From hyperbolic drum...

... towards hyperbolic topological matter

Tomáš Bzdušek
at Sorbonne Université, Paris 20 October, 2022
paul scherrer institut

University of Zurich ${ }^{\text {UZH }}$

Swiss National Science Foundation

Thanks to my collaborators

University of Zurich ${ }^{\text {VIH }}$

Titus Neupert
Patrick Lenggenhager
David Urwyler
Achim Vollhardt

UNIVERSITY OF Igor Boettcher ALBERTA Joseph Maciejko
 Anffany Chen

Ronny Thomale Alex Stegmaier

Lavi Upreti
Martin Greiter
Tobias Hofmann
Tobias Helbig
Tobias Kießling
Stefan Imhof
Hauke Brand

Curved spaces

Sphere, $K>0$

$\alpha+\beta+\gamma>\pi$

Euclidean plane, $K=0$
Saddle, $K<0$

$\alpha+\beta+\gamma=\pi$

$\alpha+\beta+\gamma<\pi$

Curved spaces

Euclidean plane, $K=0$
(constant curvature)

$\alpha+\beta+\gamma=\pi$

Saddle, $K<0$
non-constant curvature

$\alpha+\beta+\gamma<\pi$

Hyperbolic plane - space of constant negative curvature

Sphere: points of constant
Euclidean distance from the origin

$$
\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Hyperbolic plane - space of constant negative curvature

Sphere: points of constant
Euclidean distance from the origin

$$
\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Hyperbolic plane: points of constant Minkowski distance from the origin

$$
\mathbb{H}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=1\right\}
$$

Hyperbolic plane - space of constant negative curvature

Sphere: points of constant
Euclidean distance from the origin

$$
\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Stereographic projection into the \mathbb{R}^{2} plane.

Hyperbolic plane: points of constant Minkowski distance from the origin

$$
\mathbb{H}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=1\right\}
$$

Hyperbolic plane - space of constant negative curvature

Sphere: points of constant
Euclidean distance from the origin
$\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$

Stereographic projection into the \mathbb{R}^{2} plane.

Hyperbolic plane: points of constant Minkowski distance from the origin

$$
\mathbb{H}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=1\right\}
$$

Stereographic projection into the "Poincaré disk".

Hyperbolic plane - space of constant negative curvature

Hilbert's theorem

There exists no complete regular surface of constant negative Gaussian curvature immersed in \mathbb{R}^{3}.

Hilbert's theorem

There exists no complete regular surface of constant negative Gaussian curvature immersed in \mathbb{R}^{3}.

The hyperbolic plane cannot be "realized" in laboratory space.

Hilbert's theorem

There exists no complete regular surface of constant negative Gaussian curvature immersed in \mathbb{R}^{3}.

The hyperbolic plane cannot be "realized" in laboratory space.

Solution: discretize it and realize the lattice!

Regular " $\{p, q\}$ " lattices

Regular " $\{p, q\}$ " lattices

Euclidean " $\{6,3\}$ " tessellation

Regular " $\{p, q\}$ " lattices

Schläfli symbol

Euclidean " $\{6,3\}$ " tessellation

Regular " $\{p, q\}$ " lattices

Spherical " $\{5,3\}$ " tessellation

Regular " $\{p, q\}$ " lattices

Spherical "\{5,3\}" tessellation

Euclidean " $\{6,3\}$ " tessellation

Regular " $\{p, q\}$ " lattices

Spherical " $\{5,3\}$ " tessellation
Euclidean " $\{6,3\}$ " tessellation

Hyperbolic " $\{7,3\}$ " tessellation
[...]

Regular " $\{p, q\}$ " lattices

Spherical " $\{5,3\}$ " tessellation

Schläfli symbol

Euclidean " $\{6,3\}$ " tessellation

Hyperbolic " $\{7,3\}$ " tessellation

Generate your own hyperbolic tiling! - http://www.malinc.se/m/ImageTiling.php

Generate your own hyperbolic tiling! - http://www.malinc.se/m/ImageTiling.php

Regular hyperbolic lattices

Spherical " $\{5,3\}$ " tessellation

Stereogr. proj.

