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Abstract. A new version of scale analysis and renormalization theory has been found on
the non-commutative Moyal space. It could be useful for physics beyond the standard
model or for standard physics in strong external field. The good news is that quantum
field theory is better behaved on non-commutative than on ordinary space: indeed it
has no Landau ghost. We review this rapidly growing subject.

1 Introduction

The world as we know it today is made of about 61 different scales if we use powers
of ten1. Indeed there is a fundamental length obtained by combining the three fun-
damental constants of physics, Newton’s gravitation constant G, Planck’s constant ~
and the speed of light c. It is the Planck length `P =

√
~G/c3, whose value is about

1.6 10−35 meters. Below this length ordinary space time almost certainly has to be
quantized, so that the very notion of scale might be modified. But there is also a
maximal observable scale or “horizon” in the universe, not for fundamental but for
practical reasons. The current distance from the Earth to the edge of the visible uni-
verse is about 46 billion light-years in any direction2. This translates into a comoving
radius of the visible universe of about 4.4 1026 meters, or more fundamentally 2.7 1061

Planck lengths. Although we do not observe galaxies that far away, the WMAP data
indicate that the universe is really at least 80% that big [1]. The geometric mean
between the size of the (observable) universe and the Planck’s length stands there-
fore around 10−4 meters, about the size of an (arguably very small) ant. In [2], we
proposed to call this the “antropic principle”.

Among the roughly sixty scales of the universe, only about ten to eleven were
relatively well known to ancient Greeks and Romans two thousand years ago. We have
now at least some knowledge of the 45 largest scales from 2 10−19 meters (roughly
speaking the scale of 1 Tev, observable at the largest particle colliders on earth) up
to the size of the universe. This means that we know about three fourths of all scales.
But the sixteen scales between 2 10−19 meters and the Planck length form the last
true terra incognita of physics. Note that this year the LHC accelerator at Cern with
maximum energy of about 10 Tev should start opening a window into a new power

1 Or of about 140 e-folds if we want to avoid any parochialism due to our ten fingers. What is
important is to measure distances on a logarithmic scale.

2The age of the universe is only about 13.7 billion years, so one could believe the observable
radius would be 13.7 billion light years. This gives already a correct order of magnitude, but in our
expanding universe spacetime is actually curved so that distances have to be measured in comoving
coordinates. The light emitted by matter shortly after the big-bang, that is about 13.7 billion years
ago, that reaches us now corresponds to a present distance of that matter to us that is almost three
times bigger, see http://en.wikipedia.org/wiki/Observable universe.
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of ten. But that truly special treat also will mark the end of an era. The next fifteen
scales between 2.10−20 meters and the Planck length may remain largely out of direct
reach in the foreseeable future, except for the glimpses which are expected to come
from the study of very energetic but rare cosmic rays. Just as the Palomar mountain
telescope remained the largest in the world for almost fifty years, we expect the LHC
to remain the machine with highest energy for a rather long time until truly new
technologies emerge3. Therefore we should try to satisfy our understandable curiosity
about the terra incognita in the coming decades through more and more sophisticated
indirect analysis. Here theoretical and mathematical physics have a large part to play
because they will help us to better compare and recoup many indirect observations,
most of them probably coming from astrophysics and cosmology, and to make better
educated guesses.

I would like now to argue both that quantum field theory and renormalization
are some of the best tools at our disposal for such educated guesses, but also that
very likely we shall also need some generalization of these concepts.

Quantum field theory or QFT provides a quantum description of particles and
interactions which is compatible with special relativity [3]-[4]-[5]-[6]. It is certainly
essential because it lies right at the frontier of the terra incognita. It is the accurate
formalism at the shortest distances we know, between roughly the atomic scale of
10−10 meters, at which relativistic corrections to quantum mechanics start playing
a significant role4, up to the last known scale of a Tev or 2 10−19 meters. Over
the years it has evolved into the standard model which explains in great detail most
experiments in particle physics and is contradicted by none. But it suffers from at
least two flaws. First it is not yet compatible with general relativity, that is Einstein’s
theory of gravitation. Second, the standard model incorporates so many different
Fermionic matter fields coupled by Bosonic gauge fields that it seems more some kind
of new Mendeleyev table than a fundamental theory. For these two reasons QFT
and the standard model are not supposed to remain valid without any changes until
the Planck length where gravitation should be quantized. They could in fact become
inaccurate much before that scale.

What about renormalization? Nowadays renormalization is considered the heart
of QFT, and even much more [7]-[8]-[9]. But initially renormalization was little more
than a trick, a quick fix to remove the divergences that plagued the computations of
quantum electrodynamics. These divergences were due to summations over exchanges
of virtual particles with high momenta. Early renormalization theory succeeded in
hiding these divergences into unobservable bare parameters of the theory. In this way
the physical quantities, when expressed in terms of the renormalized parameters at
observable scales, no longer showed any divergences. Mathematicians were especially
scornful. But many physicists also were not fully satisfied. F. Dyson, one of the found-
ing fathers of that early theory, once told me: “We believed renormalization would
not last more than six months, just the time for us to invent something better...”

Surprisingly, renormalization survived and prospered. In the mid 50’s Landau
and others found a key difficulty, called the Landau ghost or triviality problem, which
plagued simple renormalizable QFT such as the φ4

4 theory or quantum electrody-
namics. Roughly speaking Landau showed that the infinities supposedly taken out by
renormalization were still there, because the bare coupling corresponding to a non

3New colliders such as the planned linear e+- e− international collider might be built soon. They
will be very useful and cleaner than the LHC, but they should remain for a long time with lower
total energy.

4For instance quantum electrodynamics explains the Lamb shift in the hydrogen atom spectrum.
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zero renormalized coupling became infinite at a very small but finite scale. Although
his argument was not mathematically fully rigorous, many physicists proclaimed QFT
and renormalization dead and looked for a better theory. But in the early 70’s, against
all odds, they both made a spectacular comeback. As a double consequence of better
experiments but also of better computations, quantum electrodynamics was demoted
of its possibly fundamental status and incorporated into the larger electroweak theory
of Glashow, Weinberg and Salam. This electroweak theory is still a QFT but with a
non-Abelian gauge symmetry. Motivated by this work ’t Hooft and Veltman proved
that renormalization could be extended to non-Abelian gauge theories [10]. This dif-
ficult technical feat used the new technique of dimensional renormalization to better
respect the gauge symmetry. The next and key step was the extraordinary discovery
that such non-Abelian gauge theories no longer have any Landau ghost. This was
done first by ’t Hooft in some unpublished work, then by D. Gross, H. D. Politzer
and F. Wilczek [11]-[12]. D. Gross and F. Wilczek then used this discovery to con-
vincingly formulate a non-Abelian gauge theory of strong interactions [13], the ones
which govern nuclear forces, which they called quantum chromodynamics. Remark
that in every key aspect of this striking recovery, renormalization was no longer some
kind of trick. It took a life of its own.

But as spectacular as this story might be, something even more important hap-
pened to renormalization around that time. In the hands of K. Wilson [14] and others,
renormalization theory went out of its QFT cradle. Its scope expanded considerably.
Under the alas unfortunate name of renormalization group (RG), it was recognized
as the right mathematical technique to move through the different scales of physics.
More precisely over the years it became a completely general paradigm to study
changes of scale, whether the relevant physical phenomena are classical or quantum,
and whether they are deterministic or statistical. This encompasses in particular the
full Boltzmann’s program to deduce thermodynamics from statistical mechanics and
potentially much more. In the hands of Wilson, Kadanoff, Fisher and followers, RG
allowed to much better understand phase transitions in statistical mechanics, in par-
ticular the universality of critical exponents [15]. The fundamental observation of K.
Wilson was that the change from bare to renormalized actions is too complex a phe-
nomenon to be described in a single step. Just like the trajectory of a complicated
dynamical system, it must be studied step by step through a local evolution equation.
To summarize, do not jump over many scales at once!

Let us make a comparison between renormalization and geometry. To describe
a manifold, one needs a covering set of maps or atlas with crucial transition regions
which must appear on different maps and which are glued through transition func-
tions. One can then describe more complicated objects, such as bundles over a base
manifold, through connections which allow to parallel transport objects in the fibers
when one moves over the base.

Renormalization theory is both somewhat similar and somewhat different. It is
some kind of geometry with a very sophisticated infinite dimensional“bundle” part
which loosely speaking describes the effective actions. These actions flow in some
infinite dimensional functional space. But at least until now the “base” part is quite
trivial: it is a simple one-dimensional positive real axis, better viewed in fact as a
full real axis if we use logarithmic scales. We have indeed both positive and negative
scales around a reference scale of observation The negative or small spatial scales are
called ultraviolet and the positive or large ones are called infrared in reference to the
origin of the theory in electrodynamics. An elementary step from one scale to the
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next is called a renormalization group step. K. Wilson understood that there is an
analogy between this step and the elementary evolution step of a dynamical system.
This analogy allowed him to bring the techniques of classical dynamical systems into
renormalization theory. One can say that he was able to see the classical structure
hidden in QFT.

Working in the direction opposite to K. Wilson, G. Gallavotti and collaborators
were able to see the quantum field theory structure hidden in classical dynamics.
For instance they understood secular averages in celestial mechanics as a kind of
renormalization [16]-[17]. In classical mechanics, small denominators play the role of
high frequencies or ultraviolet divergences in ordinary RG. The interesting physics
consists in studying the long time behavior of the classical trajectories, which is the
analog of the infrared or large distance effects in statistical mechanics.

At first sight the classical structure discovered by Wilson in QFT and the quan-
tum structure discovered by Gallavotti and collaborators in classical mechanics are
both surprising because classical and QFT perturbation theories look very different.
Classical perturbation theory, like the inductive solution of any deterministic equation,
is indexed by trees, whether QFT perturbation theory is indexed by more complicated
“Feynman graphs”, which contain the famous “loops” of anti-particles responsible for
the ultraviolet divergences 5. But the classical trees hidden inside QFT were revealed
in many steps, starting with Zimmermann (which called them forests...)[18] through
Gallavotti and many others, until Kreimer and Connes viewed them as generators of
Hopf algebras [19, 20, 21]. Roughly speaking the trees were hidden because they are
not just subgraphs of the Feynman graphs. They picture abstract inclusion relations of
the short distance connected components of the graph within the bigger components
at larger scales. Gallavotti and collaborators understood why there is a structure on
the trees which index the classical Poincaré-Lindstedt perturbation series similar to
Zimmermann’s forests in quantum field perturbation theory6.

Let us make an additional remark which points to another fundamental similarity
between renormalization group flow and time evolution. Both seem naturally oriented
flows. Microscopic laws are expected to determine macroscopic laws, not the converse.
Time runs from past to future and entropy increases rather than decreases. This is
philosophically at the heart of standard determinism. A key feature of Wilson’s RG is
to have defined in a mathematically precise way which short scale information should
be forgotten through coarse graining: it is the part corresponding to the irrelevant
operators in the action. But coarse graining is also fundamental for the second law in
statistical mechanics, which is the only law in classical physics which is “oriented in
time” and also the one which can be only understood in terms of change of scales.

Whether this arrow common to RG and to time evolution is of a cosmological
origin remains to be further investigated. We remark simply here that in the distant
past the big bang has to be explored and understood on a logarithmic time scale. At
the beginning of our universe important physics is the one at very short distance. As
time passes and the universe evolves, physics at longer distances, lower temperatures
and lower momenta becomes literally visible. Hence the history of the universe itself
can be summarized as a giant unfolding of the renormalization group.

This unfolding can then be specialized into many different technical versions
depending on the particular physical context, and the particular problem at hand.

5Remember that one can interpret antiparticles as going backwards in time.
6In addition Gallavotti also remarked that antimatter loops in Feynman graphs can just be erased

by an appropriate choice of non-Hermitian field interactions [22].
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RG has the potential to provide microscopic explanations for many phenomenological
theories. Hence it remains today a very active subject, with several important new
brands developed in the two last decades at various levels of physical precision and of
mathematical rigor. To name just a few of these brands:

- the RG around extended singularities governs the quantum behavior of con-
densed matter [23][24][25]. It should also govern the propagation of wave fronts and
the long-distance scattering of particles in Minkowski space. Extended singularities
alter dramatically the behavior of the renormalization group. For instance because
the dimension of the extended singularity of the Fermi surface equals that of the space
itself minus one, hence that of space-time minus two, local quartic Fermionic interac-
tions in condensed matter in any dimension have the same power counting than two
dimensional Fermionic field theories. This means that condensed matter in any di-
mension is similar to just renormalizable field theory. Among the main consequences,
there is no critical mean field dimension in condensed matter except at infinity, but
there is a rigorous way to handle non perturbative phase transitions such as the BCS
formation of superconducting pairs through a dynamical 1/N expansion [26].

- the RG trajectories in dimension 2 between conformal theories with different
central charges have been pioneered in [27]. Here the theory is less advanced, but
again the c-theorem is a very tantalizing analog of Boltzmann’s H-theorem.

- the functional RG of [28] governs the behavior of many disordered systems. It
might have wide applications from spin glasses to surfaces.

Let us return to our desire to glimpse into the terra incognita from currently
known physics. We are in the uncomfortable situations of salmons returning to their
birthplace, since we are trying to run against the RG flow. Many different bare actions
lead to the same effective physics, so that we may be lost in a maze. However the
region of terra incognita closest to us is still far from the Planck scale. In that region
we can expect that any non renormalizable terms in the action generated at the Planck
scale have been washed out by the RG flow and renormalizable theories should still
dominate physics. Hence renormalizability remains a guiding principle to lead us into
the maze of speculations at the entrance of terra incognita. Of course we should also be
alert and ready to incorporate possible modifications of QFT as we progress towards
the Planck scale, since we know that quantization of gravity at that scale will not
happen through standard field theory.

String theory [29] is currently the leading candidate for such a quantum theory
of gravitation. Tantalizingly the spectrum of massless particles of the closed string
contains particles up to spin 2, hence contains a candidate for the graviton. Open
strings only contain spin one massless particles such as gauge Bosons. Since closed
strings must form out of open strings through interactions, it has been widely argued
that string theory provides an explanation for the existence of quantum gravity as
a necessary complement to gauge theories. This remains the biggest success of the
theory up to now. It is also remarkable that string theory (more precisely membrane
theory) allows some microscopic derivations of the Beckenstein-Hawking formula for
blackhole entropy [30].

String theory also predicts two crucial features which are unobserved up to now,
supersymmetry and six or seven new Kaluza-Klein dimensions of space time at short
distance. Although no superpartner of any real particle has been found yet, there are
some indirect indications of supersymmetry, such as the careful study of the flows of
the running non-Abelian standard model gauge couplings7. Extra dimensions might

7The three couplings join better at a single very high scale if supersymmetry is included in the
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also be welcome, especially if they are significantly larger than the Planck scale,
because they might provide an explanation for the puzzling weakness of gravitation
with respect to other forces. Roughly speaking gravitation could be weak because in
string theory it propagates very naturally into such extra dimensions in contrast with
other interactions which may remain stuck to our ordinary four dimensional universe
or “brane”.

But there are several difficulties with string theory which cast some doubt on
its usefulness to guide us into the first scales of terra incognita. First the theory is
really a very bold stroke to quantize gravity at the Planck scale, very far from current
observations. This giant leap runs directly against the step by step philosophy of the
RG. Second the mathematical structure of string theory is complicated up to the
point where it may become depressing. For instance great effort is needed to put
the string theory at two loops on some rigorous footing [31], and three loops seem
almost hopeless. Third, there was for some time the hope that string theory and the
phenomenology at lower energies derived from it might be unique. This hope has
now vanished with the discovery of a very complicated landscape of different possible
string vacua and associated long distance phenomenologies.

In view of these difficulties some physicists have started to openly criticize what
they consider a disproportionate amount of intellectual resources devoted to the study
of string theory compared to other alternatives [32].

I do not share these critics. I think in particular that string theory has been
very successful as a brain storming tool. It has lead already to many spectacular
insights into pure mathematics and geometry. But my personal bet would be that
if somewhere in the mountains near the Planck scale string theory might be useful,
or even correct, we should also search for other complementary and more reliable
principles to guide us in the maze of waterways at the entrance of terra incognita. If
these other complementary principles turn out to be compatible with string theory
at higher scales, so much the better.

It is a rather natural remark that since gravity alters the very geometry of ordi-
nary space, any quantum theory of gravity should quantize ordinary space, not just
the phase space of mechanics, as quantum mechanics does. Hence at some point at
or before the Planck scale we should expect the algebra of ordinary coordinates or
observables to be generalized to a non commutative algebra. Alain Connes, Michel
Dubois-Violette, Ali Chamseddine and others have forcefully advocated that the clas-
sical Lagrangian of the current standard model arises much more naturally on simple
non-commutative geometries than on ordinary commutative Minkowsky space. We
refer to Alain’s lecture here for these arguments. They remain in the line of Einstein’s
classical unification of Maxwell’s electrodynamics equations through the introduction
of a new four dimensional space-time. The next logical step seems to find the analog
of quantum electrodynamics. It should be quantum field theory on non-commutative
geometry, or NCQFT. The idea of NCQFT goes back at least to Snyders [33].

A second line of argument ends at the same conclusion. String theorists realized
in the late 90’s that NCQFT is an effective theory of strings [34, 35]. Roughly this
is because in addition to the symmetric tensor gµν the spectrum of the closed string
also contains an antisymmetric tensor Bµν . There is no reason for this antisymmetric
tensor not to freeze at some lower scale into a classical field, just as gµν is supposed to
freeze into the classical metric of Einstein’s general relativity. But such a freeze of Bµν

picture. Of course sceptics can remark that this argument requires to continue these flows deep within
terra incognita, where new physics could occur.
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precisely induces an effective non commutative geometry. In the simplest case of flat
Riemannian metric and trivial constant antisymmetric tensor, the geometry is simply
of the Moyal type; it reduces to a constant anticommutator between (Euclidean)
space-time coordinates. This made NCQFT popular among string theorists. A good
review of these ideas can be found in [36]

These two lines of arguments, starting at both ends of terra incognita converge
to the same conclusion: there should be an intermediate regime between QFT and
string theory where NCQFT is the right formalism. The breaking of locality and the
appearance of cyclic-symmetric rather than fully symmetric interactions in NCQFT
is fully consistent with this intermediate status of NCQFT between fields and strings.
The ribbon graphs of NCQFT may be interpreted either as “thicker particle world-
lines” or as “simplified open strings world-sheets” in which only the ends of strings
appear but not yet their internal oscillations. However until recently a big stumbling
block remained. The simplest NCQFT on Moyal space, such as φ?44 , were found not to
be renormalizable because of a surprising phenomenon called uv/ir mixing. Roughly
speaking this φ?44 theory still has infinitely many ultraviolet divergent graphs but
fewer than the ordinary φ4

4 theory. The new “ultraviolet convergent” graphs, such

as the non-planar tadpole

k

p

generate completely unexpected infrared
divergences which are not of the renormalizable type [37].

However three years ago the solution out of this riddle was found. H. Grosse
and R. Wulkenhaar in a brilliant series of papers discovered how to renormalize φ?44

[38, 39, 40]. This “revolution” happened quietly without mediatic fanfare, but it might
turn out to develop into a good Ariane’s thread at the entrance of the maze. Indeed
remember the argument of Wilson: renormalizable theories are the building blocks of
physics because they are the ones who survive RG flows...

It is always very interesting to develop a new brand of RG, but that new brand
on non commutative Moyal space is especially exciting. Indeed it changes the very
definition of scales in a new and non trivial way. Therefore it may ultimately change
our view of locality and causality, hence our very view of the deterministic relationship
from small to large distances. It is fair to say that the same is true of string theory,
where T -dualities also change small into large distances and vice-versa. But in contrast
with string theory, this new brand of NCQFT is mathematically tractable, not at one
or two loops, but as we shall see below, at any number of loops and probably even
non-perturbatively! This just means that we can do complicated computations in
these NCQFT’s with much more ease and confidence than in string theory.

The goal of these lectures is to present this new set of burgeoning ideas.
We start with a blitz introduction to standard renormalization group concepts

in QFT: functional integration and Feynman graphs. The system of Feynman graphs
of the φ4

4 theory provide the simplest example to play and experiment with the idea
of renormalization. It is straightforward to analyze the basic scaling behavior of high
energy subgraphs within graphs of lower energy. In this way one discovers relatively
easily the most important physical effect under change of the observation scale, namely
the flow of the coupling constant. It leads immediately to the fundamental difficulty
associated to the short distance behavior of the theory, namely the Landau ghost or
triviality problem. That ghost disappears in the “asymptotically free” non-Abelian
gauge theories [11]-[12]. With hindsight this result might perhaps be viewed in a not
so distant future as the first glimpse of NCQFT...
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Grosse and Wulkenhaar realized that previous studies of NCQFT had used the
wrong propagator! Moyal interactions were noticed to obey a certain Langmann-Szabo
duality[41], which exchanges space and momentum variables. Grosse and Wulkenhaar
realized that the propagator should be modified to also respect this symmetry [40].
This means that NCQFT on Moyal spaces has to be based on the Mehler kernel,
which governs propagation in a harmonic potential, rather than on the heat kernel,
which governs ordinary propagation in commutative space. Grosse and Wulkenhaar
were able to compute for the first time the Mehler kernel in the matrix base which
transforms the Moyal product into a matrix product. This is a real tour de force! The
matrix based Mehler kernel is quasi-diagonal, and they were able to use their com-
putation to prove perturbative renormalizability of the theory, up to some estimates
which were finally proven in [42].

By matching correctly propagator and interaction to respect symmetries, Grosse
and Wulkenhaar were following one of the main successful thread of quantum field
theory. Their renormalizability result is in the direct footsteps of ’t Hooft and Veltman,
who did the same for non Abelian gauge theories thirty years before. However I have
often heard two main critics raised, which I would like to answer here.

The first critic is that it is no wonder that adding a harmonic potential gets
rid of the infrared problem. It is naive because the harmonic potential is the only
partner of the Laplacian under LS duality. No other infrared regulator would make
the theory renormalizable. The theory has infinitely many degrees of freedom, and
infinitely many divergent graphs, so the new BPHZ theorem obtained by Grosse and
Wulkenhaar is completely non-trivial. In fact now that the RG flow corresponding to
these theories is better understood, we understand the former uv/ir mixing just as an
ordinary anomaly which signaled a missing marginal term in the Lagrangian under
that RG flow.

