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1 Introduction

At school we are taught that heat is motion, and that the constant molecular col-
lisions are the explanation why a solid expands, and in general becomes more fluid
as it gets hotter. When a system is cooled to sufficiently low temperatures, we thus
expect it to collapse: molecules should become densely packed, leading to a form of
matter that does not flow easily.

We are later surprised to learn that, in many cases, this molecular crowding
is not a continuous process, but what happens rather is that upon cooling, all of
a sudden the system arranges itself in an ordered manner, all particles spending
most of their time around positions disposed regularly, in a periodic arrangement.
Crystallisation is the first inherently collective phenomenon we become aware of.

There are however exceptions to this miracle of crystallisation, in which systems
upon cooling seem to behave in the most naive manner, gradually becoming solid-
like, with particles just moving slower and in a more contrained manner, but with
no evident spatial order emerging: we then say that we have formed a glass. This at
first sight most unremarkable behaviour is, strangely enough, the one we understand
the least.

The viscosity of a glass-former liquid (a substance able to avoid crystallisation)
increases upon cooling without any important change in structure, but still in an
explosive way: many orders of magnitude in only a few degrees Celsius. How are we
to explain this, in the absence of anything sudden or remarkable happenning to the
arrangement of the particles? Having avoided the obvious miracle of ordering, glass
formers present us with the mystery of their sudden change of behaviour, leaving us
to wonder if there is a hidden form organisation of matter, or an avoided “nearby”
sharp transition, which we have yet to discover.

The problem in glasses, and why we consider it still open, is neither a ques-
tion of fundamental interactions nor of practical calculations. On the fundamental
side, we have plenty of models that exhibit a glass transition, and computers that
can simulate by now very respectable times and sizes: they confirm that every mi-
croscopic element has already been put in. On the other hand, even if we do have
limitations in our ability to compute things analytically, the situation is the same
with liquids or dense gases, both subjects that are not usually described as a chal-
lenge. Our problem is then one of interpretation: we are trained to believe that for
every striking phenomenon there should be a set of ideas that is simple, invokes
entities that have a clear definition, lends itself to a mathematical formulation, and
is able to surprise us with a new prediction. We are only beginning to envisage such
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a theory.

2 Crystallisation

When we cool a liquid, crystallisation may occur all of a sudden. The energy then
jumps to a lower value (Fig 1)– we say the system loses its latent heat – and from the
microscopic point of view the system is now organised (Fig 2). The same situation
arises with hard particles, with the volume and the inverse pressure playing the role
of energy and temperature (V, P−1)↔ (E, T ).

T

E

melting

crystal

liquid

Figure 1: Energy versus temperature – or volume versus 1/(pressure).
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Figure 2: Ordering as the system jumps from a liquid (left) to a crystalline configuration (right).

A periodic distribution of matter has a spatial Fourier spectrum composed of
delta contributions: these are the Bragg peaks (Fig. 3). They are directly observ-
able with diffraction measurements. Except at zero temperature, the instantaneous
location of particles fluctuates around their truly ordered positions. For a crystal,
these fluctuations do not affect the notion of order, since even in their presence there
are Bragg peaks – and what is more, they pose no problem for our eye to recognise
periodicity either.

Because we shall need to consider cases in which there is no periodicity, and
no tool playing the role of a Fourier transform, it is convenient to detect order in
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Figure 3: Periodicity, fluctuations and a Bragg peak.

an alternative fashion. The fact that there is an average density modulation can be
directly seen from the fact that the time-average density (Fig. 4)):

ρ̄(x) = τ−1

∫ τ

0

dt ρ(x, t) =
1

Nτ

∫ τ

0

dt Σa δ[xa(t)− x] (1)

has a non-constant limit as τ →∞ (taken after the thermodynamic limit). Another

ρ (x)

���� ���� ���� ���� ���� ���� ������������

t−t

density autocorrelation (t−t

w

w
)

Figure 4: Autocorrelation function and time-averaged density ρ̄(x) = τ−1
∫ τ

0
dt ρ(x, t).

useful way of conveying the same information, is to consider a two-time autocorre-
lation function, as in figure 4:

C(t, tw) = V −1

∫
dx [ρ(x, t)ρ(x, tw)− ρ2

o] (2)
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In terms of t−tw, there is a fast relaxation, corresponding to the rapid motion includ-
ing the phonons, but the correlation saturates to a plateau C = V −1

