
From hyperbolic drum…

… towards hyperbolic topological matter

Tomáš Bzdušek
at Sorbonne Université, Paris

20 October, 2022



Thanks to my collaborators

Titus Neupert

Patrick Lenggenhager

David Urwyler

Achim Vollhardt

Igor Boettcher

Joseph Maciejko

Anffany Chen

Ronny Thomale

Alex Stegmaier

Lavi Upreti

Martin Greiter

Tobias Hofmann

Tobias Helbig

Tobias Kießling

Stefan Imhof

Hauke Brand

Ching Hua Lee



Curved spaces

Sphere, K> 0 Saddle, K< 0

𝛼 + 𝛽 + 𝛾 > 𝜋 𝛼 + 𝛽 + 𝛾 = 𝜋 𝛼 + 𝛽 + 𝛾 < 𝜋

Euclidean plane, K = 0



Curved spaces

Sphere, K> 0 Saddle, K< 0

𝛼 + 𝛽 + 𝛾 > 𝜋 𝛼 + 𝛽 + 𝛾 = 𝜋 𝛼 + 𝛽 + 𝛾 < 𝜋

Euclidean plane, K = 0

(constant curvature) (constant curvature) non-constant curvature



Hyperbolic plane – space of constant negative curvature

Sphere: points of constant 
Euclidean distance from the origin



Hyperbolic plane – space of constant negative curvature

Sphere: points of constant 
Euclidean distance from the origin

Hyperbolic plane: points of constant 
Minkowski distance from the origin



Hyperbolic plane – space of constant negative curvature

Sphere: points of constant 
Euclidean distance from the origin

Hyperbolic plane: points of constant 
Minkowski distance from the origin

Stereographic projection 
into the       plane.



Hyperbolic plane – space of constant negative curvature

Sphere: points of constant 
Euclidean distance from the origin

Hyperbolic plane: points of constant 
Minkowski distance from the origin

Stereographic projection 
into the       plane.

Stereographic projection
into the “Poincaré disk”.



Hyperbolic plane – space of constant negative curvature

Stereographic projection 
into the       plane.

Stereographic projection
into the “Poincaré disk”.

Metric tensor inside the 
stereographic projection
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Hilbert’s theorem

There exists no complete regular surface of constant 
negative Gaussian curvature immersed in ℝ3.

The hyperbolic plane cannot be “realized” in laboratory 
space.

Solution: discretize it and realize the lattice!
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Regular hyperbolic lattices

Hyperbolic “{7,3}” tessellation

[…]

Stereogr. proj.

Deform the graph while respecting the
coupling strength on each bond

Realization in ‘metamaterials’ (such as circuit QED):  
Coupling strength on bonds engineered to be the same 

irrespective of the bond length – only the graph matters!
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momentum space

4.
flat-band degeneracy in hyperbolic kagome

the.
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Goal: study standing waves of a “hyperbolic drum”

NN-hopping Hamiltonian is the adjacency matrix of the graph

Discrete (lattice) Hamiltonian:

BUT, assume that fj = f(zj) are particular values 
of a smooth function on the Poincare disk. Then:

Laplace-Beltrami 
operator in continuum

E

¸

E

4th

6th

(radius = 0.94)

Can we experimentally reproduce this spectral re-ordering?

The closer the radius is to r=1, the stronger is the re-ordering! 
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Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

85 sites, R = 0.94

Capacitive coupling of sites (C = 1nF)

Inductive coupling to ground (L = 10mH)

Circuit nodes & connectors for oscilloscopes

Dirichlet boundary condition 
implemented by additional capacitive 
grounding of boundary nodes C’ = nC.
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Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

85 sites, R = 0.94

Spectral reversal:

Eigenmodes of
Laplace-Beltrami

Circuit resonance 
frequencies
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Experiment #2 – Measuring eigenmode profiles
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Experiment #3 – Pulse propagation

geodesics, wave fronts

current pulse & induced voltage V(t)
(at the same node)

Complexified data obtained
from Hilbert’s transform:



Experiment #3 – Pulse propagation

hyperbolic distance

Euclidean distance
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Isometries of hyperbolic plane 

Discrete subgroups   2D space groups (wallpaper groups)

Discrete subgroups   point groups

Discrete subgroups   Fuchsian groups
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From Fuchsian groups to hyperbolic translation groups

“Abstract presentation” of the {8,3} Fuchsian:

generators constraints 

Torsion-free Fuchsian group:
→ no element g of finite order, i.e., 

Define hyperbolic translation group: maximal torsion-free (normal) subgroup.

Four translation generators on {8,3} lattice:
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Hyperbolic band theory on {8,8} lattice

Bolza unit cell:
y(x,y) y(x,y)

4D Brillouin zone 2D Brillouin zone

BUT!   – The hyperbolic translation group is non-Abelian and 
also has Brillouin zones of higher-dimensional representations!
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Six-dimensional
Brillouin zone
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I. Boettcher et al., Crystallography of Hyperbolic Lattices, Phys. Rev. B 105, 125118 (2022)

{10,5}

4D BZ

{10,3}
fits onto {10,5}

4D BZ

{8,4}
fits onto {8,8}

4D BZ

{8,3}
fits onto {8,8}

4D BZ

{7,3}
fits onto {14,7}

6D BZ



From Haldene to hyperbolic Haldane model

Discussed here:

D. M. Urwyler, P. M. Lenggenhager, I. Boettcher, R. Thomale, T. Neupert, TB, “Hyperbolic 
topological band insulators”, arXiv:2203.07292 (2022)

