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Condensed Matter Approaches to Quantum Gases

G.V. Shlyapnikov

1 Introduction

The discovery of Bose-Einstein condensation (BEC) in dilute atomic gases of Rb [1], Na [2], and Li
[3] in magnetic traps has stimulated an enormous revival of the interest in macroscopic quantum
behavior of dilute gases at low temperature. Up to this discovery the main emphasis had been on
the development of efficient evaporative [4] and optical cooling [5] methods to reach the critical
temperature Tc . 1 µK and density n ∼ 1014 cm−3 for the observation of BEC. Experiments
with trapped Bose-condensed gases have revealed profound condensed matter behavior of these
extremely dilute systyms. The goal of this lecture is to describe the key features of this behavior
and discuss theoretical approaches that are being used in the field of quantum gases.

The condensed matter behavior of quantum Bose gases originates from the dominant role of
interparticle interactions once a single quantum state becomes macroscopically occupied [6]. So
was the difference in free expansion between condensate and thermal gas clouds after switching off
the trap, important supporting evidence for the presence of a Bose-condensed state. Differences
from the non-degenerate behavior were strongly pronounced in studies of eigenfrequencies and
temperature-dependent damping of the lowest excitations. The most profound features of the
macroscopic quantum nature of dilute Bose-condensed gases were found in the MIT experiment
on interference of two independently prepared condensates [7], and in the JILA experiment [8]
on a strong reduction of 3-body recombination due to a change of local correlation properties in
the presence of a condensate. In a later stage, superfluid character of Bose-condensed gases was
demonstrated in experiments on creating vortex [9] and soliton [10] structures, in the studies of
scissors excitation modes [11], and in the measurement of the critical velocity for superfluidity [12].

Theoretical and numerical studies of trapped Bose-condensed gases were first focused on
the ground-state properties and elementary excitations of a static gas or on coherently evolving
condensates in the mean-field approach. Studies beyond the mean-field succeeded in describing
temperature-dependent damping rates and frequency shifts of low-energy excitations of a trapped
condensate [6, 13, 14]. These studies were followed by and done in parallel with investigations of
the zero- and finite-temperature dynamics of vortices [9] and solitons [10, 15]. Theoretical devel-
opments in the field of trapped Bose-condensed gases have become successful due to a wide use
of condensed matter approaches, such as the Gross-Pitaevskii equation for a trapped condensate,
Bogoliubov equations for the excitations, finite-temperature perturbation theory, etc. The presence
of the trapping potential and a finite size of the system required a serious reformulation of these
approaches. Investigations of a sharp cross-over to the BEC regime [16] revived an interest in the
general question of how the transition temperature depends on the interaction between particles
and stimulated theoretical and Monte Carlo studies in this direction. On the basis of both exper-
iment and theory, equilibrium properties and dynamics of trapped Bose-condensed gases are now
rather well understood.

In the last years a lot of attention has been focused on phase coherence phenomena. These
studies are expected to provide new fundamental insights into the nature of macroscopic quantum
states and are important for future applications, such as the creation atom lasers - devices for gen-
eration of coherent matter waves. Recent theoretical studies [17] have revealed that in elongated
3D traps the finite-temperature equilibrium state can be a quasicondensate characterized by sup-
pressed density fluctuations and axially fluctuating phase. The existence of these phase-fluctuating
BEC states has been found in Hannover [18] and Orsay [19] experiments. In the present stage, the
phenomenon of quasicondensation is one of the important issues in the studies of quantum gases.
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2 Scaling approach

Time-dependent variations of the trapping potential lead to the evolution of a trapped condensate.
This evolution is quite different from that of a classical gas under the same conditions. The simplest
example is a free expansion of the gas after abruptly switching off the trap as in the first JILA [1]
and MIT [2] experiments. In this lecture we discuss the scaling approach [20, 21, 22] for describing
the evolution of a condensate with a fixed number of particles in a harmonic potential

V (r) =
∑

i

mω2
i r

2
i /2 (1)

under time-dependent variations of the frequencies ωi(t). An initially static condensate is assumed
to be in equilibrium in an external potential V (r) with constant frequencies ω0i = ωi(0).

We assume that the mean interparticle separation greatly exceeds the radius of interaction
between them and n|a|3 � 1, where a is the scattering length. Therefore one can use a contact
potential of pair interaction characterized by a single parameter, the scattering length a. Then the
Hamiltonian of the system takes the form

Ĥ =

∫

dr ψ̂†{−(~2/2m)∆ + V (r) + (g/2)ψ̂†ψ̂}ψ̂, (2)

and the Schrödinger equation for the Heisenberg field operator of atoms, ψ̂(r, t), reads

i~(∂ψ̂/∂t) = −(~2/2m)∆ψ̂ + V (r)ψ̂ + gψ̂†ψ̂ψ̂, (3)

where the last term in the right-hand side of Eq.(3) describes the interaction between particles,

and the coupling constant is g = 4π~
2a/m. The field operator ψ̂ can be represented as a sum of

the non-condensed part ψ̂′ and the condensate wave function ψ0 which is a c-number (see, e.g.,
[23]):

ψ̂ = ψ0 + ψ̂′. (4)

Averaging both sides of Eq.(3) and omitting contributions originating from the non-condensed part