The second and most serious critic is that since the Mehler kernel is not trans-
lation invariant, the Grosse and Wulkenhaar ideas will never be able to describe any
mainstream physics in which there should be no preferred origin. This is just wrong
but for a more subtle reason. We have shown that the Grosse-Wulkenhaar method can
be extended to renormalize theories such as the Langmann-Szabo-Zarembo φ̄?φ?φ̄?φ
model [43, 44, 45] in four dimensions or the Gross-Neveu model in two dimensions.
In these theories the ordinary Mehler kernel is replaced by a related kernel which
governs propagation of charged particles in a constant background field. This kernel,
which we now propose to call the covariant Mehler kernel8, is still not translation
invariant because it depends on non translation-invariant gauge choice. It oscillates
rather than decays when particles move away from a preferred origin. But in such
theories physical observables, which are gauge invariant, do not feel that preferred
origin. That’s why translation invariant phenomena can be described!

We proposed to call the whole new class of NCQFT theories built either on
the Mehler kernel or on its covariant generalizations vulcanized (may be we should
have spelled Wulkenized?) because renormalizability means that their structure resist
under change of scale 9.

These newly discovered vulcanized theories or NCVQFT and their associated RG
flows absolutely deserve a thorough and systematic investigation, not only because

8Initially we called such NCQFT theories critical, but it was pointed to us that this word may
create confusion with critical phenomena, so we suggest now to call them covariant.

9 Vulcanization is a technological operation which adds sulphur to natural rubber to improve
its mechanical properties and its resistance to temperature change, and temperature is a scale in
imaginary time...
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they may be relevant for physics beyond the standard model, but also (although this
is often less emphasized) because they may provide explanation of non-trivial effective
physics in our ordinary standard world whenever strong background gauge fields are
present. Many examples come to mind, from various aspects of the quantum Hall effect
to the behavior of two dimensional charged polymers under magnetic fields or even
to quark confinement. In such cases appropriate generalizations of the vulcanized RG
may be the right tool to show how the correct effective non-local interactions emerge
out of local interactions.

At the Laboratoire de physique théorique at Orsay we have embarked on such
a systematic investigation of NCVQFTs and of their RG flows. This program is also
actively pursued elsewhere. Let us review briefly the main recent results and open
problems.

• Multiscale Analysis

The initial Grosse-Wulkenhaar breakthrough used sharp cutoffs in matrix space,
which like sharp cutoffs in ordinary direct and momentum space are not so well
suited to rigorous bounds and multiscale analysis. By replacing these cutoffs
by smoother cutoffs which cut directly the Mehler parameter into slices, we
could derive rigorously the estimates that were only numerically checked in [40]
hence close the last gaps in the BPHZ theorem for vulcanized non commutative
φ?44 [42]. We could also replace the somewhat cumbersome recursive use of the
Polchinski equation [46] by more direct and explicit bounds in a multiscale
analysis.

• Direct Space

Although non translation invariant propagators and non local vertices are unfa-
miliar, the direct space representation of NCVQFT remains closer to our ordi-
nary intuition than the matrix base. Using direct space methods, we have pro-
vided a new proof of the BPHZ theorem for vulcanized non commutative φ?44

[47]. We have also extended the Grosse-Wulkenhaar results to the φ̄ ? φ ? φ̄ ? φ
LSZ model [43]. Our proof relies on a multiscale analysis analogous to [42] but in
direct space. It allows a more transparent understanding of the Moyality of the
counterterms for planar subgraphs at higher scales when seen through external
propagators at lower scales. This is the exact analog of the locality in ordinary
QFT of general subgraphs at higher scales when seen through external propaga-
tors at lower scales. Such propagators do not distinguish short distance details,
and ordinary locality could be summarized as the obvious remark that from far
enough away any object looks roughly like a point. But Moyality could be sum-
marized as a more surprising fact: viewed from lower RG scales10, planar higher
scale effects, which are the only ones large enough to require renormalization,
look like Moyal products.

• Fermionic theories

To enlarge the class of renormalizable non-commutative field theories and to
attack the quantum Hall effect problem it is essential to extend the results

10These scales being defined in the new RG sense, we no longer say “from far away”. Although I
hate to criticize, I feel a duty here to warn the reader that often cited previous “proofs of Moyality”
such as [48, 49] should be dismissed. The main theorem in [48], whose proof never appeared, is simply
wrong; and even more importantly the analysis in [49] does not lead to any BPHZ theorem nor to
any sensible RG flow. This is because using the old definition of RG scales it misses vulcanization.
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of Grosse-Wulkenhaar to Fermionic theories. Vulcanized Fermionic propagators
have been computed and their scaling properties established, both in matrix
base and direct space, in [50]. They seem to be necessarily of the covariant type.

The simplest Fermionic NCVQFT theory, corresponding to the two-dimensional
ordinary Gross-Neveu model, was then proved renormalizable to all orders in
[51]. This was done using the x-space version which seems also the most promis-
ing for a complete non-perturbative construction, using Pauli’s principle to con-
trol the apparent (fake) divergences of perturbation theory.

• Ghost Hunting

Grosse and Wulkenhaar made the first non trivial one loop RG computation
in NCVQFT in [52]. Although they did not word it initially in this way, their
result means that at this order there is no Landau ghost in NCVQFT! A non
trivial fixed point of the renormalization group develops at high energy, where
the Grosse-Wulkenhaar parameter Ω tends to the self-dual point Ω = 1, so
that Langmann-Szabo duality become exact, and the beta function vanishes.
This stops the growth of the bare coupling constant in the ultraviolet regime,
hence kills the ghost. So after all NCVQFT is not only as good as QFT with
respect to renormalization, it is definitely better! This vindicates, although in
a totally unexpected way, the initial intuition of Snyders [33], who like many
after him was at least partly motivated by the hope to escape the divergences in
QFT which were considered ugly. Remark however that the ghost is not killed
because of asymptotic freedom. Both the bare and the renormalized coupling
are non zero. They can be made both small if the renormalized Ω is not too
small, in which case perturbation theory is expected to remain valid all along
the complete RG trajectory. It is only in the singular limit Ωren → 0 that the
ghost begins to reappear.

For mathematical physicists who like me came from the constructive field the-
ory program, the Landau ghost has always been a big frustration. Remember
that because non Abelian gauge theories are very complicated and lead to con-
finement in the infrared regime, there is no good four dimensional rigorous field
theory without unnatural cutoffs up to now11. I was therefore from the start
very excited by the possibility to build non perturbatively the φ?44 theory as the
first such rigorous four dimensional field theory without unnatural cutoffs, even
if it lives on the Moyal space which is not the one initially expected, and does
not obey the usual axioms of ordinary QFT.

For that happy scenario to happen, two main non trivial steps are needed. The
first one is to extend the vanishing of the beta function at the self-dual point
Ω = 1 to all orders of perturbation theory. This has been done in [57, 58], using
the matrix version of the theory. First the result was checked by brute force
computation at two and three loops. Then we devised a general method for all
orders. It relies on Ward identities inspired by those of similar theories with
quartic interactions in which the beta function vanishes [59, 60, 61]. However
the relation of these Ward identities to the underlying LS symmetry remains
unclear and we would also like to develop again an x-space version of that result
to understand better its relation to the LS symmetry.

11We have only renormalizable constructive theories for two dimensional Fermionic theories [53]-
[54] and for the infrared side of φ4

4[55]-[56].
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The second step is to extend in a proper way constructive methods such as
cluster and Mayer expansions to build non perturbatively the connected func-
tions of NCVQFT in a single RG slice. Typically we would like a theorem of
Borel summability [62] in the coupling constant for these functions which has to
be uniform in the slice index. This is in progress. A construction of the model
and of its full RG trajectory would then presumably follow from a multiscale
analysis similar to that of [63].

• φ?36 and Kontsevich model

The noncommutative φ?3 model in 6 dimensions has been shown to be renor-
malizable, asymptotically free, and solvable genus by genus by mapping it to
the Kontsevich model, in [64, 65, 66]. The running coupling constant has also
been computed exactly, and found to decrease more rapidly than predicted by
the one-loop beta function. That model however is not expected to have a non-
perturbative definition because it should be unstable at large φ.

• Gauge theories

A very important and difficult goal is to properly vulcanize gauge theories such
as Yang-Mills in four dimensional Moyal space or Chern-Simons on the two
dimensional Moyal plane plus one additional ordinary commutative time di-
rection. We do not need to look at complicated gauge groups since the U(1)
pure gauge theory is non trivial and interacting on non commutative geometry
even without matter fields. What is not obvious is to find a proper compromise
between gauge and Langmann-Szabo symmetries which still has a well-defined
perturbation theory around a computable vacuum after gauge invariance has
been fixed through appropriate Faddeev-Popov or BRS procedures. We should
judge success in my opinion by one main criterion, namely renormalizability.
Recently de Goursac, Wallet and Wulkenhaar computed the non commutative
action for gauge fields which can be induced through integration of a scalar
renormalizable matter field minimally coupled to the gauge field [67]; the result
exhibits both gauge symmetry and LS covariance, hence vulcanization, but the
vacuum looks non trivial so that to check whether the associated perturbative
expansion is really renormalizable seems difficult.

Dimensional regularization and renormalization better respect gauge symme-
tries and they were the key to the initial ’tHooft-Veltman proof of renormaliz-
ability of ordinary gauge theories. Therefore no matter what the final word will
be on NCV gauge theories, it should be useful to have the corresponding tools
ready at hand in the non commutative context12. This requires several steps,
the first of which is

• Parametric Representation

In this compact representation, direct space or momentum variables have been
integrated out for each Feynman amplitude. The result is expressed as integrals
over the heat kernel parameters of each propagator, and the integrands are
the topological polynomials of the graph13. These integrals can then be shown
analytic in the dimension D of space-time for <D small enough. They are in fact

12The Connes-Kreimer works also use abundantly dimensional regularization and renormalization,
and this is another motivation.

13Mathematicians call these polynomials Kirchoff polynomials, and physicist call them Symanzik
polynomials in the quantum field theory context.
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meromorphic in the complex plane, and ultraviolet divergences can be extracted
through appropriate inductive contour integrations.

The same program can be accomplished in NCVQFT because the Mehler kernel
is still quadratic in space variables14. The corresponding topological hyperbolic
polynomials are richer than in ordinary field theory since they are invariants of
the ribbon graph which for instance contain information about the genus of the
surface on which these graphs live. They can be computed both for ordinary
NCVQFT [68] and in the more difficult case of covariant theories such as the
LSZ model [69].

• Dimensional Regularization and Renormalization

From the parametric representation the corresponding regularization and mini-
mal dimensional renormalization scheme should follow for NCVQFTs. However
appropriate factorization of the leading terms of the new hyperbolic polynomials
under rescaling of the parameters of any subgraph is required. This is indeed the
analog in the parameter representation of the “Moyality” of the counterterms
in direct space. This program is under way [70].

• Quantum Hall Effect

NCQFT and in particular the non commutative Chern Simons theory has been
recognized as effective theory of the quantum hall effect already for some time
[71]-[72]-[73]. We also refer to the lectures of V. Pasquier and of A. Polychron-
akos in this volume. But the discovery of the vulcanized RG holds promises
for a better explanation of how these effective actions are generated from the
microscopic level.

In this case there is an interesting reversal of the initial Grosse-Wulkenhaar
problematic. In the φ?44 theory the vertex is given a priori by the Moyal structure,
and it is LS invariant. The challenge was to find the right propagator which
makes the theory renormalizable, and it turned out to have LS duality.

Now to explain the (fractional) quantum Hall effect, which is a bulk effect whose
understanding requires electron interactions, we can almost invert this logic.
The propagator is known since it corresponds to non-relativistic electrons in
two dimensions in a constant magnetic field. It has LS duality. But the effective
theory should be anionic hence not local. Here again we can argue that among
all possible non-local interactions, a few renormalization group steps should se-
lect the only ones which form a renormalizable theory with the corresponding
propagator. In the commutative case (i.e. zero magnetic field) local interactions
such as those of the Hubbard model are just renormalizable in any dimension
because of the extended nature of the Fermi-surface singularity. Since the non-
commutative electron propagator (i.e. in non zero magnetic field) looks very
similar to the Grosse-Wulkenhaar propagator (it is in fact a generalization of
the Langmann-Szabo-Zarembo propagator) we can conjecture that the renor-
malizable interaction corresponding to this propagator should be given by a
Moyal product. That’s why we hope that non-commutative field theory and
a suitable generalization of the Grosse-Wulkenhaar RG might be the correct
framework for a microscopic ab initio understanding of the fractional quantum
Hall effect which is currently lacking.

14This is true provided “hypermomenta” are introduced to Fourier transform the space conserva-
tion at vertices which in Moyal space is the LS dual to ordinary momentum conservation.
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• Charged Polymers in Magnetic Field

Just like the heat kernel governs random motion, the covariant Mahler kernel
governs random motion of charged particles in presence of a magnetic field.
Ordinary polymers can be studied as random walk with a local self repelling
or self avoiding interaction. They can be treated by QFT techniques using the
N = 0 component limit or the supersymmetry trick to erase the unwanted
vacuum graphs. Many results, such as various exact critical exponents in two
dimensions, approximate ones in three dimensions, and infrared asymptotic free-
dom in four dimensions have been computed for self-avoiding polymers through
renormalization group techniques. In the same way we expect that charged poly-
mers under magnetic field should be studied through the new non commutative
vulcanized RG. The relevant interactions again should be of the Moyal rather
than of the local type, and there is no reason that the replica trick could not be
extended in this context. Ordinary observables such as N point functions would
be only translation covariant, but translation invariant physical observables such
as density-density correlations should be recovered out of gauge invariant ob-
servables. In this way it might be possible to deduce new scaling properties of
these systems and their exact critical exponents through the generalizations of
the techniques used in the ordinary commutative case [74].

More generally we hope that the conformal invariant two dimensional theories,
the RG flows between them and the c theorem of Zamolodchikov [27] should
have appropriate magnetic generalizations which should involve vulcanized flows
and Moyal interactions.

• Quark Confinement

It is less clear that NCVQFT gauge theories might shed light on confinement,
but this is also possible.

Even for regular commutative field theory such as non-Abelian gauge theory, the
strong coupling or non-perturbative regimes may be studied fruitfully through
their non-commutative (i.e. non local) counterparts. This point of view is force-
fully suggested in [35], where a mapping is proposed between ordinary and non-
commutative gauge fields which do not preserve the gauge groups but preserve
the gauge equivalent classes. Let us further remark that the effective physics of
confinement should be governed by a non-local interaction, as is the case in ef-
fective strings or bags models. The great advantage of NCVQFT over the initial
matrix model approach of ’tHooft [75] is that in the latter the planar graphs
dominate because a gauge group SU(N) with N large is introduced in an ad
hoc way instead of the physical SU(2) or SU(3), whether in the former case,
there is potentially a perfectly physical explanation for the planar limit, since
it should just emerge naturally out of a renormalization group effect. We would
like the large N matrix limit in NCVQFT’s to parallel the large N vector limit
which allows to understand the formation of Cooper pairs in supraconductivity
[26]. In that case N is not arbitrary but is roughly the number of effective quasi
particles or sectors around the extended Fermi surface singularity at the super-
conducting transition temperature. This number is automatically very large if
this temperature is very low. This is why we called this phenomenon a dynami-
cal large N vector limit. NCVQFTs provides us with the first clear example of a
dynamical large N matrix limit. We hope therefore that it should be ultimately
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useful to understand bound states in ordinary commutative non-Abelian gauge
theories, hence quark confinement.

• Quantum Gravity

Although ordinary renormalizable QFTs seem more or less to have NCVQFT
analogs on the Moyal space, there is no renormalizable commutative field theory
for spin 2 particles, so that the NCVQFTs alone should not allow quantization
of gravity. However quantum gravity might enter the picture of NCVQFTs at a
later and more advanced stage. Since quantum gravity appears in closed strings,
it may have something to do with doubling the ribbons of some NCQFT in an
appropriate way. But because there is no reason not to quantize the antisym-
metric tensor B which defines the non commutative geometry as well as the
symmetric one g which defines the metric, we should clearly no longer limit
ourselves to Moyal spaces. A first step towards a non-commutative approach
to quantum gravity along these lines should be to search for the proper ana-
log of vulcanization in more general non-commutative geometries. It might for
instance describe physics in the vicinity of a charged rotating black hole gen-
erating a strong magnetic field. However we have to admit that any theory of
quantum gravity will probably remain highly conjectural for many decades or
even centuries...

I would like to warmly thank all the collaborators who contributed in various
ways to the elaboration of this material, in particular M. Disertori, R. Gurau, J. Mag-
nen, A. Tanasa, F. Vignes-Tourneret, J.C. Wallet and R. Wulkenhaar. Special thanks
are due to F. Vignes-Tourneret since this review is largely based on our common
recent review [76], with introduction and sections added on commutative renormal-
ization, ghost hunting and the parametric representation. I would like also to sincerely
apologize to the many people whose work in this area would be worth of citation but
has not been cited here: this is because of my lack of time or competence but not out
of bad will.

2 Commutative Renormalization, a Blitz Review

This section is a summary of [77] which we include for self-containedness.

2.1 Functional integral

In QFT, particle number is not conserved. Cross sections in scattering experiments
contain the physical information of the theory. They are the matrix elements of the
diffusion matrix S. Under suitable conditions they are expressed in terms of the Green
functions GN of the theory through so-called “reduction formulae”

Green’s functions are time ordered vacuum expectation values of the field φ,
which is operator valued and acts on the Fock space:

GN (z1, ..., zN ) =< ψ0, T [φ(z1)...φ(zN )]ψ0 > . (2.1)

Here ψ0 is the vacuum state and the T -product orders φ(z1)...φ(zN ) according to
times.

Consider a Lagrangian field theory, and split the total Lagrangian as the sum of
a free plus an interacting piece, L = L0 +Lint. The Gell-Mann-Low formula expresses
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the Green functions as vacuum expectation values of a similar product of free fields
with an eiLint insertion:

GN (z1, ..., zN ) =
< ψ0, T

[
φ(z1)...φ(zN )ei

R
dxLint(φ(x))

]
ψ0 >

< ψ0, T (ei
R
dxLint(φ(x)))ψ0 >

. (2.2)

In the functional integral formalism proposed by Feynman [78], the Gell-Mann-
Low formula is replaced by a functional integral in terms of an (ill-defined) “integral
over histories” which is formally the product of Lebesgue measures over all space
time. The corresponding formula is the Feynman-Kac formula:

GN (z1, ..., zN ) ==

∫ ∏
j

φ(zj)ei
R
L(φ(x))dxDφ∫

ei
R
L(φ(x))dxDφ

. (2.3)

The integrand in (2.3) contains now the full Lagrangian L = L0 + Lint instead
of the interacting one. This is interesting to expose symmetries of the theory which
may not be separate symmetries of the free and interacting Lagrangians, for instance
gauge symmetries. Perturbation theory and the Feynman rules can still be derived as
explained in the next subsection. But (2.3) is also well adapted to constrained quan-
tization and to the study of non-perturbative effects. Finally there is a deep analogy
between the Feynman-Kac formula and the formula which expresses correlation func-
tions in classical statistical mechanics. For instance, the correlation functions for a
lattice Ising model are given by

〈 n∏
i=1

σxi

〉
=

∑
{σx=±1}

e−L(σ)
∏
i

σxi∑
{σx=±1}

e−L(σ)
, (2.4)

where x labels the discrete sites of the lattice, the sum is over configurations {σx =
±1} which associate a “spin” with value +1 or -1 to each such site and L(σ) contains
usually nearest neighbor interactions and possibly a magnetic field h:

L(σ) =
∑

x,y nearest neighbors

Jσxσy +
∑
x

hσx. (2.5)

By analytically continuing (2.3) to imaginary time, or Euclidean space, it is
possible to complete the analogy with (2.4), hence to establish a firm contact with
statistical mechanics [15, 79, 80].

This idea also allows to give much better meaning to the path integral, at least
for a free bosonic field. Indeed the free Euclidean measure can be defined easily as
a Gaussian measure, because in Euclidean space L0 is a quadratic form of positive
type15.

The Green functions continued to Euclidean points are called the Schwinger
functions of the model, and are given by the Euclidean Feynman-Kac formula:

SN (z1, ..., zN ) = Z−1

∫ N∏
j=1

φ(zj)e−
R
L(φ(x))dxDφ (2.6)

15However the functional space that supports this measure is not in general a space of smooth
functions, but rather of distributions. This was already true for functional integrals such as those
of Brownian motion, which are supported by continuous but not differentiable paths. Therefore
“functional integrals” in quantum field theory should more appropriately be called “distributional
integrals”.
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Z =
∫
e−

R
L(φ(x))dxDφ. (2.7)

The simplest interacting field theory is the theory of a one component scalar
bosonic field φ with quartic interaction λφ4 (φ3 which is simpler is unstable). In
Rd it is called the φ4

d model. For d = 2, 3 the model is superrenormalizable and
has been built non perturbatively by constructive field theory. For d = 4 it is just
renormalizable, and it provides the simplest pedagogical introduction to perturbative
renormalization theory. But because of the Landau ghost Landau ghost or triviality
problem explained in subsection 2.5, the model presumably does not exist as a true
interacting theory at the non perturbative level. Its non commutative version should
exist on the Moyal plane, see section 5.

Formally the Schwinger functions of φ4
d are the moments of the measure:

dν =
1
Z
e−

λ
4!

R
φ4−(m2/2)

R
φ2−(a/2)

R
(∂µφ∂

µφ)Dφ, (2.8)

where

• λ is the coupling constant, usually assumed positive or complex with positive
real part; remark the convenient 1/4! factor to take into account the symmetry
of permutation of all fields at a local vertex. In the non commutative version of
the theory permutation symmetry becomes the more restricted cyclic symmetry
and it is convenient to change the 1/4! factor to 1/4.

• m is the mass, which fixes an energy scale for the theory;

• a is the wave function constant. It can be set to 1 by a rescaling of the field.

• Z is a normalization factor which makes (2.8) a probability measure;

• Dφ is a formal (mathematically ill-defined) product
∏
x∈Rd

dφ(x) of Lebesgue

measures at every point of Rd.

