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Abstract. We review the theory of perturbative renormalization, discuss its limitations, and give a
brief introduction to the powerful point of view of the renormalization group, which is necessary to go
beyond perturbation theory and to define renormalization in a constructive way.

1 Introduction

The precise quantitative formulation of physical laws usually requires to introduce particular pa-
rameters or constants. It was early recognized that interaction with a particular medium or sub-
strate can change the effective value of these constants. For instance Descartes laws for the refrac-
tion of light require a medium dependent index n and later Gauss’s and Ampere’s law introduced
electric or magnetic permittivities whose values € and p in a non-empty medium such as water or
glass reflect in a complex way the interaction of light with the atoms of this medium.

Even more simply, Alain Connes’s favorite examples of an interaction that changes even the
sign of a physical parameter is that of Archimedes: a body such as a ping-pong ball immersed in
water acquires a negative effective mass. Although the mass of the ball m may be much smaller
than the mass M of the same volume of water, the “effective mass” as experimentally measured
from the upwards acceleration of the ball is however limited by friction so that the true “negative
effective mass” of the ball measured experimentally is much smaller in modulus than m — M.

New effective constants for the often multiplicative laws of physics can be considered as
new normalizations of these laws. This is probably the origin of the name “renormalization”.
But a crisis occurred when physicists of the XXth century realized that this change of constants
due to interaction is apparently infinite in the case of quantum field theory. This is disturbing
because quantum field theory, which combines quantum mechanics and special relativity, was at
that time considered the ultimate framework for the fundamental experimental laws of nature at
the microscopic levell. Its consistency is therefore a matter of principle, whose importance can
hardly be overemphasized.

The way out of this great “renormalization crisis” is a long story which required the efforts
of many theoretical and mathematical physicists over the second half of the XXth century. I shall
roughly divide it into two main chapters.

First the structure of the infinities or “divergences” in physical quantum field theories such as
electrodynamics was elucidated. A recursive process, due to Bogoliubov and followers, was found
to hide these infinities into unobservable “bare” parameters that describe the fundamental laws of
physics at experimentally inaccessible extremely short distances. Although technically very inge-
nious, this solution left many physicists and probably most mathematicians under the impression
that a real difficulty had been just “pulled under the rug”.

It would be unfortunate however to remain under this impression. Indeed the second chapter
of the story, known under the curious and slightly inaccurate name of the “renormalization group”
(RG), truly solved the difficulty. It was correctly recognized by Wilson and followers that in a
quantum theory with many scales involved, the change of parameters from bare to renormalized
values is a phenomenon too complex to be described in a single step. Just like the trajectory of a

1t is still today to a large extent, although string theory holds great promises for an even more fundamental
theory that would encompass gravity and have a natural fundamental ultraviolet length scale, the Planck scale.
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complicated dynamical system, it must be instead studied step by step through a local evolution
rule.

The change of scale in the RG plays the role of time in dynamical systems. This analogy is
deep. There is a natural arrow of time, related to the second principle of thermodynamics, and
there is similarly a natural arrow for the RG evolution: microscopic laws are expected to determine
macroscopic laws, not the converse. The RG erases unnecessary detailed short scale information
or “irrelevant operators”. Even cosmology made now everybody familiar with the idea that the
passing of time and the change of scale in physics are intimately related.

Apart from these almost philosophical comments, the RG improved point of view lead also
concretely to many applications in various domains, some of which are also reviewed here. What
seems less known, still today, is that RG also solved in a better way the old problem of infinities
in perturbation theory. In the RG, the infinitesimal or discrete evolution under change of scale is
perfectly well defined and finite. The old infinities are recognized as artefacts, due to an incorrect
interchange of limits. In fact in the non-Abelian gauge theories which are presently at the backbone
of the Standard Model, infinities disappear completely. Even after integrating evolution over an
infinite sequence of intermediary scales, the RG flow remains perfectly bounded. The bare coupling
constant, the ultimate “rug” under which perturbative infinities where supposed to hide, is in fact
zero, the most finite of all possible values!

It is this amazing story that I will try to summarize in this note. As a testimony to its
central place in recent theoretical physics, let me simply recall the many Nobel prizes awarded for
major works on renormalization or related subjects. In 1965, R. Feynman, J. Schwinger and S.-I.
Tomonaga received the Nobel prize for their formulation of quantum electrodynamics, the first
theory to require renormalization. S. Glashow, S. Weinberg and A. Salam received the 1979 prize
for unifying electromagnetic and weak interactions, two renormalizable field theories. In 1999, G.
't Hooft and M. Veltman received the prize for achieving the proof of renormalizability of this
electroweak theory and of non-Abelian gauge theories in general. In 1982 the Nobel prize was
awarded to K. Wilson for his invention of the renormalization group and its application to critical
phenomena. Finally, among other contributions, P.G. de Gennes received the prize in 1991 for
applying RG results to polymer physics. Besides these Nobel-winning contributions there have been
so many other important works on renormalization that it is truly impossible to give full justice to
all of them. So let me apologize in advance and refer to books such as [1, 2, 3,4, 5, 6, 7, 8, 9, 10]
for more complete references.

2 Perturbative (Euclidean) Quantum Field Theory

2.1 Functional Integral and the ¢* Model

Quantum Field Theory is the second quantized formalism appropriate to treat in particular the
collision experiments of particle physics, in which particle number is not conserved. Cross sections
contain the physical information of the theory. They are the matrix elements of the diffusion matrix
S. Under a suitable asymptotic condition, there are “reduction formulae” which express the matrix
elements of S in terms of the Green functions G (or time ordered vacuum expectation values) of
the field ¢, which is operator valued and acts on the Fock space:

GN (21, 2n) =< U0, T[D(21), ., D(2N) 00 > (2.1)

where 1y is the vacuum state and T is an operator, called T-product, that orders a product of
operators such as ¢(z1), ..., o(zn) according to increasing times.

Consider a Lagrangian field theory, and split the total Lagrangian as the sum of a free plus
an interacting piece, £ = Lo + Ljn¢- The Gell-Mann-Low formula expresses the Green functions as
vacuum expectation values of a similar product of free fields with an e*4i»t insertion:

< ¢0aT ¢(21)7"'7¢(2N)ei‘rdmﬁim(d)(z)) /wO >

< ¢07T(eifd$£int(¢($)))¢0 >

GN(Z1,...,ZN) = (22)
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In the functional integral formalism proposed by Feynman [11], the Gell-Mann-Low formula
is itself replaced by a functional integral in terms of an (ill-defined) “integral over histories” which
is formally the product of Lebesgue measures over all space time. It is interesting to notice that
the integrand appearing in this formalism contains the full Lagrangian £ = Ly + L;n¢, not just the
interacting one. The corresponding formula is the Feynman-Kac formula:

fH¢(Zj)eif£(¢(m))dzD¢
_ 7

GN(Zl, ...,ZN) == fe’fﬁ(‘b(z))d“’Dqﬂ . (23)

This functional integral has potentially many advantages. First the rules of Gaussian inte-
gration make perturbation theory very transparent as shown in the next subsection. The fact
that the full Lagrangian appears in (2.3) is interesting when symmetries of the theory are present
which are not separate symmetries of the free and interacting Lagrangians, as is the case for non-
Abelian gauge theories. It is also well adapted to constrained quantization, and to the study of
non-perturbative effects.

There is a deep analogy between the Feynman-Kac formula and the formula which expresses
correlation functions in classical statistical mechanics. For instance, the correlation functions for a
lattice Ising model are given by

e—L(O’) H O,

- {Comt1}
<H Uxi> = S e Lo (2.4)
=1 {o.=+1}

where x labels the discrete sites of the lattice, the sum is over configurations {¢, = £1} which
associate a “spin” with value +1 or -1 to each such site and L(c) contains usually nearest neighbor
interactions and possibly a magnetic field h:

L(o) = Z Joyo, + Z hoy. (2.5)

z,y nearest neighbors

By analytically continuing (2.3) to imaginary time, or Euclidean space, it is possible to com-
plete the analogy with (2.4), hence to establish a firm contact with statistical mechanics [5, 6, 7].
This idea also allows to give much better meaning to the path integral, at least for a free bosonic
field. Indeed the corresponding free Euclidean measure Zfle’fL"(?t’(’”))dzDgz&, where Z is a nor-
malization factor, can be defined easily as a Gaussian measure. This is simply because Ly is a
quadratic form of positive type?.

The Green functions continued to Euclidean points are called the Schwinger functions of the
model, and are given by the Euclidean Feynman-Kac formula:

N

Sn(z1, - 2n) = 27 / LI #(zp)e™ T %0 (0) (2:6)
j=1

7= [ eeeniegug o) (2.7)

The simplest interacting field theory is the theory of a one component scalar bosonic field
¢ with quartic interaction g¢* (¢* which is simpler is unstable). In R? it is called the ¢4 model.
For d = 2,3 the model is superrenormalizable and has been built by constructive field theory. For
d = 4 it is renormalizable in perturbation theory. Although the model lacks asymptotic freedom
and a non-perturbative version may therefore not exist, it remains a valuable tool for a pedagogical
introduction to perturbative renormalization theory.