ψ̂′, we obtain the familiar mean-field Gross-Pitaevskii equation:

i~(∂ψ0/∂t) = −(~2/2m)∆ψ0 + V (r)ψ0 + g|ψ0|2ψ0. (5)

The condensate wave function is normalized by the condition

∫

dr|ψ0|2 = N0, (6)

where N0 is the number of particles in the condensate.
In equilibrium the time dependence of the condensate wave function is reduced to ψ0 ∝

exp (−iµt), where µ is the chemical potential. Then Eq.(5) takes a stationary form describing the
initial static condensate:

−(~2/2m)∆ψ0 + V (r)ψ0 + g|ψ0|2ψ0 − µψ0 = 0. (7)

From this point on we consider a repulsive interaction between particles (a > 0). The shape of ψ0

is determined by a balance between the interparticle repulsion and the confining potential. In the
so-called Thomas-Fermi regime the mean-field interaction greatly exceeds the spacing between the
trap levels, and the kinetic energy term in Eq.(7) is not important. One then has the well-known
algebraic solution for the condensate wave function [24, 25]:

ψ0 =
√

(µ− V (r)/g exp (−iµt). (8)

This solution is valid in the spatial region where the argument of the square root is positive,
and ψ0 = 0 otherwise. The chemical potential is given by µ = n0g, with n0 being the maximum
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condensate density. In a harmonic confining potential the condensate density |ψ0|2 has a shape of
an inverted parabola, with the size in the i-th direction R0i = (2µ/mω2

0i)
1/2.

For analyzing the evolution of the condensate wave function under time-dependent variations
of the frequencies ωi at t ≥ 0, we return to Eq.(5) and introduce scaling parameters bi(t). Turning
to rescaled coordinates ρi = ri/bi(t) we search for the solution of Eq.(5) in the form

ψ0(r, t) = V−1/2(t)χ0(ρi, τ(t)) exp (iΦ(r, t), (9)

where the dimensionless volume is V(t)
∏

i bi(t), and the rescaled time τ(t) =
∫ t
dt′/V(t′). Substi-

tuting Eq.(9) into Eq.(5) we require the cancellation of ∇ρχ0 terms, which gives the phase

Φ(r, t) = (m/2~)
∑

i

r2i [ḃ(t)/b(t)]. (10)

Then, for the scaling parameters governed by equations

b̈i + ω2
i (t)bi = ω2

i0/biV(t), (11)

with initial conditions bi(0) = 1, ḃi(t) = 0, we arrive at the equation of motion

i~(∂χ0/∂t) = K[χ0] + (m/2)
∑

i

ω2
0iρ

2
iχ0 + g|χ0|2χ0, (12)

where the kinetic energy term is given by

K[χ0] = − ~
2

2m

∑

i

V(t)

b2i (t)

∂2χ0

∂ρ2
i

. (13)

In the Thomas-Fermi regime the ratio of the kinetic energy term to the non-linear interaction
term in Eq.(12) is initially very small and scales as η(t) =

∑

i[~ω0i/µbi(t)]
2V(t). The condition

η(t) � 1 is satisfied on a long (or even infinite) time scale. Then the kinetic energy term can be
omitted and in rescaled variables ρ, τ the equation of motion is reduced to an equation for the
initial static Thomas-Fermi condensate. The latter equation is nothing else than Eq.(7) in which
the kinetic energy term is neglected. The solution is given by Eq.(8), with V (r) (1). Thus, Eqs. (9)
and (12) give a universal scaling solution for ψ0(r, t) under arbitrary variations of the frequencies
and anisotropy of the external potential:

χ0(ρi, τ(t))=
1

g

(

µ−m

2

∑

i

ω2
0ir

2
i

b2i (t)

)1/2

exp [−iµτ(t)]. (14)

The condensate preserves its shape, and at time t the ratio of the condensate size in the i-th
direction, Ri(t), to the initial size R0i is given by the value of the scaling parameter bi(t).

In symmetrical two-dimensional traps, or in infinitely long cylindrical traps, the scaling solu-
tion (9) is exact [20, 22]. In these cases the scaling parameters b2x(t) = b2y(t) = V(t), and the kinetic
energy term in equation of motion (12) becomes K[χ0] = −(~2/2m)∆ρχ0. Accordingly, in rescaled
variables this equation is the same as Eq.(7) for the initial static condensate, irrespective of the
shape of the condensate wave function. Thus, any initial shape governed by Eq.(7) is preserved
and the condensate size is rescaled as b(t).

Interestingly, the evolution dynamics of the quantum coherent state (condensate) is governed
by classical equations of motion (11). These equations follow from the classical Hamiltonian of
”scaling dynamics” [20]

Hsd =
1

2

∑

i

(p2
i + ω2

i (t)q2i ) +
ω̄2

0
∏

i qi
, (15)

where ω̄0 is the geometrical mean of the initial trap frequencies, qi = (ω̄0/ω0i)bi, pi = q̇i, and
∏

i qi = V . The Hamiltonian Hsd describes harmonic oscillators coupled to each other through
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Figure 1: Poincare map for an abrupt change of the frequencies ω0i → ω1i. The phase-space
trajectories for the initial sets ω0i = {5.4, 5.4, 4.6}, ω0i = {6.6, 6.6, 4.2}, and ω0i = {6.5, 6.5, 4.2}
are labeled as 1, 2, and 3, respectively.

the non-linear term of volume scaling ω̄2
0/V . This Hamiltonian and scaling equations (11) are

independent of the interaction between particles, although we are considering the Thomas-Fermi
regime where the interaction is very important. This is a consequence of harmonicity of the trapping
potential, which at the same time is a major reason for the existence of the scaling approach. One
thus sees that the evolution of Thomas-Fermi condensates in the scaling approach is governed only
by the time dependence of the trap frequencies ωi(t).