David M. Urwyler, “Hyperbolic topological insulators”, Master’s Thesis (2021), 
http://dx.doi.org/10.13140/RG.2.2.34715.34081

See also related works:

W. Zhang, H. Yuan, N. Sun, H. Sun, X. Zhang, “Observation of novel topological states in 
hyperbolic lattices”, Nat. Commun. 13, 2937 (2022) (arXiv:2203.03214)

Z.-R. Liu, C.-B. Hua, T. Peng, B. Zhou, “Chern insulator in a hyperbolic lattice”, Phys. Rev. B 
105, 245301 (2022) (arXiv:2203.02101)

http://dx.doi.org/10.13140/RG.2.2.34715.34081
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• NNN hopping (t2)

• Magnetic flux (Á)

• On-site potential (±M)

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988) D. M. Urwyler, et al., arXiv:2203.07292 (2022)
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D. M. Urwyler, Master’s thesis, University of Zürich (2021)



From Haldene to hyperbolic Haldane model
Replace hexagons of the honeycomb lattice by octagons -- this produces {8,3} lattice.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

16 sites per cell

→ 16 energy bands in the 4D k-space
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Model parameters:                                                              

(Computed from the U(1) HBT states:)

E

DoS

DoS

Topological gaps

Topological states?

HBT
ED bulk

Chern numbers of the hyperbolic Haldane model

HBT
ED boundary
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Result:

A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2—111 (2006)

Chern numbers of the hyperbolic Haldane model

Is there a universal relation between Chern
numbers in real space vs. in momentum space?

Cxy Cxz CRS



Chiral edge states on the hyperbolic boundary

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Wave packet 
motion along 
the boundary.



Flat bands in hyperbolic frustrated-hopping models

Discussed here:

TB and Joseph Maciejko, “Flat bands and band touching from real-space topology in 
hyperbolic lattices”, arXiv:2205.11571 (2022)

See also related work:

R. Mosseri, R. Vogeler, J. Vidal, “Aharonov-Bohm cages, flat bands, and gap labeling in 
hyperbolic tilings”, Phys. Rev. B 106, 155120 (2022) (arXiv:2206.04543)
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“string states” due to non-trivial 
homology of the compactified system?

Single unit cell is (g = 2)-hole torus, 
which supports 4 non-trivial cycles.

N-cell cluster (with compactified boundary) has 
genus h given by Riemann-Hurwitz theorem:

h-hole torus has 2h = 2N + 2 non-trivial cycles, 
i.e., that many additional “string states”.



Flat bands on octagon kagome lattice (with PBC)

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

Of the 24N states, the number of linearly-independent states in the flat band is: 

single-octagon states string states total flat-band states
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Abelian vs. non-Abelian flat-band states

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

The real-space argument captures the whole 
spectrum, i.e., Abelian and non-Abelian irreps.

Diagonalization of momentum-space Hamiltonian 
(Abelian irreps) reveals 8 of the 24 bands are flat.

—

fracall = 1/3

fracAbel = 1/3

=

fracnon-Ab. = 1/3By taking the different, also 1/3 of the non-
Abelian states lie at the flat-band energy.
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Other hyperbolic frustrated-hopping models

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

octagon-dice heptagon-kagome heptagon-dice

frac = 5/11
touching = 2

frac = 1/3
touching = 0

frac = 2/5
touching = 0

i.e. the flat band in these is gapped!



Summary
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Modelling of a “hyperbolic drum” (R0 = 0.99)

h h h

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

589 sites 1197 sites 3857 sites
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… with a fixed number of 275 sites

h h h

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)



… with a fixed number of 275 sites

h h h

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)



… with a fixed number of 275 sites

h h h

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

8th
5th

4th

Euclidean 2nd s-mode

Hyperbolic graph’s 2nd s-mode



Mapping out the spectrum in 4D momentum space
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Mapping out the spectrum in 4D momentum space

A. Chen, TB, et al., Hyperbolic Matter in Electrical Circuits with Tunable Complex Phases, arXiv:2205.05106 (2022)

“Hyperbolic graphene”
on {10,5} lattice

The model as a circuit
with tunable k1, k2, k3, k4.

Measured spectrum in
momentum space

BUT!   – The hyperbolic translation group is non-Abelian and 
also has Brillouin zones of higher-dimensional representations!



Effect of random on-site potential on HH model

IP
R



The “reduced” hyperbolic Kane-Mele model



Hyperbolic Kane-Mele model

Study Z2 topology protected by time-reversal symmetry.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)
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Hyperbolic Kane-Mele model

We fix t1 = 1, t2 = 1/6, M = 1/3, Á = p/2 and Rashba term lR = -1/6. 

Non-trivial Kane-Mele (Z2) invariant:

• In all six 2D planes of the 4D k-space.

• According to real-space topological marker.

Study Z2 topology protected by time-reversal symmetry.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)



Helical edge states on the hyperbolic boundary

D. M. Urwyler, et al., arXiv:2203.07292 (2022)



Robustness of edge states against spin disorder

Model: box distribution with lR,max = 0.2.

Each dot at (Ej, IPRj) is one eigenstate.

We assume random spin-coupling terms on NN & NNN bonds

(localization quantified by “IPR” = inverse participation ratio:
low IPR = delocalized   &   high IPR = localized)
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Bulk band Bulk gap Each dot at (Ej, IPRj) is one eigenstate.

We assume random spin-coupling terms on NN & NNN bonds
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Phase diagram of HH mode at half-filling & t1=1, f = p/2

C = 0

C = 2

Euclidean Haldane 
model for comparison