∫
dx [ρ̄(x)−ρo]2

3 Collective nature of solidity: Arrhenius versus Super-Arrhenius

The popular, generic term jamming as applied to solidification [2] may be suggestive
of rigidity arising from hard constituents in contact with one another, each one
blocking its neighbour. However, it is important to bear in mind that rigidity is, at
least for crystals and glasses, a collective phenomenon that does not require hard
constituents at all, and does not imply or require that any individual one be blocked.
The crystal example allows us to discuss in a very simple manner what being a solid
does, and what it does not mean. The property of having a permanent (average)
density modulation is one characteristic defining a solid. Another, more explicit one,
is the fact that they do not flow when subjected to infinitesimal stress [1, 29].

Consider first the case of soft particles (without a hard core) at finite temper-
atures, as in figure 5. It is clear that any particle may exchange its position with
a neighbouring one with finite probability, so that there is no order in the particle
positions, if they are distinguished. Order is then a property of the density modula-
tion, just as an army has permanent rank order independent of the changing names
of soldiers and generals. Another important point is that there can be no order in
a finite system, since for such a system there will be a finite probability of being in
any configuration, having started from any other. The same can be said for a system
of hard spheres (Fig. 6), at finite pressure, because particles can always “make way”
for others to rearrange. And yet, we know that infinite systems of this kind – soft
spheres, hard particles at densities such that they do not touch – do form solids in
the thermodynamic limit.
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Figure 5: Permuting soft particles.

Two further examples may be instructive. Consider the ferromagnetic Ising
model at T = Tc/10. Equilibrium is given by a state with positive and one with
negative magnetisation. The fact that an infinite system has a permanent magneti-
sation, and that symmetry is broken, relies on the impossibility of the magnetisation
flipping. However, it is easy to find a path of constant energy leading from a typical
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Figure 6: Permuting hard particles.

configuration of the positive magnetisation state to a typical configuration of the
negative magnetisation state. It suffices (Fig. 7) to “herd” the minority down spins
into a large stripe, and then grow laterally this stripe a constant energy. The barrier
is entropic in nature: it takes many simultaneous things to happen in order to assure
the passage, and the probability of all of them occurring, though finite in a finite
sample, becomes zero in the thermodynamic limit. Going back to the soft-sphere

Figure 7: A collective, entropic, infinite barrier

crystal, a spontaneous deformation like that of Figure 8, has an infinite energy bar-
rier, because it involves an infinite amount of overlaps in the thermodynamic limit.
Infinite entropic or energetic barriers are, in all these cases, collective phenomena.

In contrast with the previous examples, one may have systems that are only solid
because already its individual constituents are. In that case, even a finite version
may be solid. Simple examples of this are depicted in figure 9, where the spheres are
assumed to be hard, or if they are not, the temperature is assumed to be zero.

A more subtle example of the same thing are the kinetically constrained mod-
els [3]. These are lattice models in which the particles have some forbidden moves.
For example if their number of neighbours is higher than a certain number, the
particle is immobile. The restrictions play, in this case, a role analogous as the hard
constraints of Fig 9: as soon as they are partially lifted, infinite timescales and
permanent modulations disappear.
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Figure 8: A collective, energetic, infinite barrier.
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Figure 9: Non-collective rigidity.

In the situations in which rigidity and permanent modulations of density do
not have a collective origin, for example in the case of finite systems, the timescales
grow as T → 0 or P →∞ in an typical activated (Arrhenius) manner. This is clear,
because there is a finite barrier that takes more to cross at lower temperatures. On
the other hand, a collective system in the thermodynamic limit may have timescales
that diverge at finite temperatures (e.g. the Ising model), or at any rate grow faster
than with an exponential Arrhenius law. What we have just said can be made rigor-
ous [4]: a system having a timescale that grows faster than exponentially necessarily
has some equilibrium cooperativity length that diverges when the timescale diverges.

4 Avoiding crystallisation

Let us now turn to the situation when crystallisation does not happen. One can cool
a liquid in such a way that the crystalline phase does not have the opportunity to
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nucleate. How easily this is done depends on the cooling protocol and on the nature
of the liquid – a ’good’ glass-former is a poor crystallisor, and vice-versa.