Solutions of Eqs. (11) determine the evolution of phase Φ(r, t) and the condensate density. For
example, resonance frequencies of small shape oscillations of the condensate are the eigenfrequencies
of small oscillations around the minimum value of the Hamiltonian (15) with ωi(t) = ω0i. This
Hamiltonian is minimized at qi = ω̄0/ω0i, pi = 0. In the vicinity of this point we arrive at the
quadratic form which in the case of cylindrical symmetry gives the frequency of a quadrupole
oscillation Ω0 =

√
2ω0r (orbital angular momentum M = 2) and two frequencies of coupled

monopole oscillations (M = 0):

Ω± = ω0r[9β
4 + 3β2 ±

√

9β4 − 16β62 + 16)/2]1/2, (16)

where β = ω0z/ω0r is the ratio of the axial to radial trap frequency. Resonance frequencies Ω0 and
Ω− have been measured for Rb condensate in the JILA experiment [26] for β =

√
8 (Ω− ≈ 1.8ω0r),

and the frequencies Ω± in the experiment at MIT [27] for β = 0.08 (Ω+ ≈ 2ω0r, Ω− ≈ 1.58ω0z).
The scaling equations (11) determine the character of the expansion of the condensate after

the trap is abruptly switched off (ωi = 0 for t ≥ 0). At times t greatly exceeding the lowest
oscillation period the expansion becomes free in all directions and ḃi = const. A characteristic
expansion velocity is governed by the velocity of sound in the initial condensate. However, due
to anisotropy in the initial density gradient the velocity depends on the direction of expansion.
In cylindrical traps the asymmetry of free expansion is characterized by the ratio of the axial to
radial size, Rz/Rr. In the limiting case of β � 1, studied in the MIT experiment [28], the solution
of scaling equations (11) gives Rz/Rρ = πβ/2 for t → ∞. The expansion predominantly occurs in
the radial direction, and the initially cigar-shaped condensate becomes pancake-shaped.

Collisionless thermal (non-condensed) gases expand symmetrically with thermal velocities
vT ∼

√

T/m for any initial anisotropy of the trap. Therefore, observation of asymmetry in the
expansion of dilute clouds in the first JILA [1] and MIT [2] experiments was the key evidence for
BEC in the initial trapped cloud.

In spherical traps the solution of Eqs. (11) for a fast and strong change of the trap frequen-
cies shows large undamped oscillations of the condensate density and phase. In anisotropic traps,
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the coupling between different degrees of freedom through the non-linear term of volume scaling
in the Hamiltonian Hsd can lead to stochastization of motion of the scaling parameters bi [20].
Accordingly, the evolution of the condensate becomes stochastic. We will give an example where
without changing the cylindrical symmetry the frequencies were abruptly changed from ω0i to
ω1i = {1.7, 1.7.1}. Fig.1 shows the Poincare map for three phase-space trajectories corresponding
to three different sets of initial frequencies. The mapping points for the initial set ω0i = {5.4, 5.4, 6}
describe almost regular quasiperiodic motion in the vicinity of a second-order non-linear resonance.
Points for ω0i = {6.6, 6.6, 4.2} show that a large part of the phase space is occupied by stochas-
tic motion. For the initial set ω0i = {6.5, 6.5, 4.2} one finds an unstable trajectory intermediate
between quasiperiodic motion and chaos.

Stochastic evolution of a condensate has been found in numerical calculations beyond the
scaling approach [29, 31]. Various aspects of stochastization in the dynamics of trapped conden-
sates have been discussed in literature (see, e.g., [30, 32]). In the cases 1 and 2 in Fig.1 the time
dependence of the axial and radial sizes of the condensate is very irregular and can even ”imitate”
the relaxation behavior. It is important to emphasize that chaotic evolution of the condensate
density and, especially, of the phase Φ(r, t) makes the system vulnerable to the appearance of real
relaxation and irreversibility under a small external influence.

3 Elementary excitations

Elementary excitations of a Bose-Einstein condensate, i.e. small oscillations around the equilibrium
value of the condensate wave function ψ0, represent a primary issue for understanding the macro-
scopic quantum behavior of the system. In particular, the character of the excitations determines
the response of the system to external perturbations and is responsible for quantum depletion of
the condensate. The presence of the trapping potential introduces a finite size of the system and
provides a discrete structure of the excitation spectrum. In this section we discuss the Bogoliubov-
de Gennes mean-field approach for finding the spectrum and wave functions of excitations of a
trapped condensate.