Schläfli symbol

Euclidean " $\{6,3\}$ " tessellation

Hyperbolic " $\{7,3\}$ " tessellation
[...]

Sign of curvature determined by
Euler class per vertex $\Delta \chi=1-\frac{q}{2}+\frac{q}{p}$

Regular hyperbolic lattices

Hyperbolic " $\{7,3\}$ " tessellation
[...]

Stereogr. proj.

Regular hyperbolic lattices

Hyperbolic " $\{7,3\}$ " tessellation
[...]

Stereogr. proj.

Regular hyperbolic lattices

Hyperbolic " $\{7,3\}$ " tessellation

Realization in 'metamaterials' (such as circuit QED): Coupling strength on bonds engineered to be the same irrespective of the bond length - only the graph matters!

Hyperbolic lattice in circuit QED

$$
\mathcal{H}_{\mathrm{TB}}=\omega_{0} \sum_{i} a_{i}^{\dagger} a_{i}-t \sum_{i, j\rangle}\left(a_{i}^{\dagger} a_{j}+a_{j}^{\dagger} a_{i}\right)
$$

A. J. Kollár, M. Fitzpatrick, and A. A. Houck, Nature 571, 45-50 (2019)

Hyperbolic lattice in circuit QED

$$
\mathcal{H}_{\mathrm{TB}}=\omega_{0} \sum_{i} a_{i}^{\dagger} a_{i}-t \sum_{i, j\rangle}\left(a_{i}^{\dagger} a_{j}+a_{j}^{\dagger} a_{i}\right)
$$

A. J. Kollár, M. Fitzpatrick, and A. A. Houck, Nature 571, 45-50 (2019)

Hyperbolic lattice in circuit QED

A. J. Kollár, M. Fitzpatrick, and A. A. Houck, Nature 571, 45-50 (2019)

Hyperbolic lattice in circuit QED

A. J. Kollár, M. Fitzpatrick, and A. A. Houck, Nature 571, 45-50 (2019)

Hyperbolic lattice in circuit QED

$$
\mathcal{H}_{\mathrm{TB}}=\omega_{0} \sum_{i} a_{i}^{\dagger} a_{i}-t \sum_{\langle i, j\rangle}\left(a_{i}^{\dagger} a_{j}+a_{j}^{\dagger} a_{i}\right)
$$

Hyperbolic lattice in circuit QED

Electric-circuit simulations of hyperbolic lattices

hyperbolic
continuum

Lenggenhager, $\underline{\mathrm{TB}}$, et al.,
Nat. Commun. 13, 4373 (2022)
hyperbolic momentum space

Chen, $\underline{\text { TB }}$, et al., arXiv:2205.05106 (2022)
hyperbolic Haldane model

Zhang, et al.,
Nat. Commun. 13, 2937 (2022)

Outline of the remainder of the talk

Lenggenhager, $\overline{T B}$, et al.,

Outline of the remainder of the talk

Lenggenhager, TB, et al.
Nat. Commun. 13, 4373 (2022)

hyperbolic
Haldane model

Chen, TB, et al.
arXiv:2205.05106 (2022)

Zhang, et al.
Nat. Commun. 13, 2937 (2022)

Outline of the remainder of the talk

Lenggenhager, $\underline{\text { TB }}$, et al.
Nat. Commun. 13, 4373 (2022)

3.
hyperbolic
Haldane model

Chen, TB, et al.
arXiv:2205.05106 (2022)

Zhang, et al.,
Nat. Commun. 13, 2937 (2022)

Outline of the remainder of the talk

4. the.
flat-band degeneracy in hyperbolic kagome

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the adjacency matrix of the graph
Discrete (lattice) Hamiltonian: $\sum_{j} A_{i j} f_{j}=\lambda f_{i}$

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the adjacency matrix of the graph
Discrete (lattice) Hamiltonian: $\sum_{j} A_{i j} f_{j}=\lambda f_{i}$