T

T

E

τ
α

liquid

liquid

T TT
k 1 2

aging

aging

Figure 10: Different annealing speeds. The dashed lines indicate out of equilibrium situations, and
are necessarily evolving in time. The full line is the result of infinitely slow cooling: energy has a
nonanaliticity, and the relaxation timescale τα a divergence, if there is a true phase transition.

The supercooled liquid just below the melting temperature is metastable, but in
an innocent way: it can be considered to be in “local” equilibrium: if the temperature
is not changed, the macroscopic observables do not evolve, and the equilibrium
theorems (Fluctuation-Dissipation, Onsager reciprocity) hold. In other words, the
supercooled liquid phase is in a situation similar to that of diamond, a mixture of
oxygen and hydrogen at room temperature, or a current-carrying superconductor;
which for all practical purposes ignore the possibility of nucleating graphite, water,
or a lower supercurrent, and may be treated as equilibrium systems.

Upon cooling further, the viscosity grows dramatically, and the liquid reaches
a point in which it falls out of equilibrium – but this time in a serious way. We can
tell this because energy and viscosity now start depending on the cooling speed, and
even if the temperature is held constant, they continue to evolve – as do all other
macroscopic observables. This situation is completely unrelated to the existence of
the cristal and very different from the innocent metastability of diamond or the
oxygen-hydrogen mixture. The system is now in a situation in which something is



8 J. Kurchan Séminaire Poincaré

constantly evolving so that, as we shall see, one can determine experimentally its
’age’ since it fell out of equilibrium and it became a glass.

Consider the cooling of a system as in Figure 10. For a fast cooling, the energy
ceases to have its equilibrium value at a temperature T2; for a slower process, this
happens at a lower temperature T1. We recognise the equilibrium energy vs. temper-
ature curve as the envelope beyond which all slower annealings coincide. What we
have said about energies, can be said about the viscosities, or the relaxation times
τα. Consider an autocorrelation function, for example (2). In the supercooled liquid
phase, the autocorrelation falls in two steps: first to a plateau, and the second, in
a much longer time τα, to zero. The first drop to the plateau is analogous to the
one observed in a crystal (Fig. 4), and is a consequence of rapid vibrations, while
the second drop – entirely absent in a crystal – reflects the large rearrangements
that a liquid can afford to make. A direct way to picture the α relaxation is to
consider, as in Figure 11, the analogue of Fig. 4: averaging out the rapid vibrations,
as we did in the crystalline case, we obtain an amorphous density profile that does
not last forever, but takes a time ∼ τα to evolve. Within (metastable) equilibrium,
τα increases rapidly as the temperature is decreased, reflecting the increase in the
viscosity (Fig. 12, right). When the system is further cooled and falls out of equilib-
rium, the autocorrelation function is no longer an exclusive function of temperature,
but depends also on history via the “waiting” time tw (Fig. 12, left): in particular,
the system needs time to become more viscous. This is the ’aging’ phenomenon.
Still, at a temperature T1 (Fig. 12, top), eventually τα reaches its equilibrium value,
although this may take so long that we only observe aging.

ρ (x)

���� ���� ���� ���������������� ���� ����

t−t

density autocorrelation (t−t

w

w
)

averaged  over time τ
α

τα

Figure 11: Density profile in an α scale.

This is how glasses present themselves to us in real, experimental life. We may
still be curious to know whether there is a temperature TK below which aging lasts
forever, equilibrium is never achieved, and the timescale τα becomes infinite. If this
were the case, one could ideally consider samples with a permanent, amorphous,
averaged density profile ρ̄(x), a solid just like a crystal in all but the spatial period-
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T
2

T

T

T
k 1 

T
3

T

τ
α

liquidaging

C C

T
2

1 
1hr 10hr

α
τ

α
τ (T) w(t  )

Figure 12: α time relaxation depends on temperature in equilibrium, and on the waiting time out
of equilibrium.

icity. The discussion above about collective rigidity implies that if such states with
permanent spatial modulation of density exist at finite temperature, then necessar-
ily they involve a coherent behaviour of particles that only exists rigorously in the
thermodynamic limit, and requires the divergence of some correlation length. This
is even the case if TK = 0, but τα grows faster than an Arrhenius law τα ∼ eb/T [5].

