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An Introdu
tion to RenormalizationVin
ent RivasseauLaboratoire de Physique Th�eoriqueUniversit�e Paris XIF-91405 Orsay CedexAbstra
t. We review the theory of perturbative renormalization, dis
uss its limitations, and give abrief introdu
tion to the powerful point of view of the renormalization group, whi
h is ne
essary to gobeyond perturbation theory and to de�ne renormalization in a 
onstru
tive way.1 Introdu
tionThe pre
ise quantitative formulation of physi
al laws usually requires to introdu
e parti
ular pa-rameters or 
onstants. It was early re
ognized that intera
tion with a parti
ular medium or sub-strate 
an 
hange the e�e
tive value of these 
onstants. For instan
e Des
artes laws for the refra
-tion of light require a medium dependent index n and later Gauss's and Amp�ere's law introdu
edele
tri
 or magneti
 permittivities whose values � and � in a non-empty medium su
h as water orglass re
e
t in a 
omplex way the intera
tion of light with the atoms of this medium.Even more simply, Alain Connes's favorite examples of an intera
tion that 
hanges even thesign of a physi
al parameter is that of Ar
himedes: a body su
h as a ping-pong ball immersed inwater a
quires a negative e�e
tive mass. Although the mass of the ball m may be mu
h smallerthan the mass M of the same volume of water, the \e�e
tive mass" as experimentally measuredfrom the upwards a

eleration of the ball is however limited by fri
tion so that the true \negativee�e
tive mass" of the ball measured experimentally is mu
h smaller in modulus than m�M .New e�e
tive 
onstants for the often multipli
ative laws of physi
s 
an be 
onsidered asnew normalizations of these laws. This is probably the origin of the name \renormalization".But a 
risis o

urred when physi
ists of the XXth 
entury realized that this 
hange of 
onstantsdue to intera
tion is apparently in�nite in the 
ase of quantum �eld theory. This is disturbingbe
ause quantum �eld theory, whi
h 
ombines quantum me
hani
s and spe
ial relativity, was atthat time 
onsidered the ultimate framework for the fundamental experimental laws of nature atthe mi
ros
opi
 level1. Its 
onsisten
y is therefore a matter of prin
iple, whose importan
e 
anhardly be overemphasized.The way out of this great \renormalization 
risis" is a long story whi
h required the e�ortsof many theoreti
al and mathemati
al physi
ists over the se
ond half of the XXth 
entury. I shallroughly divide it into two main 
hapters.First the stru
ture of the in�nities or \divergen
es" in physi
al quantum �eld theories su
h asele
trodynami
s was elu
idated. A re
ursive pro
ess, due to Bogoliubov and followers, was foundto hide these in�nities into unobservable \bare" parameters that des
ribe the fundamental laws ofphysi
s at experimentally ina

essible extremely short distan
es. Although te
hni
ally very inge-nious, this solution left many physi
ists and probably most mathemati
ians under the impressionthat a real diÆ
ulty had been just \pulled under the rug".It would be unfortunate however to remain under this impression. Indeed the se
ond 
hapterof the story, known under the 
urious and slightly ina

urate name of the \renormalization group"(RG), truly solved the diÆ
ulty. It was 
orre
tly re
ognized by Wilson and followers that in aquantum theory with many s
ales involved, the 
hange of parameters from bare to renormalizedvalues is a phenomenon too 
omplex to be des
ribed in a single step. Just like the traje
tory of a1It is still today to a large extent, although string theory holds great promises for an even more fundamentaltheory that would en
ompass gravity and have a natural fundamental ultraviolet length s
ale, the Plan
k s
ale.
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ompli
ated dynami
al system, it must be instead studied step by step through a lo
al evolutionrule. The 
hange of s
ale in the RG plays the role of time in dynami
al systems. This analogy isdeep. There is a natural arrow of time, related to the se
ond prin
iple of thermodynami
s, andthere is similarly a natural arrow for the RG evolution: mi
ros
opi
 laws are expe
ted to determinema
ros
opi
 laws, not the 
onverse. The RG erases unne
essary detailed short s
ale informationor \irrelevant operators". Even 
osmology made now everybody familiar with the idea that thepassing of time and the 
hange of s
ale in physi
s are intimately related.Apart from these almost philosophi
al 
omments, the RG improved point of view lead also
on
retely to many appli
ations in various domains, some of whi
h are also reviewed here. Whatseems less known, still today, is that RG also solved in a better way the old problem of in�nitiesin perturbation theory. In the RG, the in�nitesimal or dis
rete evolution under 
hange of s
ale isperfe
tly well de�ned and �nite. The old in�nities are re
ognized as artefa
ts, due to an in
orre
tinter
hange of limits. In fa
t in the non-Abelian gauge theories whi
h are presently at the ba
kboneof the Standard Model, in�nities disappear 
ompletely. Even after integrating evolution over anin�nite sequen
e of intermediary s
ales, the RG 
ow remains perfe
tly bounded. The bare 
oupling
onstant, the ultimate \rug" under whi
h perturbative in�nities where supposed to hide, is in fa
tzero, the most �nite of all possible values!It is this amazing story that I will try to summarize in this note. As a testimony to its
entral pla
e in re
ent theoreti
al physi
s, let me simply re
all the many Nobel prizes awarded formajor works on renormalization or related subje
ts. In 1965, R. Feynman, J. S
hwinger and S.-I.Tomonaga re
eived the Nobel prize for their formulation of quantum ele
trodynami
s, the �rsttheory to require renormalization. S. Glashow, S. Weinberg and A. Salam re
eived the 1979 prizefor unifying ele
tromagneti
 and weak intera
tions, two renormalizable �eld theories. In 1999, G.'t Hooft and M. Veltman re
eived the prize for a
hieving the proof of renormalizability of thisele
troweak theory and of non-Abelian gauge theories in general. In 1982 the Nobel prize wasawarded to K. Wilson for his invention of the renormalization group and its appli
ation to 
riti
alphenomena. Finally, among other 
ontributions, P.G. de Gennes re
eived the prize in 1991 forapplying RG results to polymer physi
s. Besides these Nobel-winning 
ontributions there have beenso many other important works on renormalization that it is truly impossible to give full justi
e toall of them. So let me apologize in advan
e and refer to books su
h as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄for more 
omplete referen
es.2 Perturbative (Eu
lidean) Quantum Field Theory2.1 Fun
tional Integral and the �4 ModelQuantum Field Theory is the se
ond quantized formalism appropriate to treat in parti
ular the
ollision experiments of parti
le physi
s, in whi
h parti
le number is not 
onserved. Cross se
tions
ontain the physi
al information of the theory. They are the matrix elements of the di�usion matrixS. Under a suitable asymptoti
 
ondition, there are \redu
tion formulae" whi
h express the matrixelements of S in terms of the Green fun
tions GN (or time ordered va
uum expe
tation values) ofthe �eld �, whi
h is operator valued and a
ts on the Fo
k spa
e:GN (z1; :::; zN) =<  0; T [�(z1); :::; �(zN )℄ 0 > : (2.1)where  0 is the va
uum state and T is an operator, 
alled T -produ
t, that orders a produ
t ofoperators su
h as �(z1); :::; �(zN ) a