BUT, assume that $f_{j}=f\left(z_{j}\right)$ are particular values of a smooth function on the Poincare disk. Then:

$$
\sum_{j} A_{i j} f\left(z_{j}\right)=3 f\left(z_{i}\right)+\frac{3}{4} h^{2} \triangle_{g} f\left(z_{i}\right)+\mathcal{O}\left(h^{3}\right)
$$

Nearest-neighbor models approximate continuum

NN-hopping Hamiltonian is the adjacency matrix of the graph
Discrete (lattice) Hamiltonian: $\sum_{j} A_{i j} f_{j}=\lambda f_{i}$

BUT, assume that $f_{j}=f\left(z_{j}\right)$ are particular values of a smooth function on the Poincare disk. Then:

$$
\begin{array}{r}
\sum_{j} A_{i j} f\left(z_{j}\right)=3 f\left(z_{i}\right)+\frac{3}{4} h^{2} \triangle_{g} f\left(z_{i}\right)+\mathcal{O}\left(h^{3}\right) \\
\approx 0.276 \ldots
\end{array} \begin{aligned}
& \text { Laplace-Beltrami } \\
& \text { operator in continuum }
\end{aligned}
$$

Goal: study standing waves of a "hyperbolic drum"

NN-hopping Hamiltonian is the adjacency matrix of the graph

Discrete (lattice) Hamiltonian: $\sum_{j} A_{i j} f_{j}=f_{i}$

BUT, assume that $f_{j}=f\left(z_{j}\right)$ are particular values of a smooth function on the Poincare disk. Then:

$$
\begin{aligned}
& \sum_{j} A_{i j} f\left(z_{j}\right)=3 f\left(z_{i}\right)+\frac{3}{4} h^{2} \triangle_{g} f\left(z_{i}\right)+\mathcal{O}\left(h^{3}\right) \\
& \approx 0.276 \ldots \begin{array}{c}
\text { Laplace-Beltrami } \\
\text { operator in continuum }
\end{array}
\end{aligned}
$$

Goal: study standing waves of a "hyperbolic drum"

Goal: study standing waves of a "hyperbolic drum"

Goal: study standing waves of a "hyperbolic drum"

Goal: study standing waves of a "hyperbolic drum"

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

$\{3,7\}$

$\{7,3\}$

"hyperbolic soccerball" t\{3,7\}

Modelling of a "hyperbolic drum" $\left(\mathrm{R}_{0}=0.99\right)$

"hyperbolic soccerball" t\{3,7\}

Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experimental realization

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experiment \#1 - impedance measurements

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experiment \#1 - impedance measurements

P. M. Lenggenhager, A. Stegmaier, Nat. Commun. 13, 4373(2022)

Experiment \#1 - impedance measurements

Experiment \#1 - impedance measurements

All modes visible at sites " 14 " and " 18 ".

Experiment \#2 - Measuring eigenmode profiles

Experiment \#3 - Pulse propagation

Euclidean drum

Hyperbolic drum

Experiment \#3 - Pulse propagation

Euclidean drum

Hyperbolic drum

geodesics, wave fronts

Experiment \#3 - Pulse propagation

Euclidean drum

Hyperbolic drum

geodesics, wave fronts
current pulse \& induced voltage $V(t)$

Complexified data obtained from Hilbert's transform:

$$
v(t)=V(t)+\frac{\mathrm{i}}{\pi} \int_{-\infty}^{+\infty} \mathrm{d} \tau \frac{V(\tau)}{t-\tau}
$$

Experiment \#3 - Pulse propagation

How to define momentum space?

How to define momentum space?

Isometries of Euclidean plane $S E(2)$

How to define momentum space?

Isometries of sphere $S O(3) \cong P S U(2)$

Isometries of Euclidean plane $S E(2)$

How to define momentum space?

Isometries of sphere $S O(3) \cong P S U(2)$

Isometries of Euclidean plane $S E(2)$

Isometries of hyperbolic plane $S O(2,1) \cong P S L(2, \mathbb{R}) \cong \operatorname{PSU}(1,1)$

How to define momentum space?

Isometries of sphere $S O(3) \cong P S U(2)$

Isometries of Euclidean plane $S E(2)$
Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $S O(2,1) \cong \operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{PSU}(1,1)$

How to define momentum space?