Within an α scale, we can classify configurations as in Figure 13: two config-
urations are considered to be in the same metastable state if the density profiles
obtained starting from either one, and averaging over a time τα, coincide up to, say,

τ
−1/2
α (i.e. within the statistical error). This is sometimes depicted in a “landscape”

picture (Fig 13, right). All the configurations that yield the same profile constitute a
“state”, and their number yields the entropy within the state. More importantly, the
logarithm of the number of states (per unit volume) is by definition the complexity
Σ [6].
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{

{
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don’t ask

a,b,c d,e,g

landscape

Figure 13: Free Energy Landscape picture.

5 Short disgression: the nucleation argument

Two phases

Before continuing, it is useful to recall the nucleation argument, which allows us
to conclude that for finite dimensional systems at non-zero temperature, with short
range interactions and soft potentials – these are all we consider here – a phase with
a free energy density higher than the equilibrium one cannot be stable. This means
that true stable states have a free energy that exceeds the equilibrium one at most
by a subextensive amount.

One considers to phases a and b with free energy densities fa > fb. In the phase
a, a droplet of radius r of the phase b costs at most a surface energy σrd−1, with
σ ≤ 0, and involves a gain −(fa − fb)rd. In terms of r, we have:

δf(r) = σrd−1 − (fa − fb)rd (3)

which has a maximum δf(r∗) at a critical radius r∗ :

r∗ =
(d− 1)σ

d(fa − fb)
→ f(r∗) ∝ σd

(fa − fb)d−1
(4)

The droplet growth is activated up to r∗, with Arrhenius probability ∼ e−δf(r∗)/T ,
and then proceeds downhill until the phase b prevails. We have found a path leading
from state a to phase b with a finite free energy barrier requiring a finite number of
moves: it is perhaps not the best path, but it gives an upper bound on the probability
of nucleation. The only way in which the droplet will not unstabilise a is that either
σ = ∞ (which requires hard, or long-range interactions), or that (fa − fb) → 0 as
N →∞.

The nucleation argument is stronger than this: it implies that the state a cannot
have any sub-region of extensive volume having a free energy density larger than
the corresponding one of the state b.
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Entropic drive

A situation that arises in supercooled liquids is that a system has many options
of phases for nucleating. The question then is: does this multiplicity increase the
probability of nucleation? The argument against says that it does not, since once one
is nucleating one phase, in what does it help the fact that there was another option?
Or, put in another way, how can the system know, when it is going somewhere, that
there are other options out there?

To clarify the point, best is to do a small calculation. Consider a system at
very low temperature, activating its escape out of the spherical crater V (r) in Fig.
14. Starting from a spherical distribution concentrated at the bottom, the particle

Figure 14: Two trajectories escaping a crater.

follows (say) a Langevin process, and the probability evolves via a Fokker-Planck
equation.

Ṗ = ∇ [T∇+∇V ]P (5)

Assuming the distribution was spherically symmetric at the start, it will remain so,
and we may go to spherical coordinates:

Ṗ =
1

rd−1

[
T
d

dr

(
rd−1dP

dr

)
+ P

d

dr

(
rd−1dV

dr

)
+
dV

dr

dP

dr

]
(6)

Putting P̃ ≡ rd−1P we get the radial diffusion equation

˙̃P =

[
T
d2

dr2
+

d

dr
(V (r)− T (d− 1) ln r)

]
P̃ (7)

This is the dynamics in a potential V corrected by precisely the entropy(the loga-
rithm of the volume) (d− 1) ln r of a shell of radius r. Indeed, the different possibil-
ities do add, and help lowering the effective barrier. With hindsight, we can justify
this even at very low temperatures by noting that before a passage is actually made,
many attempts that barely failed have been done – and these take all possible paths.
We shall use this in what follows.

6 Configurational entropy and metastale states

Local mean-field.
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Landau theory consists of writing a free energy in terms of a space-dependent
order parameter. This free energy functional contains an entropic term that takes
into account all the rapid thermal fluctuations, and temperature enters only as a
parameter. The order parameter itself represents the time-average of the microscopic
variables, for example the magnetisation is the time-average of the spins. For simple
forms of order, although we know that the theory is not exact, and in general leads
to the wrong exponents, it gives a satisfactory qualitative picture. Phase transitions
appear when the minima of the free energy functional are a set of symmetry-breaking
solutions related between one another by the symmetry operation.

crystal

constant (liquid)

amorphous

Tm f

I
crystal

Σ

gradient

  1/T

?