The Gaussian part of the measure is

dµ(φ) =
1
Z0
e−(m2/2)

R
φ2−(a/2)

R
(∂µφ∂

µφ)Dφ. (2.9)

where Z0 is again the normalization factor which makes (2.9) a probability measure.
More precisely if we consider the translation invariant propagator C(x, y) ≡

C(x− y) (with slight abuse of notation), whose Fourier transform is

C(p) =
1

(2π)d
1

p2 +m2
, (2.10)

we can use Minlos theorem and the general theory of Gaussian processes to define
dµ(φ) as the centered Gaussian measure on the Schwartz space of tempered distribu-
tions S′(Rd) whose covariance is C. A Gaussian measure is uniquely defined by its
moments, or the integral of polynomials of fields. Explicitly this integral is zero for a
monomial of odd degree, and for n = 2p even it is equal to∫

φ(x1)...φ(xn)dµ(φ) =
∑
γ

∏
`∈γ

C(xi` , xj`), (2.11)
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where the sum runs over all the 2p!! = (2p − 1)(2p − 3)...5.3.1 pairings γ of the 2p
arguments into p disjoint pairs ` = (i`, j`).

Note that since for d ≥ 2, C(p) is not integrable, C(x, y) must be understood as
a distribution. It is therefore convenient to also use regularized kernels, for instance

Cκ(p) =
1

(2π)d
e−κ(p

2+m2)

p2 +m2
=
∫ ∞

κ

e−α(p2+m2)dα (2.12)

whose Fourier transform Cκ(x, y) is now a smooth function and not a distribution:

Cκ(x, y) =
∫ ∞

κ

e−αm
2−(x−y)2/4α dα

αD/2
(2.13)

α−D/2e−(x−y)2/4α is the heat kernel and therefore this α-representation has also an
interpretation in terms of Brownian motion:

Cκ(x, y) =
∫ ∞

κ

dα exp(−m2α)P (x, y;α) (2.14)

where P (x, y;α) = (4πα)−d/2 exp(−|x− y|2/4α) is the Gaussian probability distribu-
tion of a Brownian path going from x to y in time α.

Such a regulator κ is called an ultraviolet cutoff, and we have (in the distribution
sense) limκ→0 Cκ(x, y) = C(x, y). Remark that due to the non zero m2 mass term, the
kernel Cκ(x, y) decays exponentially at large |x− y| with rate m. For some constant
K and d > 2 we have:

|Cκ(x, y)| ≤ Kκ1−d/2e−m|x−y|. (2.15)

It is a standard useful construction to build from the Schwinger functions the
connected Schwinger functions, given by:

CN (z1, ..., zN ) =
∑

P1∪...∪Pk={1,...,N};Pi∩Pj=0

(−1)k+1(k − 1)!
k∏
i=1

Spi(zj1 , ..., zjpi
),

(2.16)
where the sum is performed over all distinct partitions of {1, ..., N} into k subsets
P1, ..., Pk, Pi being made of pi elements called j1, ..., jpi . For instance in the φ4 theory,
where all odd Schwinger functions vanish due to the unbroken φ → −φ symmetry,
the connected 4-point function is simply:

C4(z1, ..., z4) = S4(z1, ..., z4)− S2(z1, z2)S2(z3, z4)
−S2(z1, z3)S2(z2, z4)− S2(z1, z4)S2(z2, z3). (2.17)

2.2 Feynman Rules

The full interacting measure may now be defined as the multiplication of the Gaussian
measure dµ(φ) by the interaction factor:

dν =
1
Z
e−

λ
4!

R
φ4(x)dxdµ(φ) (2.18)
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Figure 1: A possible contraction scheme with n = N = 4.

and the Schwinger functions are the normalized moments of this measure:

SN (z1, ..., zN ) =
∫
φ(z1)...φ(zN )dν(φ). (2.19)

Expanding the exponential as a power series in the coupling constant λ, one obtains
a formal expansion for the Schwinger functions:

SN (z1, ..., zN ) =
1
Z

∞∑
n=0

(−λ)n

n!

∫ [∫ φ4(x)dx
4!

]n
φ(z1)...φ(zN )dµ(φ) (2.20)

It is now possible to perform explicitly the functional integral of the corresponding
polynomial. The result gives at any order n a sum over (4n+N − 1)!! “Wick contrac-
tions schemes W”, i.e. ways of pairing together 4n+N fields into 2n+N/2 pairs. At
order n the result of this perturbation scheme is therefore simply the sum over all these
schemes W of the spatial integrals over x1, ..., xn of the integrand

∏
`∈W C(xi` , xj`)

times the factor 1
n! (

−λ
4! )n. These integrals are then functions (in fact distributions) of

the external positions z1, ..., zN . But they may diverge either because they are inte-
grals over all of R4 (no volume cutoff) or because of the singularities in the propagator
C at coinciding points.

Labeling the n dummy integration variables in (2.20) as x1, ..., xn, we draw a
line ` for each contraction of two fields. Each position x1, ..., xn is then associated to
a four-legged vertex and each external source zi to a one-legged vertex, as shown in
Figure 1.

For practical computations, it is obviously more convenient to gather all the
contractions which lead to the same drawing, hence to the same integral. This leads
to the notion of Feynman graphs. To any such graph is associated a contribution or
amplitude, which is the sum of the contributions associated with the corresponding set
of Wick contractions. The “Feynman rules” summarize how to compute this amplitude
with its correct combinatoric factor.

We always use the following notations for a graph G:

• n(G) or simply n is the number of internal vertices of G, or the order of the
graph.

• l(G) or l is the number of internal lines of G, i.e. lines hooked at both ends to
an internal vertex of G.

• N(G) or N is the number of external vertices of G; it corresponds to the order
of the Schwinger function one is looking at. When N = 0 the graph is a vacuum
graph, otherwise it is called an N -point graph.
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• c(G) or c is the number of connected components of G,

• L(G) or L is the number of independent loops of G.

For a regular φ4 graph, i.e. a graph which has no line hooked at both ends to
external vertices, we have the relations:

l(G) = 2n(G)−N(G)/2, (2.21)

L(G) = l(G)− n(G) + c(G) = n(G) + 1−N(G)/2. (2.22)

where in the last equality we assume connectedness of G, hence c(G) = 1.
A subgraph F of a graph G is a subset of internal lines of G, together with the

corresponding attached vertices. Lines in the subset defining F are the internal lines
of F , and their number is simply l(F ), as before. Similarly all the vertices of G hooked
to at least one of these internal lines of F are called the internal vertices of F and
considered to be in F ; their number by definition is n(F ). Finally a good convention
is to call external half-line of F every half-line of G which is not in F but which is
hooked to a vertex of F ; it is then the number of such external half-lines which we
call N(F ). With these conventions one has for φ4 subgraphs the same relation (2.21)
as for regular φ4 graphs.

To compute the amplitude associated to a φ4 graph, we have to add the contribu-
tions of the corresponding contraction schemes. This is summarized by the “Feynman
rules”:

• To each line ` with end vertices at positions x` and y`, associate a propagator
C(xj , yj).

• To each internal vertex, associate (−λ)/4!.

• Count all the contraction schemes giving this diagram. The number should be
of the form (4!)nn!/S(G) where S(G) is an integer called the symmetry factor
of the diagram. The 4! represents the permutation of the fields hooked to an
internal vertex.

• Multiply all these factors, divide by n! and sum over the position of all internal
vertices.

The formula for the bare amplitude of a graph is therefore, as a distribution in
z1, ....zN :

AG(z1, ..., zN ) ≡
∫ n∏

i=1

dxi
∏
`∈G

C(x`, y`). (2.23)

This is the “direct” or “x-space” representation of a Feynman integral. As stated
above, this integral suffers of possible divergences. But the corresponding quantities
with both volume cutoff and ultraviolet cutoff κ are well defined. They are:

AκG,Λ(z1, ..., zN ) ≡
∫

Λn

n∏
i=1

dxi
∏
`∈G

Cκ(x`, y`). (2.24)

The integrand is indeed bounded and the integration domain is a compact box Λ.
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The unnormalized Schwinger functions are therefore formally given by the sum
over all graphs with the right number of external lines of the corresponding Feynman
amplitudes:

ZSN =
∑

φ4 graphs G with N(G)=N

(−λ)n(G)

S(G)
AG. (2.25)

Z itself, the normalization, is given by the sum of all vacuum amplitudes:

Z =
∑

φ4 graphs G with N(G)=0

(−λ)n(G)

S(G)
AG. (2.26)

Let us remark that since the total number of Feynman graphs is (4n+N)!!, taking
into account Stirling’s formula and the symmetry factor 1/n! from the exponential
we expect perturbation theory at large order to behave as Knn! for some constant
K. Indeed at order n the amplitude of a Feynman graph is a 4n-dimensional integral.
It is reasonable to expect that in average it should behave as cn for some constant
c. But this means that one should expect zero radius of convergence for the series
(2.25). This is not too surprising. Even the one-dimensional integral

F (g) =
∫ +∞

−∞
e−x

2/2−λx4/4!dx (2.27)

is well-defined only for λ ≥ 0. We cannot hope infinite dimensional functional integrals
of the same kind to behave better than this one dimensional integral. In mathemati-
cally precise terms, F is not analytic near λ = 0, but only Borel summable [62]. Borel
summability is therefore the best we can hope for the φ4 theory, and it has indeed
been proved for the theory in dimensions 2 and 3 [81, 82].

From translation invariance, we do not expect AκG,Λ to have a limit as Λ → ∞
if there are vacuum subgraphs in G. But we can remark that an amplitude factorizes
as the product of the amplitudes of its connected components.

With simple combinatoric verification at the level of contraction schemes we can
factorize the sum over all vacuum graphs in the expansion of unnormalized Schwinger
functions, hence get for the normalized functions a formula analog to (2.25):

SN =
∑

φ4 graphs G with N(G)=N
G without any vacuum subgraph

(−λ)n(G)

S(G)
AG. (2.28)

Now in (2.28) it is possible to pass to the thermodynamic limit (in the sense of
formal power series) because using the exponential decrease of the propagator, each
individual graph has a limit at fixed external arguments. There is of course no need
to divide by the volume for that because each connected component in (2.28) is tied
to at least one external source, and they provide the necessary breaking of translation
invariance.

Finally one can find the perturbative expansions for the connected Schwinger
functions and the vertex functions. As expected, the connected Schwinger functions
are given by sums over connected amplitudes:

CN =
∑

φ4 connected graphs G with N(G)=N

(−λ)n(G)

S(G)
AG (2.29)
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and the vertex functions are the sums of the amputated amplitudes for proper graphs,
also called one-particle-irreducible. They are the graphs which remain connected even
after removal of any given internal line. The amputated amplitudes are defined in
momentum space by omitting the Fourier transform of the propagators of the external
lines. It is therefore convenient to write these amplitudes in the so-called momentum
representation:

ΓN (z1, ..., zN ) =
∑

φ4 proper graphs G with N(G)=N

(−λ)n(G)

S(G)
ATG(z1, ..., zN ), (2.30)

ATG(z1, ..., zN ) ≡ 1
(2π)dN/2

∫
dp1...dpNe

i
P
piziAG(p1, ..., pN ), (2.31)

AG(p1, ..., pN ) =
∫ ∏

` internal line of G

ddp`
p2
` +m2

∏
v∈G

δ(
∑
`

εv,` p`). (2.32)

Remark in (2.32) the δ functions which ensure momentum conservation at each inter-
nal vertex v; the sum inside is over both internal and external momenta; each internal
line is oriented in an arbitrary way and each external line is oriented towards the inside
of the graph. The incidence matrix ε(v, `) is 1 if the line ` arrives at v, -1 if it starts
from v and 0 otherwise. Remark also that there is an overall momentum conservation
rule δ(p1 + ...+ pN ) hidden in (2.32). The drawback of the momentum representation
lies in the necessity for practical computations to eliminate the δ functions by a “mo-
mentum routing” prescription, and there is no canonical choice for that. Although
this is rarely explicitly explained in the quantum field theory literature, such a choice
of a momentum routing is equivalent to the choice of a particular spanning tree of
the graph.

2.3 Scale Analysis and Renormalization

In order to analyze the ultraviolet or short distance limit according to the renormaliza-
tion group method, we can cut the propagator C into slices Ci so that C =

∑∞
i=0 Ci.

This can be done conveniently within the parametric representation, since α in this
representation roughly corresponds to 1/p2. So we can define the propagator within
a slice as

C0 =
∫ ∞

1

e−m
2α− |x−y|2

4α
dα

αd/2
, Ci =

∫ M−2(i−1)

M−2i

e−m
2α− |x−y|2

4α
dα

αd/2
for i ≥ 1. (2.33)

where M is a fixed number, for instance 10, or 2, or e (see footnote 1 in the Introduc-
tion). We can intuitively imagine Ci as the piece of the field oscillating with Fourier
momenta essentially of size M i. In fact it is easy to prove the bound (for d > 2)

|Ci(x, y)| ≤ K.M (d−2)ie−M
i|x−y| (2.34)

where K is some constant.
Now the full propagator with ultraviolet cutoff Mρ, ρ being a large integer, may

be viewed as a sum of slices:

C≤ρ =
ρ∑
i=0

Ci (2.35)

Then the basic renormalization group step is made of two main operations:
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• A functional integration

• The computation of a logarithm

Indeed decomposing a covariance in a Gaussian process corresponds to a decom-
position of the field into independent Gaussian random variables φi, each distributed
with a measure dµi of covariance Ci. Let us introduce

Φi =
i∑

j=0

φj . (2.36)

This is the “low-momentum” field for all frequencies lower than i. The RG idea is
that starting from scale ρ and performing ρ − i steps, one arrives at an effective
action for the remaining field Φi. Then, writing Φi = φi + Φi−1, one splits the field
into a “fluctuation” field φi and a “background” field Φi−1. The first step, functional
integration, is performed solely on the fluctuation field, so it computes

Zi−1(Φi−1) =
∫
dµi(φi)e−Si(φi+Φi−1). (2.37)

Then the second step rewrites this quantity as the exponential of an effective action,
hence simply computes

Si−1(Φi−1) = − log[Zi−1(Φi−1)] (2.38)

Now Zi−1 = e−Si−1 and one can iterate! The flow from the initial bare action S = Sρ
for the full field to an effective renormalized action S0 for the last “slowly varying”
component φ0 of the field is similar to the flow of a dynamical system. Its evolution
is decomposed into a sequence of discrete steps from Si to Si−1.

This renormalization group strategy can be best understood on the system of
Feynman graphs which represent the perturbative expansion of the theory. The first
step, functional integration over fluctuation fields, means that we have to consider
subgraphs with all their internal lines in higher slices than any of their external lines.
The second step, taking the logarithm, means that we have to consider only connected
such subgraphs. We call such connected subgraphs quasi-local. Renormalizability is
then a non trivial result that combines locality and power counting for these quasi-
local subgraphs.

Locality simply means that quasi-local subgraphs S look local when seen through
their external lines. Indeed since they are connected and since their internal lines have
scale say ≥ i, all the internal vertices are roughly at distance M−i. But the external
lines have scales ≤ i−1, which only distinguish details larger than M−(i−1). Therefore
they cannot distinguish the internal vertices of S one from the other. Hence quasi-
local subgraphs look like “fat dots” when seen through their external lines, see Figure
2. Obviously this locality principle is completely independent of dimension.

Power counting is a rough estimate which compares the size of a fat dot such as
S in Figure 2 with N external legs to the coupling constant that would be in front of
an exactly local

∫
φN (x)dx interaction term if it were in the Lagrangian. To simplify

we now assume that the internal scales are all equal to i, the external scales are O(1),
and we do not care about constants and so on, but only about the dependence in i as
i gets large. We must first save one internal position such as the barycentre of the fat
dot or the position of a particular internal vertex to represent the

∫
dx integration
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Figure 2: A high energy subgraph S seen from lower energies looks quasi-local.

in
∫
φN (x)dx. Then we must integrate over the positions of all internal vertices of

the subgraph save that one. This brings about a weight M−di(n−1), because since
S is connected we can use the decay of the internal lines to evaluate these n − 1
integrals. Finally we should not forget the prefactor M (D−2)li coming from (2.34),
for the l internal lines. Multiplying these two factors and using relation (2.21)-(2.22)
we obtain that the ”coupling constant” or factor in front of the fat dot is of order
M−di(n−1)+2i(2n−N/2) = Mω(G), if we define the superficial degree of divergence of a
φ4
d connected graph as:

ω(G) = (d− 4)n(G) + d− d− 2
2

N(G). (2.39)

So power counting, in contrast with locality, depends on the space-time dimension.
Let us return to the concrete example of Figure 2. A 4-point subgraph made of

three vertices and four internal lines at a high slice i index. If we suppose the four
external dashed lines have much lower index, say of order unity, the subgraph looks
almost local, like a fat dot at this unit scale. We have to save one vertex integration for
the position of the fat dot. Hence the coupling constant of this fat dot is made of two
vertex integrations and the four weights of the internal lines (in order not to forget
these internal line factors we kept internal lines apparent as four tadpoles attached
to the fat dot in the right of Figure 2). In dimension 4 this total weight turns out to
be independent of the scale.

At lower scales propagators can branch either through the initial bare coupling
or through any such fat dot in all possible ways because of the combinatorial rules
of functional integration. Hence they feel effectively a new coupling which is the sum
of the bare coupling plus all the fat dot corrections coming from higher scales. To
compute these new couplings only graphs with ω(G) ≥ 0, which are called primitively
divergent, really matter because their weight does not decrease as the gap i increases.

- If d = 2, we find ω(G) = 2 − 2n, so the only primitively divergent graphs
have n = 1, and N = 0 or N = 2. The only divergence is due to the “tadpole” loop∫

d2p
(p2+m2) which is logarithmically divergent.

- If d = 3, we find ω(G) = 3−n−N/2, so the only primitively divergent graphs
have n ≤ 3, N = 0, or n ≤ 2 and N = 2. Such a theory with only a finite number of
“primitively divergent” subgraphs is called superrenormalizable.

- If d = 4, ω(G) = 4 − N . Every two point graph is quadratically divergent
and every four point graph is logarithmically divergent. This is in agreement with the
superficial degree of these graphs being respectively 2 and 0. The couplings that do
not decay with i all correspond to terms that were already present in the Lagrangian,
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namely
∫
φ4,

∫
φ2 and

∫
(∇φ).(∇φ)16. Hence the structure of the Lagrangian resists

under change of scale, although the values of the coefficients can change. The theory
is called just renormalizable.

- Finally for d > 4 we have infinitely many primitively divergent graphs with
arbitrarily large number of external legs, and the theory is called non-renormalizable,
because fat dots with N larger than 4 are important and they correspond to new
couplings generated by the renormalization group which are not present in the initial
bare Lagrangian.

To summarize:

• Locality means that quasi-local subgraphs look local when seen through their
external lines. It holds in any dimension.

• Power counting gives the rough size of the new couplings associated to these
subgraphs as a function of their number N of external legs, of their order n and
of the dimension of space time d.

• Renormalizability (in the ultraviolet regime) holds if the structure of the La-
grangian resists under change of scale, although the values of the coefficients or
coupling constants may change. For φ4 it occurs if d ≤ 4, with d = 4 the most
interesting case.

2.4 The BPHZ Theorem

The BPHZ theorem is both a brilliant historic piece of mathematical physics which
gives precise mathematical meaning to the notion of renormalizability, using the math-
ematics of formal power series, but it is also ultimately a bad way to understand and
express renormalization. Let us try to explain both statements.

For the massive Euclidean φ4
4 theory we could for instance state the following

normalization conditions on the connected functions in momentum space at zero mo-
menta:

C4(0, 0, 0, 0) = −λren, (2.40)

C2(p2 = 0) =
1

m2
ren

, (2.41)

d

dp2
C2|p2=0 = − aren

m4
ren

. (2.42)

Usually one puts aren = 1 by rescaling the field φ.
Using the inversion theorem on formal power series for any fixed ultraviolet cutoff

κ it is possible to reexpress any formal power series in λbare with bare propagators
1/(abarep2 +m2

bare) for any Schwinger functions as a formal power series in λren with
renormalized propagators 1/(arenp2 + m2

ren). The BPHZ theorem then states that
that formal perturbative formal power series has finite coefficients order by order
when the ultraviolet cutoff κ is lifted. The first proof by Hepp relied on the inductive

16Because the graphs with N = 2 are quadratically divergent we must Taylor expand the quasi local
fat dots until we get convergent effects. Using parity and rotational symmetry, this generates only
a logarithmically divergent

R
(∇φ).(∇φ) term beyond the quadratically divergent

R
φ2. Furthermore

this term starts only at n = 2 or two loops, because the first tadpole graph at N = 2, n = 1 is exactly
local.



Vol. X, 2007 Noncommutative Renormalization 39

�
�
�
� ��

�
��

�
�
� ��

�
� ��

	
	 



�
��
�



 ��

�
��
�
�
� ��

�
��
�
�
� ��

�
�

�
�
�
� ��

�
�

Figure 3: A family of graphs Pn producing a renormalon.

Bogoliubov’s recursion scheme. Then a completely explicit expression for the coeffi-
cients of the renormalized series was written by Zimmermann and many followers.
The coefficients of that renormalized series can be written as sums of renormalized
Feynman amplitudes. They are similar to Feynman integrals but with additional sub-
tractions indexed by Zimmermann’s forests. Returning to an inductive rather than
explicit scheme, Polchinski remarked that it is possible to also deduce the BPHZ the-
orem from a renormalization group equation and inductive bounds which does not
decompose each order of perturbation theory into Feynman graphs [46]. This method
was clarified and applied by C. Kopper and coworkers, see [83].

The solution of the difficult “overlapping” divergence problem through Bogoli-
ubov’s or Polchinski’s recursions and Zimmermann’s forests becomes particularly clear
in the parametric representation using Hepp’s sectors. A Hepp sector is simply a com-
plete ordering of the α parameters for all the lines of the graph. In each sector there
is a different classification of forests into packets so that each packet gives a finite
integral [84][85].

But from the physical point of view we cannot conceal the fact that purely
perturbative renormalization theory is not very satisfying. At least two facts hint at
a better theory which lies behind:

- The forest formula seems unnecessarily complicated, with too many terms.
For instance in any given Hepp sector only one particular packet of forests is really
necessary to make the renormalized amplitude finite, the one which corresponds to
the quasi-local divergent subgraphs of that sector. The other packets seem useless, a
little bit like “junk DNA”. They are there just because they are necessary for other
sectors. This does not look optimal.

- The theory makes renormalized amplitudes finite, but at tremendous cost! The
size of some of these renormalized amplitudes becomes unreasonably large as the size
of the graph increases. This phenomenon is called the “renormalon problem”. For
instance it is easy to check that the renormalized amplitude (at 0 external momenta)
of the graphs Pn with 6 external legs and n+ 2 internal vertices in Figure 3 becomes
as large as cnn! when n → ∞. Indeed at large q the renormalized amplitude ARG2

in
Figure 5 grows like log |q|. Therefore the chain of n such graphs in Figure 3 behaves
as [log |q|]n, and the total amplitude of Pn behaves as∫

[log |q|]n d4q

[q2 +m2]3
'n→∞ cnn! (2.43)

So after renormalization some families of graphs acquire so large values that they
cannot be resumed! Physically this is just as bad as if infinities were still there.
These two hints are in fact linked. As their name indicates, renormalons are due to
renormalization. Families of completely convergent graphs such as the graphs Qn of
Figure 4, are bounded by cn, and produce no renormalons.
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Figure 4: A family of convergent graphs Qn, that do not produce any renormalon.