ording to in
reasing times.Consider a Lagrangian �eld theory, and split the total Lagrangian as the sum of a free plusan intera
ting pie
e, L = L0+Lint. The Gell-Mann-Low formula expresses the Green fun
tions asva
uum expe
tation values of a similar produ
t of free �elds with an eiLint insertion:GN (z1; :::; zN ) = <  0; T��(z1); :::; �(zN )ei R dxLint(�(x))� 0 ><  0; T (ei R dxLint(�(x))) 0 > : (2.2)
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tion to Renormalization 3In the fun
tional integral formalism proposed by Feynman [11℄, the Gell-Mann-Low formulais itself repla
ed by a fun
tional integral in terms of an (ill-de�ned) \integral over histories" whi
his formally the produ
t of Lebesgue measures over all spa
e time. It is interesting to noti
e thatthe integrand appearing in this formalism 
ontains the full Lagrangian L = L0+Lint, not just theintera
ting one. The 
orresponding formula is the Feynman-Ka
 formula:GN (z1; :::; zN) == R Qj �(zj)ei R L(�(x))dxD�R ei R L(�(x))dxD� : (2.3)This fun
tional integral has potentially many advantages. First the rules of Gaussian inte-gration make perturbation theory very transparent as shown in the next subse
tion. The fa
tthat the full Lagrangian appears in (2.3) is interesting when symmetries of the theory are presentwhi
h are not separate symmetries of the free and intera
ting Lagrangians, as is the 
ase for non-Abelian gauge theories. It is also well adapted to 
onstrained quantization, and to the study ofnon-perturbative e�e
ts.There is a deep analogy between the Feynman-Ka
 formula and the formula whi
h expresses
orrelation fun
tions in 
lassi
al statisti
al me
hani
s. For instan
e, the 
orrelation fun
tions for alatti
e Ising model are given by 
 nYi=1�xi� = Pf�x=�1g e�L(�)Qi �xiPf�x=�1g e�L(�) ; (2.4)where x labels the dis
rete sites of the latti
e, the sum is over 
on�gurations f�x = �1g whi
hasso
iate a \spin" with value +1 or -1 to ea
h su
h site and L(�) 
ontains usually nearest neighborintera
tions and possibly a magneti
 �eld h:L(�) = Xx;y nearest neighborsJ�x�y +Xx h�x: (2.5)By analyti
ally 
ontinuing (2.3) to imaginary time, or Eu
lidean spa
e, it is possible to 
om-plete the analogy with (2.4), hen
e to establish a �rm 
onta
t with statisti
al me
hani
s [5, 6, 7℄.This idea also allows to give mu
h better meaning to the path integral, at least for a free bosoni
�eld. Indeed the 
orresponding free Eu
lidean measure Z�1e� R L0(�(x))dxD�, where Z is a nor-malization fa
tor, 
an be de�ned easily as a Gaussian measure. This is simply be
ause L0 is aquadrati
 form of positive type2.The Green fun
tions 
ontinued to Eu
lidean points are 
alled the S
hwinger fun
tions of themodel, and are given by the Eu
lidean Feynman-Ka
 formula:SN (z1; :::; zN ) = Z�1 Z NYj=1 �(zj)e� R Li(�(x))dxd�0(�) (2.6)Z = Z e� R Li(�(x))dxd�0(�): (2.7)The simplest intera
ting �eld theory is the theory of a one 
omponent s
alar bosoni
 �eld� with quarti
 intera
tion g�4 (�3 whi
h is simpler is unstable). In Rd it is 
alled the �4d model.For d = 2; 3 the model is superrenormalizable and has been built by 
onstru
tive �eld theory. Ford = 4 it is renormalizable in perturbation theory. Although the model la
ks asymptoti
 freedomand a non-perturbative version may therefore not exist, it remains a valuable tool for a pedagogi
alintrodu
tion to perturbative renormalization theory.Formally the S
hwinger fun
tions of the �4d are the moments of the measure:2However the fun
tional spa
e that supports this measure is not in general a spa
e of smooth fun
tions, butrather of distributions. This was already true for fun
tional integrals su
h as those of brownian motion, whi
hare supported by 
ontinuous but not di�erentiable paths. Therefore \fun
tional integrals" in quantum �eld theoryshould more appropriately be 
alled \distributional integrals".
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ar�ed� = 1Z e�(g=4!) R �4�(m2=2) R �2�(a=2) R (������)D�; (2.8)where� g is the 
oupling 
onstant, usually assumed positive or 
omplex with positive real part;� m is the mass; it �xes an energy s
ale for the theory;� a is the wave fun
tion 
onstant. We often assume it to be 1;� Z is a normalization fa
tor whi
h makes (2.8) a probability measure;� D� is a formal produ
t Qx2Rdd�(x) of Lebesgue measures at every point of Rd .But su
h an in�nite produ
t of Lebesgue measures is mathemati
ally ill-de�ned. So it is betterto de�ne �rst the Gaussian part of the measured�(�) = 1Z0 e�(m2=2) R �2�(a=2) R (������)D�: (2.9)More pre
isely if we 
onsider the translation invariant propagator C(x; y) � C(x � y) (withslight abuse of notation), whose Fourier transform isC(p) = 1(2�)d 1p2 +m2 ; (2.10)we 
an use Minlos theorem and the general theory of Gaussian pro
esses to de�ne d�C(�) as the
entered Gaussian measure on the S
hwartz spa
e of tempered distributions S0(Rd ) whose 
ovari-an
e is C. A Gaussian measure is uniquely de�ned by its moments, or the integral of polynomialsof �elds. Expli
itly this integral is zero for a monomial of odd degree, and for n = 2p even it isequal to Z �(x1):::�(xn)d�C(�) =X
 Yl2
 C(xi(l); xj(l)); (2.11)where the sum runs over all the pairings 
 of the 2p arguments into p disjoint pairs l = (i(l); j(l)).Note that sin
e for d � 2, C(p) is not integrable, C(x; y) must be understood as a distribution.It is therefore 
onvenient to also introdu
e a regularized kernel, for instan
eC�(p) = 1(2�)d e��(p2+m2)p2 +m2 (2.12)whose Fourier transform C�(x; y) is now a smooth fun
tion and not a distribution. Su
h a regu-larization is 
alled an ultraviolet 
uto�, and we have (in the distribution sense) lim�!0 C�(x; y) =C(x; y). Remark that due to the non zero m2 mass term, the kernel C�(x; y) de
ays exponentiallyat large jx� yj with rate m, taht is for some 
onstant K and d > 2 we have:jC�j(x; y)j � K�1�d=2e�mjx�yj: (2.13)It is a standard useful 
onstru
tion to build from the S
hwinger fun
tions another 
lass offun
tions 
alled the 
onne
ted S
hwinger fun
tions (in statisti
al me
hani
s 
onne
ted fun
tionsare 
alled Ursell fun
tions or 
umulants). These 
onne
ted S
hwinger fun
tions are given by:CN (z1; :::; zN) = XP1[:::[Pk=f1;:::;Ng;Pi\Pj=0(�1)k+1 kYi=1Spi(zj1 ; :::; zjpi ); (2.14)
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Vertices A Wick contractionFigure 1: A 
ontra
tion s
hemewhere the sum is performed over all distin
t partitions of f1; :::; Ng into k subsets P1; :::; Pk, Pibeing made of pi elements 
alled j1; :::; jpi . For instan
e the 
onne
ted 4-point fun
tion, when allodd S
hwinger fun
tions vanish due to the unbroken �! �� symmetry, is simply given by:C4(z1; :::; z4) = S4(z1; :::; z4)� S2(z1; z2)S2(z3; z4)�S2(z1; z3)S2(z2; z4)� S2(z1; z4)S2(z2; z3): (2.15)2.2 Feynman RulesThe full intera
ting measure may now be de�ned as the multipli
ation of the Gaussian measured�(�) by the intera
tion fa
tor: d� = 1Z e�(g=4!) R �4d�(�) (2.16)and the S
hwinger fun
tions are the normalized moments of this measure:SN (z1; :::; zN) = Z �(z1):::�(zN )d�(�): (2.17)This formula is espe
ially 
onvenient to derive the perturbative expansion and Feynman rules ofthe theory. Indeed, expanding the exponential as a power series in the 
oupling 
onstant g, oneobtains for the S
hwinger fun
tions:SN (z1; :::; zN ) = 1Z 1Xn=0 (�g)nn! Z �Z �4(x)4! �n�(z1):::�(zN )d�(�) (2.18)It is now possible to perform expli
itly the fun
tional integral of the 
orresponding polynomial. Theresult gives at any order n a sum over \Wi
k 
ontra
tions s
hemesW", i.e. ways of pairing together4n+N �elds into 2n+N=2 pairs. There are exa
tly (4n+N � 1)(4n+N � 3):::5:3:1 = (4n+N)!!su
h 
ontra
tion s
hemes.Formally at order n the result of perturbation theory is therefore simply the sum over all theses
hemes W of the spatial integrals over x1; :::; xn of the integrand Ql2W C(xi(l); xj(l)) times thefa
tor 1n! (�g4! )n. These integrals are then fun
tions (in fa
t distributions) of the external positionsz1; :::; zN But they may diverge either be
ause they are integrals over all of R4 (no volume 
uto�)or be
ause of the singularities in the propagator C at 
oin
iding points.It is 
onvenient to label the n dummy integration variables in (2.18) as x1; :::; xn and to drawa line for ea
h 
ontra
tion of two �elds. Ea
h position x1; :::; xn is then asso
iated to a four-leggedvertex and ea
h external sour
e zi to a one-legged vertex, as shown in Figure 1.For pra
ti
al 
omputations, it is obviously more 
onvenient to gather all the 
ontra
tionswhi
h lead to the same topologi
al stru
ture, hen
e the same integral. This leads to the notion ofFeynman graphs. To any su
h graph is asso
iated a 
ontribution or amplitude, whi
h is the sum of
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ar�ethe 
ontributions asso
iated with the 
orresponding set of Wi
k 
ontra
tions. The Feynman rulessummarize how to 
ompute this amplitude with its 
orre
t 
ombinatori
 fa
tor.We always use the following notations for a graph G:� n(G) or simply n is the number of internal verti
es of G, or the order of the graph.� l(G) or l is the number of internal lines of G, i.e. lines hooked at both ends to an internalvertex of G.� N(G) orN is the number of external verti
es ofG; it 
orresponds to the order of the S
hwingerfun
tion one is looking at. When N = 0 the graph is a va
uum graph, otherwise it is 
alledan N -point graph.� 
(G) or 
 is the number of 
onne
ted 
omponents of G,� L(G) or L is the number of independent loops of G.For a regular �4 graph, i.e. a graph whi
h has no line hooked at both ends to external verti
es,we have the relations: l(G) = 2n(G)�N(G)=2; (2.19)L(G) = l(G)� n(G) + 
(G) = n(G) + 1�N(G)=2: (2.20)where in the last equality we assume 
onne
tedness of G, hen
e 
(G) = 1. We like to de�ne thesuper�
ial degree of divergen
e. For �4d it is:!(G) = dL(G)� 2l(G); (2.21)so that for a 
onne
ted graph:!(G) = (d� 4)n(G) + d� d� 22 N(G): (2.22)It will be important also to de�ne what we 
all a subgraph. This is not a 
ompletely straight-forward notion. A subgraph F of a graph G is a subset of internal lines of G, together with the
orresponding atta
hed verti
es. Hen
e there are exa
tly 2l(G) subgraphs in G. We 
all the lines inthe subset de�ning F the internal lines of F , and their number is simply l(F ), as before. Similarlyall the verti
es of G hooked to at least one of these internal lines of F are 
alled the internalverti
es of F and 
onsidered to be in F ; their number by de�nition is n(F ). But remark that noexternal vertex of G 
an be of this kind. Pre
isely for this reason, the notion of external verti
esdoes not generalize simply to subgraphs. Nevertheless for power 
ounting we need at least to de�nea generalization of the number N for subgraphs. A good 
onvention is to 
all external half-line ofF every half-line of G whi
h is not in F but whi
h is hooked to a vertex of F ; it is then the numberof su
h external half-lines whi
h we 
all N(F ). With this 
onvention one has for �4 subgraphs thesame relation (2.19) as for regular �4 graphs.The de�nitions of 
; L and ! then generalize to subgraphs in a straightforward way.To 
ompute the amplitude asso
iated to a �4 graph, we have to add the 
ontributions of the
orresponding 
ontra
tion s
hemes. This is summarized by the rules:� To ea
h line lj with end verti
es at positions xj and yj , asso
iate a propagator C(xj ; yj).� To ea
h internal vertex, asso
iate (�g)=4!.� Count all the 
ontra
tion s
hemes giving this diagram. The number should be of the form(4!)nn!=S(G) where S(G) is an integer 
alled the symmetry fa
tor of the diagram. The 4!represents the permutation of the �elds hooked to an internal vertex.� Multiply all these fa
tors, divide by n! and sum over the position of all internal verti
es.
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tion to Renormalization 7The formula for the bare amplitude of a graph is therefore, as a distribution in z1; ::::zN :AG(z1; :::; zN) � Z nYi=1 dxi Yl2GC(xl; yl): (2.23)This is the \dire
t" or \x-spa
e" representation of a Feynman integral. As stated above, thisintegral su�ers of possible divergen
es. But the 
orresponding quantities with both volume 
uto�and ultraviolet 
uto� � are well de�ned. They are:A�G;�(z1; :::; zN) � Z�n nYi=1 dxi Yl2GC�(xl; yl): (2.24)The integrand is indeed bounded and the integration domain is a 
ompa
t box �.The unnormalized S
hwinger fun
tions are therefore formally given by the sum over allgraphs with the right number of external lines of the 
orresponding Feynman amplitudes:ZSN = X�4 graphs G with N(G)=N (�g)n(G)S(G) AG: (2.25)Z itself, the normalization, is given by the sum of all va
uum amplitudes:Z = X�4 graphs G with N(G)=0 (�g)n(G)S(G) AG: (2.26)Let us remark that sin
e the total number of Feynman graphs is (4n+N)!!, taking into a