??

Figure 15: Complexity Σ versus free energy f .

In glassy systems, when we attempt such a mean-field approach, for example
the Thouless-Anderson-Palmer (TAP [7] ) approach to spin glasses, we find that
at low temperatures the free energy functional now has an exponential number of
solutions, rather than two as a ferromagnet. For the case of a liquid, the analogue
of the local magnetisation is clearly our time-averaged density ρ̄(x), and a closely
related approach is the so-called density functional theory. We are given a free energy
functional in d-dimensional space [8]:

F [ρ(x)]

=

∫
ddx ρ[ln ρ(x)− 1]− 1

2

∫
ddx ddx′ [ρ(x)− ρo]C(x− x′)[ρ(x′)− ρo] (8)

Here C(x − x′, ρo) is the liquid direct correlation function at average density ρo
computed within a some, such as the Percus-Yevick, approximation. For short range
interactions, C(x) is short ranged. We look for the “local” free energy minima that
satisfy:

δF [ρ(x)]

δx
= ln ρ(x)−

∫
ddx′ C(x− x′, ρo)[ρ(x′)− ρo] = 0 (9)

At low average densities ρo, the spatially constant “liquid” solution dominates. As
the density increases, a periodic, “crystalline” solution appears. What is interesting
from the glassy point of view [11], is that in the high density regime, there appear
also many non-periodic “amorphous” solutions, as depicted schematically in Figure
15. Each one of these is supposed to represent a metastable glassy state, as described
in the previous section. These states are local minima of (8) satisfying (9).
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Now, as we have seen, the nucleation argument implies that as soon as we go
beyond the mean-field approximation and add fluctuations to this picture, solutions
with free-energy density O(1) above the lowest are unstabilized. We already know
that if the crystal has lower free energy, everything is metastable with respect to
it, but we have argued that we could ignore this. Here we are saying that in fact
essentially all solutions schematised in Fig 15 are metastable even if we neglect the
crystal, they will nucleate one onto the other and only the lowest of the amorphous
ones are truly stable – or only unstable with respect to crystal nucleation (which
takes an altogether different scale).

We are now embarrassed: we have claimed that the amorphous solutions of
(9) represent a glass, but in fact, since all but the very lowest are metastable: they
correspond to the liquid phase. Worse of all, we have now two different representations
of the liquid phase, one as a constant solution, and one as a set of metastable
amorphous solutions.

A sum rule.

Let us be more precise: consider all amorphous solutions at temperature T ,
summed with the Boltzmann weight:

Z = Σsolutions eV [Σ(f)−βf ] (10)

This sum is dominated by the saddle point, yielding:

dΣ

df
=

1

T
(11)

The solution of this equation is obtained with a tangent construction as in Figure
15 (right). For sufficiently high temperatures, the saddle-point free energy corre-
sponds to solutions that are well above the lowest, so that the Boltzmann weight
is dominated by an exponential number of metastable states with a finite lifetime.
The question is now: who is the true representative of the supercooled liquid, these
states or the constant solution? The answer is quite surprising: it turns out that
within the models for which a full solution is available (more about these later),
there is a range of temperatures where both results coincide, so that the liquid is
given twice, once by a constant profile and once as a packet of amorphous solutions.
The latter give us the metastable states characteristics, such as one observes in that
regime within the α scale. This sum rule has not been, to the best of my knowledge,
discussed or tested within these approaches “with space”.

An objection may now arise: given that states that dominate in the liquid phase
have the same free energy, how do we know that the free-energy barrier separating
is not infinite? This is indeed a valid question, since our nucleation argument only
showed that barriers are finite between states with a finite free-energy density differ-
ence. Here we have to invoke the entropic drive we mentioned above: just like in the
escape from a crater, the system has many nucleation paths (roughly eΣr3) leading
to different density profiles, and this modifies accordingly the activation time, cfr.
Eq. (7).

The transition.