Studying more carefully renormalization in the α parametric representation one
can check that renormalons are solely due to the forests packets that we compared to
“junk DNA”. Renormalons are due to subtractions that are not necessary to ensure
convergence, just like the strange log |q| growth of ARG0

at large q is solely due to
the counterterm in the region where this counterterm is not necessary to make the
amplitude finite.

We can therefore conclude that subtractions are not organized in an optimal
way by the Bogoliubov recursion. What is wrong from a physical point of view in the
BPHZ theorem is to use the size of the graph as the relevant parameter to organize
Bogoliubov’s induction. It is rather the size of the line momenta that should be used
to better organize the renormalization subtractions.

This leads to the point of view advocated in [9]: neither the bare nor the renor-
malized series are optimal. Perturbation should be organized as a power series in an
infinite set of effective expansions, which are related through the RG flow equation.
In the end exactly the same contributions are resumed than in the bare or in the
renormalized series, but they are regrouped in a much better way.

2.5 The Landau ghost and Asymptotic Freedom

In the case of φ4
4 only the flow of the coupling constants really matters, because the

flow of m and of a for different reasons are not very important in the ultraviolet limit:
- the flow of m is governed at leading order by the tadpole. The bare mass m2

i

corresponding to a finite positive physical mass m2
ren is negative and grows as λM2i

with the slice index i. But since p2 in the i-th slice is also of order M2i but without
the λ, as long as the coupling λ remains small it remains much larger than m2

i . Hence
the mass term plays no significant role in the higher slices. It was remarked in [9] that
because there are no overlapping problem associated to 1PI two point subgraphs, there
is in fact no inconvenience to use the full renormalized mren all the way from the bare
to renormalized scales, with subtractions on 1PI two point subgraphs independent of
their scale.

- the flow of a is also not very important. Indeed it really starts at two loops
because the tadpole is exactly local. So this flow is in fact bounded, and generates no
renormalons. In fact as again remarked in [9] for theories of the φ4

4 type one might as
well use the bare value abare all the way from bare to renormalized scales and perform
no second Taylor subtraction on any 1PI two point subgraphs,.

But the physics of φ4
4 in the ultraviolet limit really depends of the flow of λ. By

a simple second order computation there are only 2 connected graphs with n = 2 and
N = 4 pictured in Figure 5. They govern at leading order the flow of the coupling
constant.

In the commutative φ4
4 theory the graph G1 does not contribute to the coupling

constant flow. This can be seen in many ways, for instance after mass renormaliza-
tion the graph G1 vanishes exactly because it contains a tadpole which is not quasi-
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G 1 G 2

Figure 5: The φ4 connected graphs with n = 2, N = 4.

local but exactly local. One can also remark that the graph is one particle reducible.
In ordinary translation-invariant, hence momentum-conserving theories, one-particle-
reducible quasi-local graphs never contribute significantly to RG flows. Indeed they
become very small when the gap i between internal and external scales grows. This
is because by momentum conservation the momentum of any one-particle-reducible
line ` has to be the sum of a finite set of external momenta on one of its sides. But
a finite sum of small momenta remains small and this clashes directly with the fact
that ` being internal its momentum should grow as the gap i grows. Remark that
this is no longer be true in non commutative vulcanized φ?44 , because that theory is
not translation invariant, and that’s why it will ultimately escape the Landau ghost
curse.

So in φ4
4 the flow is intimately linked to the sign of the graph G2 of Figure 5.

More precisely, we find that at second order the relation between λi and λi−1 is

λi−1 ' λi − βλ2
i (2.44)

(remember the minus sign in the exponential of the action), where β is a constant,
namely the asymptotic value of

∑
j,j′/ inf(j,j′)=i

∫
d4yCj(x, y)Cj′(x, y) when i → ∞.

Clearly this constant is positive. So for the normal stable φ4
4 theory, the relation (2.44)

inverts into
λi ' λi−1 + βλ2

i−1, (2.45)

so that fixing the renormalized coupling seems to lead at finite i to a large, diverg-
ing bare coupling, incompatible with perturbation theory. This is the Landau ghost
problem, which affects both the φ4

4 theory and electrodynamics. Equivalently if one
keeps λi finite as i gets large, λ0 = λren tends to zero and the final effective theory is
“trivial” which means it is a free theory without interaction, in contradiction with the
physical observation e.g. of a coupling constant of about 1/137 in electrodynamics.

But in non-Abelian gauge theories an extra minus sign is created by the algebra
of the Lie brackets. This surprising discovery has deep consequences. The flow relation
becomes approximately

λi ' λi−1 − βλiλi−1, (2.46)

with β > 0, or, dividing by λiλi−1,

1/λi ' 1/λi−1 + β, (2.47)

with solution λi ' λ0
1+λ0βi

. A more precise computation to third order in fact leads to

λi '
λ0

1 + λ0(βi+ γ log i+O(1))
. (2.48)



42 V. Rivasseau Séminaire Poincaré

Such a theory is called asymptotically free (in the ultraviolet limit) because the effec-
tive coupling tends to 0 with the cutoff for a finite fixed small renormalized coupling.
Physically the interaction is turned off at small distances. This theory is in agreement
with scattering experiments which see a collection of almost free particles (quarks and
gluons) inside the hadrons at very high energy. This was the main initial argument
to adopt quantum chromodynamics, a non-Abelian gauge theory with SU(3) gauge
group, as the theory of strong interactions [13].

Remark that in such asymptotically free theories which form the backbone of
today’s standard model, the running coupling constants remain bounded between far
ultraviolet “bare” scales and the lower energy scale where renormalized couplings are
measured. Ironically the point of view on early renormalization theory as a trick to
hide the ultraviolet divergences of QFT into infinite unobservable bare parameters
could not turn out to be more wrong than in the standard model. Indeed the bare
coupling constants tend to 0 with the ultraviolet cutoff, and what can be farther from
infinity than 0?

3 Non-commutative field theory

3.1 Field theory on Moyal space

The recent progresses concerning the renormalization of non-commutative field theory
have been obtained on a very simple non-commutative space namely the Moyal space.
From the point of view of quantum field theory, it is certainly the most studied space.
Let us start with its precise definition.

3.1.1 The Moyal space RDθ

Let us define E = {xµ, µ ∈ J1, DK} and C〈E〉 the free algebra generated by E. Let Θ
a D ×D non-degenerate skew-symmetric matrix (which requires D even) and I the
ideal of C〈E〉 generated by the elements xµxν − xνxµ− ıΘµν . The Moyal algebra AΘ

is the quotient C〈E〉/I. Each element in AΘ is a formal power series in the xµ’s for
which the relation [xµ, xν ] = ıΘµν holds.

Usually, one puts the matrix Θ into its canonical form :

Θ =


0 θ1

−θ1 0 (0)

. . .

(0)
0 θD/2

−θD/2 0

 . (3.1)

Sometimes one even set θ = θ1 = · · · = θD/2. The preceeding algebraic definition
whereas short and precise may be too abstract to perform real computations. One then
needs a more analytical definition. A representation of the algebraAΘ is given by some
set of functions on Rd equipped with a non-commutative product: the Groenwald-
Moyal product. What follows is based on [86].

The Algebra AΘ The Moyal algebra AΘ is the linear space of smooth and rapidly
decreasing functions S(RD) equipped with the non-commutative product defined by:
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∀f, g ∈ SD
def= S(RD),

(f ?Θ g)(x) =
∫

RD

dDk

(2π)D
dDy f(x+ 1

2Θ · k)g(x+ y)eık·y (3.2)

=
1

πD |det Θ|

∫
RD

dDydDz f(x+ y)g(x+ z)e−2ıyΘ−1z . (3.3)

This algebra may be considered as the “functions on the Moyal space RDθ ”. In the
following we will write f ? g instead of f ?Θ g and use : ∀f, g ∈ SD, ∀j ∈ J1, 2NK,

(Ff)(x) =
∫
f(t)e−ıtxdt (3.4)

for the Fourier transform and

(f � g)(x) =
∫
f(x− t)g(t)e2ıxΘ

−1tdt (3.5)

for the twisted convolution. As on RD, the Fourier transform exchange product and
convolution:

F (f ? g) =F (f) �F (g) (3.6)
F (f � g) =F (f) ?F (g). (3.7)

One also shows that the Moyal product and the twisted convolution are associative:

((f � g) � h)(x) =
∫
f(x− t− s)g(s)h(t)e2ı(xΘ

−1t+(x−t)Θ−1s)ds dt (3.8)

=
∫
f(u− v)g(v − t)h(t)e2ı(xΘ

−1v−tΘ−1v)dt dv

=(f � (g � h))(x). (3.9)

Using (3.7), we show the associativity of the ?-product. The complex conjugation is
involutive in AΘ

f ?Θ g =ḡ ?Θ f̄ . (3.10)

One also have

f ?Θ g =g ?−Θ f. (3.11)

Proposition 3.1 (Trace). For all f, g ∈ SD,∫
dx (f ? g)(x) =

∫
dx f(x)g(x) =

∫
dx (g ? f)(x) . (3.12)

Proof. ∫
dx (f ? g)(x) =F (f ? g)(0) = (Ff �Fg)(0) (3.13)

=
∫

Ff(−t)Fg(t)dt = (Ff ∗Fg)(0) = F (fg)(0)

=
∫
f(x)g(x)dx

where ∗ is the ordinary convolution.
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In the following sections, we will need lemma 3.2 to compute the interaction
terms for the Φ?44 and Gross-Neveu models. We write x ∧ y def= 2xΘ−1y.

Lemma 3.2. For all j ∈ J1, 2n+ 1K, let fj ∈ AΘ. Then

(f1 ?Θ · · · ?Θ f2n) (x) =
1

π2D det2 Θ

∫ 2n∏
j=1

dxjfj(xj) e−ıx∧
P2n

i=1(−1)i+1xi e−ıϕ2n ,

(3.14)

(f1 ?Θ · · · ?Θ f2n+1) (x) =
1

πD detΘ

∫ 2n+1∏
j=1

dxjfj(xj) δ
(
x−

2n+1∑
i=1

(−1)i+1xi

)
e−ıϕ2n+1 ,

(3.15)

∀p ∈ N, ϕp =
p∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.16)

Corollary 3.3. For all j ∈ J1, 2n+ 1K, let fj ∈ AΘ. Then∫
dx (f1 ?Θ · · · ?Θ f2n) (x) =

1
πD detΘ

∫ 2n∏
j=1

dxjfj(xj) δ
( 2n∑
i=1

(−1)i+1xi

)
e−ıϕ2n ,

(3.17)∫
dx (f1 ?Θ · · · ?Θ f2n+1) (x) =

1
πD detΘ

∫ 2n+1∏
j=1

dxjfj(xj) e−ıϕ2n+1 , (3.18)

∀p ∈ N, ϕp =
p∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.19)

The cyclicity of the product, inherited from proposition 3.1 implies: ∀f, g, h ∈
SD,

〈f ? g, h〉 =〈f, g ? h〉 = 〈g, h ? f〉 (3.20)

and allows to extend the Moyal algebra by duality into an algebra of tempered dis-
tributions.

Extension by Duality Let us first consider the product of a tempered distribution
with a Schwartz-class function. Let T ∈ S ′D and h ∈ SD. We define 〈T, h〉 def= T (h)
and 〈T ∗, h〉 = 〈T, h〉.

Definition 3.1. Let T ∈ S ′D, f, h ∈ SD, we define T ? f and f ? T by

〈T ? f, h〉 =〈T, f ? h〉, (3.21)
〈f ? T, h〉 =〈T, h ? f〉. (3.22)

For example, the identity 1 as an element of S ′D is the unity for the ?-product:
∀f, h ∈ SD,

〈1 ? f, h〉 =〈1, f ? h〉 (3.23)

=
∫

(f ? h)(x)dx =
∫
f(x)h(x)dx

=〈f, h〉.
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We are now ready to define the linear space M as the intersection of two sub-spaces
ML and MR of S ′D.

Definition 3.2 (Multipliers algebra).

ML = {S ∈ S ′D : ∀f ∈ SD, S ? f ∈ SD} , (3.24)
MR = {R ∈ S ′D : ∀f ∈ SD, f ? R ∈ SD} , (3.25)
M =ML ∩MR. (3.26)

One can show that M is an associative ∗-algebra. It contains, among others, the
identity, the polynomials, the δ distribution and its derivatives. Then the relation

[xµ, xν ] =ıΘµν , (3.27)

often given as a definition of the Moyal space, holds in M (but not in AΘ).

3.1.2 The Φ?4-theory on R4
θ

The simplest non-commutative model one may consider is the Φ?4-theory on the four-
dimensional Moyal space. Its Lagrangian is the usual (commutative) one where the
pointwise product is replaced by the Moyal one:

S[φ] =
∫
d4x
(
− 1

2
∂µφ ? ∂

µφ+
1
2
m2 φ ? φ+

λ

4
φ ? φ ? φ ? φ

)
(x). (3.28)

Thanks to the formula (3.3), this action can be explicitly computed. The interaction
part is given by the corollary 3.3:∫

dxφ?4(x) =
∫ 4∏

i=1

dxi φ(xi) δ(x1 − x2 + x3 − x4)eıϕ, (3.29)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj .

The most obvious characteristic of the Moyal product is its non-locality. But its non-
commutativity implies that the vertex of the model (3.28) is only invariant under
cyclic permutation of the fields. This restricted invariance incites to represent the
associated Feynman graphs with ribbon propagators. One can then make a clear
distinction between planar and non-planar graphs. This will be detailed in section 4.

Thanks to the delta function in (3.29), the oscillation may be written in different
ways:

δ(x1 − x2 + x3 − x4)eıϕ =δ(x1 − x2 + x3 − x4)eıx1∧x2+ıx3∧x4 (3.30a)

=δ(x1 − x2 + x3 − x4)eıx4∧x1+ıx2∧x3 (3.30b)
=δ(x1 − x2 + x3 − x4) exp ı(x1 − x2) ∧ (x2 − x3). (3.30c)

The interaction is real and positive17:∫ 4∏
i=1

dxiφ(xi) δ(x1 − x2 + x3 − x4)eıϕ (3.31)

=
∫
dk

(∫
dxdy φ(x)φ(y)eık(x−y)+ıx∧y

)2
∈ R+.

17Another way to prove it is from (3.10), φ?4 = φ?4.
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It is also translation invariant as shows equation (3.30c).
The property 3.1 implies that the propagator is the usual one: Ĉ(p) = 1/(p2 +

m2).

3.1.3 UV/IR mixing

In the article [87], Filk computed the Feynman rules corresponding to (3.28). He
showed that the planar amplitudes equal the commutative ones whereas the non-
planar ones give rise to oscillations coupling the internal and external legs. Hence
contrary perhaps to overoptimistic initial expectations, non commutative geometry
alone does not eliminate the ultraviolet divergences of QFT. Since there are infinitely
many planar graphs with four external legs, the model (3.28) might at best be just
renormalizable in the ultraviolet regime, as ordinary φ4

4.
In fact it is not. Minwalla, Van Raamsdonk and Seiberg discovered that the

model (3.28) exhibits a new type of divergences making it non-renormalizable [37]. A
typical example is the non-planar tadpole:

k

p
=

λ

12

∫
d4k

(2π)4
eipµkνΘµν

k2 +m2

=
λ

48π2

√
m2

(Θp)2
K1(

√
m2(Θp)2) '

p→0
p−2. (3.32)

If p 6= 0, this amplitude is finite but, for small p, it diverges like p−2. In other words, if
we put an ultraviolet cut-off Λ to the k-integral, the two limits Λ →∞ and p→ 0 do
not commute. This is the UV/IR mixing phenomena. A chain of non-planar tadpoles,
inserted in bigger graphs, makes divergent any function (with six points or more for
example). But this divergence is not local and can’t be absorbed in a mass redefinition.
This is what makes the model non-renormalizable. We will see in sections 6.4 and 7
that the UV/IR mixing results in a coupling of the different scales of the theory. We
will also note that we should distinguish different types of mixing.

The UV/IR mixing was studied by several groups. First, Chepelev and Roiban
[48] gave a power counting for different scalar models. They were able to identify
the divergent graphs and to classify the divergences of the theories thanks to the
topological data of the graphs. Then V. Gayral [88] showed that UV/IR mixing is
present on all isospectral deformations (they consist in curved generalizations of the
Moyal space and of the non-commutative torus). For this, he considered a scalar
model (3.28) and discovered contributions to the effective action which diverge when
the external momenta vanish. The UV/IR mixing is then a general characteristic of
the non-commutative theories, at least on these deformations.

3.2 The Grosse-Wulkenhaar breakthrough

The situation remained unchanged until H. Grosse and R. Wulkenhaar discovered a
way to define a renormalizable non-commutative model. We will detail their result in
section 4 but the main message is the following. By adding an harmonic term to the
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Lagrangian (3.28),

S[φ] =
∫
d4x
(
− 1

2
∂µφ ? ∂

µφ+
Ω2

2
(x̃µφ) ? (x̃µφ) +

1
2
m2 φ ? φ+

λ

4
φ ? φ ? φ ? φ

)
(x)

(3.33)

where x̃ = 2Θ−1x and the metric is Euclidean, the model, in four dimensions, is
renormalizable at all orders of perturbation [40]. We will see in section 7 that this
additional term give rise to an infrared cut-off and allows to decouple the different
scales of the theory. The new model (3.33), which we call vulcanized Φ?44 , does not
exhibit any mixing. This result is very important because it opens the way towards
other non-commutative field theories. Remember that we call vulcanization the pro-
cedure consisting in adding a new term to a Lagrangian of a non-commutative theory
in order to make it renormalizable, see footnote 9.

The propagator C of this Φ4 theory is the kernel of the inverse operator −∆ +
Ω2x̃2 +m2. It is known as the Mehler kernel [89, 50]:

C(x, y) =
Ω2

θ2π2

∫ ∞

0

dt

sinh2(2Ω̃t)
e−

eΩ
2 coth(2eΩt)(x−y)2− eΩ

2 tanh(2eΩt)(x+y)2−m2t. (3.34)

Langmann and Szabo remarked that the quartic interaction with Moyal product is
invariant under a duality transformation. It is a symmetry between momentum and
direct space. The interaction part of the model (3.33) is (see equation (3.17))

Sint[φ] =
∫
d4x

λ

4
(φ ? φ ? φ ? φ)(x) (3.35)

=
∫ 4∏

a=1

d4xa φ(xa)V (x1, x2, x3, x4) (3.36)

=
∫ 4∏

a=1

d4pa
(2π)4

φ̂(pa) V̂ (p1, p2, p3, p4) (3.37)

with

V (x1, x2, x3, x4) =
λ

4
1

π4 det Θ
δ(x1 − x2 + x3 − x4) cos(2(Θ−1)µν(x

µ
1x

ν
2 + xµ3x

ν
4))

V̂ (p1, p2, p3, p4) =
λ

4
(2π)4δ(p1 − p2 + p3 − p4) cos(

1
2
Θµν(p1,µp2,ν + p3,µp4,ν))

where we used a cyclic Fourier transform: φ̂(pa) =
∫
dx e(−1)aıpaxaφ(xa). The trans-

formation

φ̂(p) ↔ π2
√
|det Θ|φ(x), pµ ↔ x̃µ (3.38)

exchanges (3.36) and (3.37). In addition, the free part of the model (3.28) isn’t co-
variant under this duality. The vulcanization adds a term to the Lagrangian which
restores the symmetry. The theory (3.33) is then covariant under the Langmann-Szabo
duality:

S[φ;m,λ,Ω] 7→Ω2 S[φ;
m

Ω
,
λ

Ω2
,

1
Ω

]. (3.39)

By symmetry, the parameter Ω is confined in [0, 1]. Let us note that for Ω = 1, the
model is invariant.
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The interpretation of that harmonic term is not yet clear. But the vulcanization
procedure already allowed to prove the renormalizability of several other models on
Moyal spaces such that Φ?42 [39], φ3

2,4 [64, 65] and the LSZ models [43, 44, 45]. These
last ones are of the type

S[φ] =
∫
dnx

(1
2
φ̄ ? (−∂µ + x̃µ +m)2φ+

λ

4
φ̄ ? φ ? φ̄ ? φ

)
(x). (3.40)

By comparison with (3.33), one notes that here the additional term is formally equiv-
alent to a fixed magnetic background. Therefore such a model is invariant under
magnetic translations which combine a translation and a phase shift on the field.
This model is invariant under the above duality and is exactly soluble. Let us remark
that the complex interaction in (3.40) makes the Langmann-Szabo duality more nat-
ural. It doesn’t need a cyclic Fourier transform. The φ?3 model at Ω = 1 also exhibits
a soluble structure [64, 65, 66].

3.3 The non-commutative Gross-Neveu model

Apart from the Φ?44 , the modified Bosonic LSZ model [47] and supersymmetric the-
ories, we now know several renormalizable non-commutative field theories. Never-
theless they either are super-renormalizable (Φ?42 [39]) or (and) studied at a special
point in the parameter space where they are solvable (Φ?32 ,Φ

?3
4 [64, 65], the LSZ

models [43, 44, 45]). Although only logarithmically divergent for parity reasons, the
non-commutative Gross-Neveu model is a just renormalizable quantum field theory
as Φ?44 . One of its main interesting features is that it can be interpreted as a non-
local Fermionic field theory in a constant magnetic background. Then apart from
strengthening the “vulcanization” procedure to get renormalizable non-commutative
field theories, the Gross-Neveu model may also be useful for the study of the quan-
tum Hall effect. It is also a good first candidate for a constructive study [9] of a
non-commutative field theory as Fermionic models are usually easier to construct.
Moreover its commutative counterpart being asymptotically free and exhibiting dy-
namical mass generation [90, 91, 92], a study of the physics of this model would be
interesting.