ountStirling's formula and the symmetry fa
tor 1=n! from the exponential we expe
t perturbationtheory at large order to behave as Knn! for some 
onstant K. Indeed at order n the amplitude ofa Feynman graph is a 4n-dimensional integral. It is reasonable to expe
t that in average it shouldbehave as 
n for some 
onstant 
. But this means that one should expe
t zero radius of 
onvergen
efor the series (2.25). This is not too surprising. Even the one-dimensional integralF (g) = Z +1�1 e�x2=2�gx4dx (2.27)is well-de�ned only for g � 0. We 
annot hope in�nite dimensional fun
tional integrals of the samekind to behave better than this one dimensional integral. In mathemati
ally pre
ise terms, F isnot analyti
 near g = 0, but only Borel summable. A Borel summable fun
tion f 
an be entirelyre
onstru
ted from its asymptoti
 series Pn anxn, but not by naively adding the terms in theseries. One has rather to �rst de�ne the Borel seriesB(t) =Xn ann! tn (2.28)and to analyti
ally 
ontinue this fun
tion B to a neighborhood of the real axis, then re
over fthrough the integral formula f(x) = 1x Z 10 e�t=yB(t)dt: (2.29)In the 
ase of the fun
tion F , this pro
ess is guaranteed to 
onverge (using the obvious analyti
ityof F for <g > 0, some uniform Taylor remainder estimates and Nevanlinna's theorem [12℄). So weknow the integral (2.29) 
an re
onstru
t F from the list of its asymptoti
 
oeÆ
ients, whi
h inthat parti
ular 
ase are nothing butan = (�1)nn! Z +1�1 x4ne�x2=2dx = (�1)n4n!!n! : (2.30)In general Bosoni
 fun
tional integrals require some stability 
ondition for the potential atlarge �eld (here e.g. g � 0), and their perturbation series do not 
onverge. Borel summability is
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ar�etherefore the best we 
an hope for the �4 theory, and it has indeed been proved for the theory indimensions 2 and 3 [13, 14℄.From translation invarian
e, we do not expe
t A�G;� to have a limit as � ! 1 if there areva
uum subgraphs in G. But we 
an remark that an amplitude fa
torizes as the produ
t of theamplitudes of its 
onne
ted 
omponents.With simple 
ombinatori
 veri�
ation at the level of 
ontra
tion s
hemes we 
an fa
torize thesum over all va
uum graphs in the expansion of unnormalized S
hwinger fun
tions, hen
e get forthe normalized fun
tions a formula analog to (2.25):SN = X�4 graphs G with N(G)=NG without any va
uum subgraph (�g)n(G)S(G) AG: (2.31)Now in (2.31) it is possible to pass to the thermodynami
 limit (in the sense of formal powerseries) be
ause using the exponential de
rease of the propagator, ea
h individual graph has a limitat �xed external arguments. There is of 
ourse no need to divide by the volume for that be
auseea
h 
onne
ted 
omponent in (2.31) is tied to at least one external sour
e, and they provide thene
essary breaking of translation invarian
e.Finally one 
an determine the perturbative expansions for the 
onne
ted S
hwinger fun
tionsand the vertex fun
tions. As expe
ted the 
onne
ted S
hwinger fun
tions are given by sums over
onne
ted amplitudes: CN = X�4 
onne
ted graphs G with N(G)=N (�g)n(G)S(G) AG (2.32)and the vertex fun
tions are the sums of the amputated amplitudes for proper graphs, also 
alledone-parti
le-irredu
ible. They are the graphs whi
h remain 
onne
ted even after removal of anygiven internal line. The amputated amplitudes are de�ned in momentum spa
e by omitting theFourier transform of the propagators of the external lines. It is therefore 
onvenient to write theseamplitudes in the so-
alled momentum representation:�N (z1; :::; zN) = X�4 proper graphs G with N(G)=N (�g)n(G)S(G) ATG(z1; :::; zN); (2.33)ATG(z1; :::; zN ) � 1(2�)dN=2 Z dp1:::dpNeiP piziAG(p1; :::; pN ); (2.34)AG(p1; :::; pN) = Z Yl internal line of G ddplp2l +m2 Yv2G Æ(Xl �v;lpl): (2.35)Remark in (2.35) the Æ fun
tions whi
h ensure momentum 
onservation at ea
h internal vertexv; the sum inside is over both internal and external momenta; ea
h internal line is oriented in anarbitrary way and ea
h external line is oriented towards the inside of the graph. The in
iden
ematrix �(v; l) is 1 if the line l arrives at v, -1 if it starts from v and 0 otherwise. Remark also thatthere is an overall momentum 
onservation rule Æ(p1 + ::: + pN) hidden in (2.35). The drawba
kof the momentum representation lies in the ne
essity for pra
ti
al 
omputations to eliminate theÆ fun
tions by a \momentum routing" pres
ription, and there is no 
anoni
al 
hoi
e for that.2.3 Feynman representationThere are other 
onvenient representations su
h as the \Feynman parametri
 representation" whi
hdo not need any non 
anoni
al 
hoi
es. To de�ne it we write the � or parametri
 representation ofthe propagator: Ĉ(p) = 1(2�)d Z 10 e��(p2+m2)d�; (2.36)
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A  spanning tree A two-treeA graph Figure 2: Spanning and two-trees
��������

q=q + q1 

=q + q3 4

q1

q4

q3

�
�
�
�

�
�
�
�

q2

2

q-p

p

Figure 3: The graph G0C(x; y) = 1(2�)d Z 10 d� Z eip:(x�y)��(p2+m2)ddp= 1(4�)d=2 Z 10 d��d=2 e��m2�jx�yj2=(4�): (2.37)The x spa
e or p spa
e integrations 
an then be expli
itly performed in any Feynman ampli-tude, sin
e they are quadrati
. The result is a 
ompa
t formula with one s
alar integration over aparameter � for ea
h internal line of the graph:AG(p1; :::; pN) = Æ(Xv Pv) Z 10 Yl d�l e�Pl �lm2�VG(�;p)=UG(�) 1[UG(�)℄d=2 (2.38)where UG and VG are polynomials in � depending on the parti
ular topology of the graph, 
alledthe Symanzik polynomials. Their expli
it expression is:UG =XS Yl not in S �l; (2.39)VG(p; �) = (XT Yl not in T �l)(Xa2T1 pa)2: (2.40)In (2.39) the sum runs over the spanning trees S of G. Su
h a spanning tree is a set of lines withoutloops 
onne
ting all the verti
es of the graph. Similarly in (2.40), the sum runs over the two-trees Tof G whi
h separate G into two 
onne
ted 
omponents, ea
h 
ontaining a non empty set of externallines, one of whi
h is T1 (by overall momentum 
onservation, (2.40) does not 
hange if T1 is repla
edby the set of external lines of the other 
onne
ted 
omponent, whi
h is the 
omplementary of T1)(see Figure 2 for an example).In this elementary presentation we shall not reprodu
e the 
omplete proof of these formulas(see [15℄ or [9℄). They rely on a 
areful analysis of the quadrati
 form that one obtains in theexponential after rewriting all the propagators in � spa
e. This quadrati
 form in turn 
an bededu
ed form the in
iden
e matrix of the graph.Remark that the parametri
 representation is not only \
anoni
al" but also quite e
onomi
alin large dimensions. In dimension 4, a four point subgraph of order n has n � 1 loops hen
e themomentum integration is over a spa
e of dimension 4n� 4; instead the parametri
 representationis over a spa
e of dimension l = 2(n � 1), hen
e with only half as many s
alar 
omponents to
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ar�eintegrate. For instan
e the integral of the graph G0 of Figure 2 involves only one total externalmomentum q and 
an be written formally asAG0(q) = Z d4p 1(p2 +m2)((p� q)2 +m2)= Z 10 Z 10 d�1d�2(�1 + �2)2 e�(�1+�2)m2� �1�2�1+�2 q2 : (2.41)However none of these two representations gives 
onvergent integrals be
ause of a divergen
e atlarge p or small �'s. We return to the stru
ture of these ultraviolet divergen
es in the next subse
-tion. The �-representation has also a fundamental interpretation in terms of Brownian motions[16℄. In parti
ular, the propagator (2.37) 
an be written as:C(x; y) = Z 10 d� exp(�m2�)P (x; y;�) (2.42)where P (x; y;�) = (4��)�d=2 exp(�jx� yj2=4�) is the Gaussian probability distribution of a Brow-nian path going from x to y in time �.The Feynman diagrams 
an then be understood as made of Brownian paths intera
ting byDira
 distributions, as in the Edwards model for self-avoiding polymers [17℄. This lead P.-G. deGennes in 1972 to his famous relation between this polymer model and a [(�)2℄2 �eld theory withO(N) symmetry, in the N ! 0 limit [18℄. This allowed RG results to be applied to polymer physi
s.A new development appeared when J. des Cloizeaux introdu
ed a simple dire
t (dimensional)renormalization method for the Edwards model [19, 20℄, working expli
itly in the �-representation.2.4 Ultraviolet Divergen
esThe amputated amplitudes for a 
onne
ted graph at �nite external momenta are not always �nitebe
ause of possible ultraviolet divergen
es. These divergen
es appear be
ause the momentum in-tegration over the loop variables in (2.35) may not always be absolutely 
onvergent. This 
an betra
ed ba
k to the distribution 
hara
ter of the propagator C in dire
t spa
e, for d � 2, and thegeneral impossibility to multiply distributions as should be done to de�ne e.g. �4.This diÆ
ulty, also present in quantum ele
trodynami
s, was the basi
 puzzle that the found-ing fathers of quantum �eld theory were 
onfronted with. Let us explore it, in
reasing the dimensionstep by step. The naive global s
aling of all internal momenta of the graph explains our de�nitionof the super�
ial degree of divergen
e: it measures whether the integral over this global s
alingparameter is 
onvergent or not. Therefore graphs with !(G) � 0 are 
alled primitively divergent.- If d = 2, we �nd !(G) = 2 � 2n, so the only divergent graphs have n = 1, and N = 0or N = 2. The only divergen
e is due to the \tadpole" loop R d2p(p2+m2) whi
h is logarithmi
allydivergent.- If d = 3, we �nd !(G) = 3 � n � N=2, so the only divergent graphs have n � 3, N = 0,or n � 2 and N = 2. Su
h a theory with a �nite number of \primitively divergent" subgraphs is
alled superrenormalizable.- If d = 4, !(G) = 4 � N . Every two point graph is quadrati
ally divergent and every fourpoint graph is logarithmi
ally divergent. This is in agreement with the super�
ial degree of thesegraphs being respe
tively 2 and 0. For instan
e the graph G0 at zero momentum without ultraviolet
uto� is logarithmi
ally divergent for large p:AG0(0) = Z d4p(p2 +m2)2 = +1 (2.43)and the \tadpole" loop R ddpp2+m2 is quadrati
ally divergent. Theories in whi
h the degree of diver-gen
e only depends on the number of external legs are 
alled renormalizable.- Finally for d > 4 we have in�nitely many primitively divergent graphs with arbitrarily largenumber of external legs, and the theory is 
alled non-renormalizable.
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Figure 4: A 6-point subgraph with a divergent subgraphIt was soon re
ognized that even graphs whi
h have negative super�
ial degree of divergen
e,su
h as the 6-point subgraph of Figure 4 in d = 4, are not ultraviolet �nite. Indeed they 
an 
ontaindivergent subgraphs, and the 
orresponding subintegrations do not 
onverge.The �rst progress on renormalization 
ame in re
ognizing that for four-dimensional theoriessu
h as �4 or quantum ele
trodynami
s, the super�
ially divergent graphs when suitably added toa lo
al 
ounterterm gives rise to a �nite 
ontribution. For instan
e in the 
ase of the graph G0 the\renormalized" amplitudeARG0(q) = Z [ 1(p2 +m2)((p+ q)2 +m2) � 1(p2 +m2)2 ℄ d4p= Z 10 Z 10 d�1d�2e�(�1+�2)m2(�1 + �2)2 �e� �1�2�1+�2 q2 � 1�: (2.44)is now �nite.Indeed let us prove �niteness of this amplitude. In the momentum representation, we redu
eto the same denominator, and taking advantage of parity we obtain:ARG0(q) = Z �2p:q � q2(p2 +m2)2((p+ q)2 +m2) d4p= � Z q2(p2 +m2)2((p+ q)2 +m2) d4p (2.45)now an obviously 
onvergent integral. In the parametri
 representation, using je�x � 1j � x forpositive x we 
an bound ARG0(q) byZ 10 Z 10 d�1d�2e�(�1+�2)m2 q2�1�2(�1 + �2)3 (2.46)whi
h is now a 
onvergent integral. To be more pre
ise, we should make additional remarks:- the renormalized amplitude is negative- it behaves as 
 log jqj as jqj ! 1- this large behavior at large q is solely due to the integral over the region jpj � jqj of the
ounterterm. Indeed both Zjpj�jqj q2(p2 +m2)2((p+ q)2 +m2) d4p (2.47)and Zjpj�jqj 1(p2 +m2)((p+ q)2 +m2) d4p (2.48)are well de�ned uniformly bounded integrals as jqj ! 1.Remark �nally that the 
ounterterm, when Fourier transformed, 
orresponds to a lo
al �4term, sin
e the zero momentum value of the graph is nothing but the spatial integral over y ofC2(x; y). This 
ounterterm when added to the bare Lagrangian will renormalize G0 not only as a
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1  S S 2 S 3GFigure 6: A graph with two overlapping divergent subgraphsprimitive graph, but ea
h time it appears as a subgraph in the expansion, sin
e the 
ombinatori
of inserting a �4 vertex or a G0 subgraph at any pla
e in a bigger diagram is 
learly the same.In the same way lo
al 
ounterterms of the �4, �2 or (r�)2 type for any kind of primitivelydivergent graph, 
an be reabsorbed in the parameters of the Lagrangian of (2.8). Su
h an in�niterede�nition whi
h a�e
ts only the unobservable \bare" parameters of the theory hen
e it is notphysi
ally in
onsistent.But for a while it was not 
lear whether one 
ould introdu
e a proper set of 
ountertermswhi
h is lo
al and remove all the ultraviolet divergen
es of every graph, not only the main globalprimitive divergen
es but also all the divergen
es asso
iated to subgraphs. This would make allparti
ular submanifolds of the momentum integration 
onvergent. The solution of this problem,by Bogoliubov, Parasiuk, Hepp and Zimmermann [21, 22, 23℄, and its extension to gauge theoriesby 'tHooft and Veltman [27℄ is a �rst great mathemati
al triumph of quantum �eld theory.2.5 The Bogoliubov Re
ursion and Zimmermann's SolutionWe have now to explain how to organize the set of all subtra
tions that should be performed in arenormalizable theory to make it ultraviolet �nite in perturbation theory. When a lo
al 
ountertermhas been de�ned for a graph G1 with N1 external lines, the modi�ed Lagrangian gives rise to anew vertex with N1 lines. So for every graph G2 whi
h 
ontains G1 as a subgraph, to subtra
t thesubintegration over G1 
orresponds to perform the sumAG1 + 
G1AG2=G1 (2.49)where G2=G1 is the graph obtained by redu
ing G1 to a single vertex in G2 (see Figure 5 for anexample). This redu
tion is an essential operation in renormalization theory. But remark alreadythat if there are several divergent subgraphs in a graph G, we 
an de�ne a redu
ed subgraph G=Sonly for families S of disjoint subgraphs S.More generally, if G2 itself is divergent, it seems 
lear that the 
ounterterm for G2 shouldbe de�ned by taking the lo
al part of (2.49), not of AG1 itself. So the de�nition of 
ountertermsis indu
tive, starting with the smaller graphs towards the bigger. This is after all the logi
 ofperturbation theory. This indu
tion was formalized by Bogoliubov. However sin
e a graph G 
an
ontain overlapping divergent subgraphs S1 and S2 with non-trivial interse
tion S3, su
h as inFigure 6, it is far from 
lear that this indu
tion a
tually removes all ultraviolet divergen
es. The�rst proof that Bogoliubov's indu
tion a
tually leads to �nite amplitudes is due to Hepp [22℄,and the �rst expli
it solution of the indu
tion, whi
h involves the notion of \forests" is due toZimmermann [23℄.Suppose we have de�ned 
ounterterms up to a given order n. Then for a graph G at order
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tion to Renormalization 13n+ 1 one de�nes a 
ounterterm 
G and the renormalized amplitude ARG byARG =XS (AG=S YS2S 
S) + 
G (2.50)where the sum is over all families S of disjoint primitively divergent subgraphs of G, in
luding theempty one.The exa
t de�nition of 
G 
ontains some arbitrariness if the goal is to make renormalized am-plitudes �nite. In the BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) renormalization s
heme,
G is the lo
al (or zero momentum part) of the sum in (2.50). More pre
isely, if we 
hoose a systemof loop momenta k for G and 
all p the external momenta we haveAG(p) = Z dkIG(p; k) (2.51)and for a primitively divergent graph one de�nes the 
ounterterm 
G by a subtra
tion a
tingdire
tly at the level of the integrand IG(p; k) in momentum spa
e, to getARG(p) = Z dk(1� T d(G))IG(p; k) (2.52)where T d(G), the so-
alled Taylor \operator" sele
ts the beginning of the Taylor expansion ofIG(p; k) up to order d(G) around the simple point p = 0. This is in agreement with (2.44).To generalize to graphs with divergent subgraphs one follows the Bogoliubov re
ursion. Infa
t renormalizing proper (i.e. 
onne
ted one-parti
le-irredu
ible) subgraphs is enough, and theexpli
it solution of the Bogoliubov indu
tion with this subtra
tion pres
ription is:ARG = Z dkRIG(p; k) (2.53)R =XF YS2F(�T d(S)) (2.54)where the sum is over all forests of proper divergent subgraphs S � G, in
luding the empty forest.De�nition 1 A forest F is a subset of subgraphs su
h that for any pair S1, S2 of the forest, eitherS1 � S2 or S2 � S1 or S1 and S2 are disjoint.This de�nition ensures that the partial ordering by in
lusion in a forest 
an indeed be pi
tured asa set of trees, hen
e the name \forest".For example the graph G of Figure 5 whi
h has 3 di�erent divergent stri
t subgraphs, has 12forests, namelyf;g; fS1g; fS2g; fS3g; fGg; fS3; S1g; fS3; S2g; fS3; Gg; fS1; Gg; fS2; Gg; fS3; S1; Gg; fS3; S2; Gg(2.55)These 12 forests are shown in Figure 7 In formula (2.54) the produ
t of the Taylor operators istaken following the partial ordering of the forest, that is from smaller to bigger graphs. Ea
h Tayloroperator sele
ts the beginning of a Taylor expansion in the external momenta of a subgraph S,whi
h 
an later be
ome internal momenta for G. The de�nition of R may therefore depend on the
hoi
e of the momentum routing, hen
e of the loop momenta solving the Æ fun
tions in (2.35). ThisdiÆ
ulty lead Zimmermann to de�ne parti
ular momentum routing 
alled \admissible". For these
hoi
es, Zimmermann 
ould then prove:Theorem 2.1 The integrals (2.53) do 
onverge for any G and de�ne amplitudes ARG(p) whi
h aretempered distributions when analyti
ally 
ontinued to Minkowski spa
e.The diÆ
ulty linked to momentum routing 
an be avoided 
ompletely by working instead inthe parametri
 representation. It is indeed possible to de�ne an R operator a
ting dire
tly in the�-parametri
 spa
e, equivalent to Zimmermann's operator, but bypassing 
ompletely the problem
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Figure 7: The twelve forests of Gof admissible momentum routing [24, 25℄. Then there exists a very expli
it proof of �niteness ofthe renormalized amplitudes. One 
an divide, for any 
omplete ordering of the parameters �l, also
alled a \Hepp se
tor", the sum over all forests quite naturally into pa
kets, so that ea
h pa
ketgives a �nite 
ontribution. The problem is that the pa
kets themselves 
hange when the Heppse
tor 
hanges! Nevertheless this method is then suÆ
iently expli
it to not only prove �nitenessbut also to produ
e reasonable quantitative estimates of the size of renormalized perturbationtheory at large order [26℄.The de�nition of the pa
kets is subtle, but let us try to sket
h it. The number of forests inany pa
ket is always a 
ertain power of 2, that is is of the form 2r for a 
ertain integer r. Indeed theforests whi
h 
ompose any su
h pa
ket are exa
tly those 
ontaining a �xed forest F0 and 
ontainedin another �xed forest F0 [ F1. r is simply the number of elements in F1. So the forests in thatpa
ket are those F that satisfy F0 � F � F0 [ F1. Hen
e the sum of the Taylor subtra
tions fora given pa
ket always re
onstru
ts an operatorYS2F0(�TS) YS2F1(1� TS): (2.56)In a given se
tor, there is exa
tly one pa
ket for ea
h forest F0 with a 
ertain property, whi
hroughly speaking says that F0 is made of subgraphs with some internal line �-parameter largerthan some external line �-parameter in the ordering of the se
tor 
onsidered. Given su
h an F0,the forest F1 then is 
ompletely determined by F0 and the se
tor. It is made of the subgraphs withthe opposite property, that is all �-parameters for the internal lines of these subgraphs of F1 aresmaller than all �-parameters for their external lines in the ordering of the se
tor 3.The fa
torization property (2.56) is what makes ea
h pa
ket �nite. Indeed the de�ning prop-erty for the subgraphs of F0 means that they are not really divergent in the se
tor 
onsidered.This is be
ause the smaller �-parameter for one of their external lines a
ts as a natural ultraviolet
uto� for the subgraph. In 
ontrast the subgraphs of F1 are potentially divergent. But for thesesubgraphs the 1� TS operators in (2.56) pre
isely provide the ne
essary subtra
tions! This is thebasi
 me
hanism whi
h makes every pa
ket �nite.3The true de�nition is a bit more 
ompli
ated and indu
tive, be
ause redu
tion by the elements of F0 (as shownin Figure 5) has to be teken into a