What happens within this approximation when we lower the temperature? Just
looking at Figure 15 (right), we see that if the Σ versus f curve reaches zero with a
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finite gradient equal to, say, βc, then below TK = 1/βc the equilibrium distribution
freezes in the lowest amorphous states. These are the ones that are stable (except for
crystal nucleation), and they represent the true glass phase. Hence, we have obtained
the glass transition as a condensation into a handful of low-lying density profiles,
coming from a supercooled liquid made of similar, though metastable, states states
representing the liquid. This is the Kauzmann scenario [9].

If, on the contrary, Σ(f) reaches zero with infinite slope (a possibility advocated
in [10], we have that the glass transition temperature is zero. Note again, that this
will not make it more trivial, since the vanishing of entropy, even at T = 0, implies
some form of order. We cannot exclude yet other possibilities, and the question
marks on Fig 15 are there to express this.

Reading the complexity and a coherence length from ρ̄

At any rate, it is interesting to note that as we find deeper and deeper amorphous
states, we expect that a correlation (or coherence) length will grow. A concrete
realisation of this length is the following [18]: given an infinite system, we choose a
block of size `, and see how far we have to go in order to find – within a certain
precision – a block with the same configuration of ρ̄. This length is exponential in `d

in a truly random density configuration, but will be subexponential in a crystal, a
quasicrystal, and more general objects with hidden forms of order. The distance of
patch-repetition gives a direct measure of the complexity: if a patch repeats every
e`

d/Σ, then Σ is the complexity. Note that Σ→ 0 implies a diverging length.

7 Analogy with – and lessons from – chaotic systems

The equations (9) are analogous to the equations of motion of a dynamical system,
with space playing the role of (multidimensional) time. A constant “liquid” solution
is then analogous to a stationary point, a crystal to a periodic solution, and amor-
phous solutions correspond to chaotic orbits. This similarity between dynamical
systems that are chaotic in time, and glassy systems that are chaotic in space, was
pointed out many years ago by Ruelle [15]. As it stands, the analogy is not perfect,
since we demand not only that the density profile be a solution of (9), but that in
addition it be a deep minimum of (8). In order to make the analogy closer, we may
consider a dynamical system, in which in addition we look for minimal solutions of
the action

S =

∫
dt L(q, q̇) (12)

so that (12) plays the role of (8), and the (Lagrange) equations of motion

δS

δq(t)
= 0 (13)

play the role of (9). A realisation of this appeared in the theory of charge-density
waves [16, 17], in particular in the Frenkel-Kontorova model, for which the local
energy minima of the model are given by the trajectories of the ‘standard map”,
which has both regular and chaotic orbits.

In order that the action plays the role of a free energy, we need that the it be
bounded from below. This is not in general the case, and one needs for example that
the potential be bounded from above. This should not worry us: in fact, one can take
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Lagrange’s equations (13) as the analogue of (9) and any functional A ≡
∫
dt A(q, q̇)

as the analogue of (8). One is then computing trajectories that are a large deviation
of A [13].

What seems to happen [16, 17, 13] when we look for trajectories that are solution
of the equations of motion of a chaotic system and minimise globally some quantity
(S, A) is that the trajectories that dominate are periodic or quasiperiodic, or have
in general some form of regularity. In such systems, these trajectories are not in a
regular region of phase-space, they are unstable and buried in the middle of the
chaotic sea.

With this analogy in hand, we now consider again the solutions of (13), but
classifying them according to (12) (when possible), or with any other functional A,
and the correspondence is:

• Stationary points correspond to the liquid solution.

• Periodic orbits in regular (unstable) regions correspond to a crystal.

• Chaotic trajectories correspond in general to the supercooled liquid phase.

• The glass state corresponds to chaotic solutions that minimise the chosen func-
tional (S or A). These may be isolated, unstable periodic or quasiperiodic or-
bits [13], or have a more subtle form of order [18].

However, note that even when they were periodic, these extremal orbits are very
different from an orbit of a regular system, in that they are in the middle of
a sea of chaotic solutions, and are dynamically unstable in the sense that a
perturbation in the boundaries will change the orbit dramatically.

An orbit minimising A but with arbitrary boundary conditions in the coordi-
nates will approach the unstable periodic one, shadow it for most of the time,
and then go to the prescribed endpoint.

If we take this analogy seriously, the ideal glass state may well be spatially
ordered (periodically, quasiperiodically, or in general with frequent motif repetition),
but it would be of a different kind than a crystal or quasicrystal: the density profile
would be surrounded by disordered solutions, just as the isolated periodic orbits
which exist in purely chaotic systems, intermixed with the chaotic orbits as the
rationals are with the reals.