Isometries of sphere $S O(3) \cong P S U(2)$
Discrete subgroups point groups

Isometries of Euclidean plane $S E(2)$
Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $S O(2,1) \cong P S L(2, \mathbb{R}) \cong P S U(1,1)$

How to define momentum space?

Isometries of sphere $S O(3) \cong P S U(2)$
Discrete subgroups point groups

Isometries of Euclidean plane $S E(2)$
Discrete subgroups 2D space groups (wallpaper groups)

Isometries of hyperbolic plane $S O(2,1) \cong \operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{PSU}(1,1)$
Discrete subgroups Fuchsian groups

From Fuchsian groups to hyperbolic translation groups

Four translation generators on $\{8,3\}$ lattice:

From Fuchsian groups to hyperbolic translation groups

Four translation generators on $\{8,3\}$ lattice:

$$
\gamma_{1} \gamma_{2}^{-1} \gamma_{3}=\text { rotation by } \frac{2 \pi}{8}
$$

From Fuchsian groups to hyperbolic translation groups

Four translation generators on $\{8,3\}$ lattice:

$$
\gamma_{1} \gamma_{2}^{-1} \gamma_{3}=\text { rotation by } \frac{2 \pi}{8}
$$

"Abstract presentation" of the $\{8,3\}$ Fuchsian: $\Gamma=\langle\underbrace{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}}: \underbrace{\left.\left(\gamma_{1} \gamma_{2}^{-1} \gamma_{3}\right)^{8}=1, \ldots\right\rangle}$

From Fuchsian groups to hyperbolic translation groups

Four translation generators on $\{8,3\}$ lattice:

$$
\gamma_{1} \gamma_{2}^{-1} \gamma_{3}=\text { rotation by } \frac{2 \pi}{8}
$$

"Abstract presentation" of the $\{8,3\}$ Fuchsian: $\Gamma=\langle\underbrace{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}}: \underbrace{\left.\left(\gamma_{1} \gamma_{2}^{-1} \gamma_{3}\right)^{8}=1, \ldots\right\rangle}$

Torsion-free Fuchsian group:
\rightarrow no element g of finite order, i.e.,

$$
g^{n}=1 \Leftrightarrow n=0 \text { or } g=1
$$

From Fuchsian groups to hyperbolic translation groups

Four translation generators on $\{8,3\}$ lattice:

$$
\gamma_{1} \gamma_{2}^{-1} \gamma_{3}=\text { rotation by } \frac{2 \pi}{8}
$$

"Abstract presentation" of the $\{8,3\}$ Fuchsian: $\Gamma=\langle\underbrace{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}} ; \underbrace{\left.\left(\gamma_{1} \gamma_{2}^{-1} \gamma_{3}\right)^{8}=1, \ldots\right\rangle}$

generators

constraints

Torsion-free Fuchsian group:
\rightarrow no element g of finite order, i.e.,

$$
g^{n}=1 \Leftrightarrow n=0 \text { or } g=1
$$

Define hyperbolic translation group: maximal torsion-free (normal) subgroup.

From Fuchsian groups to hyperbolic translation groups

Hyperbolic band theory on $\{8,8\}$ lattice

$$
\left.\begin{array}{rl}
\gamma_{1} & \mapsto e^{i k_{1}} \\
\gamma_{2} & \mapsto e^{i k_{2}} \\
\gamma_{3} & \mapsto e^{i k_{3}} \\
\gamma_{4} & \mapsto e^{i k_{4}}
\end{array}\right\} \quad \begin{aligned}
& \text { Four-dimensional } \\
& \text { Brillouin zone }
\end{aligned}
$$

Hyperbolic band theory on $\{8,8\}$ lattice

$$
\left.\begin{array}{rl}
\gamma_{1} & \mapsto e^{i k_{1}} \\
\gamma_{2} & \mapsto e^{i k_{2}} \\
\gamma_{3} & \mapsto e^{i k_{3}} \\
\gamma_{4} & \mapsto e^{i k_{4}}
\end{array}\right\} \quad \begin{aligned}
& \text { Four-dimensional } \\
& \text { Brillouin zone }
\end{aligned}
$$