ount, starting from the smallest subgraphs in F0 and working towards thelargest.
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tion to Renormalization 152.6 Di�erent renormalization s
hemesTo subtra
t the value of subgraphs at zero external momenta is obviously a natural but not a
anoni
al 
hoi
e. It may be even ill-de�ned if the theory 
ontains massless parti
les, whi
h is forinstan
e the 
ase of quantum ele
trodynami
s. It is important therefore to have several di�erent setsof renormalization s
hemes, and to understand how they are related to ea
h other. Two di�erentsubsets of 
ounterterms whi
h both make the Feynman amplitudes �nite must di�er through �nite
ounterterms. In pra
ti
e one wants usually to �x some physi
al 
onditions su
h as the parti
ularvalues of some Green fun
tions at some given momenta, and to determine the renormalizations
heme 
orresponding these 
onditions. It may require two steps: �rst to use a general s
hemeto get rid of in�nities, then to adjust the s
heme through �nite 
ounterterms so as to meet thephysi
al 
onditions.For instan
e the BPHZ s
heme that we have 
onsidered for the massive Eu
lidean �44 theory
orresponds to the following normalization 
onditions on the 
onne
ted fun
tions in momentumspa
e: C4(0; 0; 0; 0) = �g; (2.57)C2(p2 = 0) = 1m2 ; (2.58)ddp2C2jp2=0 = � am4 : (2.59)Let us say a few words about another popular renormalization s
heme, namely dimensionalrenormalization. The starting idea is that in the parametri
 representation (2.38) the dimension d
an be 
onsidered as a 
omplex parameter. The attentive reader 
an obje
t that external momentastill live in R4 . But sin
e the amplitudes depend only on the Eu
lidean s
alar invariants (Pa2T1 pa)2built on them (see (2.40)), this is not a major diÆ
ulty. Amplitudes su
h as IG0 in (2.41) be
omemeromorphi
 fun
tions for <d � 4. They have then a pole at d = 4. It is therefore natural tode�ne the �nite part of the amplitude as the �nite part of the 
orresponding Laurent series, hen
eto simply extra
t the pure pole with its 
orre
t residue at d = 4. When properly implementeda

ording to Bogoliubov's indu
tion this leads to the notion of dimensional renormalization.This s
heme has many advantages but one major drawba
k. The advantage is that it preservesthe symmetries of the theory su
h as gauge symmetries. Using it, `t Hooft and Veltman were able toshow the renormalizability of the non-Abelian gauge theories at the 
ore of the standard model [27℄.For instan
e although the a
tion g�2F��F�� of a pure non-Abelian gauge theory 
ontains termsof order 2, 3 and 4 in the �eld A�, it is possible with dimensional renormalization to preserve thebasi
 relation between these three terms whi
h make the total Lagrangian a perfe
t square. In thisway the theory remains of the same form after renormalization , but simply with a renormalizedparameter gren instead of g. This su

ess was extremely important to 
onvin
e physi
ists to adoptnon-Abelian gauge theories for parti
le physi
s. As other examples of use of this s
heme, let usmention again the renormalization method for the Edwards model of polymers [19, 20℄ whi
hhas been shown to be equivalent to standard (dimensional) �eld-theoreti
 renormalization [28℄.These works opened the way to the renormalization theory of intera
ting or self-avoiding 
rumpledmembranes, where the Feynman diagrams are no longer made of lines but of extended surfa
es (see,e.g., [29℄). Dimensional renormalization is also at the 
ore of the Riemman-Hilbert interpretationof renormalization [30℄.But the big drawba
k of dimensional renormalization is that up to now it remains a purelyperturbative te
hnique. Nobody knows how to interpolate 
orre
tly in the spa
e-time dimensiond the in�nite dimensional fun
tional integrals (2.17) whi
h are the basis for the non-perturbativeor 
onstru
tive version of quantum �eld theory. To solve this diÆ
ulty would 
ertainly be a majorprogress.2.7 What lies beyond perturbative renormalization?The theory of perturbative renormalization is a brilliant pie
e of mathemati
al physi
s. The solu-tion of the diÆ
ult \overlapping" divergen
e problem through Bogoliubov's re
ursion and Zimmer-mann's forests be
omes parti
ularly 
lear in the parametri
 representation using Hepp's se
tors:
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�Figure 8: A family of graphs Pn produ
ing a renormalon
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�Figure 9: A family of 
onvergent graphs Qn, that do not produ
e any renormalonin ea
h se
tor there is a di�erent 
lassi�
ation of forests into pa
kets so that ea
h pa
ket gives a�nite integral.Dimensional renormalization allows to preserve 
riti
al symmetries su
h as gauge symmetries,hen
e to prove renormalizability of four dimensional gauge theories, but does not seem adaptedto non-perturbative theory. Note however that in this s
heme the �nite part of the Feynmanamplitudes are related to � fun
tions. This hints that this theory might be useful for mathemati
s,parti
ularly number theory. The stru
ture of the forests subtra
tion has been shown re
ently to beasso
iated to a Hopf algebra and related to the Riemann-Hilbert problem in the works of Connesand Kreimer [31, 30℄.But from the physi
al point of view we 
annot 
on
eal the fa
t that purely perturbativerenormalization theory is also in some sense a 
on
eptual maze. At least two fa
ts already hint ata better theory whi
h lies behind:- The forest formula seems unne
essarily 
ompli
ated, with too many terms. For instan
e ifwe examine 
losely the 
lassi�
ation of forests into pa
kets, we remark that in any given Heppse
tor, only the parti
ular pa
ket 
orresponding to F0 = ; seems absolutely ne
essary to make therenormalized amplitude �nite. The other pa
kets, with non-empty F0 seem useless, a little bit like\junk DNA": they are there just be
ause they are ne
essary for other se
tors. This does not lookoptimal.- The theory makes amplitudes �nite, but at whi
h 
ost! The size of some of these renormalizedamplitudes be
omes indeed unreasonably large as a size of the graph in
reases. This phenomenon is
alled the \renormalon problem". For instan
e it is easy to 
he
k that the renormalized amplitude(at 0 external momenta) of the graphs Pn with 6 external legs and n+2 internal verti
es in Figure8 be
omes large as 
nn! as n ! 1. Indeed we remarked already that at large q the renormalizedamplitude ARG0 in (2.44) grows like log jqj. Therefore the 
hain of n su
h graphs in Figure 8 behavesas [log jqj℄n, and the total amplitude of Pn behaves asZ [log jqj℄n d4q[q2 +m2℄3 'n!1 
nn! (2.60)So there are not only too many Feynman graphs to resum them, but some of them after renor-malization also a
quire so large values that the 
orresponding subfamilies of graphs 
annot beresummed! These two hints are in fa
t linked. As their name indi
ates, renormalons are due torenormalization. Families of 
ompletely 
onvergent graphs su
h as the graphs Qn of Figure 9, arebounded by 
n, and produ
e no renormalons. But studying more 
arefully renormalization in the� parametri
 representation one 
an say more. One 
an 
he
k that renormalons are solely due tothe forests pa
kets with F0 6= ; and in fa
t F0 large. A pa
ket asso
iated to a given F0 typi
allygrows like 
njF0j! [26℄. Re
all that the forests F0 are made of those subgraphs whi
h are not reallydivergent in the se
tor 
onsidered. So this renormalon analysis generalizes one of our previousremarks. Renormalons are due to subtra
tions that are not ne
essary to ensure 
onvergen
e, justlike the strange log jqj growth of ARG0 at large q is solely due to the 
ounterterm in the region where
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ounterterm is not ne
essary to make the amplitude �nite.We 
an therefore 
on
lude that subtra
tions are not organized in an optimal way by theBogoliubov re
ursion. The idea of renormalization itself is not wrong. But to use the size of thegraph as the relevant parameter to organize Bogoliubov's indu
tion is not the optimal idea. Abetter parameter to organize the indu
tion was found in fa
t for other 
ompletely di�erent reasonsby Wilson and followers. It is not the size of the graph but rather the size of the line momentain it that should be used to better organize the renormalization subtra
tions. This is the point ofview of the renormalization group.3 The Renormalization GroupThe renormalization group is a strange name. It is in fa
t an (ill-de�ned) semi-group. Its dis
overy
ame in two steps: �rst by thinking about 
hanging the renormalization s
heme, �eld theorists su
has Callan and Symanzik dis
overed a kind of \invarian
e" of the theory [32, 33℄. Two renormalizabletheories with two di�erent sets of 
oupling 
onstants but de�ned by subtra
ting at di�erent s
ales
an in fa
t be the same physi
al theory if the 
onstants and s
ales are related through some\renormalization group" equations. It is in fa
t even possible to prove �niteness of perturbativerenormalization, hen
e to bypass the BPHZ theorem by dire
tly using these renormalization groupequations [34℄.Then 
ame the 
on
eptual breakthrough of Wilson and followers [35℄: instead of renormalizingthe theory at on
e, why not perform this diÆ
ult task in a sequen
e of steps? The evolution of thetheory in this sequen
e of steps is then similar to the evolution of a dynami
al system. In dynami
alsystems we know that it is usually easier (in parti
ular numeri
ally) to perform patiently a largesequen
e of lo
al steps than to try to guess the global result, or to sear
h for an analyti
 solution,whi
h is very rare. The same is true in renormalization theory, in whi
h some s
ale parameter playsthe role of time.Although this was not the histori
 path, it would have been perfe
tly possible to arrive alsoat the same renormalization group 
on
ept by simply trying to simplify Zimmermann's formula toget rid of renormalons. Indeed this is exa
tly what the RG also does!This note is too short for a 
omplete review of the renormalization group and in parti
ularof its non-perturbative aspe
ts. So we will sket
h what it does on the simple example of �44.3.1 Sli
ingOne needs �rst to separate the degrees of freedom of the theory, and to organize them into asequen
e of sli
es, ea
h sli
e 
orresponding to a given s
ale. It is 
onvenient to 
hoose this sequen
eof s
ales to form a geometri
 progression. The idea is then to perform the fun
tional integralonly over the modes of the �eld 
orresponding to momenta of a given s
ale and to 
ompute ane�e
tive theory for the remaining s
ales. This should not be done in an arbitrary order: a