8 Glasses in the real world: aging

In the real world, glasses know nothing about an ideal transition, they are just
systems slowly working their way to equilibrium, insensitive to whether such an
equilibrium is eventually reachable or not. It would seem that the phenomenology
of such a situation would be all but universal, and that a theory of such a situation
is hopeless. This turns out not to be the case.

As mentioned above, in the aging phase the α relaxation time increases with
time, as does the viscosity 1. When stress is applied to a plastic bar below the glass
transition, the contraction happens in two steps: a fast elastic step followed by a

1Note that this would happen also in an imperfect crystal which is gradually healing its defects.
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slow “creep” motion [14]. Figure (16) shows the classical experiments by Struik,
where the creep motion as a function of time is measured for a sample at different
“waiting” times after it was quenched below the glass transition. Remarkably, the
creep step takes a time roughly proportional to the waiting time, and this in a range
from minutes to years. Clearly, no equilibrium theory can explain this behaviour,
which has been obtained in a variety of glassy systems: plastics, colloids, spin glasses,
etc.

Figure 16: Struik’s classical experiment.

These experiments concern a response to a field. Similar curves are obtained
when one considers a correlation. In equilibrium, these to a related by the fluctuation-
dissipation relation, which states that the response of an average value
χ(t, tw) = δ

δ〈X〉(t) to a field that acts on Y from time tw, is given in terms of the

correlations as:

Tχ(t, tw) = 〈X(t)Y (t)〉 − 〈X(t)Y (tw)〉 = C(t, t)− C(t, tw) (14)

In equilibrium, a χ versus C plot, parametric plot of all (t, tw) should yield a straight
line with slope −1/T .

A very different thing happens when we consider [22] the correlation and re-
sponse of an aging glass (Fig. 17). All points fall on a line, which is now composed
of two apparently straight segments. For t close to tw, corresponding to high fre-
quencies, one obtains a line with gradient −1/T as in equilibrium, but for t and tw
farther apart – precisely in the range where the response is the creep motion – one
obtains a different line with slope, say, −1/Teff . The remarkable fact is that Teff
is the same (for the same time regime), for many different observables, suggesting
that Teff is a genuine temperature. Indeed, one can show that this is what a ther-
mometer coupled to the slow degrees of freedom would measure [22]. This way of
approaching the effective temperature comes to us from the analytic solution of the
aging dynamics of the Random First Order theory (see below), but it seems to be
the same kind of idea proposed at a phenomenological level many years ago by Tool
[24].
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Figure 17: Effective temperatures: Response versus correlation for a binary mixture glass. The
three lines correspond to density autocorrelations, and to diffusion versus mobility for each kind of
particle. The autocorrelation curve shows the two-temperature behaviour, while the diffusion only
the effective temperature, since it is a low-frequency quantity. The effective temperatures seem to
coincide, as witnessed by the fact that the segments are parallel. Taken from Berthier and Barrat
[23].

One should beware of simplistic explanations: what is most important to keep
in mind is that these effective temperatures are not due to some structure that has
remained frozen at the configuration it had when the system crossed the glass tem-
perature: since that time the system has decorrelated substantially, and the identity
of the particles responsible for the aging motion and the effective temperature is
constantly changing.

9 Random First Order theory

Random First order theory is, or starts from, a family of models that are asserted to
be for glasses what the Curie-Weiss (fully-connected) models are for a ferromagnet.
First, comes the observation [31] that spin models with random disorder of the form

E =
∑
ijk

Jijksisjsk (15)

with Jijk random interactions, reproduce some of the phenomenological features
of glasses. Models like this have a static transition like Derrida’s Random Energy
Model (REM) [35]. The mechanism is like the one described in Section 6, where the
measure freezes at a certain TK : this is indeed Kauzmann’s scenario [9] for an ideal
glass transition, with the random energy levels playing the role of the states.

Next, one can study the relaxational dynamics with this energy function. Re-
markably, in the high temperature phase, the dynamics turn out to be exactly de-
scribed by the Mode-Coupling (MCT) equations [33], which are a widely studied
model of the first stages of approach to the glass transition from the liquid side.
There is a Mode Coupling Transition at a certain Td > TK , known to be an artifact
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of the approximation, and within the present perspective one can understand easily
why the MCT transition has to go away in finite dimensions.

