_1 , k_2 , k_3 , k_4 .

Measured spectrum in momentum space

"Hyperbolic graphene" on {10,5} lattice The model as a circuit with tunable k_1 , k_2 , k_3 , k_4 .

Measured spectrum in momentum space

BUT! – The hyperbolic translation group is non-Abelian and also has *Brillouin zones of higher-dimensional representations*!

Effect of random on-site potential on HH model

Study Z₂ topology protected by time-reversal symmetry.

Study Z₂ topology protected by time-reversal symmetry.

We fix $t_1 = 1$, $t_2 = 1/6$, M = 1/3, $\phi = \pi/2$ and Rashba term $\lambda_{\rm R} = -1/6$.

Study Z₂ topology protected by time-reversal symmetry.

We fix
$$t_1 = 1$$
, $t_2 = 1/6$, $M = 1/3$, $\phi = \pi/2$ and Rashba term $\lambda_{
m R} = -1/6$.

Study Z₂ topology protected by time-reversal symmetry.

We fix
$$t_1 = 1$$
, $t_2 = 1/6$, $M = 1/3$, $\phi = \pi/2$ and Rashba term $\lambda_{
m R} = -1/6$.

Study Z₂ topology protected by time-reversal symmetry.

We fix $t_1 = 1$, $t_2 = 1/6$, M = 1/3, $\phi = \pi/2$ and Rashba term $\lambda_{\rm R} = -1/6$.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Study Z₂ topology protected by time-reversal symmetry.

We fix $t_1 = 1$, $t_2 = 1/6$, M = 1/3, $\phi = \pi/2$ and Rashba term $\lambda_{\rm R} = -1/6$.

<u>Non-trivial</u> Kane-Mele (Z₂) invariant:

- In all six 2D planes of the 4D k-space.
- According to real-space topological marker.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Helical edge states on the hyperbolic boundary

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN & NNN bonds (localization quantified by "IPR" = inverse participation ratio: low IPR = delocalized & high IPR = localized)

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN & NNN bonds

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN & NNN bonds

Phase diagram of HH mode at half-filling & $t_1=1$, $\phi = \pi/2$