Formally the Schwinger functions of the ¢} are the moments of the measure:

2However the functional space that supports this measure is not in general a space of smooth functions, but
rather of distributions. This was already true for functional integrals such as those of brownian motion, which
are supported by continuous but not differentiable paths. Therefore “functional integrals” in quantum field theory
should more appropriately be called “distributional integrals”.
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1
dv = _267(9/4!)fd>4 (m?/2) [ ¢°~(a/?) [(0.60"®) Dy (2.8)
where

e ¢ is the coupling constant, usually assumed positive or complex with positive real part;

e m is the mass; it fixes an energy scale for the theory;

a is the wave function constant. We often assume it to be 1;

e 7 is a normalization factor which makes (2.8) a probability measure;

D¢ is a formal product ] d¢(x) of Lebesgue measures at every point of R?.
zERE

But such an infinite product of Lebesgue measures is mathematically ill-defined. So it is better
to define first the Gaussian part of the measure

1 _ m2 2_(a w
du(e) = Z_oe (m”/2) [ ¢°=(a/2) [(0,00") D s, (2.9)

More precisely if we consider the translation invariant propagator C(z,y) = C(z — y) (with
slight abuse of notation), whose Fourier transform is

1 1

C(p) = i s

(2.10)

we can use Minlos theorem and the general theory of Gaussian processes to define duc(¢) as the
centered Gaussian measure on the Schwartz space of tempered distributions S’'(R?) whose covari-
ance is C'. A Gaussian measure is uniquely defined by its moments, or the integral of polynomials
of fields. Explicitly this integral is zero for a monomial of odd degree, and for n = 2p even it is
equal to

/¢ 1) 0(x0)dpc (6 ZHC ) Zi(1))s (2.11)

v ley

where the sum runs over all the pairings v of the 2p arguments into p disjoint pairs [ = (i(1),j(1)).
Note that since for d > 2, C'(p) is not integrable, C'(z,y) must be understood as a distribution.
It is therefore convenient to also introduce a regularized kernel, for instance
1 e—rk®*+m?)
(2m)d  p? +m?

Cr(p) = (2.12)

whose Fourier transform Cy(x,y) is now a smooth function and not a distribution. Such a regu-
larization is called an ultraviolet cutoff, and we have (in the distribution sense) lim,_,o Cx(z,y) =
C(z,y). Remark that due to the non zero m? mass term, the kernel Cy(x,y) decays exponentially
at large |« — y| with rate m, taht is for some constant K and d > 2 we have:

|C|(z,y)| < K=/ 2emlz=ul, (2.13)

It is a standard useful construction to build from the Schwinger functions another class of
functions called the connected Schwinger functions (in statistical mechanics connected functions
are called Ursell functions or cumulants). These connected Schwinger functions are given by:

k
Cn(z1,.y2N) = > GV | SN CIE I (2.14)
i=1

P1U...Upk:{1,...,N}; P;NP;=0
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Figure 1: A contraction scheme

where the sum is performed over all distinct partitions of {1,..., N} into k subsets Py, ..., P, P;
being made of p; elements called ji, ..., jp,. For instance the connected 4-point function, when all
odd Schwinger functions vanish due to the unbroken ¢ — —¢ symmetry, is simply given by:

04(21,...724) = S4(21,...,Z4)—52(21722)52(23724)
—52(21,23)52(22, 24) - S2(21,Z4)Sg(22, 23). (215)

2.2 Feynman Rules

The full interacting measure may now be defined as the multiplication of the Gaussian measure
du(¢) by the interaction factor:

v = %6%9/4’)! “* du(o) (2.16)

and the Schwinger functions are the normalized moments of this measure:

SN (21,5 ZN) =/¢(21)¢(ZN)dy(¢) (2.17)

This formula is especially convenient to derive the perturbative expansion and Feynman rules of
the theory. Indeed, expanding the exponential as a power series in the coupling constant g, one
obtains for the Schwinger functions:

SN (21,0 28) = % 3 (_rf’!)n /[ ¢4(!x)]n¢(zl)...¢(zN)du(¢) (2.18)

It is now possible to perform explicitly the functional integral of the corresponding polynomial. The
result gives at any order n a sum over “Wick contractions schemes W” i.e. ways of pairing together
4n + N fields into 2n + N/2 pairs. There are exactly (4n+ N —1)(4n+ N —3)...5.3.1 = (4dn+ N)!!
such contraction schemes.

Formally at order n the result of perturbation theory is therefore simply the sum over all these
schemes W of the spatial integrals over 1, ..., 2, of the integrand [],.,,, C(2iu, ;) times the
factor 1 (£)™. These integrals are then functions (in fact distributions) of the external positions
21, ...,2y But they may diverge either because they are integrals over all of R* (no volume cutoff)
or because of the singularities in the propagator C' at coinciding points.

It is convenient to label the n dummy integration variables in (2.18) as x1, ..., ¥, and to draw
a line for each contraction of two fields. Each position 1, ..., z, is then associated to a four-legged
vertex and each external source z; to a one-legged vertex, as shown in Figure 1.

For practical computations, it is obviously more convenient to gather all the contractions
which lead to the same topological structure, hence the same integral. This leads to the notion of
Feynman graphs. To any such graph is associated a contribution or amplitude, which is the sum of
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the contributions associated with the corresponding set of Wick contractions. The Feynman rules
summarize how to compute this amplitude with its correct combinatoric factor.
We always use the following notations for a graph G:

e n(G) or simply n is the number of internal vertices of G, or the order of the graph.

e [(G) or I is the number of internal lines of G, i.e. lines hooked at both ends to an internal
vertex of G.

e N(G) or N is the number of external vertices of G; it corresponds to the order of the Schwinger
function one is looking at. When N = 0 the graph is a vacuum graph, otherwise it is called
an N-point graph.

e ¢(G) or ¢ is the number of connected components of G,

e L(G) or L is the number of independent loops of G.

For a regular ¢* graph, i.e. a graph which has no line hooked at both ends to external vertices,
we have the relations:

(@) = 2n(G) — N(G)/2, (2.19)
L(G) = (G) = n(G) + ¢(G) = n(G) + 1 — N(G) /2. (2.20)

where in the last equality we assume connectedness of G, hence ¢(G) = 1. We like to define the
superficial degree of divergence. For ¢} it is:

w(@) =dL(G) - 21(G), (2.21)
so that for a connected graph:

o(G) = (d~4n(0) +d— T2V (). (2.22)

It will be important also to define what we call a subgraph. This is not a completely straight-
forward notion. A subgraph F of a graph G is a subset of internal lines of G, together with the
corresponding attached vertices. Hence there are exactly 2{(&) subgraphs in G. We call the lines in
the subset defining F' the internal lines of F', and their number is simply [(F'), as before. Similarly
all the vertices of G hooked to at least one of these internal lines of F are called the internal
vertices of F' and considered to be in F'; their number by definition is n(F). But remark that no
external vertex of G can be of this kind. Precisely for this reason, the notion of external vertices
does not generalize simply to subgraphs. Nevertheless for power counting we need at least to define
a generalization of the number N for subgraphs. A good convention is to call external half-line of
F every half-line of G which is not in F' but which is hooked to a vertex of F'; it is then the number
of such external half-lines which we call N(F). With this convention one has for ¢* subgraphs the
same relation (2.19) as for regular ¢* graphs.

The definitions of ¢, L and w then generalize to subgraphs in a straightforward way.

To compute the amplitude associated to a ¢* graph, we have to add the contributions of the
corresponding contraction schemes. This is summarized by the rules:

e To each line [; with end vertices at positions z; and y;, associate a propagator C(x;,y;).
e To each internal vertex, associate (—g)/4!.

e Count all the contraction schemes giving this diagram. The number should be of the form
(4h™n!/S(G) where S(G) is an integer called the symmetry factor of the diagram. The 4!
represents the permutation of the fields hooked to an internal vertex.

e Multiply all these factors, divide by n! and sum over the position of all internal vertices.
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The formula for the bare amplitude of a graph is therefore, as a distribution in z7,....zx:

Ag(z1,.2N) = /Hd% H C(xr,y). (2.23)

i=1 led@

This is the “direct” or “x-space” representation of a Feynman integral. As stated above, this
integral suffers of possible divergences. But the corresponding quantities with both volume cutoff
and ultraviolet cutoff k are well defined. They are:

Ag A (21, 2n) = / I dz=i T Cxarm). (2.24)

i=1 leG

The integrand is indeed bounded and the integration domain is a compact box A.
The unnormalized Schwinger functions are therefore formally given by the sum over all
graphs with the right number of external lines of the corresponding Feynman amplitudes:

Z5 i A 2.25
Mo 2 sG) e (2.25)
¢* graphs G with N(G)=N

Z itself, the normalization, is given by the sum of all vacuum amplitudes:

7= %

¢* graphs G with N(G)=0

(=g
S(@) Ag. (2.26)
Let us remark that since the total number of Feynman graphs is (4n+N)!!, taking into account
Stirling’s formula and the symmetry factor 1/n! from the exponential we expect perturbation
theory at large order to behave as K™n! for some constant K. Indeed at order n the amplitude of
a Feynman graph is a 4n-dimensional integral. It is reasonable to expect that in average it should
behave as ¢™ for some constant c. But this means that one should expect zero radius of convergence
for the series (2.25). This is not too surprising. Even the one-dimensional integral