The non-commutative Gross-Neveu model (GN2
Θ) is a Fermionic quartically in-

teracting quantum field theory on the Moyal plane R2
θ. The skew-symmetric matrix

Θ is

Θ =
(

0 −θ
θ 0

)
. (3.41)

The action is

S[ψ̄, ψ] =
∫
dx
(
ψ̄
(
−ı/∂ + Ω/̃x+m+ µγ5

)
ψ + Vo(ψ̄, ψ) + Vno(ψ̄, ψ)

)
(x) (3.42)

where x̃ = 2Θ−1x, γ5 = ıγ0γ1 and V = Vo+Vno is the interaction part given hereafter.
The µ-term appears at two-loop order. We use a Euclidean metric and the Feynman
convention /a = γµaµ. The γ0 and γ1 matrices form a two-dimensional representation
of the Clifford algebra {γµ, γν} = −2δµν . Let us remark that the γµ’s are then skew-
Hermitian: γµ† = −γµ.
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Propagator The propagator corresponding to the action (3.42) is given by the fol-
lowing lemma:

Lemma 3.4 (Propagator [50]). The propagator of the Gross-Neveu model is

C(x, y) =
∫
dµC(ψ̄, ψ)ψ(x)ψ̄(y) =

(
−ı/∂ + Ω/̃x+m

)−1
(x, y) (3.43)

=
∫ ∞

0

dtC(t;x, y),

C(t;x, y) = − Ω
θπ

e−tm
2

sinh(2Ω̃t)
e−

eΩ
2 coth(2eΩt)(x−y)2+ıΩx∧y (3.44)

×
{
ıΩ̃ coth(2Ω̃t)(/x− /y) + Ω(/̃x− /̃y)−m

}
e−2ıΩtγΘ−1γ

with Ω̃ = 2Ω
θ et x ∧ y = 2xΘ−1y.

We also have e−2ıΩtγΘ−1γ = cosh(2Ω̃t)12 − ı θ2 sinh(2Ω̃t)γΘ−1γ.

If we want to study a N -color model, we can consider a propagator diagonal in
these color indices.

Interactions Concerning the interaction part V , recall that (see corollary 3.3) for
any f1, f2, f3, f4 in AΘ,∫

dx (f1 ? f2 ? f3 ? f4) (x) =
1

π2 detΘ

∫ 4∏
j=1

dxjfj(xj) δ(x1 − x2 + x3 − x4)e−ıϕ,

(3.45)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.46)

This product is non-local and only invariant under cyclic permutations of the fields.
Then, contrary to the commutative Gross-Neveu model, for which there exits only
one spinorial interaction, the GN2

Θ model has, at least, six different interactions: the
orientable ones

Vo =
λ1

4

∫
dx
(
ψ̄ ? ψ ? ψ̄ ? ψ

)
(x) (3.47a)

+
λ2

4

∫
dx
(
ψ̄ ? γµψ ? ψ̄ ? γµψ

)
(x) (3.47b)

+
λ3

4

∫
dx
(
ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

)
(x), (3.47c)

where ψ’s and ψ̄’s alternate and the non-orientable ones

Vno =
λ4

4

∫
dx
(
ψ ? ψ̄ ? ψ̄ ? ψ

)
(x) (3.48a)

+
λ5

4

∫
dx
(
ψ ? γµψ̄ ? ψ̄ ? γµψ

)
(x) (3.48b)

+
λ6

4

∫
dx
(
ψ ? γ5ψ̄ ? ψ̄ ? γ5ψ

)
(x). (3.48c)

All these interactions have the same x kernel thanks to the equation (3.45). The
reason for which we call these interactions orientable or not will be clear in section 7.
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4 Multi-scale analysis in the matrix basis

The matrix basis is a basis for Schwartz-class functions. In this basis, the Moyal
product becomes a simple matrix product. Each field is then represented by an infinite
matrix [86, 39, 93].

4.1 A dynamical matrix model

4.1.1 From the direct space to the matrix basis

In the matrix basis, the action (3.33) takes the form:

S[φ] =(2π)D/2
√

det Θ
(1

2
φ∆φ+

λ

4
Trφ4

)
(4.1)

where φ = φmn, m, n ∈ ND/2 and

∆mn,kl =
D/2∑
i=1

(
µ2

0 +
2
θ
(mi + ni + 1)

)
δmlδnk − 2

θ
(1− Ω2) (4.2)(√

(mi + 1)(ni + 1) δmi+1,liδni+1,ki
+
√
mini δmi−1,liδni−1,ki

)∏
j 6=i

δmj ljδnjkj
.

The (four-dimensional) matrix ∆ represents the quadratic part of the Lagragian. The
first difficulty to study the matrix model (4.1) is the computation of its propagator
G defined as the inverse of ∆ :∑

r,s∈ND/2

∆mn;rsGsr;kl =
∑

r,s∈ND/2

Gmn;rs∆sr;kl = δmlδnk. (4.3)

Fortunately, the action is invariant under SO(2)D/2 thanks to the form (3.1) of
the Θ matrix. It implies a conservation law

∆mn,kl =0 ⇐⇒ m+ k 6= n+ l. (4.4)

The result is [40, 39]

Gm,m+h;l+h,l =
θ

8Ω

∫ 1

0

dα
(1− α)

µ2
0θ

8Ω +( D
4 −1)

(1 + Cα)
D
2

D
2∏
s=1

G
(α)
ms,ms+hs;ls+hs,ls , (4.5)

G
(α)
m,m+h;l+h,l =

(√
1− α

1 + Cα

)m+l+h min(m,l)∑
u=max(0,−h)

A(m, l, h, u)
(

Cα(1 + Ω)√
1− α(1− Ω)

)m+l−2u

,

where A(m, l, h, u) =
√(

m
m−u

)(
m+h
m−u

)(
l

l−u
)(
l+h
l−u
)

and C is a function in Ω : C(Ω) =
(1−Ω)2

4Ω . The main advantage of the matrix basis is that it simplifies the interaction
part: φ?4 becomes Trφ4. But the propagator becomes very complicated.

Let us remark that the matrix model (4.1) is dynamical : its quadratic part is
not trivial. Usually, matrix models are local.

Definition 4.1. A matrix model is called local if Gmn;kl = G(m,n)δmlδnk and non-local
otherwise.

In the matrix theories, the Feynman graphs are ribbon graphs. The propagator
Gmn;kl is then represented by the Figure 6. In a local matrix model, the propagator
preserves the index values along the trajectories (simple lines).
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m

n = m + h k = l + h

l

Figure 6: Matrix Propagator

4.1.2 Topology of ribbon graphs

The power counting of a matrix model depends on the topological data of its graphs.
The figure 7 gives two examples of ribbon graphs. Each ribbon graph may be drawn
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(a) Planar
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//
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(b) Non-planar

Figure 7: Ribbon Graphs

on a two-dimensional manifold. Actually each graph defines a surface on which it is
drawn. Let a graph G with V vertices, I internal propagators (double lines) and F
faces (made of simple lines). The Euler characteristic

χ =2− 2g = V − I + F (4.6)

gives the genus g of the manifold. One can make this clear by passing to the dual
graph. The dual of a given graph G is obtained by exchanging faces and vertices.
The dual graphs of the Φ?4 theory are tesselations of the surfaces on which they are
drawn. Moreover each direct face broken by external legs becomes, in the dual graph,
a puncture. If among the F faces of a graph, B are broken, this graph may be drawn
on a surface of genus g = 1− 1

2 (V − I + F ) with B punctures. The figure 8 gives the
topological data of the graphs of the figure 7.

4.2 Multi-scale analysis

In [42], a multi-scale analysis was introduced to complete the rigorous study of the
power counting of the non-commutative Φ?4 theory.

4.2.1 Bounds on the propagator

Let G a ribbon graph of the Φ?44 theory with N external legs, V vertices, I internal
lines and F faces. Its genus is then g = 1− 1

2 (V −I+F ). Four indices {m,n; k, l} ∈ N2

are associated to each internal line of the graph and two indices to each external line,
that is to say 4I + 2N = 8V indices. But, at each vertex, the left index of a ribbon
equals the right one of the neighbor ribbon. This gives rise to 4V independent iden-
tifications which allows to write each index in terms of a set I made of 4V indices,
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oo
//

�� OO

//
oo

//
oo

OO��
OO

��

//
oo

OO��

OO

//

=⇒
//

oo

OO

��
OO

//

V=3
I=3
F=2
B=2

 =⇒ g = 0

//
oo��
MMQQ




//
oo oo

//
=⇒ //

oo��
MMQQ





V=2
I=3
F=1
B=1
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Figure 8: Topological Data of Ribbon Graphs

four per vertex, for example the left index of each half-ribbon.

The graph amplitude is then

AG =
∑
I

∏
δ∈G

Gmδ(I),nδ(I);kδ(I),lδ(I) δmδ−lδ,nδ−kδ
, (4.7)

where the four indices of the propagator G of the line δ are function of I and written
{mδ(I), nδ(I); kδ(I), lδ(I)}. We decompose each propagator, given by (4.5):

G =
∞∑
i=0

Gi thanks to
∫ 1

0

dα =
∞∑
i=1

∫ M−2(i−1)

M−2i

dα, M > 1. (4.8)

We have an associated decomposition for each amplitude

AG =
∑
µ

AG,µ , (4.9)

AG,µ =
∑
I

∏
δ∈G

Giδmδ(I),nδ(I);kδ(I),lδ(I) δmδ(I)−lδ(I),nδ(I)−kδ(I) , (4.10)

where µ = {iδ} runs over the all possible assignments of a positive integer iδ to each
line δ. We proved the following four propositions:

Proposition 4.1. For M large enough, there exists a constant K such that, for Ω ∈
[0.5, 1], we have the uniform bound

Gim,m+h;l+h,l 6 KM−2ie−
Ω
3M

−2i‖m+l+h‖. (4.11)
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Proposition 4.2. For M large enough, there exists two constants K and K1 such that,
for Ω ∈ [0.5, 1], we have the uniform bound

Gim,m+h;l+h,l

6 KM−2ie−
Ω
4M

−2i‖m+l+h‖

D
2∏
s=1

min

1,
(
K1 min(ms, ls,ms + hs, ls + hs)

M2i

)|ms−ls|
2

 .

(4.12)

This bound allows to prove that the only diverging graphs have either a constant
index along the trajectories or a total jump of 2.

Proposition 4.3. For M large enough, there exists a constant K such that, for Ω ∈
[ 23 , 1], we have the uniform bound

p∑
l=−m

Gim,p−l,p,m+l 6 KM−2i e−
Ω
4M

−2i(‖p‖+‖m‖) . (4.13)

This bound shows that the propagator is almost local in the following sense: with
m fixed, the sum over l doesn’t cost anything (see Figure 6). Nevertheless the sums
we’ll have to perform are entangled (a given index may enter different propagators)
so that we need the following proposition.

Proposition 4.4. For M large enough, there exists a constant K such that, for Ω ∈
[ 23 , 1], we have the uniform bound

∞∑
l=−m

max
p>max(l,0)

Gim,p−l;p,m+l 6 KM−2ie−
Ω
36M

−2i‖m‖ . (4.14)

We refer to [42] for the proofs of these four propositions.

4.2.2 Power counting

About half of the 4V indices initially associated to a graph is determined by the
external indices and the delta functions in (4.7). The other indices are summation
indices. The power counting consists in finding which sums cost M2i and which cost
O(1) thanks to (4.13). The M2i factor comes from (4.11) after a summation over an
index18 m ∈ N2,

∞∑
m1,m2=0

e−cM
−2i(m1+m2) =

1
(1− e−cM−2i)2

=
M4i

c2
(1 +O(M−2i)). (4.15)

We first use the delta functions as much as possible to reduce the set I to a
true minimal set I ′ of independent indices. For this, it is convenient to use the dual
graphs where the resolution of the delta functions is equivalent to a usual momentum
routing.

The dual graph is made of the same propagators than the direct graph ex-
cept the position of their indices. Whereas in the original graph we have Gmn;kl =

m

n k

l
, the position of the indices in a dual propagator is

Gmn;kl =
m

l k

n
. (4.16)

18Recall that each index is in fact made of two indices, one for each symplectic pair of R4
θ.
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The conservation δl−m,−(n−k) in (4.7) implies that the difference l −m is conserved
along the propagator. These differences behave like angular momenta and the conser-
vation of the differences ` = l−m and −` = n−k is nothing else than the conservation
of the angular momentum thanks to the symmetry SO(2)×SO(2) of the action (4.1):

m

l k

n
δl −δl l = m+ ` , n = k + (−`). (4.17)

The cyclicity of the vertices implies the vanishing of the sum of the angular momenta
entering a vertex. Thus the angular momentum in the dual graph behaves exactly like
the usual momentum in ordinary Feynman graphs.

We know that the number of independent momenta is exactly the number L′

(= I−V ′+1 for a connected graph) of loops in the dual graph. Each index at a (dual)
vertex is then given by a unique reference index and a sum of momenta. If the dual
vertex under consideration is an external one, we choose an external index for the ref-
erence index. The reference indices in the dual graph correspond to the loop indices in
the direct graph. The number of summation indices is then V ′−B+L′ = I+(1−B)
where B > 0 is the number of broken faces of the direct graph or the number of
external vertices in the dual graph.

By using a well-chosen order on the lines, an optimized tree and a L1 − L∞

bound, one can prove that the summation over the angular momenta does not cost
anything thanks to (4.13). Recall that a connected component is a subgraph for which
all internal lines have indices greater than all its external ones. The power counting
is then:

AG 6K ′V
∑
µ

∏
i,k

Mω(Gi
k) (4.18)

with ω(Gik) =4(V ′i,k −Bi,k)− 2Ii,k = 4(Fi,k −Bi,k)− 2Ii,k (4.19)

=(4−Ni,k)− 4(2gi,k +Bi,k − 1)

where Ni,k, Vi,k, Ii,k = 2Vi,k − Ni,k

2 , Fi,k and Bi,k are respectively the numbers of
external legs, of vertices, of (internal) propagators, of faces and broken faces of the
connected component Gik ; gi,k = 1− 1

2 (Vi,k − Ii,k + Fi,k) is its genus. We have

Theorem 4.5. The sum over the scales attributions µ converges if ∀i, k, ω(Gik) < 0.

We recover the power counting obtained in [38].
From this point on, renormalizability of Φ?44 can proceed (however remark that it

remains limited to Ω ∈ [0.5, 1] by the technical estimates such as (4.11); this limitation
is overcome in the direct space method below).

The multiscale analysis allows to define the so-called effective expansion, in be-
tween the bare and the renormalized expansion, which is optimal, both for physical
and for constructive purposes [9]. In this effective expansion only the subcontribu-
tions with all internal scales higher than all external scales have to be renormalized
by counterterms of the form of the initial Lagrangian.

In fact only planar such subcontributions with a single external face must be
renormalized by such counterterms. This follows simply from the Grosse-Wulkenhaar
moves defined in [38]. These moves translate the external legs along the outer border of
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the planar graph, up to irrelevant corrections, until they all merge together into a term
of the proper Moyal form, which is then absorbed in the effective constants definition.
This requires only the estimates (4.11)-(4.14), which were checked numerically in [38].

In this way the relevant and marginal counterterms can be shown to be of the
Moyal type, namely renormalize the parameters λ, m and Ω19.

Notice that in the multiscale analysis there is no need for the relatively compli-
cated use of Polchinski’s equation [46] made in [38]. Polchinski’s method, although
undoubtedly very elegant for proving perturbative renormalizability does not seem
directly suited to constructive purposes, even in the case of simple Fermionic models
such as the commutative Gross Neveu model, see e.g. [94].

The BPHZ theorem itself for the renormalized expansion follows from finiteness
of the effective expansion by developing the counterterms still hidden in the effective
couplings. Its own finiteness can be checked e.g. through the standard classification of
forests [9]. Let us however recall once again that in our opinion the effective expansion,
not the renormalized one is the more fundamental object, both to describe the physics
and to attack deeper mathematical problems, such as those of constructive theory
[9, 77].

5 Hunting the Landau Ghost

The matrix base simplifies very much at Ω = 1, where the matrix propagator becomes
diagonal, i.e. conserves exactly indices. This property has been used for the general
proof that the beta function of the theory vanishes in the ultraviolet regime [58]. At
the moment this is the only concrete result that shows that NCVQFT is definitely
better behaved than QFT. It also opens the perspective of a full non-perturbative
construction of the model.

We summarize now the sequence of three papers [52]-[57]-[58] which lead to this
exciting result, using the simpler notations of [58].

5.1 One Loop

The propagator in the matrix base at Ω = 1 is

Cmn;kl = Gmnδmlδnk ; Gmn =
1

A+m+ n
, (5.1)

where A = 2 + µ2/4, m,n ∈ N2 (µ being the mass) and we use the notations

δml = δm1l1δm2l2 , m+m = m1 +m2 + n1 + n2 . (5.2)

We focus on the complex φ̄ ? φ ? φ̄ ? φ theory, since the result for the real case is
similar [57].

The generating functional is:

Z(η, η̄) =
∫
dφdφ̄ e−S(φ̄,φ)+F (η̄,η,;φ̄,φ)

F (η̄, η; φ̄, φ) = φ̄η + η̄φ

S(φ̄, φ) = φ̄Xφ+ φXφ̄+Aφ̄φ+
λ

2
φφ̄φφ̄ (5.3)

19The wave function renormalization i.e. renormalization of the ∂µφ ? ∂µφ term can be absorbed
in a rescaling of the field, called “field strength renormalization.”
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where traces are implicit and the matrix Xmn stands for mδmn. S is the action and
F the external sources.

We denote Γ4(0, 0, 0, 0) the amputated one particle irreducible four point func-
tion and Σ(0, 0) the amputated one particle irreducible two point function with
external indices set to zero. The wave function renormalization is ∂LΣ = ∂RΣ =
Σ(1, 0) − Σ(0, 0) [57], and the corresponding field strength renormalization is Z =
(1− ∂LΣ(0, 0)) = (1− ∂RΣ(0, 0)) The main result to prove is that after field strength
renormalization20 the effective coupling is asymptotically constant, hence:

Theorem 5.1. The equation:

Γ4(0, 0, 0, 0) = λZ2 (5.4)

holds up to irrelevant terms to all orders of perturbation, either as a bare equation
with fixed ultraviolet cutoff, or as an equation for the renormalized theory. In the latter
case λ should still be understood as the bare constant, but reexpressed as a series in
powers of λren.

The field strength renormalization at one loop is

Z = 1− aλ (5.5)

where we can keep in a only the coefficient of the logarithmic divergence, as the rest
does not contribute but to finite irrelevant corrections.

Figure 9: Two Point Graphs at one Loops: the up and down tadpoles

To compute a we should add the wave function renormalization for the two
tadpoles T up and T down of Figure 9. These two graphs have both a coupling
constant −λ/2, and a combinatorial factor 2 for choosing to which leg of the vertex
the external φ̄ contracts. Then the logarithmic divergence of T up is∑

p

(
1

m+ p+A
− 1
p+A

) = −
∑
p

[
m

(m+ p+A)(p+A)
] (5.6)

so it corresponds to the renormalization of the coefficient of the m factor in Gm,n
in 5.1, with logarithmic divergence λ

∑
p[

1
p2 ]. Similarly the logarithmic divergence of

T down gives the same renormalization but for the n factor in Gm,n in 5.1.
Altogether we find therefore that

a = +
∑
p

[
1
p2

] (5.7)
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Figure 10: Four Point Graph at one Loop
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Figure 11: Four Point Graphs at two Loops

In the real case we have a combinatoric factor 4 instead of 2, but the coupling
constant is λ/4, so a is the same.

The four point function perturbative expansion at one loop is

Γ4(0, 0, 0, 0) = −λ[1− a′λ]. (5.8)

Only the graph B1 of Figure 5.1) contributes to a′. It has a prefactor 1
2! (λ/2)2 and

a combinatoric factor 24 for contractions, since there is a factor 2 to choose whether
the bubble is ”vertical or horizontal” ie if the horizontal bubble of Figure 5.1) is of
φ̄ ? φ ? φ̄ ?φ or of φ̄ ? φ ? φ̄ ?φ type, then a factor 2 to choose to which vertex the first
external; φ̄ contracts, then a factor 2 for the leg to which it contracts in that vertex
and finally another factor 2 for the leg to which the other external φ̄ contracts.

The corresponding sum gives

a′ = (24λ/8)
∑
p

1
p2 = 2a (B1) . (5.9)

so that at one loop equation 5.4 holds. In the real case we have a combinatoric factor
43 instead of 24, but the coupling constant is λ/4, so a is the same and 5.4 holds.

5.2 Two and Three Loops

This computation was extended to two and three loops in [57]. The results were given
in the form of tables for the discrete divergent sums and combinatoric weights of all

20We recall that in the ordinary commutative φ4
4 field theory there is no one loop wave-function

renormalization, hence the Landau ghost can be seen directly on the four point function renormal-
ization at one loop.
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Figure 12: Two Point Graphs at Two Loops

planar regular graphs which appears at two and three loops in Γ4 and Z. The equation
5.4 holds again, both in the real and complex cases.

Here we simply reproduce the list of contributing Feynman graphs. Indeed it is
interesting to notice that although at large order there are less planar regular graphs
than the general graphs of the commutative theory, the effect is opposite at small
orders.

5.3 The General Ward Identity

In this section, essentially reproduced from [58], we prove a general Ward identity
which allows to check that theorem 5.1 continue to hold at any order in perturbation
theory.

We orient the propagators from a φ̄ to a φ. For a field φ̄ab we call the index
a a left index and the index, b a right index. The first (second) index of a φ̄ always
contracts with the second (first) index of a φ. Consequently for φcd, c is a right index
and d is a left index.

Let U = eıB with B a small hermitian matrix. We consider the “left” (as it acts
only on the left indices) change of variables:

φU = φU ; φ̄U = U†φ̄ . (5.10)

There is a similar “right” change of variables. The variation of the action is, at first
order:

δS = φUXU†φ̄− φXφ̄ ≈ ı
(
φBXφ̄− φXBφ̄

)
= ıB

(
Xφ̄φ− φ̄φX

)
(5.11)

and the variation of the external sources is:

δF = U†φ̄η − φ̄η + η̄φU − η̄φ ≈ −ıBφ̄η + ıη̄φB

= ıB
(
− φ̄η + η̄φ). (5.12)
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Figure 13: Two Point Graphs at Three Loops

Figure 14: Four Point Graphs at Three Loops, Part I



60 V. Rivasseau Séminaire Poincaré

Figure 15: Four Point Graphs at Three Loops, Part II

We obviously have:

δ lnZ
δBba

= 0 =
1

Z(η̄, η)

∫
dφ̄dφ

(
− δS

δBba
+

δF

δBba

)
e−S+F

=
1

Z(η̄, η)

∫
dφ̄dφ e−S+F

(
− [Xφ̄φ− φ̄φX]ab + [−φ̄η + η̄φ]ab

)
. (5.13)

We now apply ∂η∂η̄|η=η̄=0 on the above expression. As we have at most two
insertions, we get only the connected components of the correlation functions.