We consider an equilibrium Bose-condensed gas in an external potential V (r) (1) with constant
frequencies ωi. We then use the separation (4) of the field operator into the condensed and non-

condensed parts and turn to the grand-canonical Hamiltonian Ĥµ = Ĥ − µψ̂†ψ̂, where Ĥ is given
by Eq.(2). Assuming that the condensate density greatly exceeds the density of non-condensed

particles we omit terms proportional to ψ̂3 and ψ̂4 in the grand-canonical Hamiltonian and write
it as

Ĥµ = H0 +

∫

dr
{

ψ̂′†
[

− (~2/2m)∆ + V (r) − µ+

2g|ψ0|2
]

ψ̂′
}

+ (g/2)
[

ψ2
0ψ̂

′†ψ̂′† + ψ∗2
0 ψ′ψ′

]

, (17)

where

H0 =

∫

drψ∗
0

[

−(~2/2m)∆ + V (r) − µ+ (g/2)|ψ0|2
]

ψ0.

Owing to Eq.(7) the part of the Hamiltonian, which is linear in ψ̂′, is equal to zero. The bilinear
Hamiltonian Ĥµ can be reduced to a diagonal form

Ĥµ = H0 +
∑

ν

εν â
†
ν âν (18)

by using the Bogoliubov transformation generalized to the spatially inhomogeneous case [33]:

ψ′(r, t) =
∑

ν

[

uν âν(r)e−iεν t − v∗ν(r)â†νeiεν)t
]

e−iµt
.

Here âν and â†ν are (Schrödinger) annihilation and creation operators of an excitation characterized
by a set of quantum numbers ν. The Hamiltonian Ĥµ takes the form (18) if the functions uν , vν
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satisfy the Bogoliubov-de Gennes equations
(

− ~
2

2m
∆+V (r)−µ

)

uν +g|ψ0|2(2uν−vν) = ενuν , (19)

(

− ~
2

2m
∆+V (r)−µ

)

vν +g|ψ0|2(2vν−uν) = −ενvν . (20)

The condensate wave function in Eqs. (19), (20) is taken to be real, and the functions uν , vν are
normalized by the condition

∫

dr (uνu
∗
ν′ − vνv

∗
ν′) = δνν′.

Taking into account that ψ0 obeys the Gross-Pitaevskii equation (7) we reduce Eqs. (19) and (20)
to equations for the functions fν± = uν ± vν :

~
2

2m

(

−∆ +
∆ψ0

ψ0

)

fν+ = ενfν−, (21)

~
2

2m

(

−∆ +
∆ψ0

ψ0

)

fν− + 2g|ψ0|2fν− = ενfν+. (22)

In the case of Thomas-Fermi condensates one has a small parameter

ζ = ~ω̄/µ� 1, (23)

and the Bogoliubov-de Gennes equations for low-energy excitations (εν � µ) are significantly
simplified. The condition εν � µ corresponds to the hydrodynamic limit for the excitations. The
functions fν± describe the phase and density fluctuations related to the excitation mode ν:

φ̂ν = (i/2ψ0)fν+âν exp (−iενt) + h.c., (24)

δ̂n = ψ0 fν−âν exp (−iενt) + h.c. (25)

One then sees that Eqs. (21) and (22) are nothing else than the continuity and Euler equations.
Inequality (23) allows one to omit the quantum pressure term, that is the first term in left-hand side
of Eq.(22). This term scales as ζ2/µ and is small compared to the second term in this equation,
except near the border of the condensate spatial region. Then, turning to reduced coordinates
yi = ri/Ri we obtain fν± = [(2µ(1 − y2)/εν)±1/2Wν , where y2 =

∑

i y
2
i and the function Wν

satisfies the equation

∑

i

ω2
i

[

(1 − y2)
d2

dy2
i

− 2yi
d

dyi

]

Wν + 2ε2νWν = 0. (26)

This approach has been first developed by Stringari [34] directly from the consideration of the den-
sity and phase fluctuations. Eq.(26) shows that the spectrum of low-energy excitations of Thomas-
Fermi condensates is independent of the interaction between particles and is governed by the trap
frequencies, which is a consequence of harmonicity in the trapping potential. In any other trapping
field the dependence on the interaction will be pronounced.

In spherical traps one has a complete separation of variables and the excitations are chara-
terized by the orbital angular momentum l, its projection on the quantization axis ml, and by
the radial quantum number j which is a positive integer. We then have Wν = w(y)Ylml

(θ, ϕ) and
Eq.(26) becomes a hypergeometrical differential equation for the function w:

x(1−x)d
2w

dx2
+

[

l+
3

2
−
(

l+
5

2

)

x

]

dw

dx
+

(

ε2

2
− l

2

)

w=0,

where x = y2. The solution of this equation, convergent at x = 0, is the hypergeometrical function
that converges at the border of the condensate spatial region (x = 1) only when reduced to a
polynomial. This immediately gives the excitation spectrum [34]

εjl = ~ω(2j2 + 2jl+ 3j + l)1/2, (27)
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and expresses the function w through classical Jacobi polynomials:

wjl = [(4j + 2l+ 3)/R3]1/2ylP
(l+1/2),0
j (1 − 2y2).

Due to the interaction between particles the low-energy excitations have collective character and
the spectrum (27) is quite different from that for a collisionless thermal gas.