+oo 2 4
F(g) = / e " /29 gy (2.27)
— 00

is well-defined only for g > 0. We cannot hope infinite dimensional functional integrals of the same
kind to behave better than this one dimensional integral. In mathematically precise terms, F' is
not analytic near ¢ = 0, but only Borel summable. A Borel summable function f can be entirely
reconstructed from its asymptotic series ) a,z", but not by naively adding the terms in the
series. One has rather to first define the Borel series

Qp,
B(ty=>" it (2.28)
and to analytically continue this function B to a neighborhood of the real axis, then recover f
through the integral formula
1 o0
f(z) =~ / e~V B(t)dt. (2.29)
T Jo
In the case of the function F', this process is guaranteed to converge (using the obvious analyticity
of F for Rg > 0, some uniform Taylor remainder estimates and Nevanlinna’s theorem [12]). So we
know the integral (2.29) can reconstruct F' from the list of its asymptotic coefficients, which in
that particular case are nothing but

R +oo 2 —1 n4 ”
a, = ( n!) / 2o 20y = % (2.30)

— 00

In general Bosonic functional integrals require some stability condition for the potential at
large field (here e.g. ¢ > 0), and their perturbation series do not converge. Borel summability is
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therefore the best we can hope for the ¢* theory, and it has indeed been proved for the theory in
dimensions 2 and 3 [13, 14].

From translation invariance, we do not expect Af 5 to have a limit as A — oo if there are
vacuum subgraphs in G. But we can remark that an amphtude factorizes as the product of the
amplitudes of its connected components.

With simple combinatoric verification at the level of contraction schemes we can factorize the
sum over all vacuum graphs in the expansion of unnormalized Schwinger functions, hence get for
the normalized functions a formula analog to (2.25):

pv(e)
Sy = > %Ag. (2.31)

¢* graphs G with N(G)=N
G without any vacuum subgraph

Now in (2.31) it is possible to pass to the thermodynamic limit (in the sense of formal power
series) because using the exponential decrease of the propagator, each individual graph has a limit
at fixed external arguments. There is of course no need to divide by the volume for that because
each connected component in (2.31) is tied to at least one external source, and they provide the
necessary breaking of translation invariance.

Finally one can determine the perturbative expansions for the connected Schwinger functions
and the vertex functions. As expected the connected Schwinger functions are given by sums over
connected amplitudes:

(—g)™
Cn Z . S(G) G (2.32)
¢* connected graphs G with N(G)=N

and the vertex functions are the sums of the amputated amplitudes for proper graphs, also called
one-particle-irreducible. They are the graphs which remain connected even after removal of any
given internal line. The amputated amplitudes are defined in momentum space by omitting the
Fourier transform of the propagators of the external lines. It is therefore convenient to write these
amplitudes in the so-called momentum representation:

(—g)n(G) T
In(z1y.2n) = Z ———An(z1, -0y 2N), (2.33)
. S(G)
¢* proper graphs G with N(G)=N
1 IS Dz
Ab(z1, .y 2n) = @) /dp1-~~dee S AG(pr, e DN, (2.34)
_ dp;
Ag(p1,..PN) = H PR H Zev - (2.35)
| internal line of G pl veEG

Remark in (2.35) the ¢ functions which ensure momentum conservation at each internal vertex
v; the sum inside is over both internal and external momenta; each internal line is oriented in an
arbitrary way and each external line is oriented towards the inside of the graph. The incidence
matrix e(v,1) is 1 if the line [ arrives at v, -1 if it starts from v and 0 otherwise. Remark also that
there is an overall momentum conservation rule §(p; + ... + pn) hidden in (2.35). The drawback
of the momentum representation lies in the necessity for practical computations to eliminate the
0 functions by a “momentum routing” prescription, and there is no canonical choice for that.

2.3 Feynman representation

There are other convenient representations such as the “Feynman parametric representation” which
do not need any non canonical choices. To define it we write the o or parametric representation of
the propagator:

A 1 ° —a(p?tm?
C(p)z—(%)d/0 e ") da, (2.36)
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Figure 2: Spanning and two-trees
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Figure 3: The graph Gy
]. ® : 2 2 d
Clz,y) = (271_)(1/ da/ew-(zfy)*a(p +m*) 4 P
0
1 * da 2 2
- —am®—|z—y[*/(4a)
= i /0 ~° . (2.37)

The x space or p space integrations can then be explicitly performed in any Feynman ampli-
tude, since they are quadratic. The result is a compact formula with one scalar integration over a
parameter « for each internal line of the graph:

oo - > aim®=Vg(a,p)/Uc (o) 1
A :5 Pv d ! TUA(a)]d/2 2
o) =0 R [ TLon e Tetwp?  *%

where Ug and Vi are polynomials in a depending on the particular topology of the graph, called
the Symanzik polynomials. Their explicit expression is:

Ue=> I o (2.39)

S [ notin S
Vapa)=0_ J[ a)(d] pa) (2.40)
T [ notin T a€Ty

In (2.39) the sum runs over the spanning trees S of G. Such a spanning tree is a set of lines without
loops connecting all the vertices of the graph. Similarly in (2.40), the sum runs over the two-trees T
of G which separate G into two connected components, each containing a non empty set of external
lines, one of which is T} (by overall momentum conservation, (2.40) does not change if T; is replaced
by the set of external lines of the other connected component, which is the complementary of T})
(see Figure 2 for an example).

In this elementary presentation we shall not reproduce the complete proof of these formulas
(see [15] or [9]). They rely on a careful analysis of the quadratic form that one obtains in the
exponential after rewriting all the propagators in « space. This quadratic form in turn can be
deduced form the incidence matrix of the graph.

Remark that the parametric representation is not only “canonical” but also quite economical
in large dimensions. In dimension 4, a four point subgraph of order n has n — 1 loops hence the
momentum integration is over a space of dimension 4n — 4; instead the parametric representation
is over a space of dimension | = 2(n — 1), hence with only half as many scalar components to
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integrate. For instance the integral of the graph Gy of Figure 2 involves only one total external
momentum ¢ and can be written formally as

1
A = ‘
Go(4) /d P+ m?) (0= o7 + m?)
_ / / daldOCZ 6 (a1+a2)m2*;‘1$¢122 qz‘ (241)
a1 + a2

However none of these two representations gives convergent integrals because of a divergence at
large p or small a’s. We return to the structure of these ultraviolet divergences in the next subsec-
tion.

The a-representation has also a fundamental interpretation in terms of Brownian motions
[16]. In particular, the propagator (2.37) can be written as:

C(z,y) = /000 doexp(—m?*a) P(z,y; a) (2.42)

where P(z,y; ) = (4ra) =42 exp(—|z — y|*/4«) is the Gaussian probability distribution of a Brow-
nian path going from 2« to y in time a.

The Feynman diagrams can then be understood as made of Brownian paths interacting by
Dirac distributions, as in the Edwards model for self-avoiding polymers [17]. This lead P.-G. de
Gennes in 1972 to his famous relation between this polymer model and a [($)?]? field theory with
O(N) symmetry, in the N — 0 limit [18]. This allowed RG results to be applied to polymer physics.
A new development appeared when J. des Cloizeaux introduced a simple direct (dimensional)
renormalization method for the Edwards model [19, 20], working explicitly in the a-representation.

2.4 Ultraviolet Divergences

The amputated amplitudes for a connected graph at finite external momenta are not always finite
because of possible ultraviolet divergences. These divergences appear because the momentum in-
tegration over the loop variables in (2.35) may not always be absolutely convergent. This can be
traced back to the distribution character of the propagator C' in direct space, for d > 2, and the
general impossibility to multiply distributions as should be done to define e.g. ¢*.

This difficulty, also present in quantum electrodynamics, was the basic puzzle that the found-
ing fathers of quantum field theory were confronted with. Let us explore it, increasing the dimension
step by step. The naive global scaling of all internal momenta of the graph explains our definition
of the superficial degree of divergence: it measures whether the integral over this global scaling
parameter is convergent or not. Therefore graphs with w(G) > 0 are called primitively divergent.

-If d = 2, we find w(G) = 2 — 2n, so the only divergent graphs have n = 1, and N = 0
or N = 2. The only divergence is due to the “tadpole” loop [ @fjifnz)
divergent.

-If d = 3, we find w(G) = 3 —n — N/2, so the only divergent graphs have n < 3, N = 0,
or n < 2 and N = 2. Such a theory with a finite number of “primitively divergent” subgraphs is
called superrenormalizable.

-Ifd =4, w(G) =4 — N. Every two point graph is quadratically divergent and every four
point graph is logarithmically divergent. This is in agreement with the superficial degree of these
graphs being respectively 2 and 0. For instance the graph G at zero momentum without ultraviolet
cutoff is logarithmically divergent for large p:

which is logarithmically

Ag, (0) = /@2175%2)2 = +00 (2.43)

and the “tadpole” loop [ p;ﬁ% is quadratically divergent. Theories in which the degree of diver-
gence only depends on the number of external legs are called renormalizable.