0 =< ∂η∂η̄
(
− [Xφ̄φ− φ̄φX]ab + [−φ̄η + η̄φ]ab

)
eF (η̄,η)|0 >c , (5.14)

which gives:

<
∂(η̄φ)ab
∂η̄

∂(φ̄η)
∂η

− ∂(φ̄η)ab
∂η

∂(η̄φ)
∂η̄

− [Xφ̄φ− φ̄φX]ab
∂(η̄φ)
∂η̄

∂(φ̄η)
∂η

>c= 0. (5.15)

Using the explicit form of X we get:

(a− b) < [φ̄φ]ab
∂(η̄φ)
∂η̄

∂(φ̄η)
∂η

>c=<
∂(η̄φ)ab
∂η̄

∂(φ̄η)
∂η

>c − <
∂(φ̄η)ab
∂η

∂(η̄φ)
∂η̄

> ,

and for η̄βαηνµ we get:

(a− b) < [φ̄φ]abφαβφ̄µν >c=< δaβφαbφ̄µν >c − < δbµφ̄aνφαβ >c (5.16)

We restrict to terms in the above expressions which are planar with a single
external face, as all others are irrelevant. Such terms have α = ν, a = β and b = µ.
The Ward identity for the 2 point function reads:

(a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c (5.17)
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Figure 16: The Ward identity for a 2p point function with insertion on the left face

(repeated indices are not summed).
Derivating further we get:

(a− b) < [φ̄φ]ab∂η̄1(η̄φ)∂η1(φ̄η)∂η̄2(η̄φ)∂η2(φ̄η) >c=

< ∂η̄1(η̄φ)∂η1(φ̄η)
[
∂η̄2(η̄φ)ab∂η2(φ̄η)− ∂η2(φ̄η)ab∂η̄2(η̄φ)

]
>c +1 ↔ 2 . (5.18)

Take η̄1 βα, η1 νµ, η̄2 δγ and η2 σρ. We get:

(a− b) < [φ̄φ]abφαβφ̄µνφγδφ̄ρσ >c (5.19)
=< φαβφ̄µνδaδφγbφ̄ρσ >c − < φαβφ̄µνφγδφ̄aσδbρ >c +
< φγδφ̄ρσδaβφαbφ̄µν >c − < φγδφ̄ρσφαβφ̄aνδbµ >c .

Again neglecting all terms which are not planar with a single external face leads to

(a− b) < φαa[φ̄φ]abφ̄bνφνδφ̄δα >c=< φαbφ̄bνφνδφ̄δα >c − < φαaφ̄aνφνδφ̄δα >c .

(5.20)

Clearly there are similar identities for 2p point functions for any p.
The indices a and b are left indices, so that we have the Ward identity with an

insertion on a left face as represented in Fig. 16. There is a similar Ward identity
obtained with the “right” transformation, consequently with the insertion on a right
face.

5.3.1 Proof of Theorem 5.1

We start this section by some definitions: we will denote G4(m,n, k, l) the connected
four point function restricted to the planar one broken face case, where m,n, k, l are
the indices of the external face in the correct cyclic order. The first index m always
represents a left index.

Similarly, G2(m,n) is the connected planar one broken face two point function
with m,n the indices on the external face (also called the dressed propagator, see Fig.
17). G2(m,n) and Σ(m,n) are related by:

G2(m,n) =
Cmn

1− CmnΣ(m,n)
=

1
C−1
mn − Σ(m,n)

. (5.21)
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Figure 17: The dressed and the bare propagators

Gins(a, b; ...) will denote the planar one broken face connected function with one
insertion on the left border where the matrix index jumps from a to b. With this
notations the Ward identity (5.17) writes:

(a− b) G2
ins(a, b; ν) = G2(b, ν)−G2(a, ν) . (5.22)

All the identities we use, either Ward identities or the Dyson equation of mo-
tion can be written either for the bare theory or for the theory with complete mass
renormalization, which is the one considered in [57]. In the first case the parameter
A in (5.1) is the bare one, Abare and there is no mass subtraction. In the second case
the parameter A in (5.1) is Aren = Abare−Σ(0, 0), and every two point 1PI subgraph
is subtracted at 0 external indices21. ∂L denotes the derivative with respect to a left
index and ∂R the one with respect to a right index. When the two derivatives are
equal we use the generic notation ∂.

Let us prove first the Theorem in the mass-renormalized case, then in the next
subsection in the bare case. Indeed the mass renormalized theory used is free from
any quadratic divergences. Remaining logarithmic subdivergences in the ultra violet
cutoff can be removed easily by passing to the effective series as explained in [57].

Figure 18: The Dyson equation

We analyze a four point connected function G4(0,m, 0,m) with index m 6= 0
on the right borders. This explicit break of left-right symmetry is adapted to our
problem.

Consider a φ̄ external line and the first vertex hooked to it. Turning right on the
m border at this vertex we meet a new line (the slashed line in Fig. 18). The slashed
line either separates the graph into two disconnected components (G4

(1) and G4
(2) in

Fig. 18) or not (G4
(3) in Fig. 18). Furthermore, if the slashed line separates the graph

into two disconnected components the first vertex may either belong to the four point
component (G4

(1) in Fig. 18) or to the two point component (G4
(2) in Fig. 18).

21These mass subtractions need not be rearranged into forests since 1PI 2point subgraphs never
overlap non trivially.
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We stress that this is a classification of graphs: the different components depicted
in Fig. 18 take into account all the combinatoric factors. Furthermore, the setting of
the external indices to 0 on the left borders and m on the right borders distinguishes
the G4

(1) and G4
(2) from their counterparts “pointing upwards”: indeed, the latter are

classified in G4
(3)!

We have thus the Dyson equation:

G4(0,m, 0,m) = G4
(1)(0,m, 0,m) +G4

(2)(0,m, 0,m) +G4
(3)(0,m, 0,m) . (5.23)

The second term, G4
(2), is zero. Indeed the mass renormalized two point insertion

is zero, as it has the external left index set to zero. Note that this is an insertion
exclusively on the left border. The simplest case of such an insertion is a (left) tadpole.
We will (naturally) call a general insertion touching only the left border a “generalized
left tadpole”.

We will prove that G4
(1) +G4

(3) yields Γ4 = λ(1 − ∂Σ)2 after amputation of the
four external propagators.

We start with G4
(1). It is of the form:

G4
(1)(0,m, 0,m) = λC0mG

2(0,m)G2
ins(0, 0;m) . (5.24)

By the Ward identity we have:

G2
ins(0, 0;m) = lim

ζ→0
G2
ins(ζ, 0;m) = lim

ζ→0

G2(0,m)−G2(ζ,m)
ζ

= −∂LG2(0,m) . (5.25)

Using the explicit form of the bare propagator we have ∂LC−1
ab = ∂RC

−1
ab = ∂C−1

ab = 1.
Reexpressing G2(0,m) by eq. (5.21) we conclude that:

G4
(1)(0,m, 0,m) = λC0m

C0mC
2
0m[1− ∂LΣ(0,m)]

[1− C0mΣ(0,m)](1− C0mΣ(0,m))2

= λ[G2(0,m)]4
C0m

G2(0,m)
[1− ∂LΣ(0,m)] . (5.26)

The self energy is (again up to irrelevant terms ([40]):

Σ(m,n) = Σ(0, 0) + (m+ n)∂Σ(0, 0) (5.27)

Therefore up to irrelevant terms (C−1
0m = m+Aren) we have:

G2(0,m) =
1

m+Abare − Σ(0,m)
=

1
m[1− ∂Σ(0, 0)] +Aren

, (5.28)

and

C0m

G2(0,m)
= 1− ∂Σ(0, 0) +

Aren
m+Aren

∂Σ(0, 0) . (5.29)

Inserting eq. (5.29) in eq. (5.26) holds:

G4
(1)(0,m, 0,m) = λ[G2(0,m)]4

(
1− ∂Σ(0, 0) +

Aren
m+Aren

∂Σ(0, 0)
)

[1− ∂LΣ(0,m)] . (5.30)
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Figure 19: Two point insertion and opening of the loop with index p

For the G4
(3)(0,m, 0,m) one starts by “opening” the face which is “first on the

right”. The summed index of this face is called p (see Fig. 18). For bare Green functions
this reads:

G4,bare
(3) (0,m, 0,m) = C0m

∑
p

G4,bare
ins (p, 0;m, 0,m) . (5.31)

When passing to mass renormalized Green functions one must be cautious. It is pos-
sible that the face p belonged to a 1PI two point insertion in G4

(3) (see the left hand
side in Fig. 19). Upon opening the face p this 2 point insertion disappears (see right
hand side of Fig. 19)! When renormalizing, the counterterm coresponding to this kind
of two point insertion will be subtracted on the left hand side of eq.(5.31), but not
on the right hand side. In the equation for G4

(3)(0,m, 0,m) one must therefore add its
missing counterterm, so that:

G4
(3)(0,m, 0,m) = C0m

∑
p

G4
ins(0, p;m, 0,m)

− C0m(CTlost)G4(0,m, 0,m) . (5.32)

It is clear that not all 1PI 2 point insertions on the left hand side of Fig. 19 will
be “lost” on the right hand side. If the insertion is a “generalized left tadpole” it is not
“lost” by opening the face p (imagine a tadpole pointing upwards in Fig.19: clearly it
will not be opened by opening the line). We will call the 2 point 1PI insertions “lost”
on the right hand side ΣR(m,n). Denoting the generalized left tadpole TL we can
write (see Fig .20):

Σ(m,n) = TL(m,n) + ΣR(m,n) . (5.33)

Note that as TL(m,n) is an insertion exclusively on the left border, it does not depend
upon the right index n. We therefore have ∂Σ(m,n) = ∂RΣ(m,n) = ∂RΣR(m,n).

Figure 20: The self energy
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The missing mass counterterm writes:

CTlost = ΣR(0, 0) = Σ(0, 0)− TL . (5.34)

In order to evaluate ΣR(0, 0) we procede by opening its face p and using the Ward
identity (5.17), to obtain:

ΣR(0, 0) =
1

G2(0, 0)

∑
p

G2
ins(0, p; 0)

=
1

G2(0, 0)

∑
p

1
p
[G2(0, 0)−G2(p, 0)]

=
∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
. (5.35)

Using eq. (5.32) and eq. (5.35) we have:

G4
(3)(0,m, 0,m) = C0m

∑
p

G4
ins(0, p;m, 0,m)

− C0mG
4(0,m, 0,m)

∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
. (5.36)

But by the Ward identity (5.20):

C0m

∑
p

G4
ins(0, p;m, 0,m) = C0m

∑
p

1
p

(
G4(0,m, 0,m)−G4(p,m, 0,m)

)
, (5.37)

The second term in eq. (5.37), having at least three denominators linear in p, is
irrelevant 22 . Substituting eq. (5.37) in eq . (5.36) we have:

G4
(3)(0,m, 0,m) = C0m

G4(0,m, 0,m)
G2(0, 0)

∑
p

G2(p, 0)
p

. (5.38)

To conclude we must evaluate the sum in eq. (5.38). Using eq. (5.28) we have:∑
p

G2(p, 0)
p

=
∑
p

G2(p, 0)
p

( 1
G2(0, 1)

− 1
G2(0, 0)

) 1
1− ∂Σ(0, 0)

(5.39)

In order to interpret the two terms in the above equation we start by performing
the same manipulations as in eq (5.35) for ΣR(0, 1). We get:

ΣR(0, 1) =
∑
p

1
p

(
1− G2(p, 1)

G2(0, 1)

)
=
∑
p

1
p

(
1− G2(p, 0)

G2(0, 1)

)
. (5.40)

where in the second equality we have neglected an irrelevant term.
Substituting eq. (5.35) and eq. (5.40) in eq. (5.39) we get:∑
p

G2(p, 0)
p

=
ΣR(0, 0)− ΣR(0, 1)

1− ∂Σ(0, 0)
= − ∂RΣR(0, 0)

1− ∂Σ(0, 0)
= − ∂Σ(0, 0)

1− ∂Σ(0, 0)
. (5.41)

22Any perturbation order of G4(p, m, 0, m) is a polynomial in ln(p) divided by p2. Therefore the
sums over p above are always convergent.
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as ∂RΣR = ∂Σ. Hence:

G4
(3)(0,m, 0,m; p) = −C0mG

4(0,m, 0,m)
1

G2(0, 0)
∂Σ(0, 0)

1− ∂Σ(0, 0)

= −G4(0,m, 0,m)
Aren ∂Σ(0, 0)

(m+Aren)[1− ∂Σ(0, 0)]
. (5.42)

Using (5.30) and (5.42), equation (5.23) rewrites as:

G4(0,m, 0,m)
(
1 +

Aren ∂Σ(0, 0)
(m+Aren) [1− ∂Σ(0, 0)]

)
(5.43)

= λbare(G2(0,m))4
(
1− ∂Σ(0, 0) +

Aren
m+Aren

∂Σ(0, 0)
)
[1− ∂LΣ(0,m)] .

We multiply (5.43) by [1 − ∂Σ(0, 0)] and amputate four times. As the differences
Γ4(0,m, 0,m, )− Γ4(0, 0, 0, 0) and ∂LΣ(0,m)− ∂LΣ(0, 0) are irrelevant we get:

Γ4(0, 0, 0, 0) = λ(1− ∂Σ(0, 0))2 . (5.44)

5.3.2 Bare identity

Let us explain now why the main theorem is also true as an identity between bare
functions, without any renormalization, but with ultraviolet cutoff.

Using the same Ward identities, all the equations go through with only few
differences:

- we should no longer add the lost mass counterterm in (5.34)
- the term G4

(2) is no longer zero.
- equation (5.29) and all propagators now involve the bare A parameter.
But these effects compensate. Indeed the bare G4

(2) term is the left generalized
tadpole Σ− ΣR, hence

G4
(2)(0,m, 0,m) = C0,m

(
Σ(0,m)− ΣR(0,m)

)
G4(0,m, 0,m) . (5.45)

Equation (5.29) becomes up to irrelevant terms

Cbare0m

G2,bare(0,m)
= 1− ∂LΣ(0, 0) +

Abare
m+Abare

∂LΣ(0, 0)− 1
m+Abare

Σ(0, 0) (5.46)

The first term proportional to Σ(0,m) in (5.45) combines with the new term in (5.46),
and the second term proportional to ΣR(0,m) in (5.45) is exactly the former “lost
counterterm” (5.34). This proves (5.4) in the bare case.

5.4 The RG Flow

It remains to understand better the meaning of the Langmann-Szabo symmetry which
certainly lies behind this Ward identity. Of course we also need to develop a non-
perturbative or constructive analysis of the theory to fully confirm the absence of
the Landau ghost. If this constructive analysis confirms the perturbative picture the
expected non perturbative flow for the effective parameters λ and Ω should be:
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Figure 21: Numerical flow for λ and Ω

dλi
di

' a(1− Ωi)F (λi) , (5.47)

dΩi
di

' b(1− Ωi)G(λi) , (5.48)

where F (λi) = λ2
i + O(λ3

i ), G(λi) = λi + O(λ2
i ) and a, b ∈ R are two constants. The

behavior of this system is qualitatively the same as the simpler system

dλi
di

' a(1− Ωi)λ2
i , (5.49)

dΩi
di

' b(1− Ωi)λi , (5.50)

whose solution is

λi = λ0e
a
b (Ωi−Ω0) , (5.51)

with Ωi solution of

b i λ0 =
∫ 1−Ω0

1−Ωi

e
au
b
du

u
, (5.52)

hence going exponentially fast to 1 as i goes to infinity. The corresponding numerical
flow is drawn on Figure 21.

Of course to establish fully rigorously this picture is beyond the reach of pertur-
bative theorems and requires a constructive analysis.
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6 Propagators on non-commutative space

We give here the results we get in [50]. In this article, we computed the x-space and
matrix basis kernels of operators which generalize the Mehler kernel (3.34). Then we
proceeded to a study of the scaling behaviors of these kernels in the matrix basis.
This work is useful to study the non-commutative Gross-Neveu model in the matrix
basis.

6.1 Bosonic kernel

The following lemma generalizes the Mehler kernel [89]:

Lemma 6.1. Let H the operator:

H =
1
2

(
−∆ + Ω2x2 − 2ıB(x0∂1 − x1∂0)

)
. (6.1)

The x-space kernel of e−tH is:

e−tH(x, x′) =
Ω

2π sinhΩt
e−A, (6.2)

A =
Ω coshΩt
2 sinh Ωt

(x2 + x′2)− Ω coshBt
sinhΩt

x · x′ − ı
Ω sinhBt
sinhΩt

x ∧ x′. (6.3)

Remark. The Mehler kernel corresponds to B = 0. The limit Ω = B → 0 gives the
usual heat kernel.

Lemma 6.2. Let H be given by (6.1) with Ω(B) → 2Ω/θ(2Bθ). Its inverse in the
matrix basis is:

H−1
m,m+h;l+h,l =

θ

8Ω

∫ 1

0

dα
(1− α)

µ2
0θ

8Ω +( D
4 −1)

(1 + Cα)
D
2

(1− α)−
4B
8Ω h

D
2∏
s=1

G
(α)
ms,ms+hs;ls+hs,ls ,

(6.4)

G
(α)
m,m+h;l+h,l =

(√
1− α

1 + Cα

)m+l+h min(m,l)∑
u=max(0,−h)

A(m, l, h, u)
(

Cα(1 + Ω)√
1− α(1− Ω)

)m+l−2u

,

where A(m, l, h, u) =
√(

m
m−u

)(
m+h
m−u

)(
l

l−u
)(
l+h
l−u
)

and C is a function of Ω : C(Ω) =
(1−Ω)2

4Ω .

6.2 Fermionic kernel

On the Moyal space, we modified the commutative Gross-Neveu model by adding a
/̃x term (see lemma 3.4). We have

G(x, y) = − Ω
θπ

∫ ∞

0

dt

sinh(2Ω̃t)
e−

eΩ
2 coth(2eΩt)(x−y)2+ıeΩx∧y (6.5){

ıΩ̃ coth(2Ω̃t)(/x− /y) + Ω(/̃x− /̃y)− µ
}
e−2ıeΩtγ0γ1

e−tµ
2
.
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It will be useful to express G in terms of commutators:

G(x, y) = − Ω
θπ

∫ ∞

0

dt
{
ıΩ̃ coth(2Ω̃t)

[
/x,Γt

]
(x, y)

+Ω
[
/̃x,Γt

]
(x, y)− µΓt(x, y)

}
e−2ıeΩtγ0γ1

e−tµ
2
, (6.6)

where

Γt(x, y) =
1

sinh(2Ω̃t)
e−

eΩ
2 coth(2eΩt)(x−y)2+ıeΩx∧y (6.7)

with Ω̃ = 2Ω
θ and x ∧ y = x0y1 − x1y0.

We now give the expression of the Fermionic kernel (6.6) in the matrix basis.
The inverse of the quadratic form

∆ = p2 + µ2 +
4Ω2

θ2
x2 +

4B
θ
L2 (6.8)

is given by (6.4) in the preceeding section:

Γm,m+h;l+h,l =
θ

8Ω

∫ 1

0

dα
(1− α)

µ2θ
8Ω − 1

2

(1 + Cα)
Γαm,m+h;l+h,l (6.9)

Γ(α)
m,m+h;l+h,l =

(√
1− α

1 + Cα

)m+l+h

(1− α)−
Bh
2Ω (6.10)

min(m,l)∑
u=0

A(m, l, h, u)
(

Cα(1 + Ω)√
1− α (1− Ω)

)m+l−2u

.

The Fermionic propagator G (6.6) in the matrix basis may be deduced from the kernel
(6.9). We just set B = Ω, add the missing term with γ0γ1 and compute the action of
−/p− Ω/̃x+ µ on Γ. We must then evaluate [xν ,Γ] in the matrix basis:

[
x0,Γ

]
m,n;k,l

=2πθ

√
θ

8

{√
m+ 1Γm+1,n;k,l −

√
lΓm,n;k,l−1 +

√
mΓm−1,n;k,l

−
√
l + 1Γm,n;k,l+1 +

√
n+ 1Γm,n+1;k,l −

√
kΓm,n;k−1,l

+
√
nΓm,n−1;k,l −

√
k + 1Γm,n;k+1,l

}
, (6.11)

[
x1,Γ

]
m,n;k,l

=2ıπθ

√
θ

8

{√
m+ 1Γm+1,n;k,l −

√
lΓm,n;k,l−1 −

√
mΓm−1,n;k,l

+
√
l + 1Γm,n;k,l+1 −

√
n+ 1Γm,n+1;k,l +

√
kΓm,n;k−1,l

+
√
nΓm,n−1;k,l −

√
k + 1Γm,n;k+1,l

}
. (6.12)

This allows to prove:

Lemma 6.3. Let Gm,n;k,l the kernel, in the matrix basis, of the operator
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/p+ Ω/̃x+ µ

)−1
. We have:

Gm,n;k,l =− 2Ω
θ2π2

∫ 1

0

dαGαm,n;k,l, (6.13)

Gαm,n;k,l =
(
ıΩ̃

2− α

α
[/x,Γα]m,n;k,l + Ω

[
/̃x,Γα

]
m,n;k,l

− µΓαm,n;k,l

)
×
(

2− α

2
√

1− α
12 − ı

α

2
√

1− α
γ0γ1

)
. (6.14)

where Γα is given by (6.10) and the commutators by the formulas (6.11) and (6.12).