ordingto the usual s
ienti�
 philosophy, mi
ros
opi
 laws should determine ma
ros
opi
 behavior, not the
onverse 4. So the \e�e
tive" �eld theory should emerge progressively from the bare theory like ane�e
tive pi
ture progressively emerges from averaging the �ne pixels in a detailed pi
ture, or likethermodynami
s with a few ma
ros
opi
 parameters su
h as temperature or pressure should emergefrom a very 
ompli
ated and 
haoti
 mi
ros
opi
 behavior governed by the laws of me
hani
s.In a theory su
h as �44, the mass �xes some parti
ular s
ale beyond whi
h no interesting physi
shappens be
ause 
onne
ted fun
tions de
ay exponentially just as the propagator itself (2.13). Soin this 
ase the renormalization group will be used solely to treat the ultraviolet problem. One 
ansli
e the theory by dividing the Eu
lidean propagator into sli
es with an index i 2 N, and the sli
ei will 
orrespond to momenta of order roughly M i, where M is a �xed number, the ratio of thegeometri
 progression (e.g. M = 2).4This traditional philosophy is put in question by more holisti
 points of view su
h as those based on thedualities of string theory whi
h ex
hange small and large distan
es. But in this note I will nevertheless sti
k to theold-fashioned point of view!
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ar�eThis 
an be done 
onveniently with the parametri
 representation, sin
e � in this represen-tation is roughly like 1=p2. So we 
an de�ne the propagator within a sli
e asCi = Z M�2(i�1)M�2i e�m2�� jx�yj24� d��d=2 : (3.1)We 
an intuitively imagine Ci as the pie
e of the �eld os
illating with Fourier 
omponents essentiallyonly of size roughly M i. In fa
t it is easy to prove the bound (for d > 2)jCi(x; y)j � K:M (d�2)ie�Mijx�yj (3.2)where K is some 
onstant.For the �rst sli
e the formula is a little di�erent be
auseC0 = Z 11 e�m2�� jx�yj24� d��d=2 : (3.3)Now the full propagator with ultraviolet 
uto� M�, � being a large integer, may be viewedas a sum of sli
es: C�� = �Xi=0 Ci (3.4)Then the basi
 renormalization group step is made of two main operations:� A fun
tional integration� The 
omputation of a logarithm to de�ne an e�e
tive a
tionIndeed de
omposing a 
ovarian
e in a Gaussian pro
ess 
orresponds to a de
omposition ofthe �eld into independent random variables �i. Let us 
all�i = iXj=0 �j : (3.5)This is the \low-momentum" �eld for all frequen
ies lower than i. The RG idea is that startingfrom s
ale � and performing � � i steps, one arrives at an e�e
tive a
tion for the remaining �eld�i. Then writing �i = �i + �i�1 splits the �eld into a \
u
tuation" �eld �i and a \ba
kground"�eld �i�1. The �rst step, fun
tional integration, is performed solely on the 
u
tuation �eld, so it
omputes Zi�1(�i�1) = Z d�Ci(�i)e�Si(�i+�i�1): (3.6)Then the se
ond step rewrites this quantity as the exponential of an e�e
tive a
tion, hen
e simply
omputes Si�1(�i�1) = � log[Zi�1(�i�1)℄ (3.7)Now Zi�1 = e�Si�1 and one 
an iterate! The 
ow from the initial bare a
tion S = S� for the full�eld to an e�e
tive renormalized a
tion S0 for the last \slowly varying" 
omponent �0 of the �eldis similar to the 
ow of a dynami
al system. Its evolution is de
omposed into a sequen
e of dis
retesteps from Si to Si�1.Of 
ourse this program needs many modi�
ations to be
ome a mathemati
ally 
orre
t (non-perturbative) pres
ription. But at least formally it has a non-perturbative potential be
ause it isnot formulated at the level of graphs. Integrating over a single \momentum sli
e" of the �eld islike 
omputing a �eld theory with both ultraviolet and infrared 
uto�, and should be mu
h easierthan a full-
edged ultraviolet or infrared problem.A key feature of the standard presentation of the renormalization group has been also omitted.Usually one performs a third somewhat 
onfusing operation in a RG step, whi
h is a res
aling ofall the lengths of the theory and of the �eld size. Here it would simply bex!M�1x; (3.8)
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tion to Renormalization 19�!M�(d�2)=2�: (3.9)But this res
aling is made to 
ompare more easily the e�e
tive a
tion to the former one, just like a\reframing" of our averaged pi
ture to always �t into a frame of �xed size. It is therefore some kindof analogue of 
hanging the referen
e frame in a dynami
al system, from the \laboratory frame"to a \moving frame". We prefer here not to introdu
e this res
aling, be
ause in many situationsthe long distan
e behavior of a theory is not governed by a simple s
aling around the point p = 0in momentum spa
e but by more 
ompli
ated extended singularities. This phenomenon o

urs in
ondensed matter, where the singularity is given by a so 
alled Fermi surfa
e, and in di�usionproblems in Minkowski spa
e, where the propagator is singular on a mass-shell. In these 
asesthere is no single simple moving frame (but rather one di�erent moving frame for ea
h limit pointof the extended singularity).Of 
ourse there is lot of arbitrariness in the 
hoi
e of the sli
ing for the RG. One 
an usefor instan
e wavelets [36℄. A very popular 
hoi
e is \blo
k-spinning", in whi
h �i�1 is simply theaverage of �i over a 
ube of side size M�i. Again this is a 
hoi
e whi
h does not generalize easilyto extended singularities (and also breaks the rotation invarian
e of the theory) so (when possible)sli
ing the 
ovarian
e of the �eld seems the best te
hni
al tool.It is 
lear that the RG strategy is not limited to the study of an ultraviolet problem in �eldtheory. In fa
t sin
e the renormalization group 
ows from ultraviolet s
ales to infrared ones, it isparti
ularly well adapted to the study of 
riti
al phenomena in statisti
al me
hani
s [35, 5℄. Thebare 
riti
al a
tion leading to an e�e
tive massless a
tion 
orresponds to an initial point at some�nite given spatial s
ale in a RG traje
tory, for whi
h a �nal 
ondition (massless e�e
tive theory)is given at very long distan
e. Similarly \the ultraviolet limit" in �eld theory 
orresponds to asequen
e of bare a
tions at smaller and smaller spatial s
ale whi
h end up on the same renormalizedtheory at some given �xed spatial s
ale. So the two problems are very similar. Finally a massless �eldtheory without ultraviolet 
uto� is similar to a dynami
al system with two boundary 
onditionsone towards t! �1 and one towards t! +1.3.2 The FlowIn this se
tion we would like to sket
h how the renormalization group deeply 
hanges the wayperturbation theory should be organized.Naive �eld theory was formulated with a single set of 
oupling 
onstants, and perturbativelyrenormalized �eld theory is formulated with two su
h sets, the bare and the renormalized 
onstants.The bare 
ouplings be
ome in�nite formal power series in the renormalized 
onstants with 
oef-�
ients whi
h diverge when the ultraviolet 
uto� is removed. But the 
orrelation fun
tions whenexpressed as power series in the renormalized 
oupling 
onstant have perfe
tly �nite ultravioletlimits order by order. This limit is the sum of the renormalized Feynman amplitudes given by theforest formulas. But in addition to the usual divergen
e of perturbation theory due to the largenumber of diagrams this perturbative renormalization theory su�ers from a new non-perturbativedisease, the renormalons generated by the anomalously large amplitudes of some families of graphssu
h as those of Figure 8.How does this 
hange with RG? RG tells us that we should neither use one nor two setsof 
oupling 
onstants, but an in�nite set, one for ea
h s
ale. All these \running 
onstants" areuniquely related to any one of them be
ause they must lie on a single RG traje
tory.Clearly the RG philosophy means that we should neither 
ompute the 
orrelation fun
tions asseries in the bare 
oupling with diverging 
oeÆ
ients in the ultraviolet limit nor as renormalon-illseries in the renormalized 
oupling. We should 
ompute them as multi-series in the in�nite set ofrunning 
onstants.On
e this big 
hange is a

epted, everything falls into pla
e.The momentum sli
ing be
omes the fundamental tool. The Feynman amplitudes are sli
edinto \assignments" � = filg with a sli
e index il for ea
h line. There is also a vertex index iv forea
h vertex, namely the highest line index 
owing into that vertex. It is a natural 
onvention to
onsider the true external lines of the graph as having index below all others, for instan
e here index�1. Then the amplitude for a graph is no longer proportional to the power of a single 
oupling
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ar�ebut ea
h vertex should be equipped with a running 
onstant giv 
orresponding to its s
ale in theassignment.In this way we obtain the \e�e
tive expansion" for a given S
hwinger fun
tionSN = X�4 graphs G with N(G)=NG without any va
uum subgraph X�=filg 1S(G) �Yv2G giv�AR;effG;� ; (3.10)where the e�e
tively renormalized amplitude AR;effG;� 
ontains only one subtra
tion pa
ket, the oneasso
iated to F0 = ;. More pre
isely the graph G and the assignment � uniquely de�ne a single\divergent forest" F(G;�) whi
h is made of those divergent subgraphs in G for whi
h the indi
es ofinternal lines are all greater than the indi
es of external lines. Then (for instan
e in the parametri
representation) AR;effG;� = Z d� � YS2F(G;�)(1� TS) � IG�(�): (3.11)The S
hwinger fun
tions in this \e�e
tive expansion" are made of 
ourse of exa
tly the samepie
es as the bare or the renormalized expansion. These pie
es are simply reshu�ed in a di�er-ent way. Indeed in the e�e
tive expansion the subtra
tions asso
iated to the additional pa
ketsresponsible for all the 
ompli
ations of Zimmermann's formula have simply disappeared, exa
tlyreabsorbed into the e�e
tive 
onstants that equip the verti
es. Sin
e these pa
kets were responsiblefor the renormalons, it is not surprising that the expansion (3.10) is free of the renormalon problem,as expressed by our next Lemma.Remark that the subgraphs in F(G;�) are indeed exa
tly those divergent subgraphs whi
hhave short spatial s
ale 
ompared to their external lines. Distan
es between internal verti
es arethen shorter than the typi
al os
illation lengths of the external legs. Sin
e these legs are likesensors through whi
h the subgraph 
ommuni
ates with the external world, subgraphs in F(G;�)look \quasi-point-like" when seen from the outside. It is therefore no surprise that subtra
ting atruly lo
al 
ounterterm for ea
h su
h \quasi-lo
al" subgraph, whi
h is what (1� TS) does, leavesonly a small remainder free of renormalons. More pre
isely one 
an prove (putting all externalmomenta to 0 to simplify):Lemma 3.1 There exists a 
onstant K su
h that for any GX� jAR;effG;� j � Kn(G) (3.12)One 
an 
on
lude that although in the bare series the amplitudes were not subtra
ted at all,in the renormalized series they were subtra
ted too mu
h be
ause lots of useless forests gave rise torenormalons. By abandoning the idea of a single 
oupling 
onstant, the e�e
tive expansion whi
hlies between the bare and renormalized ones has exa
tly the right amount of subtra
tions, 
reatingonly small 
ontributions.Of 
ourse the attentive reader may obje
t that the lemma has not too mu
h meaning, be
auseea
h pie
e AR;effG;� should be multiplied by a di�erent fa
tor Qv2G giv before being summed over �in the e�e
tive expansion. But let us suppose that all the running 
onstants gi remain bounded.In this 
ase it is 
lear that the e�e
tive expansion is mu
h better than the renormalized one fromthe point of view of resummation, sin
e only the usual divergen
e linked to the large number ofgraphs remains. And bounded running 
onstants are not un
ommon: they o