- Finally for d > 4 we have infinitely many primitively divergent graphs with arbitrarily large
number of external legs, and the theory is called non-renormalizable.
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Figure 4: A 6-point subgraph with a divergent subgraph

It was soon recognized that even graphs which have negative superficial degree of divergence,
such as the 6-point subgraph of Figure 4 in d = 4, are not ultraviolet finite. Indeed they can contain
divergent subgraphs, and the corresponding subintegrations do not converge.

The first progress on renormalization came in recognizing that for four-dimensional theories
such as ¢* or quantum electrodynamics, the superficially divergent graphs when suitably added to
a local counterterm gives rise to a finite contribution. For instance in the case of the graph Gg the
“renormalized” amplitude

1 L

AR = / - d
Go(q) [(pg +m2)((p+q)2 +m2) (pz +m2)2 p
(a1+a )m2 ara
_ / / dondage TV p e ), (2.44)
(1 + az)?

is now finite.
Indeed let us prove finiteness of this amplitude. In the momentum representation, we reduce
to the same denominator, and taking advantage of parity we obtain:

—2p.q — ¢
Ag = / d*
cn(0) (o ar m?) P

_ ¢
- / (P2 +m?)%((p+ q)% + m?) v (2.45)

now an obviously convergent integral. In the parametric representation, using |e=* — 1| < z for
positive £ we can bound Ago (q) by

o0 [es} 2
—(a1tas)m? 4 Q12 9.4
/ /0 dordase 7(011 FPE (2.46)

which is now a convergent integral. To be more precise, we should make additional remarks:
- the renormalized amplitude is negative
- it behaves as clog|q| as |¢| = o
- this large behavior at large ¢ is solely due to the integral over the region |p| < |q| of the
counterterm. Indeed both
2

q 4
/pzq (P +m?)2((p + q)> + m?) d'p (2.47)

and
1 4

/|p|§|q| ®? +m?)((p + ¢)? + m?) d'p (2.48)

are well defined uniformly bounded integrals as |q| — oo.

Remark finally that the counterterm, when Fourier transformed, corresponds to a local ¢*
term, since the zero momentum value of the graph is nothing but the spatial integral over y of
C?(z,y). This counterterm when added to the bare Lagrangian will renormalize G not only as a




12 V. Rivasseau Séminaire Poincaré

Glg

Figure 5: The reduction of a subgraph in a graph

P> <D 0

Figure 6: A graph with two overlapping divergent subgraphs

primitive graph, but each time it appears as a subgraph in the expansion, since the combinatoric
of inserting a ¢* vertex or a Gy subgraph at any place in a bigger diagram is clearly the same.

In the same way local counterterms of the ¢*, ¢ or (V)2 type for any kind of primitively
divergent graph, can be reabsorbed in the parameters of the Lagrangian of (2.8). Such an infinite
redefinition which affects only the unobservable “bare” parameters of the theory hence it is not
physically inconsistent.

But for a while it was not clear whether one could introduce a proper set of counterterms
which is local and remove all the ultraviolet divergences of every graph, not only the main global
primitive divergences but also all the divergences associated to subgraphs. This would make all
particular submanifolds of the momentum integration convergent. The solution of this problem,
by Bogoliubov, Parasiuk, Hepp and Zimmermann [21, 22, 23], and its extension to gauge theories
by tHooft and Veltman [27] is a first great mathematical triumph of quantum field theory.

2.5 The Bogoliubov Recursion and Zimmermann’s Solution

We have now to explain how to organize the set of all subtractions that should be performed in a
renormalizable theory to make it ultraviolet finite in perturbation theory. When a local counterterm
has been defined for a graph G with Ny external lines, the modified Lagrangian gives rise to a
new vertex with Ny lines. So for every graph (G5 which contains GG; as a subgraph, to subtract the
subintegration over GG; corresponds to perform the sum

AG1 + ca, AGZ/Gl (249)

where G5 /Gy is the graph obtained by reducing G; to a single vertex in Gy (see Figure 5 for an
example). This reduction is an essential operation in renormalization theory. But remark already
that if there are several divergent subgraphs in a graph G, we can define a reduced subgraph G/S
only for families S of disjoint subgraphs S.

More generally, if G5 itself is divergent, it seems clear that the counterterm for G5 should
be defined by taking the local part of (2.49), not of Ag, itself. So the definition of counterterms
is inductive, starting with the smaller graphs towards the bigger. This is after all the logic of
perturbation theory. This induction was formalized by Bogoliubov. However since a graph G can
contain overlapping divergent subgraphs S; and S» with non-trivial intersection Ss, such as in
Figure 6, it is far from clear that this induction actually removes all ultraviolet divergences. The
first proof that Bogoliubov’s induction actually leads to finite amplitudes is due to Hepp [22],
and the first explicit solution of the induction, which involves the notion of “forests” is due to
Zimmermann [23].

Suppose we have defined counterterms up to a given order n. Then for a graph G at order
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n + 1 one defines a counterterm cg and the renormalized amplitude Ag by

AG = Z(AG/S H cs) +ca (2.50)
s ses

where the sum is over all families S of disjoint primitively divergent subgraphs of G, including the
empty one.

The exact definition of ¢g contains some arbitrariness if the goal is to make renormalized am-
plitudes finite. In the BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) renormalization scheme,
cq is the local (or zero momentum part) of the sum in (2.50). More precisely, if we choose a system
of loop momenta k for G and call p the external momenta we have

Aa(p) = [ dklao,8) (2:51)

and for a primitively divergent graph one defines the counterterm cg by a subtraction acting
directly at the level of the integrand I(p, k) in momentum space, to get

AR(p) = / dk(1 — T4V I (p, ) (2.52)

where T4 the so-called Taylor “operator” selects the beginning of the Taylor expansion of
I¢(p, k) up to order d(G) around the simple point p = 0. This is in agreement with (2.44).

To generalize to graphs with divergent subgraphs one follows the Bogoliubov recursion. In
fact renormalizing proper (i.e. connected one-particle-irreducible) subgraphs is enough, and the
explicit solution of the Bogoliubov induction with this subtraction prescription is:

AR = / dkRIq(p, k) (2.53)
R=3 T[(-7%®) (2.54)
F SeF

where the sum is over all forests of proper divergent subgraphs S C G, including the empty forest.

Definition 1 A forest F is a subset of subgraphs such that for any pair Si, Ss of the forest, either
S1 C Se or Sy C Sy or Sy and S2 are disjoint.

This definition ensures that the partial ordering by inclusion in a forest can indeed be pictured as
a set of trees, hence the name “forest”.

For example the graph G of Figure 5 which has 3 different divergent strict subgraphs, has 12
forests, namely

{@}, {Sl}v {52}7 {53}7 {G}v {537 Sl}v {537 52}7 {537 G}v {Slv G}v {527 G}v {537 St, G}7 {537 SQv(G} )
2.55

These 12 forests are shown in Figure 7 In formula (2.54) the product of the Taylor operators is
taken following the partial ordering of the forest, that is from smaller to bigger graphs. Each Taylor
operator selects the beginning of a Taylor expansion in the external momenta of a subgraph S,
which can later become internal momenta for G. The definition of R may therefore depend on the
choice of the momentum routing, hence of the loop momenta solving the ¢ functions in (2.35). This
difficulty lead Zimmermann to define particular momentum routing called “admissible”. For these
choices, Zimmermann could then prove:

Theorem 2.1 The integrals (2.53) do converge for any G and define amplitudes AE(p) which are
tempered distributions when analytically continued to Minkowski space.

The difficulty linked to momentum routing can be avoided completely by working instead in
the parametric representation. It is indeed possible to define an R operator acting directly in the
a-parametric space, equivalent to Zimmermann’s operator, but bypassing completely the problem
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Figure 7: The twelve forests of G

of admissible momentum routing [24, 25]. Then there exists a very explicit proof of finiteness of
the renormalized amplitudes. One can divide, for any complete ordering of the parameters a;, also
called a “Hepp sector”, the sum over all forests quite naturally into packets, so that each packet
gives a finite contribution. The problem is that the packets themselves change when the Hepp
sector changes! Nevertheless this method is then sufficiently explicit to not only prove finiteness
but also to produce reasonable quantitative estimates of the size of renormalized perturbation
theory at large order [26].

The definition of the packets is subtle, but let us try to sketch it. The number of forests in
any packet is always a certain power of 2, that is is of the form 2" for a certain integer r. Indeed the
forests which compose any such packet are exactly those containing a fixed forest Fy and contained
in another fixed forest Fy U F;. r is simply the number of elements in F;. So the forests in that
packet are those F that satisfy Fo C F C Fo U F;. Hence the sum of the Taylor subtractions for
a given packet always reconstructs an operator

II 79 I (0= Ts). (2.56)

SeFo SeF

In a given sector, there is exactly one packet for each forest Fy with a certain property, which
roughly speaking says that Fy is made of subgraphs with some internal line a-parameter larger
than some external line a-parameter in the ordering of the sector considered. Given such an Fy,
the forest 77 then is completely determined by Fy and the sector. It is made of the subgraphs with
the opposite property, that is all a-parameters for the internal lines of these subgraphs of F; are
smaller than all a-parameters for their external lines in the ordering of the sector ?.