The first two terms in the equation (6.14) contain commutators and will be
gathered under the name Gα,comm

m,n;k,l . The last term will be called Gα,mass
m,n;k,l:

Gα,comm
m,n;k,l =

(
ıΩ̃

2− α

α
[/x,Γα]m,n;k,l + Ω

[
/̃x,Γα

]
m,n;k,l

)
×
(

2− α

2
√

1− α
12 − ı

α

2
√

1− α
γ0γ1

)
, (6.15)

Gα,mass
m,n;k,l =− µΓαm,n;k,l ×

(
2− α

2
√

1− α
12 − ı

α

2
√

1− α
γ0γ1

)
. (6.16)

6.3 Bounds

We use the multi-scale analysis to study the behavior of the propagator (6.14) and
revisit more finely the bounds (4.11) to (4.14). In a slice i, the propagator is

Γim,m+h,l+h,l =
θ

8Ω

∫ M−2(i−1)

M−2i

dα
(1− α)

µ2
0θ

8Ω − 1
2

(1 + Cα)
Γ(α)
m,m+h;l+h,l . (6.17)

Gm,n;k,l =
∞∑
i=1

Gim,n;k,l ; Gim,n;k,l = − 2Ω
θ2π2

∫ M−2(i−1)

M−2i

dαGαm,n;k,l . (6.18)

Let h = n−m and p = l−m. Without loss of generality, we assume h > 0 and p > 0.
Then the smallest index among m,n, k, l is m and the biggest is k = m+ h+ p. We
have:

Theorem 6.4. Under the assumptions h = n − m > 0 and p = l − m > 0, there
exists K, c ∈ R+ (c depends on Ω) such that the propagator of the non-commutative
Gross-Neveu model in a slice i obeys the bound

|Gi,comm
m,n;k,l| 6 KM−i

(
χ(αk > 1)

exp{− cp2

1+kM−2i − cM−2i

1+k (h− k
1+C )2}

(1 +
√
kM−2i)

+min(1, (αk)p)e−ckM
−2i−cp

)
. (6.19)
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The mass term is slightly different:

|Gi,mass
m,n;k,l| 6KM

−2i

(
χ(αk > 1)

exp{− cp2

1+kM−2i − cM−2i

1+k (h− k
1+C )2}

1 +
√
kM−2i

+ min(1, (αk)p)e−ckM
−2i−cp

)
. (6.20)

Remark. We can redo the same analysis for the Φ4 propagator and get

Gim,n;k,l 6 KM−2i min (1, (αk)p) e−c(M
−2ik+p) (6.21)

which allows to recover the bounds (4.11) to (4.14).

6.4 Propagators and renormalizability

Let us consider the propagator (6.13) of the non-commutative Gross-Neveu model.
We saw in section 6.3 that there exists two regions in the space of indices where the
propagator behaves very differently. In one of them it behaves as the Φ4 propagator
and leads then to the same power counting. In the critical region, we have

Gi 6K
M−i

1 +
√
kM−2i

e
− cp2

1+kM−2i− cM−2i

1+k (h− k
1+C )2

. (6.22)

The point is that such a propagator does not allow to sum two reference indices with
a unique line. This fact was useful in the proof of the power counting of the Φ4 model.
This leads to a renormalizable UV/IR mixing.

Let us consider the graph in figure 22b where the two external lines bear an
index i � 1 and the internal one an index j < i. The propagator (6.13) obeys the
bound in Prop. (4.13) which means that it is almost local. We only have to sum over
one index per internal face.

i

i

−1 −1

(a) At scale i

i

i

j−1 −1

(b) At scale j

Figure 22: Sunset Graph

On the graph of the figure 22a, if the two lines inside are true external ones,
the graph has two broken faces and there is no index to sum over. Then by using
Prop. (4.11) we get AG 6 M−2i. The sum over i converges and we have the same
behavior as the Φ4 theory, that is to say the graphs with B > 2 broken faces are
finite. But if these two lines belongs to a line of scale j < i (see figure 22b), the result
is different. Indeed, at scale i, we recover the graph of figure 22a. To maintain the
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previous result (M−2i), we should sum the two indices corresponding to the internal
faces with the propagator of scale j. This is not possible. Instead we have:

∑
k,h

M−2i−j e−M
−2ik e

− cM−2j

1+k (h− k
1+C )2

1 +
√
kM−2j

6 KM j . (6.23)

The sum over i diverges logarithmically. The graph of figure 22a converges if it is
linked to true external legs et diverges if it is a subgraph of a graph at a lower scale.
The power counting depends on the scales lower than the lowest scale of the graph.
It can’t then be factorized into the connected components: this is UV/IR mixing.

Let’s remark that the graph of figure 22a is not renormalizable by a counter-term
in the Lagrangian. Its logarithmic divergence can’t be absorbed in a redefinition of a
coupling constant. Fortunately the renormalization of the two-point graph of figure
22b makes the four-point subdivergence finite [51]. This makes the non-commutative
Gross-Neveu model renormalizable.

7 Direct space

We want now to explain how the power counting analysis can be performed in direct
space, and the “Moyality” of the necessary counterterms can be checked by a Taylor
expansion which is a generalization of the one used in direct commutative space.

In the commutative case there is translation invariance, hence each propagator
depends on a single difference variable which is short in the ultraviolet regime; in the
non-commutative case the propagator depends both of the difference of end positions,
which is again short in the uv regime, but also of the sum which is long in the uv
regime, considering the explicit form (3.34) of the Mehler kernel.

This distinction between short and long variables is at the basis of the power
counting analysis in direct space.

7.1 Short and long variables

Let G be an arbitrary connected graph. The amplitude associated with this graph is
in direct space (with hopefully self-explaining notations):

AG =
∫ ∏

v,i=1,...4

dxv,i
∏
l

dtl (7.1)

∏
v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)eı

P
i<j(−1)i+j+1xv,iθ

−1xv,j

]∏
l

Cl ,

Cl =
Ω2

[2π sinh(Ωtl)]2
e
−Ω

2 coth(Ωtl)(x
2
v,i(l)+x

2
v′,i′(l))+

Ω
sinh(Ωtl)

xv,i(l).xv′,i′(l)−µ
2
0tl .

For each line l of the graph joining positions xv,i(l) and xv′,i′(l), we choose an
orientation and we define the “short” variable ul = xv,i(l) − xv′,i′(l) and the “long”
variable vl = xv,i(l) + xv′,i′(l).

With these notations, defining Ωtl = αl, the propagators in our graph can be
written as: ∫ ∞

0

∏
l

Ωdαl
[2π sinh(αl)]2

e−
Ω
4 coth(

αl
2 )u2

l−Ω
4 tanh(

αl
2 )v2l −

µ2
0

Ω αl . (7.2)
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As in matrix space we can slice each propagator according to the size of its α
parameter and obtain the multiscale representation of each Feynman amplitude:

AG =
∑
µ

AG,µ , AG,µ =
∫ ∏

v,i=1,...4

dxv,i
∏
l

C
iµ(l)
l (ul, vl) (7.3)

∏
v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)eı

P
i<j(−1)i+j+1xv,iθ

−1xv,j

]
Ci(u, v) =

∫ M−2(i−1)

M−2i

Ωdα
[2π sinh(α)]2

e−
Ω
4 coth( α

2 )u2−Ω
4 tanh( α

2 )v2−µ2
0

Ω α , (7.4)

where µ runs over scales attributions {iµ(l)} for each line l of the graph, and the
sliced propagator Ci in slice i ∈ N obeys the crude bound:

Lemma 7.1. For some constants K (large) and c (small):

Ci(u, v) 6 KM2ie−c[M
i‖u‖+M−i‖v‖] (7.5)

(which a posteriori justifies the terminology of “long” and “‘short” variables).

The proof is elementary.

7.2 Routing, Filk moves

7.2.1 Oriented graphs

We pick a tree T of lines of the graph, hence connecting all vertices, pick with a
root vertex and build an orientation of all the lines of the graph in an inductive way.
Starting from an arbitrary orientation of a field at the root of the tree, we climb in
the tree and at each vertex of the tree we impose cyclic order to alternate entering
and exiting tree lines and loop half-lines, as in figure 23a. Then we look at the loop
lines. If every loop lines consist in the contraction of an entering and an exiting line,
the graph is called orientable. Otherwise we call it non-orientable as in figure 23b.

7.2.2 Position routing

There are n δ functions in an amplitude with n vertices, hence n linear equations for
the 4n positions, one for each vertex. The position routing associated to the tree T
solves this system by passing to another equivalent system of n linear equations, one
for each branch of the tree. This is a triangular change of variables, of Jacobian 1.
This equivalent system is obtained by summing the arguments of the δ functions of
the vertices in each branch. This change of variables is exactly the x-space analog of
the resolution of momentum conservation called momentum routing in the standard
physics literature of commutative field theory, except that one should now take care
of the additional ± cyclic signs.

One can prove [47] that the rank of the system of δ functions in an amplitude
with n vertices is

• n− 1 if the graph is orientable

• n if the graph is non-orientable
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(a) Orientation of a tree

−

+

−

+

+

−

+

−

+

−

+

−

+

−

+

−

2 (x2)

1 (x1) 3

4

5 (y)

6

7

8 (z)

9 (x3)

10

11

12

13

14

15 (x4)

16

`4

`1

l6 l3

l2

4 3

2

1

(b) A non-orientable graph

Figure 23: Orientation

The position routing change of variables is summarized by the following lemma:

Lemma 7.2 (Position Routing). We have, calling IG the remaining integrand in (7.3):

AG =
∫ [∏

v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)

] ]
IG({xv,i}) (7.6)

=
∫ ∏

b

δ

 ∑
l∈Tb∪Lb

ul +
∑
l∈Lb,+

vl −
∑
l∈Lb,−

vl +
∑
f∈Xb

ε(f)xf

 IG({xv,i}),

where ε(f) is ±1 depending on whether the field f enters or exits the branch.

We can now use the system of delta functions to eliminate variables. It is of course
better to eliminate long variables as their integration costs a factor M4i whereas the
integration of a short variable brings M−4i. Rough power counting, neglecting all
oscillations of the vertices leads therefore, in the case of an orientable graph with N
external fields, n internal vertices and l = 2n−N/2 internal lines at scale i to:

• a factor M2i(2n−N/2) coming from the M2i factors for each line of scale i in
(7.5),

• a factor M−4i(2n−N/2) for the l = 2n−N/2 short variables integrations,

• a factor M4i(n−N/2+1) for the long variables after eliminating n − 1 of them
using the delta functions.

The total factor is therefore M−(N−4)i, the ordinary scaling of φ4
4, which means that

only two and four point subgraphs (N 6 4) diverge when i has to be summed.
In the non-orientable case, we can eliminate one additional long variable since

the rank of the system of delta functions is larger by one unit! Therefore we get a
power counting bound M−Ni, which proves that only orientable graphs may diverge.
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In fact we of course know that not all orientable two and four point subgraphs
diverge but only the planar ones with a single external face. (It is easy to check that
all such planar graphs are indeed orientable).

Since only these planar subgraphs with a single external face can be renormal-
ized by Moyal counterterms, we need to prove that orientable, non-planar graphs
or orientable planar graphs with several external faces have in fact a better power
counting than this crude estimate. This can be done only by exploiting their vertices
oscillations. We explain now how to do this with minimal effort.

7.2.3 Filk moves and rosettes

Following Filk [87], we can contract all lines of a spanning tree T and reduce G to
a single vertex with “tadpole loops” called a “rosette graph”. This rosette is a cycle
(which is the border of the former tree) bearing loops lines on it (see figure 24):
Remark that the rosette can also be considered as a big vertex, with r = 2n+2 fields,

Figure 24: A rosette

on which N are external fields with external variables x and 2n+2−N are loop fields
for the corresponding n+ 1−N/2 loops. When the graph is orientable, the rosette is
also orientable, which means that turning around the rosette the lines alternatively
enter and exit. These lines correspond to the contraction of the fields on the border
of the tree T before the Filk contraction, also called the “first Filk move”.

7.2.4 Rosette factor

We start from the root and turn around the tree in the trigonometrical sense. We
number separately all the fields as 1, . . . , 2n+ 2 and all the tree lines as 1, . . . , n− 1
in the order they are met.

Lemma 7.3. The rosette contribution after a complete first Filk reduction is exactly:

δ(v1 − v2 + · · · − v2n+2 +
∑
l∈T

ul)eiV QV+iURU+iUSV (7.7)

where the v variables are the long or external variables of the rosette, counted with



76 V. Rivasseau Séminaire Poincaré

their signs, and the quadratic oscillations for these variables is

V QV =
∑

06i<j6r

(−1)i+j+1viθ
−1vj (7.8)

We have now to analyze in detail this quadratic oscillation of the remaining long
loop variables since it is essential to improve power counting. We can neglect the
secondary oscillations URU and USV which imply short variables.

The second Filk reduction [87] further simplifies the rosette factor by erasing the
loops of the rosette which do not cross any other loops or arch over external fields. It
can be shown that the loops which disappear in this operation correspond to those
long variables who do not appear in the quadratic form Q.

Using the remaining oscillating factors one can prove that non-planar graphs
with genus larger than one or with more than one external face do not diverge.

The basic mechanism to improve the power counting of a single non-planar
subgraph is the following:∫

dw1dw2e
−M−2i1w2

1−M
−2i2w2

2−iw1θ
−1w2+w1.E1(x,u)+w2E2(x,u)

=
∫
dw′1dw

′
2e
−M−2i1 (w′

1)
2−M−2i2 (w′

2)
2+iw′

1θ
−1w′

2+(u,x)Q(u,x)

=KM4i1

∫
dw′2e

−(M2i1+M−2i2 )(w′
2)

2
= KM4i1M−4i2 . (7.9)

In these equations we used for simplicity M−2i instead of the correct but more com-
plicated factor (Ω/4) tanh(α/2) (of course this does not change the argument) and we
performed a unitary linear change of variables w′1 = w1 + `1(x, u), w′2 = w2 + `2(x, u)
to compute the oscillating w′1 integral. The gain in (7.9) is M−8i2 , which is the differ-
ence between M−4i2 and the normal factor M4i2 that the w2 integral would have cost
if we had done it with the regular e−M

−2i2w2
2 factor for long variables. To maximize

this gain we can assume i1 6 i2.
This basic argument must then be generalized to each non-planar subgraph in

the multiscale analysis, which is possible.
Finally it remains to consider the case of subgraphs which are planar orientable

but with more than one external face. In that case there are no crossing loops in the
rosette but there must be at least one loop line arching over a non trivial subset of
external legs (see e.g. line 6 in figure 24). We have then a non trivial integration over
at least one external variable, called x, of at least one long loop variable called w.
This “external” x variable without the oscillation improvement would be integrated
with a test function of scale 1 (if it is a true external line of scale 1) or better (if it is
a higher long loop variable)23. But we get now∫

dxdwe−M
−2iw2−iwθ−1x+w.E1(x

′,u)

=KM4i

∫
dxe−M

+2ix2
= K ′ , (7.10)

so that a factor M4i in the former bound becomes O(1) hence is improved by M−4i.
23Since the loop line arches over a non trivial (i.e. neither full nor empty) subset of external legs

of the rosette, the variable x cannot be the full combination of external variables in the “root” δ
function.
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In this way we can reduce the convergence of the multiscale analysis to the
problem of renormalization of planar two- and four-point subgraphs with a single
external face, which we treat in the next section.

Remark that the power counting obtained in this way is still not optimal. To
get the same level of precision than with the matrix base requires e.g. to display g
independent improvements of the type (7.9) for a graph of genus g. This is doable but
basically requires a reduction of the quadratic form Q for single-faced rosette (also
called “hyperrosette”) into g standard symplectic blocks through the so-called “third
Filk move” introduced in [68]. We return to this question in section 8.2.

7.3 Renormalization

7.3.1 Four-point function

Consider the amplitude of a four-point graph G which in the multiscale expansion
has all its internal scales higher than its four external scales.

The idea is that one should compare its amplitude to a similar amplitude with
a “Moyal factor” exp

(
2ıθ−1 (x1 ∧ x2 + x3 ∧ x4)

)
δ(∆) factorized in front, where ∆ =

x1 − x2 + x3 − x4. But precisely because the graph is planar with a single external
face we understand that the external positions x only couple to short variables U of
the internal amplitudes through the global delta function and the oscillations. Hence
we can break this coupling by a systematic Taylor expansion to first order. This
separates a piece proportional to “Moyal factor”, then absorbed into the effective
coupling constant, and a remainder which has at least one additional small factor
which gives him improved power counting.

This is done by expressing the amplitude for a graph with N = 4, g = 0 and
B = 1 as:

A(G)(x1, x2, x3, x4) =
∫

exp
(
2ıθ−1 (x1 ∧ x2 + x3 ∧ x4)

) ∏
`∈T i

k

du` C`(u`, U`, V`)

[ ∏
l∈Gi

k l 6∈T

duldvlCl(ul, vl)
]
eıURU+ıUSV (7.11)

{
δ(∆) +

∫ 1

0

dt

[
U · ∇δ(∆ + tU) + δ(∆ + tU)[ıXQU + R′(t)]

]
eıtXQU+R(t)

}
.

where C`(u`, U`, V`) is the propagator taken at X` = 0, U =
∑
` u` and R(t) is a

correcting term involving tanhα`[X.X +X.(U + V )].
The first term is of the initial

∫
Trφ?φ?φ?φ form. The rest no longer diverges,

since the U and R provide the necessary small factors.

7.3.2 Two-point function

Following the same strategy we have to Taylor-expand the coupling between external
variables and U factors in two point planar graphs with a single external face to third
order and some non-trivial symmetrization of the terms according to the two external
arguments to cancel some odd contributions. The corresponding factorized relevant
and marginal contributions can be then shown to give rise only to

• A mass counterterm,
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• A wave function counterterm,

• An harmonic potential counterterm.

and the remainder has convergent power counting. This concludes the construction
of the effective expansion in this direct space multiscale analysis.

Again the BPHZ theorem itself for the renormalized expansion follows by devel-
oping the counterterms still hidden in the effective couplings and its finiteness follows
from the standard classification of forests. See however the remarks at the end of
section 4.2.2.

Since the bound (7.5) works for any Ω 6= 0, an additional bonus of the x-space
method is that it proves renormalizability of the model for any Ω in ]0, 1]24, whether
the matrix method proved it only for Ω in ]0.5, 1].

7.3.3 The Langmann-Szabo-Zarembo model

It is a four-dimensional theory of a Bosonic complex field defined by the action

S =
∫

1
2
φ̄(−DµDµ + Ω2x2)φ+ λφ̄ ? φ ? φ̄ ? φ (7.12)

where Dµ = ı∂µ +Bµνx
ν is the covariant derivative in a magnetic field B.

The interaction φ̄ ? φ ? φ̄ ? φ ensures that perturbation theory contains only
orientable graphs. For Ω > 0 the x-space propagator still decays as in the ordinary
φ4

4 case and the model has been shown renormalizable by an easy extension of the
methods of the previous section [47].

However at Ω = 0, there is no longer any harmonic potential in addition to
the covariant derivatives and the bounds are lost. We call models in this category
covariant.

7.3.4 Covariant models

Consider the x-kernel of the operator

H−1 =
(
p2 + Ω2x̃2 − 2ıB

(
x0p1 − x1p0

))−1
(7.13)

H−1(x, y) =
Ω̃
8π

∫ ∞

0

dt

sinh(2Ω̃t)
exp

(
− Ω̃

2
cosh(2Bt)

sinh(2Ω̃t)
(x− y)2 (7.14)

− Ω̃
2

cosh(2Ω̃t)− cosh(2Bt)

sinh(2Ω̃t)
(x2 + y2) (7.15)

+2ıΩ̃
sinh(2Bt)

sinh(2Ω̃t)
x ∧ y

)
with Ω̃ =

2Ω
θ

(7.16)

The Gross-Neveu model or the covariant Langmann-Szabo-Zarembo models corre-
spond to the case B = Ω̃. In these models there is no longer any confining decay for
the “long variables” but only an oscillation:

Q−1 = H−1 =
Ω̃
8π

∫ ∞

0

dt

sinh(2Ω̃t)
exp

(
− Ω̃

2
coth(2Ω̃t)(x− y)2 + 2ıΩ̃x ∧ y

)
(7.17)

24The case Ω in [1, +∞[ is irrelevant since it can be rewritten by LS duality as an equivalent model
with Ω in ]0, 1].
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The construction of these covariant models is more difficult, since sufficiently
many oscillations must be proven independent before power counting can be estab-
lished. The prototype paper which solved this problem is [51], which we briefly sum-
marize now.

The main technical difficulty of the covariant models is the absence of decreasing
functions for the long v variables in the propagator replaced by an oscillation, see
(7.17). Note that these decreasing functions are in principle created by integration
over the u variables25:∫

du e−
eΩ
2 coth(2eΩt)u2+ıu∧v =K tanh(2Ω̃t) e−k tanh(2eΩt)v2 . (7.18)

But to perform all these Gaussian integrations for a general graph is a difficult task
(see [69]) and is in fact not necessary for a BPHZ theorem. We can instead exploit
the vertices and propagators oscillations to get rational decreasing functions in some
linear combinations of the long v variables. The difficulty is then to prove that all
these linear combinations are independent and hence allow to integrate over all the v
variables. To solve this problem we need the exact expression of the total oscillation
in terms of the short and long variables. This consists in a generalization of the Filk’s
work [87]. This has been done in [51]. Once the oscillations are proven independent,
one can just use the same arguments than in the Φ4 case (see section 7.2) to compute
an upper bound for the power counting:

Lemma 7.4 (Power counting GN2
Θ). Let G a connected orientable graph. For all Ω ∈

[0, 1), there exists K ∈ R+ such that its amputated amplitude AG integrated over test
functions is bounded by

|AG| 6KnM− 1
2ω(G) (7.19)

with ω(G) =



N − 4 if (N = 2 or N > 6) and g = 0,
if N = 4, g = 0 and B = 1,
if G is critical,

N if N = 4, g = 0, B = 2 and G non-critical,
N + 4 if g > 1.

(7.20)

As in the non-commutative Φ4 case, only the planar graphs are divergent. But
the behavior of the graphs with more than one broken face is different. Note that we
already discussed such a feature in the matrix basis (see section 6.4). In the multiscale
framework, the Feynman diagrams are endowed with a scale attribution which gives
each line a scale index. The only subgraphs we meet in this setting have all their
internal scales higher than their external ones. Then a subgraph G of scale i is called
critical if it has N = 4, g = 0, B = 2 and that the two “external” points in the second
broken face are only linked by a single line of scale j < i. The typical example is the
graph of figure 22a. In this case, the subgraph is logarithmically divergent whereas it
is convergent in the Φ4 model. Let us now show roughly how it happens in the case
of figure 22a but now in x-space.

The same arguments than in the Φ4 model prove that the integrations over
the internal points of the graph 22a lead to a logarithmic divergence which means
that AGi ' O(1) in the multiscale framework. But remind that there is a remaining
oscillation between a long variable of this graph and the external points in the second

25In all the following we restrict ourselves to the dimension 2.
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broken face of the form v ∧ (x− y). But v is of order M i which leads to a decreasing
function implementing x−y of order M−i. If these points are true external ones, they
are integrated over test functions of norm 1. Then thanks to the additional decreasing
function for x − y we gain a factor M−2i which makes the graph convergent. But if
x and y are linked by a single line of scale j < i (as in figure 22b), instead of test
functions we have a propagator between x and y. This one behaves like (see (7.17)):

Cj(x, y) 'M j e−M
2j(x−y)2+ıx∧y. (7.21)

The integration over x−y instead of giving M−2j gives M−2i thanks to the oscillation
v ∧ (x − y). Then we have gained a good factor M−2(i−j). But the oscillation in the
propagator x∧y now gives x+y 'M2i instead of M2j and the integration over x+y
cancels the preceeding gain. The critical component of figure 22a is logarithmically
divergent.