ur in asymptoti
allyfree theories.3.3 Asymptoti
 FreedomIn a just renormalizable theory like �44 the most interesting 
ow under the renormalization groupis the one of the 
oupling 
onstant. By a simple se
ond order 
omputation this 
ow is intimately
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tion to Renormalization 21linked to the sign of the graph G0 of Figure 3. More pre
isely, we �nd that at se
ond order therelation between gi and gi�1 is gi�1 ' gi � �g2i (3.13)(remember the minus sign in the exponential of the a
tion), where � is a 
onstant, namely theasymptoti
 value of Pj;j0= inf(j;j0)=i R d4yCj(x; y)Cj0 (x; y) when i ! 1. Clearly this 
onstant ispositive. So for the normal stable �44 theory, the relation (3.13) inverts intogi ' gi�1 + �g2i�1; (3.14)so that �xing the renormalized 
oupling seems to lead to a large, diverging bare 
oupling, in
om-patible with perturbation theory. This is the famous \Landau ghost" problem.But in non-Abelian gauge theories an extra minus sign is 
reated by the algebra of the Liebra
kets. This surprising dis
overy has deep 
onsequen
es. The 
ow relation be
omes approxi-mately gi ' gi�1 � �gigi�1; (3.15)with � > 0, or, dividing by gigi�1, 1=gi ' 1=gi�1 + �; (3.16)with solution gi ' g01+g0�i . A more pre
ise 
omputation to third order in fa
t leads togi ' g01 + g0(�i+ 
 log i+O(1)) : (3.17)Su
h a theory is 
alled asymptoti
ally free (in the ultraviolet limit) be
ause the e�e
tive 
ouplingtends to 0 with the 
uto� for a �nite �xed small renormalized 
oupling. Physi
ally the intera
tion isturned o� at small distan
es. This theory is in agreement with s
attering experiments whi
h see a
olle
tion of almost free parti
les (quarks and gluons) inside the hadrons at very high energy. Thiswas the main initial argument to adopt quantum 
hromodynami
s, a non-Abelian gauge theorywith SU(3) gauge group, as the theory of strong intera
tions.Remark that in su
h asymptoti
ally free theories the 
ow and all running 
onstants remainbounded (in fa
t by the renormalized 
oupling). The initial expe
tations that in�nite Feynmandiagrams should lead to in�nite bare parameters are 
learly wrong in this 
ase sin
e this bareparameter in fa
t tends to 0 with the ultraviolet 
uto�!Asymptoti
 freedom is not limited to the rather 
ompli
ated non-Abelian gauge theories. Asis well known, fermion diagrams have an extra minus sign per loop. The Gross-Neveu theory, atheory with quarti
 
oupling and N spe
ies of Fermions in two dimensions, has the same power
ounting as �44, and is also asymptoti
ally free in the ultraviolet limit. This is also the 
ase forinstan
e for the �44 theory with \wrong sign" of the 
oupling 
onstant, whi
h 
an be studied atleast in the planar limit, whi
h tames the natural instability due to that wrong sign. The \rightsign" �44 is not asymptoti
ally free in the ultraviolet but as a 
onsequen
e it is asymptoti
ally freein the infrared, whi
h means that the 
orresponding massless 
riti
al theory (with �xed ultraviolet
uto�) is almost Gaussian in the long distan
e limit [35℄.3.4 Some Comments on Constru
tive RenormalizationConstru
tive �eld theory has for ambitious goal to de�ne the non-perturbative mathemati
ally 
or-re
t version of Lagrangian quantum �eld theory. This may be 
onsidered somewhat an a
ademi
problem for weakly 
oupled theories su
h as quantum ele
trodynami
s, for whi
h perturbative
omputations up to three loops seem suÆ
ient. But there are strongly 
oupled theories su
h asquantum 
hromodynami
s in whi
h a non-perturbative approa
h is badly needed. Also it would bequite surprising if the patient analysis of the mathemati
al diÆ
ulties related to the summation ofquantum perturbation theory did not lead to important new physi
al insights. After all the diÆ
ul-ties in resumming 
lassi
al perturbation theory were very important for the modern understandingof dynami
al systems [8℄.



22 V. Rivasseau S�eminaire Poin
ar�eFor reviews of 
onstru
tive theory we refer to [2, 9, 37, 38℄. But here let us sket
h how the RGhas to be modi�ed to be
ome truly a non-perturbative tool, and review brie
y the a
hievementsof the theory.The �rst diÆ
ulty if we try to resum perturbation theory has to do with the large number ofFeynman graphs. Convergen
e of the fun
tional integral itself, and the divergen
e of perturbationtheory 
an be 
onsidered as \large �eld" problems, be
ause they are related to the fa
t that abosoni
 �eld is an unbounded variable. Physi
ally a large �eld 
orresponds to a large number ofex
itations or parti
les being produ
ed, and large �eld problems are generi
 in bosoni
 theoriesbe
ause bosons, in 
ontrast with fermions, 
an pile up in large numbers at the same pla
e. InFermioni
 theories the Pauli prin
iple physi
ally solves that problem: fermions 
annot pile up atthe same pla
e. Mathemati
ally the 
orresponding anti
ommuting fun
tional integrals give rise todeterminants. By Gram or Hadamard's inequalities an n by n determinant with elements boundedby 1 
an never be of size n! but at most nn=2, so that fermioni
 perturbation theory 
onverges, insharp 
ontrast with bosoni
 perturbation theory.Clearly the RG as initially formulated by Wilson or summarized in (3.6)-(3.7) is not math-emati
ally well-de�ned. In parti
ular starting form any polynomial a
tion it 
reates an e�e
tivea
tion whi
h is obviously no longer polynomial, and this even after a single step! Therefore thelarge �eld problem (integration on � at large �), appears! More pre
isely, even if the initial barea
tion is stable, i.e., bounded below, it is not 
lear that this remains true for Seff (�), even after asingle RG step. Hen
e starting from a stable intera
tion, the se
ond step of the RG may be alreadyill-de�ned. This point has to be stressed to physi
ists!So 
onstru
tive theory must modify 
arefully the two main operations in a RG step to makethem well de�ned. The fun
tional integral in a sli
e must be treated (in the bosoni
 
ase at least)with a tool 
alled a 
luster expansion. The idea of the 
luster expansion is that sin
e perturbationtheory diverges we must keep most of it in the form of fun
tional integrals. However one 
an testwhether distant regions of spa
e are joined or not by propagators. So one introdu
es a latti
eof 
ubes of size 
omparable to the de
ay rate of the propagator (here M�i) and one performsa battery of tests to know whether there are verti
es or sour
es in di�erent 
ubes joined by apropagator. This allows to rewrite the theory as a \polymer gas", the polymers being the sets of
ubes joined together as the out
ome of the 
luster expansion. By 
onstru
tion this polymer gashas hard
ore intera
tions: two 
onne
ted 
omponents are always made of disjoint 
ubes. But whenthe 
oupling 
onstant is small, the a
tivities for the non-trivial polymers (
ontaining more thanone 
ube) are small. Hen
e the polymer gas is dilute and the statisti
al me
hani
s te
hnique of theMayer expansion, a tool whi
h 
ompares the hard
ore gas to a perfe
t gas, allows to perform thethermodynami
 limit. This Mayer expansion is the non-perturbative analog of the 
omputation ofthe logarithm in the se
ond part of a renormalization group step. In this way the renormalizationgroup 
an be formulated 
orre
tly at the non-perturbative level, as a sequen
e of intertwinned
luster and Mayer expansions, and the 
ow of the 
riti
al parameters to renormalize, su
h as themass, wave fun
tion and 
oupling 
onstant 
an be 
omputed in this framework.Using this approa
h, models of non-trivial intera
ting �eld theories have been built over thepast thirty years, whi
h satisfy Osterwalder-S
hrader's axioms, hen
e in turn have a 
ontinuationto Minkowski spa
e that satis�es Wightman axioms [39, 40℄. Su
h models are unfortunately yetrestri
ted to spa
e-time dimensions 2 or 3 but they in
lude now both superrenormalizable models,su
h as P (�)2 [42, 41, 43℄, �43 [44, 45, 46, 14℄ or the Yukawa model in 2 and 3 dimensions, as wellas just renormalizable models su
h as the massive Gross-Neveu model in two dimensions [47, 48℄.Most of these models have been built in the weak 
oupling regime, using expansions su
h as the
luster and Mayer expansions; the harder models require multis
ale versions of these expansions,reshu�ed a