Hyperbolic band theory on $\{8,8\}$ lattice

$$
\left.\begin{array}{rl}
\gamma_{1} & \mapsto e^{i k_{1}} \\
\gamma_{2} & \mapsto e^{i k_{2}} \\
\gamma_{3} & \mapsto e^{i k_{3}} \\
\gamma_{4} & \mapsto e^{i k_{4}}
\end{array}\right\} \quad \begin{aligned}
& \text { Four-dimensional } \\
& \text { Brillouin zone }
\end{aligned}
$$

Hyperbolic band theory on $\{8,8\}$ lattice

4D Brillouin zone
2D Brillouin zone

Hyperbolic band theory on $\{8,8\}$ lattice

4D Brillouin zone

Hyperbolic band theory on $\{8,8\}$ lattice

Hyperbolic band theory on $\{8,8\}$ lattice

BUT! - The hyperbolic translation group is non-Abelian and also has Brillouin zones of higher-dimensional representations!

Hyperbolic band theory on $\{14,7\}$ lattice

Hyperbolic band theory on $\{14,7\}$ lattice

Hyperbolic band theory on $\{14,7\}$ lattice

Hyperbolic band theory on $\{14,7\}$ lattice

Crystallography of hyperbolic lattices

$$
\begin{aligned}
& \{10,5\} \\
& 4 D B Z
\end{aligned}
$$

Crystallography of hyperbolic lattices

$\{10,5\}$
4D BZ

\{10,3\}
fits onto $\{10,5\}$
4D BZ

$\{8,4\}$
fits onto $\{8,8\}$
4D BZ

$\{8,3\}$
fits onto $\{8,8\}$ fits onto $\{14,7\}$ 4D BZ

$\{7,3\}$

6D BZ

From Haldene to hyperbolic Haldane model

Discussed here:
D. M. Urwyler, P. M. Lenggenhager, I. Boettcher, R. Thomale, T. Neupert, TB, "Hyperbolic topological band insulators", arXiv:2203.07292 (2022)

David M. Urwyler, "Hyperbolic topological insulators", Master’s Thesis (2021), http://dx.doi.org/10.13140/RG.2.2.34715.34081

See also related works:
W. Zhang, H. Yuan, N. Sun, H. Sun, X. Zhang, "Observation of novel topological states in hyperbolic lattices", Nat. Commun. 13, 2937 (2022) (arXiv:2203.03214)
Z.-R. Liu, C.-B. Hua, T. Peng, B. Zhou, "Chern insulator in a hyperbolic lattice", Phys. Rev. B 105, 245301 (2022) (arXiv:2203.02101)

From Haldene to hyperbolic Haldane model

Replace hexagons of the honeycomb lattice by octagons -- this produces $\{8,3\}$ lattice.

From Haldene to hyperbolic Haldane model

Replace hexagons of the honeycomb lattice by octagons -- this produces $\{8,3\}$ lattice.

4 ingredients:

From Haldene to hyperbolic Haldane model

Replace hexagons of the honeycomb lattice by octagons -- this produces $\{8,3\}$ lattice.

4 ingredients:

From Haldene to hyperbolic Haldane model

Replace hexagons of the honeycomb lattice by octagons -- this produces $\{8,3\}$ lattice.

D. M. Urwyler, et al., arXiv:2203.07292 (2022)

Hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$

Hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$

Hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$

Chern numbers of the hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$
(Computed from the U(1) HBT states:)

$C_{k_{i}, k_{j}} / N_{o c c}$	$N_{o c c}=5$	$N_{o c c}=8$	$N_{o c c}=11$
$C_{k_{x}, k_{y}}$	-1	0	-1
$C_{k_{x}, k_{z}}$	1	0	1
$C_{k_{x}, k_{w}}$	-1	0	-1
$C_{k_{y}, k_{z}}$	-1	0	-1
$C_{k_{y}, k_{w}}$	1	0	1
$C_{k_{z}, k_{w}}$	-1	0	-1