Between Td and TK the sum rule mentioned in Section 6 is strictly obeyed: the
description of the liquid state may be made in terms of many metastable glassy
states, or a single high-temperature one, and both descriptions strictly coincide
thermodynamically.

You are not forced to restrict the dynamics to the high temperature phase. If
you quench the models to low temperatures, it turns out that the system does not
equilibrate: it “ages”, just like true glasses [21]. When one analyses the properties of
observables out of equilibrium, one discovers [22] that the slow fluctuations behave
as if they were “thermalized” in an effective temperature Teff . As mentioned above,
“fictive temperatures” have been around since the 1940’s [24], and it is likely that
what one has discovered is precisely a non-phenomenological version of that. One
may also study how the system responds to forces that do work on it: one finds
the generic phenomenology of “shear thinning” of supercooled liquids, and in some
cases you can explain the much more rare “shear thickening” of certain glasses.

One may go back and study the free energy landscape, defined by the TAP [7]
equations, something that was not available in a pure mode coupling context. One
recovers the main features (importance and location of saddles, marginality, etc)
that where discussed many years ago by Goldstein [36] at a phenomenological level.

The next extension of the Random First Order scenario, is getting rid of the
quenched disorder (the Jijk), which are artificial and foreign to the problem. This has
been done successfully, and by the 90’s there was a plethora of fully connected models
having the same properties as (15). As in all mean-field situations, we wish to “put
some space” into the formalism, in this way getting a Landau theory which, although
we know will not capture fully the essence of finite dimensions, it will at least give us
a first hint. This was done by Mézard and Parisi [32] within the hypernetted chain
and other approximations, and using the replica trick [30]. Approaching the mean-
field-with-space approximation with a free-energy TAP [7] rather than a replica
formalism, should finally give us a systematic and well controlled way to go back to
a density functional formalism like the one described in section 6 – which we now
recognise as a form of the “Random First Order” scenario.

As we have seen in section 6, the next big question is how to include fluctuations
beyond mean-field, which will inevitably unstabilise metastable solutions, and re-
express the liquid in terms of those. This has been argued phenomenologically in the
so-called mosaic picture [37, 38], with a degree of success [39]. A line that has not,
to the best of my knowledge, been followed by many is an analytical study of the
constraints of a theory with space. How does one define rigorously the complexity of
density profiles, in analogy with the Kolmogorov-Sinai entropy? Are the lowest free
energy solutions regular, and what is the correlation length that defines them (see
discussion in [18])?. What is the relation between configurations of a crystal with
defects and the lowest amorphous ones, do they merge one into the other?

10 Is mean-field circumstantial or essential?

Let us recap. We start out trying to explain why is it that a liquid may become
essentially solid by changing by a few degrees the temperature, with barely any
detectable change in its structure.
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Clearly, the question whether there is a diverging timescale, or rather, whether
the longest (α) timescale is as long as it could be – that is, equal to the time
of nucleation of a crystal and not shorter – is one which we may ask without an
approximation scheme in mind. However, in attempting an explanation we introduce
notions such as metastable state, complexity, mosaic, effective temperature. We are
limited in our analytic powers, and we resort to mean-field like approximations, or
diagrammatic resummations2 in order to obtain results.

The question we may ask is whether the concepts themselves are inherently
mean-field in nature. Clearly, this is the case of finite free-energy density metastable
states, and hence the complexity: once we step outside mean-field we need to specify
a lifetime above which we call a state a state. Similarly, mosaics carrying a state label
which has a meaning locally in space (rather than globally for the whole system) are
also mean-field constructs, and so on. Even the definition of “activated” processes
is also related to an approximation, since at the end of the day they are defined as
being non-analytic corrections in the mean-field parameter.

If it turned out that our mental constructs are inherently mean-fieldy, this
could pose a problem in cases that are far removed from being exactly of that kind,
but they could still provide the best (approximate) approach to thinking of the glass
transition. This situation would not be without parallel in other branches of physics:
for example superconductivity [26], superfluidity [27], elasticity [28] and rigidity [29]
are in principle, but not in practice, undermined by activation.
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