The factorization property (2.56) is what makes each packet finite. Indeed the defining prop-
erty for the subgraphs of Fy means that they are not really divergent in the sector considered.
This is because the smaller a-parameter for one of their external lines acts as a natural ultraviolet
cutoff for the subgraph. In contrast the subgraphs of F; are potentially divergent. But for these
subgraphs the 1 — Tg operators in (2.56) precisely provide the necessary subtractions! This is the
basic mechanism which makes every packet finite.

3The true definition is a bit more complicated and inductive, because reduction by the elements of Fo (as shown
in Figure 5) has to be teken into account, starting from the smallest subgraphs in Fy and working towards the
largest.
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2.6 Different renormalization schemes

To subtract the value of subgraphs at zero external momenta is obviously a natural but not a
canonical choice. It may be even ill-defined if the theory contains massless particles, which is for
instance the case of quantum electrodynamics. It is important therefore to have several different sets
of renormalization schemes, and to understand how they are related to each other. Two different
subsets of counterterms which both make the Feynman amplitudes finite must differ through finite
counterterms. In practice one wants usually to fix some physical conditions such as the particular
values of some Green functions at some given momenta, and to determine the renormalization
scheme corresponding these conditions. It may require two steps: first to use a general scheme
to get rid of infinities, then to adjust the scheme through finite counterterms so as to meet the
physical conditions.

For instance the BPHZ scheme that we have considered for the massive Euclidean ¢ theory
corresponds to the following normalization conditions on the connected functions in momentum
space:

C*(0,0,0,0) = —g, (2.57)

1
C*p* =0) = et (2.58)
d a
wCﬂpz:O =3 (2.59)

Let us say a few words about another popular renormalization scheme, namely dimensional
renormalization. The starting idea is that in the parametric representation (2.38) the dimension d
can be considered as a complex parameter. The attentive reader can object that external momenta
still live in R*. But since the amplitudes depend only on the Euclidean scalar invariants (3,7, Pa)’
built on them (see (2.40)), this is not a major difficulty. Amplitudes such as I, in (2.41) become
meromorphic functions for Rd < 4. They have then a pole at d = 4. It is therefore natural to
define the finite part of the amplitude as the finite part of the corresponding Laurent series, hence
to simply extract the pure pole with its correct residue at d = 4. When properly implemented
according to Bogoliubov’s induction this leads to the notion of dimensional renormalization.

This scheme has many advantages but one major drawback. The advantage is that it preserves
the symmetries of the theory such as gauge symmetries. Using it, ‘t Hooft and Veltman were able to
show the renormalizability of the non-Abelian gauge theories at the core of the standard model [27].
For instance although the action g=2F,, F*" of a pure non-Abelian gauge theory contains terms
of order 2, 3 and 4 in the field A, it is possible with dimensional renormalization to preserve the
basic relation between these three terms which make the total Lagrangian a perfect square. In this
way the theory remains of the same form after renormalization , but simply with a renormalized
parameter g, instead of g. This success was extremely important to convince physicists to adopt
non-Abelian gauge theories for particle physics. As other examples of use of this scheme, let us
mention again the renormalization method for the Edwards model of polymers [19, 20] which
has been shown to be equivalent to standard (dimensional) field-theoretic renormalization [28].
These works opened the way to the renormalization theory of interacting or self-avoiding crumpled
membranes, where the Feynman diagrams are no longer made of lines but of extended surfaces (see,
e.g., [29]). Dimensional renormalization is also at the core of the Riemman-Hilbert interpretation
of renormalization [30].

But the big drawback of dimensional renormalization is that up to now it remains a purely
perturbative technique. Nobody knows how to interpolate correctly in the space-time dimension
d the infinite dimensional functional integrals (2.17) which are the basis for the non-perturbative
or constructive version of quantum field theory. To solve this difficulty would certainly be a major
progress.

2.7 What lies beyond perturbative renormalization?

The theory of perturbative renormalization is a brilliant piece of mathematical physics. The solu-
tion of the difficult “overlapping” divergence problem through Bogoliubov’s recursion and Zimmer-
mann’s forests becomes particularly clear in the parametric representation using Hepp’s sectors:
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N

Figure 8: A family of graphs P, producing a renormalon

Figure 9: A family of convergent graphs @,,, that do not produce any renormalon

in each sector there is a different classification of forests into packets so that each packet gives a
finite integral.

Dimensional renormalization allows to preserve critical symmetries such as gauge symmetries,
hence to prove renormalizability of four dimensional gauge theories, but does not seem adapted
to non-perturbative theory. Note however that in this scheme the finite part of the Feynman
amplitudes are related to ¢ functions. This hints that this theory might be useful for mathematics,
particularly number theory. The structure of the forests subtraction has been shown recently to be
associated to a Hopf algebra and related to the Riemann-Hilbert problem in the works of Connes
and Kreimer [31, 30].

But from the physical point of view we cannot conceal the fact that purely perturbative
renormalization theory is also in some sense a conceptual maze. At least two facts already hint at
a better theory which lies behind:

- The forest formula seems unnecessarily complicated, with too many terms. For instance if
we examine closely the classification of forests into packets, we remark that in any given Hepp
sector, only the particular packet corresponding to Fo = () seems absolutely necessary to make the
renormalized amplitude finite. The other packets, with non-empty Fo seem useless, a little bit like
“junk DNA”: they are there just because they are necessary for other sectors. This does not look
optimal.

- The theory makes amplitudes finite, but at which cost! The size of some of these renormalized
amplitudes becomes indeed unreasonably large as a size of the graph increases. This phenomenon is
called the “renormalon problem”. For instance it is easy to check that the renormalized amplitude
(at 0 external momenta) of the graphs P, with 6 external legs and n + 2 internal vertices in Figure
8 becomes large as ¢"n! as n — 00. Indeed we remarked already that at large ¢ the renormalized
amplitude Ago in (2.44) grows like log |¢q|. Therefore the chain of n such graphs in Figure 8 behaves
as [log |¢|]™, and the total amplitude of P, behaves as

[log [q] E I e O (2.60)

So there are not only too many Feynman graphs to resum them, but some of them after renor-
malization also acquire so large values that the corresponding subfamilies of graphs cannot be
resummed! These two hints are in fact linked. As their name indicates, renormalons are due to
renormalization. Families of completely convergent graphs such as the graphs @,, of Figure 9, are
bounded by ¢, and produce no renormalons. But studying more carefully renormalization in the
a parametric representation one can say more. One can check that renormalons are solely due to
the forests packets with Fq # () and in fact Fy large. A packet associated to a given Fy typically
grows like ¢”|Fpl|! [26]. Recall that the forests Fy are made of those subgraphs which are not really
divergent in the sector considered. So this renormalon analysis generalizes one of our previous
remarks. Renormalons are due to subtractions that are not necessary to ensure convergence, just
like the strange log |g| growth of Ago at large ¢ is solely due to the counterterm in the region where
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this counterterm is not necessary to make the amplitude finite.

We can therefore conclude that subtractions are not organized in an optimal way by the
Bogoliubov recursion. The idea of renormalization itself is not wrong. But to use the size of the
graph as the relevant parameter to organize Bogoliubov’s induction is not the optimal idea. A
better parameter to organize the induction was found in fact for other completely different reasons
by Wilson and followers. It is not the size of the graph but rather the size of the line momenta
in it that should be used to better organize the renormalization subtractions. This is the point of
view of the renormalization group.

3 The Renormalization Group

The renormalization group is a strange name. It is in fact an (ill-defined) semi-group. Its discovery
came in two steps: first by thinking about changing the renormalization scheme, field theorists such
as Callan and Symanzik discovered a kind of “invariance” of the theory [32, 33]. Two renormalizable
theories with two different sets of coupling constants but defined by subtracting at different scales
can in fact be the same physical theory if the constants and scales are related through some
“renormalization group” equations. It is in fact even possible to prove finiteness of perturbative
renormalization, hence to bypass the BPHZ theorem by directly using these renormalization group
equations [34].

Then came the conceptual breakthrough of Wilson and followers [35]: instead of renormalizing
the theory at once, why not perform this difficult task in a sequence of steps? The evolution of the
theory in this sequence of steps is then similar to the evolution of a dynamical system. In dynamical
systems we know that it is usually easier (in particular numerically) to perform patiently a large
sequence of local steps than to try to guess the global result, or to search for an analytic solution,
which is very rare. The same is true in renormalization theory, in which some scale parameter plays
the role of time.

Although this was not the historic path, it would have been perfectly possible to arrive also
at the same renormalization group concept by simply trying to simplify Zimmermann’s formula to
get rid of renormalons. Indeed this is exactly what the RG also does!

This note is too short for a complete review of the renormalization group and in particular
of its non-perturbative aspects. So we will sketch what it does on the simple example of ¢}.