Chern numbers of the hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$
(Computed from the U(1) HBT states:)

$C_{k i, k_{J}} / N_{o c c}$	$N_{o c c}=5$	$N_{o c c}=8$	$N_{o c c}=11$
$C_{k_{x}, k_{y}}$	-1	0	-1
$C_{k_{x}, k_{z}}$	1	0	1
$C_{k_{x}, k_{w}}$	-1	0	-1
$C_{k_{y}, k_{z}}$	-1	0	-1
$C_{k_{y}, k_{w}}$	1	0	1
$C_{k_{z}, k_{w}}$	-1	0	-1

DoS

Chern numbers of the hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$
(Computed from the U(1) HBT states:)

$C_{k i, k_{J}} / N_{o c c}$	$N_{o c c}=5$	$N_{o c c}=8$	$N_{o c c}=11$
$C_{k_{x}, k_{y}}$	-1	0	-1
$C_{k_{x}, k_{z}}$	1	0	1
$C_{k_{x}, k_{w}}$	-1	0	-1
$C_{k_{y}, k_{z}}$	-1	0	-1
$C_{k_{y}, k_{w}}$	1	0	1
$C_{k_{z}, k_{w}}$	-1	0	-1

Chern numbers of the hyperbolic Haldane model

Model parameters: $t_{1}=1, t_{2}=\frac{1}{6}, M=\frac{1}{3}, \phi=\frac{\pi}{2}$
(Computed from the U(1) HBT states:)

$C_{k i, k_{J}} / N_{o c c}$	$N_{o c c}=5$	$N_{o c c}=8$	$N_{o c c}=11$
$C_{k_{x}, k_{y}}$	-1	0	-1
$C_{k_{x}, k_{z}}$	1	0	1
$C_{k_{x}, k_{w}}$	-1	0	-1
$C_{k_{y}, k_{z}}$	-1	0	-1
$C_{k_{y}, k_{w}}$	1	0	1
$C_{k_{z}, k_{w}}$	-1	0	-1

Chern numbers of the hyperbolic Haldane model

$$
C_{R S}=12 \pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C}\left(\mathbf{P}_{j k} \mathbf{P}_{k l} \mathbf{P}_{j l}-\mathbf{P}_{j l} \mathbf{P}_{l k} \mathbf{P}_{k j}\right)
$$

Chern numbers of the hyperbolic Haldane model

$$
C_{R S}=12 \pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C}\left(\mathbf{P}_{j k} \mathbf{P}_{k l} \mathbf{P}_{j l}-\mathbf{P}_{j l} \mathbf{P}_{l k} \mathbf{P}_{k j}\right)
$$

Result:

	Haldane			
f	μ	$C_{x y}$	$C_{x z}$	$C_{R S}$
$5 / 16$	-1.3	-1	1	-0.986
$8 / 16$	0	0	0	0
$11 / 16$	+1.3	-1	1	-0.986

Chern numbers of the hyperbolic Haldane model

$$
C_{R S}=12 \pi i \sum_{j \in A} \sum_{k \in B} \sum_{l \in C}\left(\mathbf{P}_{j k} \mathbf{P}_{k l} \mathbf{P}_{j l}-\mathbf{P}_{j l} \mathbf{P}_{l k} \mathbf{P}_{k j}\right)
$$

Result:				
f μ $C_{x y}$ $C_{x z}$ $C_{R S}$ $5 / 16$ -1.3 -1 1 -0.986 $8 / 16$ 0 0 0 0 $11 / 16$ +1.3 -1 1 -0.986				

Is there a universal relation between Chern numbers in real space vs. in momentum space?

Chiral edge states on the hyperbolic boundary

Wave packet motion along the boundary.