In cylindrical traps excitations are characterized by the projection of the orbital angular mo-

mentum on the cylinder axis,m, and their wave functions can be written asWν = y
|m|
ρ Bjm exp imϕ,

where Bjm is expressed in terms of polynomials of power j of the reduced radial (yρ) and axial
(yz) coordinates [35, 36]. The eigenstates are characterized by the axial parity and by the power
of the polynomial. For a given m and odd j one has (j + 1)/2 excitation modes, and for an even j
the number of modes is equal to (j + 2)/2. Actually, in eliptical coordinates one finds a complete
separation of variables [36], which brings in a third quantum number for the eigenstates. A scheme
for finding energies and wave functions of low-energy excitations in cylindrical traps has been de-
scribed in Refs. [35, 36]. In particular, for quadrupole and monopole modes we arrive at the same
eigenfrequencies as derived in the previous section from the scaling approach.

In non-symmetrical traps the functions Wν are expressed in terms of polynomials of yi and
the eigenstates are characterized by a power of the polynomial [35, 37]. In this case one also finds
a complete separation of variables [37].

A complete separation of variables in spherical traps is present at any excitation energy. This
allows a straightforward numerical and, in certain limits, analytical solution of Eqs. (21), (22) at an
arbitrary εν [38, 39]. In cylindrical traps the situation is quite different as the problem is completely
separable only for εν � µ, or in the opposite limit εν � µ where the interaction between particles
is not important. At intermediate energies ε ∼ µ the spectrum becomes very irregular. For this
case the study of classical dynamics of Bogoliubov-de Gennes quasiparticles shows stochastization
of their motion. This allows the use of the statistical Wigner-Dyson approach [40, 41] for finding
the distribution of energy levels at a given value of the projection of the angular momentum on
the cylinder axis [13].

4 Critical temperature

Studies of a sharp cross-over to the BEC regime in trapped gases encounter a general problem
related to the dependence of the critical temperature Tc on the interaction between particles.
Actually, in trapped gases one has two reasons for this dependence. The first one is related to many-
body effects beyond the mean-field theory, which are also present in the uniform case. Another
reason is that the repulsive interaction between particles in a trap expands the gas cloud, with a
consequent decrease of the density and critical temperature [6]. In the dilute limit, where na3 � 1,
both effects are expected to be small. Nevertheless, first measurements of Tc at JILA [16] indicate
a negative shift of Tc by about 6% from the ideal gas value T 0

c .

We first discuss the interaction-induced shift of Tc in the uniform case. This problem has a
long prehistory and most studies predict an increase of the critical temperature [42, 43, 44, 45, 46,
47, 48, 49, 50]. In the dilute limit the critical temperature rises linearly with the scattering length
a. The relative shift of Tc is given by the relation

δTc

Tc
= C(na3)1/2, (28)

where C > 0 is a dimensionless constant. However, there is a large discrepancy in the values of
the constant C presented in literature. This is not surprising as one is dealing with the region of
critical fluctuations, where perturbation theory breaks down and the physics that determines Tc is
non-perturbative.

The problem of finding δTc for a weakly interacting gas is related to solving static three-
dimensional |ψ|4 field theory [46]. The key point here is universality of the long-wave behavior of
this theory in the fluctuation region at the transition point [48]. All such theories lead to a generic
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long-wave Hamiltonian (see, e.g., [46])

H =

∫

dr {(~2/2m)|∇ψ|2 + (g/2)|ψ|4}. (29)

From this universality one finds that the shift of the critical density, which is not sensitive to the
ultraviolet cutoff of the theory, follows from the equation

δnc(T ) = −Dm3T 2g/~6, (30)

where D is a universal constant. Then, the shift of the critical temperature, which is sensitive to
short-wave physics, can be obtained for a particular system from the relation

δTc

δnc
= −dT

0
c (n)

dn
. (31)

For an ideal gas the critical temperature Tc = 3.31~
2n2/3/m and we immediately arrive at Eq.(28).

The positive sign of the constant C can be established from the change in the energy of low
momentum particles near Tc [44].

The first numerical calculation of the shift δTc was an ab initio simulation using a path-
integral Monte Carlo method [43]. The results of this approach are consistent with Eq.(28). An
alternative Monte Carlo approach [45] was based on an assumption that Eq.(28) can be obtained in
a sophisticated perturbative way. However, these two calculations arrived at very different values
of C. A reliable value of this constant, namely C ≈ 1.3, has been obtained in recent lattice Monte
Carlo studies of the |ψ|4 model [48, 49].

Theoretical derivations of the shift δTc are in a resonably good agreement with the results
of Refs. [48, 49]. On the basis of the |ψ4| model, self-consistent calculation of the quasiparticle
spectrum at low momenta at the transition, give C ≈ 2.9. Calculations using general renormal-
ization group arguments [47] lead to C ≈ 2.3 (see also [51]). The recent contributions [52, 53]
find a nonanalytical correction ∝ a2 ln a to the previously calculated [46, 47] shift of the critical
temperature (see also [42]). This correction does not introduce a new length scale beyond n−1/3.
It is negative and, because of its logarithmic character, leads to a strong dependence on a even in
the very dilute limit. The presence of this nonanalytical correction, to a certain extent explains
the discrepancy between theoretical derivations [46, 47] and Monte Carlo calculations [48, 49].