3.1 Slicing

One needs first to separate the degrees of freedom of the theory, and to organize them into a
sequence of slices, each slice corresponding to a given scale. It is convenient to choose this sequence
of scales to form a geometric progression. The idea is then to perform the functional integral
only over the modes of the field corresponding to momenta of a given scale and to compute an
effective theory for the remaining scales. This should not be done in an arbitrary order: according
to the usual scientific philosophy, microscopic laws should determine macroscopic behavior, not the
converse 4. So the “effective” field theory should emerge progressively from the bare theory like an
effective picture progressively emerges from averaging the fine pixels in a detailed picture, or like
thermodynamics with a few macroscopic parameters such as temperature or pressure should emerge
from a very complicated and chaotic microscopic behavior governed by the laws of mechanics.

In a theory such as ¢}, the mass fixes some particular scale beyond which no interesting physics
happens because connected functions decay exponentially just as the propagator itself (2.13). So
in this case the renormalization group will be used solely to treat the ultraviolet problem. One can
slice the theory by dividing the Euclidean propagator into slices with an index ¢ € N, and the slice
i will correspond to momenta of order roughly M?, where M is a fixed number, the ratio of the
geometric progression (e.g. M = 2).

4This traditional philosophy is put in question by more holistic points of view such as those based on the
dualities of string theory which exchange small and large distances. But in this note I will nevertheless stick to the
old-fashioned point of view!
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This can be done conveniently with the parametric representation, since « in this represen-
tation is roughly like 1/p%. So we can define the propagator within a slice as

—2(i—1)

M 2, la—y1® do

. = —mea— g,
C; - e eyt (3.1)
We can intuitively imagine C; as the piece of the field oscillating with Fourier components essentially

only of size roughly M?. In fact it is easy to prove the bound (for d > 2)
|Ci(, )| < K.Md=Die=Mlz=yl (3.2)

where K is some constant.
For the first slice the formula is a little different because

00 s d
00:/ e—mia—leg= 22 (3.3)
1

d/2

Now the full propagator with ultraviolet cutoff M*, p being a large integer, may be viewed
as a sum of slices:

p
Cep=> Ci (3.4)
=0
Then the basic renormalization group step is made of two main operations:
e A functional integration
e The computation of a logarithm to define an effective action

Indeed decomposing a covariance in a Gaussian process corresponds to a decomposition of
the field into independent random variables ¢*. Let us call

o= ¢ (3.5)
=0

This is the “low-momentum” field for all frequencies lower than ¢. The RG idea is that starting
from scale p and performing p — i steps, one arrives at an effective action for the remaining field
¢;. Then writing ®; = ¢; + ®;_; splits the field into a “Auctuation” field ¢’ and a “background”
field ®; ;. The first step, functional integration, is performed solely on the fluctuation field, so it
computes

Zi—1(®i—1) = /duci(¢i)€_si(¢i+¢i‘l)~ (3.6)

Then the second step rewrites this quantity as the exponential of an effective action, hence simply
computes
Si—1(®i—1) = —log[Zi—1(Pi-1)] (3.7)

Now Z;_; = e~%i-1 and one can iterate! The flow from the initial bare action S = S, for the full
field to an effective renormalized action Sy for the last “slowly varying” component ¢q of the field
is similar to the flow of a dynamical system. Its evolution is decomposed into a sequence of discrete
steps from S; to S;_1.

Of course this program needs many modifications to become a mathematically correct (non-
perturbative) prescription. But at least formally it has a non-perturbative potential because it is
not formulated at the level of graphs. Integrating over a single “momentum slice” of the field is
like computing a field theory with both ultraviolet and infrared cutoff, and should be much easier
than a full-fledged ultraviolet or infrared problem.

A key feature of the standard presentation of the renormalization group has been also omitted.
Usually one performs a third somewhat confusing operation in a RG step, which is a rescaling of
all the lengths of the theory and of the field size. Here it would simply be

r— Mtz (3.8)
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¢ — M~(2/2g, (3.9)

But this rescaling is made to compare more easily the effective action to the former one, just like a
“reframing” of our averaged picture to always fit into a frame of fixed size. It is therefore some kind
of analogue of changing the reference frame in a dynamical system, from the “laboratory frame”
to a “moving frame”. We prefer here not to introduce this rescaling, because in many situations
the long distance behavior of a theory is not governed by a simple scaling around the point p = 0
in momentum space but by more complicated extended singularities. This phenomenon occurs in
condensed matter, where the singularity is given by a so called Fermi surface, and in diffusion
problems in Minkowski space, where the propagator is singular on a mass-shell. In these cases
there is no single simple moving frame (but rather one different moving frame for each limit point
of the extended singularity).

Of course there is lot of arbitrariness in the choice of the slicing for the RG. One can use
for instance wavelets [36]. A very popular choice is “block-spinning”, in which ®;_; is simply the
average of ®; over a cube of side size M ~¢. Again this is a choice which does not generalize easily
to extended singularities (and also breaks the rotation invariance of the theory) so (when possible)
slicing the covariance of the field seems the best technical tool.

It is clear that the RG strategy is not limited to the study of an ultraviolet problem in field
theory. In fact since the renormalization group flows from ultraviolet scales to infrared ones, it is
particularly well adapted to the study of critical phenomena in statistical mechanics [35, 5]. The
bare critical action leading to an effective massless action corresponds to an initial point at some
finite given spatial scale in a RG trajectory, for which a final condition (massless effective theory)
is given at very long distance. Similarly “the ultraviolet limit” in field theory corresponds to a
sequence of bare actions at smaller and smaller spatial scale which end up on the same renormalized
theory at some given fixed spatial scale. So the two problems are very similar. Finally a massless field
theory without ultraviolet cutoff is similar to a dynamical system with two boundary conditions
one towards t - —oo and one towards ¢t — +00.

3.2 The Flow

In this section we would like to sketch how the renormalization group deeply changes the way
perturbation theory should be organized.

Naive field theory was formulated with a single set of coupling constants, and perturbatively
renormalized field theory is formulated with two such sets, the bare and the renormalized constants.
The bare couplings become infinite formal power series in the renormalized constants with coef-
ficients which diverge when the ultraviolet cutoff is removed. But the correlation functions when
expressed as power series in the renormalized coupling constant have perfectly finite ultraviolet
limits order by order. This limit is the sum of the renormalized Feynman amplitudes given by the
forest formulas. But in addition to the usual divergence of perturbation theory due to the large
number of diagrams this perturbative renormalization theory suffers from a new non-perturbative
disease, the renormalons generated by the anomalously large amplitudes of some families of graphs
such as those of Figure 8.

How does this change with RG? RG tells us that we should neither use one nor two sets
of coupling constants, but an infinite set, one for each scale. All these “running constants” are
uniquely related to any one of them because they must lie on a single RG trajectory.

Clearly the RG philosophy means that we should neither compute the correlation functions as
series in the bare coupling with diverging coefficients in the ultraviolet limit nor as renormalon-ill
series in the renormalized coupling. We should compute them as multi-series in the infinite set of
running constants.

Once this big change is accepted, everything falls into place.

The momentum slicing becomes the fundamental tool. The Feynman amplitudes are sliced
into “assignments” u = {i;} with a slice index i; for each line. There is also a vertex index i, for
each vertex, namely the highest line index flowing into that vertex. It is a natural convention to
consider the true external lines of the graph as having index below all others, for instance here index
—1. Then the amplitude for a graph is no longer proportional to the power of a single coupling
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but each vertex should be equipped with a running constant g;, corresponding to its scale in the
assignment.
In this way we obtain the “effective expansion” for a given Schwinger function

Sn = > > 3 ( T 9:.]485", (3.10)

¢* graphs G with N(G)=N  pu={ir} vEG
G without any vacuum subgraph

where the effectively renormalized amplitude AR Zf T contains only one subtraction packet, the one
associated to Fy = 0. More precisely the graph G and the assignment y uniquely define a single
“divergent forest” F(G, u) which is made of those divergent subgraphs in G for which the indices of
internal lines are all greater than the indices of external lines. Then (for instance in the parametric
representation)

AL = [l T[ 1-79)] Lau(a. (3.11)

SG}'(G’M)

The Schwinger functions in this “effective expansion” are made of course of exactly the same
pieces as the bare or the renormalized expansion. These pieces are simply reshuffled in a differ-
ent way. Indeed in the effective expansion the subtractions associated to the additional packets
responsible for all the complications of Zimmermann’s formula have simply disappeared, exactly
reabsorbed into the effective constants that equip the vertices. Since these packets were responsible
for the renormalons, it is not surprising that the expansion (3.10) is free of the renormalon problem,
as expressed by our next Lemma.

Remark that the subgraphs in F(G, u) are indeed exactly those divergent subgraphs which
have short spatial scale compared to their external lines. Distances between internal vertices are
then shorter than the typical oscillation lengths of the external legs. Since these legs are like
sensors through which the subgraph communicates with the external world, subgraphs in F (G, u)
look “quasi-point-like” when seen from the outside. It is therefore no surprise that subtracting a
truly local counterterm for each such “quasi-local” subgraph, which is what (1 — Ts) does, leaves
only a small remainder free of renormalons. More precisely one can prove (putting all external
momenta to 0 to simplify):

Lemma 3.1 There exists a constant K such that for any G

SlAG | < k@ (3.12)
I

One can conclude that although in the bare series the amplitudes were not subtracted at all,
in the renormalized series they were subtracted too much because lots of useless forests gave rise to
renormalons. By abandoning the idea of a single coupling constant, the effective expansion which
lies between the bare and renormalized ones has exactly the right amount of subtractions, creating
only small contributions.