Flat bands in hyperbolic frustrated-hopping models

Discussed here:
TB and Joseph Maciejko, "Flat bands and band touching from real-space topology in hyperbolic lattices", arXiv:2205.11571 (2022)

See also related work:
R. Mosseri, R. Vogeler, J. Vidal, "Aharonov-Bohm cages, flat bands, and gap labeling in hyperbolic tilings", Phys. Rev. B 106, 155120 (2022) (arXiv:2206.04543)

Flat bands on octagon kagome lattice (with PBC)

Flat bands on octagon kagome lattice (with PBC)

> 24 sites (orbitals) per Bolza cell
> $\rightarrow 24 N$ states per N cells

Flat bands on octagon kagome lattice (with PBC)

> 24 sites (orbitals) per Bolza cell
> $\rightarrow 24 N$ states per N cells

Flat bands on octagon kagome lattice (with PBC)

24 sites (orbitals) per Bolza cell
$\rightarrow 24 N$ states per N cells

6 flat-band states per Bolza cell $\rightarrow 6 \mathrm{~N}$ flat-band states per N cells

Flat bands on octagon kagome lattice (with PBC)

24 sites (orbitals) per Bolza cell
$\rightarrow 24 N$ states per N cells

6 flat-band states per Bolza cell
$\rightarrow 6 \mathrm{~N}$ flat-band states per N cells
$\rightarrow 6 \mathrm{~N}-1$ linearly independent states!

Flat bands on octagon kagome lattice (with PBC)

"string states" due to non-trivial homology of the compactified system?

Flat bands on octagon kagome lattice (with PBC)

"string states" due to non-trivial homology of the compactified system?

Single unit cell is ($g=2$)-hole torus, which supports 4 non-trivial cycles.

Flat bands on octagon kagome lattice (with PBC)

Single unit cell is ($g=2$)-hole torus, which supports 4 non-trivial cycles.

N -cell cluster (with compactified boundary) has genus h given by Riemann-Hurwitz theorem:

$$
h=N(g-1)+1
$$

"string states" due to non-trivial homology of the compactified system?

Flat bands on octagon kagome lattice (with PBC)

"string states" due to non-trivial homology of the compactified system?

Single unit cell is ($g=2$)-hole torus, which supports 4 non-trivial cycles.

N -cell cluster (with compactified boundary) has genus h given by Riemann-Hurwitz theorem:

$$
h=N(g-1)+1
$$

h-hole torus has $2 h=2 N+2$ non-trivial cycles, i.e., that many additional "string states".

Flat bands on octagon kagome lattice (with PBC)

Of the $24 N$ states, the number of linearly-independent states in the flat band is:

Abelian vs. non-Abelian flat-band states

The real-space argument captures the whole spectrum, i.e., Abelian and non-Abelian irreps.

$$
\mathrm{frac}_{\mathrm{all}}=1 / 3
$$

Abelian vs. non-Abelian flat-band states

The real-space argument captures the whole spectrum, i.e., Abelian and non-Abelian irreps.

$$
\mathrm{frac}_{\mathrm{all}}=1 / 3
$$

Diagonalization of momentum-space Hamiltonian (Abelian irreps) reveals 8 of the 24 bands are flat.

Abelian vs. non-Abelian flat-band states

The real-space argument captures the whole spectrum, i.e., Abelian and non-Abelian irreps.

$$
\mathrm{frac}_{\mathrm{all}}=1 / 3
$$

Diagonalization of momentum-space Hamiltonian (Abelian irreps) reveals 8 of the 24 bands are flat.
$\operatorname{frac}_{\text {Abel }}=1 / 3$

By taking the different, also $1 / 3$ of the non-
$\operatorname{frac}_{\text {non-Ab. }}=1 / 3$

Other hyperbolic frustrated-hopping models

octagon-dice

frac $=5 / 11$
touching $=2$
heptagon-kagome

$$
\mathrm{frac}=1 / 3
$$

touching $=0$
heptagon-dice

frac $=2 / 5$
touching $=0$

Other hyperbolic frustrated-hopping models

octagon-dice

TB and Joseph Maciejko, arXiv:2205.11571 (2022)

$$
\begin{gathered}
\text { frac }=5 / 11 \\
\text { touching }=2
\end{gathered}
$$

heptagon-kagome

frac $=1 / 3$
touching $=0$
heptagon-dice
i.e. the flat band in these is gapped!