In a trapped gas the cross-over temperature Tc is well defined for a very large number of
particles N . As already mentioned, in this case one has another contribution to the shift of Tc,
originating from the dependence of the density profile of the gas on the interaction between parti-
cles. In particular, the interparticle repulsion decreases the central density and leads to a negative
shift [6]

δTc

T 0
c

= −1.3
a

l0
N1/6, (32)

where l0 is the harmonic oscillator length of the trap. Note that the quantity (a/l0)N
1/6 is of the

order of n
1/3
max, with nmax being the central density of the cloud. Therefore, the shift (32) has the

same scaling as the non-perturbative shift (28) discussed above for the uniform case. More detailed
discussions of the shift of the critical temperature in a trapped gas one finds in Refs. [54, 55].

5 Phase coherence

Phase coherence properties of Bose-condensed gases attract a great deal of interest as they provide
deeper understanding of the nature of BEC states. The first phase coherence experiments relied
on the interference of two independently prepared condensates [7] and on the measurement of the
phase coherence length and/or single-particle correlations [56, 57, 58]. These experiments showed
that trapped condensates are phase coherent, in accordance with a common understanding of BEC
in 3D gases. In equilibrium, the fluctuations of density and phase are important only in a narrow
temperature range near Tc and are suppressed outside this region.
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In this section we show that the phase coherence properties of three-dimensional (3D) Thomas-
Fermi condensates depend on the geometry of the system [17]. In particular, strong elongation of
the gas in one direction brings in the interesting physics of one-dimensional (1D) systems. In very
elongated 3D condensates, the axial phase fluctuations manifest themselves even at temperatures
far below Tc. Then, as the density fluctuations are suppressed, the equilibrium state will be a
condensate with fluctuating phase (quasicondensate) similar to that in 1D trapped gases [59].
Decreasing T below a sufficiently low temperature, the 3D quasicondensate gradually transforms
into a true condensate.

We consider a 3D Bose gas in an elongated cylindrical harmonic trap and analyze the be-
havior of the single-particle correlation function. The natural assumption of the existence of a
true condensate at T = 0 automatically comes out of these calculations. In the Thomas-Fermi
regime, where the repulsive interparticle interaction greatly exceeds the radial (ωρ) and axial (ωz)
trap frequencies, the density profile of the zero-temperature condensate has the well-known shape
n0(ρ, z) = n0m(1 − ρ2/R2 − z2/L2), where n0m = µ/g is the maximum condensate density. Under
the condition ωρ � ωz, the radial size of the condensate, R = (2µ/mω2

ρ)
1/2, is much smaller than

the axial size L = (2µ/mω2
z)

1/2.
Fluctuations of the density of the condensate are dominated by the excitations with energies

of the order of µ. The wavelength of these excitations is much smaller than the radial size of
the condensate. Hence, the density fluctuations have the ordinary 3D character and are small.
Therefore, one can write the total field operator of atoms as

ψ̂(r) =
√

n0(r) exp(iφ̂(r)), (33)

where the operator of the phase is

φ̂(r) =
∑

ν

φ̂ν(r), (34)

and the operator φν(r) is given by Eq.(24). The single-particle correlation function is then expressed
through the mean square fluctuations of the phase (see, e.g. [60]):

〈ψ̂†(r)ψ̂(r′)〉=
√

n0(r)n0(r′)exp{−〈[δφ̂(r,r′)]2〉/2}, (35)

with δφ̂(r, r′) = φ̂(r) − φ̂(r′).
The excitations of elongated condensates can be divided into two groups: “low energy” axial

excitations with energies εν < ~ωρ, and “high energy” excitations with εν > ~ωρ. The latter have
3D character as their wavelengths are smaller than the radial size R. Therefore, as in ordinary
3D condensates, these excitations can only provide small phase fluctuations. The “low-energy”
axial excitations have wavelengths larger than R and exhibit a pronounced 1D behavior. These
excitations give the most important contribution to the long-wave axial fluctuations of the phase.

The solution of the Bogolyubov-de Gennes equations (21), (22) for the low-energy axial modes
gives the spectrum εj = ~ωz

√

j(j + 3)/4 [61], where j is a positive integer. The wavefunctions f+
j

of these modes have the form

f+
j (r) =

√

(j + 2)(2j + 3)gn0(r)

4π(j + 1)R2Lεj
P

(1,1)
j

( z

L

)

, (36)

where P
(1,1)
j are Jacobi polynomials. Note that the contribution of the low-energy axial excitations

to the phase operator (34) is independent of the radial coordinate ρ.
Relying on Eqs. (24), (34) and (36), we now calculate the mean square axial fluctuations of

the phase at distances |z−z′| � R. As in 1D trapped gases [59], the vacuum fluctuations are small
for any realistic axial size L. The thermal fluctuations are determined by the equation

〈[δφ̂(z, z′)]2〉T =

∞
∑

j=1

πµ(j + 2)(2j + 3)

15(j + 1)εjN0
×

(

P
(1,1)
j

( z

L

)

− P
(1,1)
j

(

z′

L

))2

Nj , (37)
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Figure 2: The function f(z/L). The solid curve shows the numerical result, and the dotted line is
f(z) = 2|z|/L following from Eq.(38).