Of course the attentive reader may object that the lemma has not too much meaning, because
each piece Ag:;f 7 should be multiplied by a different factor [, gi, before being summed over u
in the effective expansion. But let us suppose that all the running constants g; remain bounded.
In this case it is clear that the effective expansion is much better than the renormalized one from
the point of view of resummation, since only the usual divergence linked to the large number of
graphs remains. And bounded running constants are not uncommon: they occur in asymptotically
free theories.

3.3 Asymptotic Freedom

In a just renormalizable theory like ¢} the most interesting flow under the renormalization group
is the one of the coupling constant. By a simple second order computation this flow is intimately
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linked to the sign of the graph Gy of Figure 3. More precisely, we find that at second order the
relation between g; and ¢; 1 is

(remember the minus sign in the exponential of the action), where 3 is a constant, namely the
asymptotic value of Zj7].,/inf(j7].,):i [ d*yC;(z,y)Cj (v,y) when i — oo. Clearly this constant is
positive. So for the normal stable ¢} theory, the relation (3.13) inverts into

9i ~ gi1+ Bgi, (3.14)

so that fixing the renormalized coupling seems to lead to a large, diverging bare coupling, incom-
patible with perturbation theory. This is the famous “Landau ghost” problem.

But in non-Abelian gauge theories an extra minus sign is created by the algebra of the Lie
brackets. This surprising discovery has deep consequences. The flow relation becomes approxi-
mately

9i = gi—1 — Bgigi—1, (3.15)

with 8 > 0, or, dividing by ¢;¢;—1,
1/gi ~1/gi—1 + 5, (3.16)

with solution g; ~ A more precise computation to third order in fact leads to

90
1+goBi"
~ 9o
T 14 go(Bi+ylogi+ O(1))

gi (3.17)

Such a theory is called asymptotically free (in the ultraviolet limit) because the effective coupling
tends to 0 with the cutoff for a finite fixed small renormalized coupling. Physically the interaction is
turned off at small distances. This theory is in agreement with scattering experiments which see a
collection of almost free particles (quarks and gluons) inside the hadrons at very high energy. This
was the main initial argument to adopt quantum chromodynamics, a non-Abelian gauge theory
with SU(3) gauge group, as the theory of strong interactions.

Remark that in such asymptotically free theories the flow and all running constants remain
bounded (in fact by the renormalized coupling). The initial expectations that infinite Feynman
diagrams should lead to infinite bare parameters are clearly wrong in this case since this bare
parameter in fact tends to 0 with the ultraviolet cutoff!

Agsymptotic freedom is not limited to the rather complicated non-Abelian gauge theories. As
is well known, fermion diagrams have an extra minus sign per loop. The Gross-Neveu theory, a
theory with quartic coupling and N species of Fermions in two dimensions, has the same power
counting as ¢f, and is also asymptotically free in the ultraviolet limit. This is also the case for
instance for the ¢} theory with “wrong sign” of the coupling constant, which can be studied at
least in the planar limit, which tames the natural instability due to that wrong sign. The “right
sign” ¢} is not asymptotically free in the ultraviolet but as a consequence it is asymptotically free
in the infrared, which means that the corresponding massless critical theory (with fixed ultraviolet
cutoff) is almost Gaussian in the long distance limit [35].

3.4 Some Comments on Constructive Renormalization

Constructive field theory has for ambitious goal to define the non-perturbative mathematically cor-
rect version of Lagrangian quantum field theory. This may be considered somewhat an academic
problem for weakly coupled theories such as quantum electrodynamics, for which perturbative
computations up to three loops seem sufficient. But there are strongly coupled theories such as
quantum chromodynamics in which a non-perturbative approach is badly needed. Also it would be
quite surprising if the patient analysis of the mathematical difficulties related to the summation of
quantum perturbation theory did not lead to important new physical insights. After all the difficul-
ties in resumming classical perturbation theory were very important for the modern understanding
of dynamical systems [8].
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For reviews of constructive theory we refer to [2, 9, 37, 38]. But here let us sketch how the RG
has to be modified to become truly a non-perturbative tool, and review briefly the achievements
of the theory.

The first difficulty if we try to resum perturbation theory has to do with the large number of
Feynman graphs. Convergence of the functional integral itself, and the divergence of perturbation
theory can be considered as “large field” problems, because they are related to the fact that a
bosonic field is an unbounded variable. Physically a large field corresponds to a large number of
excitations or particles being produced, and large field problems are generic in bosonic theories
because bosons, in contrast with fermions, can pile up in large numbers at the same place. In
Fermionic theories the Pauli principle physically solves that problem: fermions cannot pile up at
the same place. Mathematically the corresponding anticommuting functional integrals give rise to
determinants. By Gram or Hadamard’s inequalities an n by n determinant with elements bounded
by 1 can never be of size n! but at most n™/2, so that fermionic perturbation theory converges, in
sharp contrast with bosonic perturbation theory.

Clearly the RG as initially formulated by Wilson or summarized in (3.6)-(3.7) is not math-
ematically well-defined. In particular starting form any polynomial action it creates an effective
action which is obviously no longer polynomial, and this even after a single step! Therefore the
large field problem (integration on ¢ at large ¢), appears! More precisely, even if the initial bare
action is stable, i.e., bounded below, it is not clear that this remains true for Serz(¢), even after a
single RG step. Hence starting from a stable interaction, the second step of the RG may be already
ill-defined. This point has to be stressed to physicists!

So constructive theory must modify carefully the two main operations in a RG step to make
them well defined. The functional integral in a slice must be treated (in the bosonic case at least)
with a tool called a cluster expansion. The idea of the cluster expansion is that since perturbation
theory diverges we must keep most of it in the form of functional integrals. However one can test
whether distant regions of space are joined or not by propagators. So one introduces a lattice
of cubes of size comparable to the decay rate of the propagator (here M ~%) and one performs
a battery of tests to know whether there are vertices or sources in different cubes joined by a
propagator. This allows to rewrite the theory as a “polymer gas”, the polymers being the sets of
cubes joined together as the outcome of the cluster expansion. By construction this polymer gas
has hardcore interactions: two connected components are always made of disjoint cubes. But when
the coupling constant is small, the activities for the non-trivial polymers (containing more than
one cube) are small. Hence the polymer gas is dilute and the statistical mechanics technique of the
Mayer expansion, a tool which compares the hardcore gas to a perfect gas, allows to perform the
thermodynamic limit. This Mayer expansion is the non-perturbative analog of the computation of
the logarithm in the second part of a renormalization group step. In this way the renormalization
group can be formulated correctly at the non-perturbative level, as a sequence of intertwinned
cluster and Mayer expansions, and the flow of the critical parameters to renormalize, such as the
mass, wave function and coupling constant can be computed in this framework.

Using this approach, models of non-trivial interacting field theories have been built over the
past thirty years, which satisfy Osterwalder-Schrader’s axioms, hence in turn have a continuation
to Minkowski space that satisfies Wightman axioms [39, 40]. Such models are unfortunately yet
restricted to space-time dimensions 2 or 3 but they include now both superrenormalizable models,
such as P(¢)s [42, 41, 43], ¢4 [44, 45, 46, 14] or the Yukawa model in 2 and 3 dimensions, as well
as just renormalizable models such as the massive Gross-Neveu model in two dimensions [47, 48].
Most of these models have been built in the weak coupling regime, using expansions such as the
cluster and Mayer expansions; the harder models require multiscale versions of these expansions,
reshuffled according to the renormalization group philosophy.

In most cases the relationship of the non-perturbative construction to the perturbative one has
been elucidated: the non-perturbative Green’s functions being the Borel sum of the correspond-
ing perturbative expansion [13, 14, 48]. In this sense one can say that constructive field theory
has achieved the goal of resumming all Feynman graphs, although, as explained above, Borel re-
summation is not a naive ordinary summation but a clever reshuffling of the initial perturbative
series.
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Unfortunately constructing ¢ itself, the initial goal of the constructive program has not been
possible since it lacks ultraviolet asymptotic freedom. It has been possible to show numerically
and through correlation inequalities that starting from a bare lattice action at short distance with
some reasonable assumptions at short distance, the resulting theory is trivial i.e. not interacting
[49, 50, 51].

But important partial results have been obtained for the construction of non-Abelian theories
in 4 dimensions [52, 53]. New models not perturbatively renormalizable but asymptotically safe are
also within reach of these techniques, such as the Gross-Neveu model in three dimensions [54]. In the
infrared regime bosonic models of renormalizable power counting such as the critical (massless)
¢} with an infrared cutoff [55, 56], or 4 dimensional weakly self-avoiding polymers have been
controlled [57], and their asymptotics at large distance have been established. Nonperturbative
mass generation has been established in the Gross-Neveu model in two dimensions and in the
nonlinear o model at large number of components with ultraviolet cutoff [58, 59]. Finally the RG
when applied to condensed matter give rise to many rigorous results and programs, as sketched in
the next section. Altogether this set of results strongly illustrate the power of functional integration
in quantum field theory.