This kind of argument can be repeated and refined for more general graphs
to prove that this problem appears only when the external points of the auxiliary
broken faces are linked only by a single lower line [51]. This phenomenon can be
seen as a mixing between scales. Indeed the power counting of a given subgraph now
depends on the graphs at lower scales. This was not the case in the commutative
realm. Fortunately this mixing doesn’t prevent renormalization. Note that whereas
the critical subgraphs are not renormalizable by a vertex-like counterterm, they are
regularized by the renormalization of the two-point function at scale j. The proof of
this point relies heavily on the fact that there is only one line of lower scale.

Let us conclude this section by mentioning the flows of the covariant models.
One very interesting feature of the non-commutative Φ4 model is the boundedness
of its flows and even the vanishing of its beta function for a special value of its bare
parameters [52, 57, 58]. Note that its commutative counterpart (the usual φ4 model on
R4) is asymptotically free in the infrared and has then an unbounded flow. It turns out
that the flow of the covariant models are not regularized by the non-commutativity.
The one-loop computation of the beta functions of the non-commutative Gross-Neveu
model [95] shows that it is asymptotically free in the ultraviolet region as in the
commutative case.

8 Parametric Representation

8.1 Ordinary Symanzik polynomials

In ordinary commutative field theory, Symanzik’s polynomials are obtained after in-
tegration over internal position variables. The amplitude of an amputated graph G
with external momenta p is, up to a normalization, in space-time dimension D:

AG(p) =δ(
∑

p)
∫ ∞

0

e−VG(p,α)/UG(α)

UG(α)D/2
∏
l

(e−m
2αldαl) . (8.1)

The first and second Symanzik polynomials UG and VG are

UG =
∑
T

∏
l 6∈T

αl , (8.2a)

VG =
∑
T2

∏
l 6∈T2

αl(
∑

i∈E(T2)

pi)2 , (8.2b)
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where the first sum is over spanning trees T of G and the second sum is over two
trees T2, i.e. forests separating the graph in exactly two connected components E(T2)
and F (T2); the corresponding Euclidean invariant (

∑
i∈E(T2)

pi)2 is, by momentum
conservation, also equal to (

∑
i∈F (T2)

pi)2.
There are many interesting features in the parametric representation:
- It is more compact than direct or momentum space for dimension D > 2, hence

it is adapted to numerical computations.
- The dimension D appears now as a simple parameter. This allows to make it

non integer or even complex, at least in perturbation theory. This opens the road to
the definition of dimensional regularization and renormalization, which respect the
symmetries of gauge theories. This technique was the key to the first proof of the
renormalizability of non-Abelian gauge theories [10].

- The form of the first and second Symanzik show an explicit positivity and
democracy between trees (or two-trees): each of them appears with positive and equal
coefficients.

- The locality of the counterterms is still visible (although less obvious than
in direct space). It corresponds to the factorization of UG into USUG/S plus smaller
terms under scaling of all the parameters of a subgraph S, because the leading terms
are the trees whose restriction to S are subtrees of S. One could remark that this
factorization also plays a key role in the constructive RG analysis and multiscale
bounds of the theory [9].

In the next two subsections we shall derive the analogs of the corresponding
statements in NCVQFT. But before that let us give a brief proof of formulas (8.1).
The proof of (8.2b) is similar.

Formula (8.1) is equivalent to the computation of the determinant, namely that
of the quadratic form gathering the heat kernels of all the internal lines in position
space, when we integrate over all vertices save one. The role of this saved vertex is
crucial because otherwise the determinant of the quadratic form vanishes, i.e. the
computation becomes infinite by translation invariance.

But the same determinants and problems already arose a century before Feyn-
man graphs in the XIX century theory of electric circuits, where wires play the role
of propagators and the conservation of currents at each node of the circuit play the
role of conservation of momenta or translation invariance. In fact the parametric rep-
resentation follows from the tree matrix theorem of Kirchoff [96], which is a key result
of combinatorial theory which in its simplest form may be stated as:

Theorem 8.1 (Tree Matrix Theorem). Let A be an n by n matrix such that

n∑
i=1

Aij = 0 ∀j . (8.3)

Obviously detA = 0. But let A11 be the matrix A with line 1 and column 1 deleted.
Then

detA11 =
∑
T

∏
`∈T

Ai`,j` , (8.4)

where the sum runs over all directed trees on {1, ..., n}, directed away from root 1.

This theorem is a particular case of a more general result that can compute any
minor of a matrix as a graphical sum over forests and more [97].
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To deduce (8.1) from that theorem one defines Aii as the coordination of the
graph at vertex i and Aij as −l(ij) where l(ij) is the number of lines from vertex ic
to vertex j. The line 1 and column 1 deleted correspond e.g. to fix the first vertex 1
at the origin to break translation invariance.

We include now a proof of this Theorem using Grassmann variables derived
from [97], because this proof was essential for us to find the correct non commuta-
tive generalization of the parametric representation. Recall that Grasmann variables
anticommute

χiχj + χjχi = 0 (8.5)

hence in particular χ2
i = 0, and that the Grassmann rules of integration are∫

dχ = 0 ;
∫
χdχ = 1. (8.6)

Therefore we have:

Lemma 8.2. Consider a set of 2n independent Grasmann variables

ψ1, ...ψn, ψ1, ..., ψn (8.7)

and the integration measure

dψdψ = dψ1, ...dψn,dψ1, ...,dψn (8.8)

The bar is there for convenience, but it is not complex conjugation. Prove that for any
matrix A,

detA =
∫

dψdψe−ψAψ . (8.9)

More generally, if p is an integer 0 ≤ p ≤ m, and I = {i1, . . . , ip}, J =
{j1, . . . , jp} are two ordered subsets with p elements i1 < · · · < ip and j1 < · · · < jp,
if also AI,J denotes the (n − p) × (n − p) matrix obtained by erasing the rows of A
with index in I and the columns of A with index in J , then∫

dψdψ (ψJψI)e
−ψAψ = (−1)ΣI+ΣJdet(AI,J) (8.10)

where (ψJψI)
def= ψj1ψi1ψj2ψi2 . . . ψjpψip , ΣI def= i1 + · · ·+ ip and likewise for ΣJ .

We return now to
Proof of Theorem 8.1: We use Grassmann variables to write the determinant of a ma-
trix with one line and one raw deleted as a Grassmann integral with two corresponding
sources:

detA11 =
∫

(dψdψ) (ψ1ψ1)e
−ψAψ (8.11)

The trick is to use (8.3) to write

ψAψ =
n∑

i,j=1

(ψi − ψj)Aijψj (8.12)

Let, for any j, 1 ≤ j ≤ n, Bj
def=
∑n
i=1Aij , one then obtains by Lemma 8.2:

detA11 =
∫

dψdψ (ψ1ψ1) exp

− n∑
i,j=1

Aij(ψi − ψj)ψj

 (8.13)
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=
∫

dψdψ (ψ1ψ1)

 n∏
i,j=1

(
1−Aij(ψi − ψj)ψj

) (8.14)

by the Pauli exclusion principle. We now expand to get

detA11 =
∑
G

 ∏
`=(i,j)∈G

(−Aij)

ΩG (8.15)

where G is any subset of [n]× [n], and we used the notation

ΩG
def=
∫

dψdψ (ψ1ψ1)

 ∏
(i,j)∈G

[
(ψi − ψj)ψj

] (8.16)

The theorem will now follow from the following

Lemma 8.3. ΩG = 0 unless the graph G is a tree directed away from 1 in which case
ΩG = 1.

Proof: Trivially, if (i, i) belongs to G, then the integrand of ΩG contains a factor
ψi − ψi = 0 and therefore ΩG vanishes.

But the crucial observation is that if there is a loop in G then again ΩG = 0.
This is because then the integrand of ΩF,R contains the factor

ψτ(k) − ψτ(1) = (ψτ(k) − ψτ(k−1)) + · · ·+ (ψτ(2) − ψτ(1)) (8.17)

Now, upon inserting this telescoping expansion of the factor ψτ(k) − ψτ(1) into the
integrand of ΩF,R, the latter breaks into a sum of (k− 1) products. For each of these
products, there exists an α ∈ ZZ/kZZ such that the factor (ψτ(α) − ψτ(α−1)) appears
twice : once with the + sign from the telescopic expansion of (ψτ(k)−ψτ(1)), and once
more with a + (resp. −) sign if (τ(α), τ(α− 1)) (resp. (τ(α− 1), τ(α))) belongs to F .
Again, the Pauli exclusion principle entails that ΩG = 0.

Now every connected component of G must contain 1, otherwise there is no way
to saturate the dψ1 integration.

This means that G has to be a directed tree on {1, ...n}. It remains only to see
now that G has to be directed away from 1, which is not too difficult.

Now Theorem 8.1 follows immediately.

8.2 Non-commutative hyperbolic polynomials, the non-covariant case

Since the Mehler kernel is still quadratic in position space it is possible to also integrate
explicitly all positions to reduce Feynman amplitudes of e.g. non-commutative Φ?44

purely to parametric formulas, but of course the analogs of Symanzik polynomials
are now hyperbolic polynomials which encode the richer information about ribbon
graphs. These polynomials were first computed in [68] in the case of the non-covariant
vulcanized Φ?44 theory. The computation relies essentially on a Grassmann variable
analysis of Pfaffians which generalizes the tree matrix theorem of the previous section.
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Defining the antisymmetric matrix σ as

σ =
(
σ2 0
0 σ2

)
with (8.18)

σ2 =
(

0 −i
i 0

)
(8.19)

the δ−functions appearing in the vertex contribution can be rewritten as an integral
over some new variables pV . We refer to these variables as to hypermomenta. Note
that one associates such a hypermomenta pV to any vertex V via the relation

δ(xV1 − xV2 + xV3 − xV4 ) =
∫

dp′V
(2π)4

eip
′
V (xV

1 −x
V
2 +xV

3 −x
V
4 )

=
∫

dpV
(2π)4

epV σ(xV
1 −x

V
2 +xV

3 −x
V
4 ) . (8.20)

Consider a particular ribbon graph G. Specializing to dimension 4 and choosing
a particular root vertex V̄ of the graph, one can write the Feynman amplitude for G
in the condensed way

AG =
∫ ∏

`

[1− t2`
t`

]2
dα`

∫
dxdpe−

Ω
2XGX

t

(8.21)

where t` = tanh α`

2 , X summarizes all positions and hypermomenta and G is a certain
quadratic form. If we call xe and pV̄ the external variables we can decompose G
according to an internal quadratic form Q, an external one M and a coupling part P
so that

X =
(
xe pV̄ u v p

)
, G =

(
M P
P t Q

)
, (8.22)

Performing the gaussian integration over all internal variables one obtains:

AG =
∫ [1− t2

t

]2
dα

1√
detQ

e
− eΩ

2

“
xe p̄

”
[M−PQ−1P t]

0@xe
p̄

1A
. (8.23)

This form allows to define the polynomialsHUG,v̄ andHVG,v̄, analogs of the Symanzik
polynomials U and V of the commutative case (see (8.1)). They are defined by

AV̄ ({xe}, pv̄) =K ′
∫ ∞

0

∏
l

[dαl(1− t2l )
2]HUG,v̄(t)−2e

−
HVG,v̄(t,xe,pv̄)

HUG,v̄(t) . (8.24)

They are polynomials in the set of variables t` (` = 1, . . . , L), the hyperbolic tangent
of the half-angle of the parameters α`.

Using now (8.23) and (8.24) the polynomial HUG,v̄ writes

HUv̄ =(detQ)
1
4

L∏
`=1

t` (8.25)

The main results ([68]) are
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• The polynomials HUG,v̄ and HVG,v̄ have a strong positivity property. Roughly
speaking they are sums of monomials with positive integer coefficients. This
positive integer property comes from the fact that each such coefficient is the
square of a Pfaffian with integer entries,

• Leading terms can be identified in a given “Hepp sector”, at least for orientable
graphs. A Hepp sector is a complete ordering of the t parameters. These leading
terms which can be shown strictly positive in HUG,v̄ correspond to super-trees
which are the disjoint union of a tree in the direct graph and a tree in the
dual graph. Hypertrees in a graph with n vertices and F faces have therefore
n + F − 2 lines. (Any connected graph has hypertrees, and under reduction of
the hypertree, the graph becomes a hyperrosette). Similarly one can identify
“super-two-trees” HVG,v̄ which govern the leading behavior of HVG,v̄ in any
Hepp sector.

From the second property, one can deduce the exact power counting of any
orientable ribbon graph of the theory, just as in the matrix base.

Let us now borrow from [68] some examples of these hyperbolic polynomials. We
put s = (4θΩ)−1. For the bubble graph of figure 25:

Figure 25: The bubble graph

HUG,v =(1 + 4s2)(t1 + t2 + t21t2 + t1t
2
2) ,

HVG,v =t22
[
p2 + 2s(x4 − x1)

]2
+ t1t2

[
2p2

2 + (1 + 16s4)(x1 − x4)2
]
,

+ t21

[
p2 + 2s(x1 − x4)

]2
(8.26)

For the sunshine graph fig. 26:

HUG,v =
[
t1t2 + t1t3 + t2t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3

]
(1 + 8s2 + 16s4)

+ 16s2(t22 + t21t
2
3) ,

(8.27)

For the non-planar sunshine graph (see fig. 27) we have:

HUG,v =
[
t1t2 + t1t3 + t2t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3

]
(1 + 8s2 + 16s4)

+ 4s2
[
1 + t21 + t22 + t21t

2
2 + t23 + t21t

2
3 + t22t

2
3 + t21t

2
2t

2
3

]
,

We note the improvement in the genus with respect to its planar counterparts.
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Figure 26: The Sunshine graph

Figure 27: The non-planar sunshine graph

For the broken bubble graph (see fig. 28) we have:

HUG,v =(1 + 4s2)(t1 + t2 + t21t2 + t1t
2
2) ,

HVG,v =t22
[
4s2(x1 + y2)2 + (p2 − 2s(x3 + y4))2

]
+ t21

[
p2 + 2s(x3 − y4)

]2
,

+ t1t2

[
8s2y2

2 + 2(p2 − 2sy4)2 + (x1 + x3)2 + 16s4(x1 − x3)2
]

+ t21t
2
24s

2(x1 − y2)2 ,

Note that HUG,v is identical to the one of the bubble with only one broken face. The
power counting improvement comes from the broken face and can be seen only in
HVG,v.

Finally, for the half-eye graph (see Fig. 29), we start by defining:

A24 =t1t3 + t1t3t
2
2 + t1t3t

2
4 + t1t3t

2
2t

2
4 . (8.28)

The HUG,v polynomial with fixed hypermomentum corresponding to the vertex with
two external legs is:

HUG,v1 =(A24 +A14 +A23 +A13 +A12)(1 + 8s2 + 16s4)

+ t1t2t3t4(8 + 16s2 + 256s4) + 4t1t2t23 + 4t1t2t24
+ 16s2(t23 + t22t

2
4 + t21t

2
4 + t21t

2
2t

2
3)

+ 64s4(t1t2t23 + t1t2t
2
4) , (8.29)

whereas with another fixed hypermomentum we get:

HUG,v2 =(A24 +A14 +A23 +A13 +A12)(1 + 8s2 + 16s4)

+ t1t2t3t4(4 + 32s2 + 64s4) + 32s2t1t2t23 + 32s2t1t2t24
+ 16s2(t23 + t21t

2
4 + t22t

2
4 + t21t

3
2t

2
3) . (8.30)
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Figure 28: The broken bubble graph

Figure 29: The half-eye graph

Note that the leading terms are identical and the choice of the root perturbs only
the non-leading ones. Moreover note the presence of the t23 term. Its presence can be
understood by the fact that in the sector t1, t2, t4 > t3 the subgraph formed by the
lines 1, 2, 4 has two broken faces. This is the sign of a power counting improvement
due to the additional broken face in that sector. To exploit it, we have just to integrate
over the variables of line 3 in that sector, using the second polynomial HVG′,v for the
triangle subgraph G′ made of lines 1, 2, 4.

8.3 Non-commutative hyperbolic polynomials, the covariant case

In the covariant case the diagonal coefficients on the long variables disappear but there
are new antisymmetric terms proportional to Ω due to the propagator oscillations.

It is possible to reproduce easily the positivity theorem of the previous non-
covariant case, because we still have sums of squares of Pfaffians. But identifying the
leading terms of the polynomials under a rescaling associating to a subgraph is more
difficult. It is easy to see that for transcendental values of Ω, the desired leading terms
cannot vanish because that would correspond to Ω being the root of a polynomial
with integer coefficients. But power counting under a transcendentality condition is
not very satisfying, especially because continuous RG flows also necessarily cross non
transcendental points.

But thanks to a slightly more difficult analysis inspired by [93] and which involve
a kind of new fourth Filk move, it is possible to prove that except again for some special
cases of four point graphs with two broken faces, the power counting goes through at
Ω < 1.

The corresponding analysis together with many examples are given in [69].
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The covariant case at Ω = 1, also called the self-dual covariant case is very
interesting, because it may be the most relevant for the study of e.g. the quantum Hall
effect. Apparently it corresponds to a very degenerate non renormalizable situation
because even the four point function has non logarithmic divergences as can be seen
easily in the matrix basis, where the propagator is now either 1/(2m+A) or 1/(2n+A)
depending on the sign of the “magnetic field” Ω . But there is a huge gauge invariance
and we feel that the Ward identities of section 5 should allow renormalization of the
theory even in that case.

Let us also recall that the parametric representation can be used to derive the
dimensional regularization of the theory, hence perturbative quantum field theory on
non-integer-dimensional Moyal space, and the associated dimensional renormalization
which may be useful for renormalizing non commutative gauge theories [70].

9 Conclusion

Non-commutative QFT seemed initially to have non-renormalizable divergencies, due
to UV/IR mixing. But following the Grosse-Wulkenhaar breakthrough, there has been
recent rapid progress in our understanding of renormalizable QFT on Moyal spaces.
We can already propose a preliminary classification of these models into different
categories, according to the behavior of their propagators:

• ordinary models at 0 < Ω < 1 such as Φ?44 (which has non-orientable graphs) or
(φ̄φ)2 models (which has none). Their propagator, roughly (p2 + Ω2x̃2 + A)−1

is LS covariant and has good decay both in matrix space (4.11-4.14) and direct
space (7.2). They have non-logarithmic mass divergencies and definitely require
“vulcanization” i.e. the Ω term.

• self-dual models at Ω = 1 in which the propagator is LS invariant. Their
propagator is even better. In the matrix base it is diagonal, e.g. of the form
Gm,n = (m + n + A)−1, where A is a constant. The supermodels seem generi-
cally ultraviolet fixed points of the ordinary models, at which non-trivial Ward
identities force the vanishing of the beta function. The flow of Ω to the Ω = 1
fixed point is very fast (exponentially fast in RG steps).

• covariant models such as orientable versions of LSZ or Gross-Neveu (and pre-
sumably orientable gauge theories of various kind: Yang-Mills, Chern-Simons...).
They may have only logarithmic divergencies and apparently no perturbative
UV/IR mixing. However the vulcanized version still appears the most generic
framework for their treatment. The propagator is then roughly (p2 + Ω2x̃2 +
2Ωx̃ ∧ p)−1. In matrix space this propagator shows definitely a weaker decay
(6.19) than for the ordinary models, because of the presence of a non-trivial
saddle point. In direct space the propagator no longer decays with respect to
the long variables, but only oscillates. Nevertheless the main lesson is that in
matrix space the weaker decay can still be used; and in x space the oscillations
can never be completely killed by the vertices oscillations. Hence these models
retain therefore essentially the power counting of the ordinary models, up to
some nasty details concerning the four-point subgraphs with two external faces.
Ultimately, thanks to a little conspiration in which the four-point subgraphs
with two external faces are renormalized by the mass renormalization, the co-
variant models remain renormalizable. This is the main message of [51, 93].
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• self-dual covariant models which are of the previous type but at Ω = 1. Their
propagator in the matrix base is diagonal and depends only on one index m
(e.g. always the left side of the ribbon). It is of the form Gm,n = (m+A)−1. In
x space the propagator oscillates in a way that often exactly compensates the
vertices oscillations. These models have definitely worse power counting than in
the ordinary case, with e.g. quadratically divergent four point-graphs (if sharp
cut-offs are used). Nevertheless Ward identities can presumably still be used to
show that they can still be renormalized. This probably requires a much larger
conspiration to generalize the Ward identities of the supermodels.

Notice that the status of non-orientable covariant theories is not yet clarified.
Parametric representation can be derived in the non-commutative case. It implies

hyperbolic generalizations of the Symanzik polynomials which condense the informa-
tion about the rich topological structure of a ribbon graph. Using this representation,
dimensional regularization and dimensional renormalization should extend to the non-
commutative framework.

Remark that trees, which are the building blocks of the Symanzik polynomials,
are also at the heart of (commutative) constructive theory, whose philosophy could be
roughly summarized as “You shall use trees26, but you shall not develop their loops
or else you shall diverge”. It is quite natural to conjecture that hypertrees, which are
the natural non-commutative objects intrinsic to a ribbon graph, should play a key
combinatoric role in the yet to develop non-commutative constructive field theory.

In conclusion we have barely started to scratch the world of renormalizable QFT
on non-commutative spaces. The little we see through the narrow window now open
is extremely tantalizing. There exists renormalizable NCQFTs e.g. Φ?4 on R4

θ, Gross-
Neveu on R2

θ and they enjoy better properties than their commutative counterparts,
since they have no Landau ghosts. The constructive program looks easier on non
commutative geometries than on commutative ones. Non-commutative non relativistic
field theories with a chemical potential seem the right formalism for a study ab initio
of various problems in presence of a magnetic field, and in particular of the quantum
Hall effect. The correct scaling and RG theory of this effect presumably requires to
build a very singular theory (of the self-dual covariant type) because of the huge
degeneracy of the Landau levels. To understand this theory and the gauge theories
on non-commutative spaces seem the most obvious challenges ahead of us.
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[8] Renormalization, Poincaré Seminar 2002, in Vacuum Energy Renormalization,
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