with N0 = (8π/15)n0mR
2L being the number of Bose-condensed particles, and Nj the equilibrium

occupation numbers for the excitations. Strictly speaking, to zero order in perturbation theory one
should make the summation in Eq.(37) only over excitations with energies εj < µ. This is, however,
not a problem as the main contribution to the sum over j comes from several lowest excitation
modes. At temperatures T � ~ωz we may put Nj = T/εj , and in the central part of the cloud
(|z|, |z′| � L) a straightforward calculation yields

〈[δφ̂(z, z′)]2〉T = δ2L|z − z′|/L, (38)

where the quantity δ2L represents the phase fluctuations on a distance scale |z − z ′| ∼ L and is
given by

δ2L(T ) = 32µT/15N0(~ωz)
2. (39)

Note that at any z and z′ the ratio of the phase correlator (37) to δ2
L is a universal function of z/L

and z′/L:

〈[δφ̂(z, z′)]2〉T = δ2L(T )f(z/L, z′/L). (40)

In Fig.2 we present the function f(z/L) ≡ f(z/L,−z/L) calculated numerically from Eq.(37).
The phase fluctuations decrease with temperature. As the chemical potential is

µ=(15N0g/π)
2/5(mω̄2/8)3/5 (ω̄ = ω

2/3
ρ ω

1/3
z ), Eq.(39) can be rewritten in the form

δ2L = (T/Tc)(N/N0)
3/5δ2c . (41)

The presence of the 3D BEC transition in elongated traps requires the inequality Tc � ~ωρ and,
hence, limits the aspect ratio to ωρ/ωz � N . The parameter δ2c is given by

δ2c =
32µ(N0 = N)

15N2/3~ω̄

(

ωρ

ωz

)4/3

∝ a2/5m1/5ω
22/15
ρ

N4/15ω
19/15
z

. (42)

Except for a narrow interval of temperatures just below Tc, the fraction of non-condensed atoms
is small and Eq.(41) reduces to δ2L = (T/Tc)δ

2
c . Thus, the phase fluctuations can be important at

large values of the parameter δ2c , whereas for δ2c � 1 they are small on any distance scale and one
has a true Bose-Einstein condensate.
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The single-particle correlation function is determined by Eq.(35) only if the condensate density
n0 is much larger than the density of non-condensed atoms, n′. Otherwise, this equation should be
completed by terms describing correlations in the thermal cloud. For T close to Tc and N0 � N ,
assuming n′ � n0 the density fluctuations are still suppressed, and Eq.(41) gives δ2

L = (N/N0)
3/5.

We will focus our attention on the case where N0 ≈ N and the presence of the axial phase
fluctuations is governed by the parameter δ2c . For δ2c � 1, the nature of the Bose-condensed state
depends on temperature. In this case we can introduce a characteristic temperature

Tφ = 15(~ωz)
2N/32µ (43)

at which the quantity δ2L ≈ 1 (for N0 ≈ N). In the temperature interval Tφ < T < Tc, the phase
fluctuates on a distance scale smaller than L. Thus, as the density fluctuations are suppressed, the
Bose-condensed state is a condensate with fluctuating phase or quasicondensate. The expression
for the radius of phase fluctuations (phase coherence length) follows from Eq.(38) and is given by

lφ ≈ L(Tφ/T ). (44)

The phase coherence length lφ greatly exceeds the correlation length lc = ~/
√
mµ. Eqs. (44)

and (43) give the ratio lφ/lc ≈ (Tc/T )(Tc/~ωρ)
2 � 1. Therefore, the quasicondensate has the

same density profile and local correlation properties as the true condensate. However, the phase
coherence properties of quasicondensates are drastically different.

The decrease of temperature to well below Tφ makes the phase fluctuations small (δ2L � 1) and
continuously transforms the quasicondensate into a true condensate. There is no sharp cross-over.

Most important is the dependence of δ2c on the aspect ratio of the cloud ωρ/ωz, whereas the
dependence on the number of atoms and on the scattering length is comparatively weak. Fig.3
shows Tc/Tφ = δ2c , µ/Tφ, and the temperature Tφ as functions of ωρ/ωz for rubidium condensates
at N = 105 and ωρ = 500 Hz. From these results we see that 3D quasicondensates can be obtained
in elongated geometries with ωρ/ωz & 50.

The phase fluctuations are very sensitive to temperature. From Fig.3 we see that one can
have Tφ/Tc < 0.1, and the phase fluctuations are still significant at T < µ, where only a tiny
indiscernible thermal cloud is present.

This suggests a principle for thermometry of 3D Bose-condensed gases with indiscernible
thermal clouds. If the sample is not an elongated quasicondensate by itself, it is first transformed
to this state by adiabatically increasing the aspect ratio ωρ/ωz. This does not change the ratio T/Tc

as long as the condensate remains in the 3D Thomas-Fermi regime. Second, the phase coherence
length lφ or the single-particle correlation function are measured. These quantities depend on
temperature if the latter is of the order of Tφ or larger. One thus can measure the ratio T/Tc for
the initial cloud, which is as small as the ratio Tφ/Tc for the elongated cloud.