3.5 Extended singularities, the new RG frontier

During the last decade one of the main achievements in renormalization theory is the extension
of the renormalization group of Wilson (which analyzes long-range behavior governed by simple
scaling around the point singularity p = 0 in momentum space) to more general extended sin-
gularities [60, 61, 62]. This very natural and general idea is susceptible of many applications in
various domains, including condensed matter and field theory in Minkowski space. In this sec-
tion we will discuss the situation for interacting Fermions models such as those describing the
conduction electrons in a metal.

The key features which differentiate electrons in condensed matter from Euclidean field theory,
and makes the subject in a way mathematically richer, is that space-time rotation invariance is
broken, and that particle density is finite. This finite density of particles creates the Fermi sea:
particles fill states up to an energy level called the Fermi surface.

The field theory formalism is the best tool to isolate fundamental issues such as the existence
of non-perturbative effects). In this formalism the usual Hamiltonian point of view with operators
creating electrons or holes is replaced by anticommuting Fermion fields with two spin indices, and

propagator
1
Cop(k) = bpp————=—— (3.18)

iko — [e(k) — ]
where a,b € {1,2} are the spin indices. The momentum vector % has d spatial dimensions. and e(lZ)
is the energy for a single electron of momentum k. The parameter p corresponds to the chemical
potential. The (spatial) Fermi surface is the manifold e(k) = pu °.
For a jellium isotropic model the energy function is invariant under spatial rotations
S k2
e(k) = — 3.19

(F) = 5 (3.19)
where m is some effective or “dressed” electron mass. In this case the Fermi surface is simply a
sphere. This jellium isotropic model is realistic in the limit of weak electron densities, where the
Fermi surface becomes approximately spherical. In general a propagator with a more complicated
energy function e(k) has to be considered. A very interesting case is the two dimensional Hubbard
model corresponding to a square lattice. The momenta live on the dual “Brillouin zone” [—m, 72,
and the energy function is

e(k) = cosky + cos ks (3.20)

so that for u = 0 (the so-called half-filled model), the Fermi surface is a square.

51t may be convenient to add also an ultraviolet cut-off to this propagator to make its Fourier transformed kernel
in position space well defined. Anyway, very high momenta should be suppressed in this non relativistic theory.
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Imaginary (Euclidean) time (in the form of a circle, with antiperiodic boundary conditions for
Fermions) corresponds to finite temperature 7. When T tends to 0; the imaginary time circle grows
to R. At finite temperature, since Fermionic fields have to satisfy antiperiodic boundary conditions,
the component kg in (3.18) can take only discrete values (called the Matsubara frequencies) :

2n +1
Gh

so the integral over kg is really a discrete sum over n. For any n we have kg # 0, so that the
denominator in C'(k) can never be 0. This is why the temperature provides a natural infrared
cut-off. But when 7" — 0, ko becomes a continuous variable and the propagator diverges on the

“space-time” Fermi surface, defined by ko = 0 and e(k) = p.
The interaction term is defined by:

ko = + (3.21)

sn=1 /A P (0w (3.22)

Physically this interaction represents an effective interaction due to phonons or other effects. A
more realistic interaction would not be completely local to include the short range nature of the
phonon propagator, but we can consider the local action (3.22) as an idealization which captures
all essential mathematical difficulties.

The basic new feature is that the singularity of the propagator is of codimension 2 in the
d+ 1 dimensional space-time. This changes dramatically the power counting of the theory. Instead
of changing with dimension, like in ordinary field theory, perturbative power counting is now
independent of the dimension, and is the one of a just renormalizable theory. Indeed in a graph
with 4 external legs, there are n vertices, 2n — 2 internal lines and L = n — 1 independent loops.
Each independent loop momentum gives rise to two transverse variables, for instance ko and |E|
in the jellium case, and to d — 1 inessential bounded angular variables. Hence the 2L = 2(n — 1)
dimensions of integration for the loop momenta exactly balance the 2n — 2 singularities of the
internal propagators, as is the case in a just renormalizable theory.

In one spatial dimension, hence two space-time dimensions, the Fermi surface reduces to two
points, and there is also no proper BCS theory since there is no continuous symmetry breaking
in two dimensions (by the “Mermin-Wagner theorem”). Nevertheless the many Fermion system in
one spatial dimension gives rise to an interesting non-trivial behavior, called the Luttinger liquid
[60].

In two spatial dimensions or more, the key tool to correctly analyze the theory is a decom-
position of the propagator analogous to (3.1), but both into discrete slices and in each slice into
discrete angular sectors. The slices are defined by:

C = iC] H C](k) = % (323)

where the slice function f;(k) effectively forces |iky — e(lZ)| ~ M~J, for some fixed parameter
M > 1. These slices pinch more and more the Fermi surface as j — oo.
The slice propagator is further decomposed into sectors:

Co®) = 3 Crolk) i Crolh) = kf—(’“()k) (3.24)
oEXL; 1Rp — €

where ¥; is a set of angular patches, called sectors, which cover the Fermi sphere. For instance if
d = 2 we may simply cut the circle into M7 intervals of length 2 M ~7, but a better idea is to make
the patches as large as possible. What limits really the size of the patches is the curvature of the
Fermi surface, so that the optimal number of such patches is really M7/2 for the two dimensional
jellium model [63], and only j2 for the two dimensional Hubbard model at half-filling [64].

The RG applied to this problem means as before that higher slices give rise to local effects
relatively to lower slices. Integrating the higher slices one obtains effective actions which govern
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larger distance physics. These effective actions are however more complicated than in the field
theory context. In rotation invariant models, renormalization of the two point function can be
absorbed in a change of normalization of the Fermi radius. It removes all infinities from perturbation
theory at generic momenta [61]. But the flow for the four point function is a flow for an infinite set
of coupling constants describing the momentum zero channel of the Cooper pairs [62]. In the case
of an attractive interaction, when the temperature is lowered to zero, this flow diverges at the BCS
scale. At this scale the symmetry linked to particle number conservation is spontaneously broken,
giving rise to superconductivity, that is to the condensation of Cooper pairs.

This condensation is a nonperturbative phenomenon, like quark confinement. But in contrast
with quark confinement, we know in principle how to investigate in a mathematically rigorous way
this BCS condensation. Indeed sectors around the Fermi surface play a role analogous to compo-
nents of a vector field, so that an expansion in 1/N, where N is the number of such components,
could control the BCS regime [65], in which ordinary perturbation is no longer valid. We may
call this situation a “dynamical 1/N” effect. Nevertheless the full mathematical construction of
the BCS transition starting from weakly interacting fermions remains a long and difficult program
which requires to combine together several ingredients.

The discussion of high temperature superconductivity lead also to some controversy about the
nature of interacting fermions systems in the ordinary non-superconducting phase. In particular,
validity of the standard Fermi liquid theory (which is essentially defined by the propagator (3.18) up
to small corrections) has been questioned in two dimensions. According to a mathematical criterion
designed by M. Salmhofer [68], it is now possible to distinguish rigorously between the so-called
Fermi liquid behavior and Luttinger liquid behavior above the usual critical BCS temperature.
Using renormalization group around the Fermi surface it should be possible to soon complete the
proof of the following theorem:

Theorem 3.2 In two dimensions an interacting fermion system above the condensation temperature
can be either a Fermi or a Luttinger liquid, depending on the shape of the Fermi surface. The
jellium model with round Fermi surface is a (slightly anomalous) Fermi liquid [67], but the half-
filled Hubbard model with a square Fermi surface should be a (slightly anomalous) Luttinger liquid

[64].

The mathematically rigorous construction of a two-dimensional interacting Fermi liquid at
zero temperature, corresponding to non-parity invariant Fermi surfaces like those obtained by
switching on a generic “magnetic field cutoff”, has also been completed recently [69].

Like in the previous section the key to these constructive theorems lies in the resummation
of perturbation theory in a single slice, and then in the iteration of renormalization group steps.
Curiously, although power counting does not depend on the dimension, momentum conservation
in terms of sectors in a fixed slice depends on it. This has dramatic constructive consequences. In
d = 2 we have the “rhombus rule”: four momenta of equal length which add to zero at a given
vertex must be roughly two by two parallel. This means that two dimensional condensed matter
in a slice is again directly analogous to an N-vector model in which angles on the Fermi surface
play the role of colors [66]. This remark is at the core of all rigorous constructions of interacting
Fermi liquids [67, 69].

In three dimensions, we expect interacting fermions to behave as regular Fermi liquid above
the BCS temperature, but this turns out to be surprisingly difficult to prove non-perturbatively.
Indeed there is no longer any analog of the “rhombus rule”. Two different momenta at a vertex in a
given slice no longer determine the third and fourth: there is an additional torsion angle, since four
momenta of same length adding to 0 are not necessarily coplanar. More sophisticated techniques
have been designed to deal with this case [70] but until now it is not clear that these techniques
allow a full constructive analysis of the model up to the scale where the BCS symmetry breaking
takes place.

3.6 Conclusion

If we consider the universal character of the action principle both at the classical and quantum
level, and observe that the relation between microscopic and macroscopic laws is perhaps the
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most central of all physical questions, it is probably not an exaggeration to conclude that the
renormalization group is in some deep sense the “soul” of physics.
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