ording to the renormalization group philosophy.In most 
ases the relationship of the non-perturbative 
onstru
tion to the perturbative one hasbeen elu
idated: the non-perturbative Green's fun
tions being the Borel sum of the 
orrespond-ing perturbative expansion [13, 14, 48℄. In this sense one 
an say that 
onstru
tive �eld theoryhas a
hieved the goal of resumming all Feynman graphs, although, as explained above, Borel re-summation is not a naive ordinary summation but a 
lever reshu�ing of the initial perturbativeseries.
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onstru
ting �44 itself, the initial goal of the 
onstru
tive program has not beenpossible sin
e it la
ks ultraviolet asymptoti
 freedom. It has been possible to show numeri
allyand through 
orrelation inequalities that starting from a bare latti
e a
tion at short distan
e withsome reasonable assumptions at short distan
e, the resulting theory is trivial i.e. not intera
ting[49, 50, 51℄.But important partial results have been obtained for the 
onstru
tion of non-Abelian theoriesin 4 dimensions [52, 53℄. New models not perturbatively renormalizable but asymptoti
ally safe arealso within rea
h of these te
hniques, su
h as the Gross-Neveu model in three dimensions [54℄. In theinfrared regime bosoni
 models of renormalizable power 
ounting su
h as the 
riti
al (massless)�44 with an infrared 
uto� [55, 56℄, or 4 dimensional weakly self-avoiding polymers have been
ontrolled [57℄, and their asymptoti
s at large distan
e have been established. Nonperturbativemass generation has been established in the Gross-Neveu model in two dimensions and in thenonlinear � model at large number of 
omponents with ultraviolet 
uto� [58, 59℄. Finally the RGwhen applied to 
ondensed matter give rise to many rigorous results and programs, as sket
hed inthe next se
tion. Altogether this set of results strongly illustrate the power of fun
tional integrationin quantum �eld theory.3.5 Extended singularities, the new RG frontierDuring the last de
ade one of the main a
hievements in renormalization theory is the extensionof the renormalization group of Wilson (whi
h analyzes long-range behavior governed by simples
aling around the point singularity p = 0 in momentum spa
e) to more general extended sin-gularities [60, 61, 62℄. This very natural and general idea is sus
eptible of many appli
ations invarious domains, in
luding 
ondensed matter and �eld theory in Minkowski spa
e. In this se
-tion we will dis
uss the situation for intera
ting Fermions models su
h as those des
ribing the
ondu
tion ele
trons in a metal.The key features whi
h di�erentiate ele
trons in 
ondensed matter from Eu
lidean �eld theory,and makes the subje
t in a way mathemati
ally ri
her, is that spa
e-time rotation invarian
e isbroken, and that parti
le density is �nite. This �nite density of parti
les 
reates the Fermi sea:parti
les �ll states up to an energy level 
alled the Fermi surfa
e.The �eld theory formalism is the best tool to isolate fundamental issues su
h as the existen
eof non-perturbative e�e
ts). In this formalism the usual Hamiltonian point of view with operators
reating ele
trons or holes is repla
ed by anti
ommuting Fermion �elds with two spin indi
es, andpropagator Cab(k) = Æab 1ik0 � [�(~k)� �℄ (3.18)where a; b 2 f1; 2g are the spin indi
es. The momentum ve
tor ~k has d spatial dimensions. and �(~k)is the energy for a single ele
tron of momentum ~k. The parameter � 
orresponds to the 
hemi
alpotential. The (spatial) Fermi surfa
e is the manifold �(~k) = � 5.For a jellium isotropi
 model the energy fun
tion is invariant under spatial rotations�(~k) = ~k22m (3.19)where m is some e�e
tive or \dressed" ele
tron mass. In this 
ase the Fermi surfa
e is simply asphere. This jellium isotropi
 model is realisti
 in the limit of weak ele
tron densities, where theFermi surfa
e be
omes approximately spheri
al. In general a propagator with a more 
ompli
atedenergy fun
tion e(~k) has to be 
onsidered. A very interesting 
ase is the two dimensional Hubbardmodel 
orresponding to a square latti
e. The momenta live on the dual \Brillouin zone" [��; �℄2,and the energy fun
tion is �(~k) = 
os k1 + 
os k2 (3.20)so that for � = 0 (the so-
alled half-�lled model), the Fermi surfa
e is a square.5It may be 
onvenient to add also an ultraviolet 
ut-o� to this propagator to make its Fourier transformed kernelin position spa
e well de�ned. Anyway, very high momenta should be suppressed in this non relativisti
 theory.
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ar�eImaginary (Eu
lidean) time (in the form of a 
ir
le, with antiperiodi
 boundary 
onditions forFermions) 
orresponds to �nite temperature T . When T tends to 0; the imaginary time 
ir
le growsto R. At �nite temperature, sin
e Fermioni
 �elds have to satisfy antiperiodi
 boundary 
onditions,the 
omponent k0 in (3.18) 
an take only dis
rete values (
alled the Matsubara frequen
ies) :k0 = �2n+ 1�~ � (3.21)so the integral over k0 is really a dis
rete sum over n. For any n we have k0 6= 0, so that thedenominator in C(k) 
an never be 0. This is why the temperature provides a natural infrared
ut-o�. But when T ! 0, k0 be
omes a 
ontinuous variable and the propagator diverges on the\spa
e-time" Fermi surfa
e, de�ned by k0 = 0 and �(~k) = �.The intera
tion term is de�ned by:S� = g2 Z� d3x (Xa �  )2(x) : (3.22)Physi
ally this intera
tion represents an e�e
tive intera
tion due to phonons or other e�e
ts. Amore realisti
 intera
tion would not be 
ompletely lo
al to in
lude the short range nature of thephonon propagator, but we 
an 
onsider the lo
al a
tion (3.22) as an idealization whi
h 
apturesall essential mathemati
al diÆ
ulties.The basi
 new feature is that the singularity of the propagator is of 
odimension 2 in thed+1 dimensional spa
e-time. This 
hanges dramati
ally the power 
ounting of the theory. Insteadof 
hanging with dimension, like in ordinary �eld theory, perturbative power 
ounting is nowindependent of the dimension, and is the one of a just renormalizable theory. Indeed in a graphwith 4 external legs, there are n verti
es, 2n� 2 internal lines and L = n� 1 independent loops.Ea
h independent loop momentum gives rise to two transverse variables, for instan
e k0 and j~kjin the jellium 
ase, and to d � 1 inessential bounded angular variables. Hen
e the 2L = 2(n � 1)dimensions of integration for the loop momenta exa
tly balan
e the 2n � 2 singularities of theinternal propagators, as is the 
ase in a just renormalizable theory.In one spatial dimension, hen
e two spa
e-time dimensions, the Fermi surfa
e redu
es to twopoints, and there is also no proper BCS theory sin
e there is no 
ontinuous symmetry breakingin two dimensions (by the \Mermin-Wagner theorem"). Nevertheless the many Fermion system inone spatial dimension gives rise to an interesting non-trivial behavior, 
alled the Luttinger liquid[60℄. In two spatial dimensions or more, the key tool to 
orre
tly analyze the theory is a de
om-position of the propagator analogous to (3.1), but both into dis
rete sli
es and in ea
h sli
e intodis
rete angular se
tors. The sli
es are de�ned by:C = 1Xj=1Cj ; Cj(k) = fj(k)ik0 � e(~k) (3.23)where the sli
e fun
tion fj(k) e�e
tively for
es jik0 � e(~k)j � M�j , for some �xed parameterM > 1. These sli
es pin
h more and more the Fermi surfa
e as j !1.The sli
e propagator is further de
omposed into se
tors:C(j)(k) = X�2�j Cj;�(k) ; Cj;�(k) = fj;�(k)ik0 � e(~k) (3.24)where �j is a set of angular pat
hes, 
alled se
tors, whi
h 
over the Fermi sphere. For instan
e ifd = 2 we may simply 
ut the 
ir
le intoM j intervals of length 2�M�j , but a better idea is to makethe pat
hes as large as possible. What limits really the size of the pat
hes is the 
urvature of theFermi surfa
e, so that the optimal number of su
h pat
hes is really M j=2 for the two dimensionaljellium model [63℄, and only j2 for the two dimensional Hubbard model at half-�lling [64℄.The RG applied to this problem means as before that higher sli
es give rise to lo
al e�e
tsrelatively to lower sli
es. Integrating the higher sli
es one obtains e�e
tive a
tions whi
h govern



Vol. 2, 2001 An Introdu
tion to Renormalization 25larger distan
e physi
s. These e�e
tive a
tions are however more 
ompli
ated than in the �eldtheory 
ontext. In rotation invariant models, renormalization of the two point fun
tion 
an beabsorbed in a 
hange of normalization of the Fermi radius. It removes all in�nities from perturbationtheory at generi
 momenta [61℄. But the 
ow for the four point fun
tion is a 
ow for an in�nite setof 
oupling 
onstants des
ribing the momentum zero 
hannel of the Cooper pairs [62℄. In the 
aseof an attra
tive intera
tion, when the temperature is lowered to zero, this 
ow diverges at the BCSs
ale. At this s
ale the symmetry linked to parti
le number 
onservation is spontaneously broken,giving rise to super
ondu
tivity, that is to the 
ondensation of Cooper pairs.This 
ondensation is a nonperturbative phenomenon, like quark 
on�nement. But in 
ontrastwith quark 
on�nement, we know in prin
iple how to investigate in a mathemati
ally rigorous waythis BCS 
ondensation. Indeed se
tors around the Fermi surfa
e play a role analogous to 
ompo-nents of a ve
tor �eld, so that an expansion in 1=N , where N is the number of su
h 
omponents,
ould 
ontrol the BCS regime [65℄, in whi
h ordinary perturbation is no longer valid. We may
all this situation a \dynami
al 1=N" e�e
t. Nevertheless the full mathemati
al 
onstru
tion ofthe BCS transition starting from weakly intera
ting fermions remains a long and diÆ
ult programwhi
h requires to 
ombine together several ingredients.The dis
ussion of high temperature super
ondu
tivity lead also to some 
ontroversy about thenature of intera
ting fermions systems in the ordinary non-super
ondu
ting phase. In parti
ular,validity of the standard Fermi liquid theory (whi
h is essentially de�ned by the propagator (3.18) upto small 
orre
tions) has been questioned in two dimensions. A

ording to a mathemati
al 
riteriondesigned by M. Salmhofer [68℄, it is now possible to distinguish rigorously between the so-
alledFermi liquid behavior and Luttinger liquid behavior above the usual 
riti
al BCS temperature.Using renormalization group around the Fermi surfa
e it should be possible to soon 
omplete theproof of the following theorem:Theorem 3.2 In two dimensions an intera
ting fermion system above the 
ondensation temperature
an be either a Fermi or a Luttinger liquid, depending on the shape of the Fermi surfa
e. Thejellium model with round Fermi surfa
e is a (slightly anomalous) Fermi liquid [67℄, but the half-�lled Hubbard model with a square Fermi surfa
e should be a (slightly anomalous) Luttinger liquid[64℄. The mathemati
ally rigorous 
onstru
tion of a two-dimensional intera
ting Fermi liquid atzero temperature, 
orresponding to non-parity invariant Fermi surfa
es like those obtained byswit
hing on a generi
 \magneti
 �eld 
uto�", has also been 
ompleted re
ently [69℄.Like in the previous se
tion the key to these 
onstru
tive theorems lies in the resummationof perturbation theory in a single sli
e, and then in the iteration of renormalization group steps.Curiously, although power 
ounting does not depend on the dimension, momentum 
onservationin terms of se
tors in a �xed sli
e depends on it. This has dramati
 
onstru
tive 
onsequen
es. Ind = 2 we have the \rhombus rule": four momenta of equal length whi
h add to zero at a givenvertex must be roughly two by two parallel. This means that two dimensional 
ondensed matterin a sli
e is again dire
tly analogous to an N -ve
tor model in whi
h angles on the Fermi surfa
eplay the role of 
olors [66℄. This remark is at the 
ore of all rigorous 
onstru
tions of intera
tingFermi liquids [67, 69℄.In three dimensions, we expe
t intera
ting fermions to behave as regular Fermi liquid abovethe BCS temperature, but this turns out to be surprisingly diÆ
ult to prove non-perturbatively.Indeed there is no longer any analog of the \rhombus rule". Two di�erent momenta at a vertex in agiven sli
e no longer determine the third and fourth: there is an additional torsion angle, sin
e fourmomenta of same length adding to 0 are not ne
essarily 
oplanar. More sophisti
ated te
hniqueshave been designed to deal with this 
ase [70℄ but until now it is not 
lear that these te
hniquesallow a full 
onstru
tive analysis of the model up to the s
ale where the BCS symmetry breakingtakes pla
e.3.6 Con
lusionIf we 
onsider the universal 
hara
ter of the a
tion prin
iple both at the 
lassi
al and quantumlevel, and observe that the relation between mi
ros
opi
 and ma
ros
opi
 laws is perhaps the
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ar�emost 
entral of all physi
al questions, it is probably not an exaggeration to 
on
lude that therenormalization group is in some deep sense the \soul" of physi
s.3.7 A
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