One can measure the phase fluctuations and distinguish between quasicondensates and true
BEC’s in various types of experiments. In a gedanken ”juggling” experiment described in [59] one
can directly measure the single-particle correlation function. The latter is obtained by repeatedly
ejecting small clouds of atoms from the parts z and z′ of the sample and averaging the pattern
of interference between them in the detection region over a large set of measurements. As fol-
lows from Eqs. (39) and (40), for z′ = −z the correlation function depends on temperature as
exp {−δ2L(T )f(z/L)/2}, where f(z/L) is given in Fig.2.

Pronounced phase fluctuations have been first observed in Hannover experiments with very
elongated cylindrical 3D condensates of up to 105 rubidium atoms [18]. The expanding cloud
released from the trap was imaged after 25 ms of time of flight and the images showed clear
modulations of the density (stripes) in the axial direction (see Fig.4). The physical reason for the
appearance of stripes is the following. In a trap the density distribution does not feel the presence
of the phase fluctuations, since the mean-field interparticle interaction prevents the transformation
of local velocity fields provided by the phase fluctuations into modulations of the density. After
switching off the trap, the cloud rapidly expands in the radial direction, whereas the axial phase
fluctuations remain unaffected. As the mean-field interaction drops to almost zero, the axial velocity
fields are then converted into the density distribution.
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Figure 3: The ratios Tc/Tφ = δ2c and µ/Tφ in (a) and the temperature Tφ in (b), versus the aspect
ratio ωρ/ωz for trapped Rb condensates with N = 105 and ωρ = 500 Hz.



Vol. 1, 2003 Condensed Matter Approaches to Quantum Gases 33

Figure 4: Absorption images and corresponding density profiles of BECs after 25 ms time-of-flight
in the Hannover experiment for aspect ratios [ωρ/ωz = 10 (a), 26 (b), 51 (c)].

The mean square modulations of the density in the expanding cloud provide a measure of
the phase fluctuations in the initial trapped condensate. A direct relation between these quantities
has been established from analytical and numerical solutions of the Gross-Pitaevskii equation for
the expanding cloud, with explicitly included initial fluctuations of the phase [18]. The obtained
phase coherence length was inversly proportional to T , in agreement with theory, and for most
measurements it was smaller than the axial size L of the trapped Thomas-Fermi cloud. This
implies that the measurements were performed in the regime of quasicondensation.

The properties of quasicondensates and the phase coherence length were measured directly
in Bragg spectroscopy experiments with elongated rubidium BECs at Orsay [19]. In this type of
experiment one measures the momentum distribution of particles in the trapped gas. The use
of axially counter-propagating laser beams to absorb a photon from one beam and emit it into
the other one, results in axial momentum transfer to the atoms which have momenta at Doppler
shifted resonance with the beams. These atoms form a small cloud which will axially separate from
the rest of the sample provided the mean free path greatly exceeds the axial size L. The latter
condition is assured at Orsay by applying the Bragg excitation after abruptly switching off the
radial confinement of the trap. To build the momentum distribution one measures the fraction of
diffracted atoms versus the detuning between the counterpropagating beams.

The Orsay experiment [19] finds a Lorentzian momentum distribution characteristic of qua-
sicondensates with axially fluctuating phase [62], whereas a true condensate has a Gaussian dis-
tribution. The width of the Lorentzian momentum distribution is related to the phase coherence
length at the trap center as ∆pφ ≈ 0.67~/lφ. Therefore, the width of the Bragg spectrum is
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Figure 5: Half-width ∆νM of the Bragg spectrum versus the parameter ∆φ ∝ 1/lφ (see text) in
the Orsay experiment. The solid line is a fit assuming a Voigt profile for the spectrum.

∆νM ≈ 0.67∆νφ, where ∆νφ = ~kL/πmlφ, and kL is the photon momentum. According to the
theoretical analysis, the quantity ∆νφ should be proportional to the temperature. Fig.5 shows
the measured spectral width ∆M versus ∆φ calculated by using lφ following from theoretical ap-
proaches of Refs. [17, 62]. The coherence length deduced from the measurements of ∆νM was in
perfect agreement with theory. It was ranging from L/6 to L/36, which shows a deep penetra-
tion into the quasicondensate regime. The suppression of the density fluctuations was established
through the measurement of the axial size of the cloud.

We believe that the studies of phase coherence in elongated condensates will reveal many new
interesting phenomena. The measurement of phase correlators will allow one to study the evolution
of phase coherence in the course of the formation of a condensate out of a non-equilibrium thermal
cloud. This problem has a rich physics. For example, recent experiments on the formation kinetics
of trapped condensates [63] indicate the appearance of non-equilibrium quasicondensates slowly
evolving towards the equilibrium state.

6 Concluding remarks

We see that the use of condensed matter approaches for dilute quantum gases provides us with
remarkable physics closely related to ongoing experiments. In the near future, even more exciting
developments are expected, in particular in new directions of cold atom physics. We mention a
novel system of strongly correlated atoms in an optical lattice, where the Mott-insulator-Superfluid
transition has been recently observed for bosons [64]. Studies of this system have strong ties to
both condensed matter physics and quantum computing. Another hot topic is related to ultracold
trapped Fermi gases which recently have been cooled to quantum degeneracy [65]. A search for
superfluidity in this system requires advanced theoretical approaches for describing strong-coupling
regimes. The progress in atom chip technologies and optical techniques provides unique possibilities
for creating 1D atomic systems, and exploration of their physics requires the development of exactly
solvable models of theoretical physics.
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