Summary

Negative curvature

Hyperbolic continuum

Hyperbolic Haldane model

Hyperbolic $\{p, q\}$ lattices

Hyperbolic band theory

Hyperbolic flat bands

Thank you for your attention!

Tomáš Bzdušek: From hyperbolic drum towards hyperbolic topological matter Sorbonne U. Paris 20. October, 2022:
 University of
Zurich

Swiss National Science Foundation

Mapping 4D k-space: arXiv:2205.05106 (2022) Hyperbolic flat bands: arXiv:2205.11571 (2022)

Thank you for your attention!

Tomáš Bzdušek: From hyperbolic drum towards hyperbolic topological matter Sorbonne U. Paris 20. October, 2022:

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

Modelling of a "hyperbolic drum" $\left(R_{0}=0.99\right)$

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

... with a fixed number of $\underline{275}$ sites

... with a fixed number of $\underline{275}$ sites

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

... with a fixed number of $\underline{275}$ sites

P. M. Lenggenhager, A. Stegmaier, et al., arXiv:2109.01148 (2021)

Mapping out the spectrum in 4D momentum space

Mapping out the spectrum in 4D momentum space

"Hyperbolic graphene" on $\{10,5\}$ lattice

Graphene on $\{6,3\}$ lattice

Mapping out the spectrum in 4D momentum space

"Hyperbolic graphene" on $\{10,5\}$ lattice

The model as a circuit with tunable $k_{1}, k_{2}, k_{3}, k_{4}$.

Mapping out the spectrum in 4D momentum space

"Hyperbolic graphene" on $\{10,5\}$ lattice

The model as a circuit with tunable $k_{1}, k_{2}, k_{3}, k_{4}$.

Measured spectrum in momentum space

Mapping out the spectrum in 4D momentum space

"Hyperbolic graphene" on $\{10,5\}$ lattice

The model as a circuit with tunable $k_{1}, k_{2}, k_{3}, k_{4}$.

Measured spectrum in momentum space

BUT! - The hyperbolic translation group is non-Abelian and also has Brillouin zones of higher-dimensional representations!

Effect of random on-site potential on HH model

The "reduced" hyperbolic Kané-Mele model
boundary of unit cell

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.
We fix $t_{1}=1, t_{2}=1 / 6, M=1 / 3, \phi=\pi / 2$ and Rashba term $\lambda_{\mathrm{R}}=-1 / 6$.

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.
We fix $t_{1}=1, t_{2}=1 / 6, M=1 / 3, \phi=\pi / 2$ and Rashba term $\lambda_{\mathrm{R}}=-1 / 6$.

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.
We fix $t_{1}=1, t_{2}=1 / 6, M=1 / 3, \phi=\pi / 2$ and Rashba term $\lambda_{\mathrm{R}}=-1 / 6$.

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.
We fix $t_{1}=1, t_{2}=1 / 6, M=1 / 3, \phi=\pi / 2$ and Rashba term $\lambda_{\mathrm{R}}=-1 / 6$.

Hyperbolic Kane-Mele model

Study Z_{2} topology protected by time-reversal symmetry.
We fix $t_{1}=1, t_{2}=1 / 6, M=1 / 3, \phi=\pi / 2$ and Rashba term $\lambda_{\mathrm{R}}=-1 / 6$.

Non-trivial Kane-Mele $\left(Z_{2}\right)$ invariant:

- In all six 2D planes of the 4D k-space.
- According to real-space topological marker.

Helical edge states on the hyperbolic boundary

$\tau=0$

$\tau=400$

$\tau=800$

$\tau=1200$

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN \& NNN bonds (localization quantified by "IPR" = inverse participation ratio:
low IPR = delocalized $\&$ high IPR = localized)

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN \& NNN bonds (localization quantified by "IPR" = inverse participation ratio: low IPR = delocalized \& high IPR = localized)

Robustness of edge states against spin disorder

We assume random spin-coupling terms on NN \& NNN bonds (localization quantified by "IPR" = inverse participation ratio: low IPR = delocalized \& high IPR = localized)

Phase diagram of HH mode at half-filling \& $\mathrm{t}_{1}=1, \phi=\pi / 2$

