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Abstract. We give a survey of the work which we and others have
done over the last years on ”active gels”. In particular, we show
how one can construct a set of equations describing gels in which
the cross-links can be moved around by active elements constantly
consuming energy. This situation corresponds to the cell cytoskele-
ton, which is thought to control most of cell dynamics. We illustrate
the potential usefulness of the equations first by giving material sci-
ence type of applications, second by discussing cell behavior such
as motility, oscillations, wound healing and cytokinesis.

1 Introduction

Our knowledge in Biology has improved significantly over the last fifty
years, with impressive successes in molecular biology, genetics, develop-
mental and cell biology. The wealth of information is such that it is hard
to make use of all of them. Although it is clear that details matter in
biological systems, it is also clear that one currently needs to develop
a global picture taking into account the main features and recognizing
what is universal. Cell biology provides a good example of this need:
with exactly the same genome cells can differentiate in about three hun-
dred different types in complex animals such as vertebrates [1]. Physicists
would say that they can go to three hundred stable attractors depending
on external conditions. Considering that cell phase space is controlled
among other things by the expression of a few 104 genes, three hundred
is a very small number. A possible explanation for this small number of
cell types is that they are not only controlled by gene expression, but
that they are also constrained by generic physical laws. We are far from
being able to discuss this problem in its generality, but in the following



2 J.F. Joanny & J. Prost Séminaire Poincaré

we address a simpler problem which illustrates how physics could pro-
vide generic tools for raising these questions. Namely we investigate what
can be learned from using symmetry arguments and conservation laws in
describing cell morphology and dynamics. In view of the acknowledged
specificity of biology such an endeavor may seem futile. We hope to con-
vince the reader that it is on the contrary helpful. Indeed we will discuss
in the last three sections of this review:

-one simple aspect of cell motility, namely the shape and speed of a
lamellipodium, thin protrusion leading the cell motion on a substrate,

-cell oscillations which are observed when cells are suspended in a
physiological serum,

-wound healing of xenopus eggs and the onset of cytokinesis.
For all these examples we use the the same theoretical framework.
In order to do so, one needs to construct the tools. It is nowadays

textbook knowledge that the shape of cells is maintained by a network of
cross-linked biofilaments: the cytoskeleton [2]. At this stage, all we need
to know is that the network constitutes a physical gel which would be
rather conventional in the absence of molecular motors. At short time
scales, it behaves like a conventional solid, at long time scales like a liq-
uid. There are in fact some added complexities which will be discussed
in the conclusion. The essential novelty comes from molecular motors.
They consume continuously ATP (Adenosine Triphosphate) and are able
to exert stresses on the cross-links of the gel. The question is then how
to describe such a gel, which we call ”active”. Using conservation laws
and symmetry arguments only we derive the relevant equations in sec-
tion II. Since they result from general considerations these equations can
describe many different situations and are very similar to those derived
in different contexts such as motions of bacterial colonies, fish shoals and
bird flocks [3, 4, 5]. Active gels could also be made artificially, leading to
original material properties [6]. In the third section, we discuss some of
these expected original properties, such as the spontaneous transition to
a moving state of a thin slab and the rotation of disclinations.

In the fourth, fifth and sixth sections we discuss the already men-
tioned biologically relevant questions, showing how quantitative informa-
tion can be obtained and how connection with molecular details can be
made. In the last section, we discuss the limitations and merits of the
present construction.

2 Hydrodynamic theory of active gels

A common attitude for dealing with the cytoskeletal system in the pres-
ence of motors is to simulate ensembles of semi-flexible filaments on
which motor bundles can exert force dipoles [7, 8]. Although, this is
perfectly licit and useful, it does not help much to extract generic behav-
iors. Another possibility is to start from a molecular picture and get from
a statistical description the long wavelength, long time scale equations
[9, 10, 11, 12]. This task is difficult: the low density limit has been worked
out, without keeping track of the embedding solvent. In a pragmatic at-
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titude, one can directly write equations including all terms allowed by
symmetry as has been done for bacterial colonies and bird flocks [3, 4]
but it is not guaranteed that one expands equations around an existing
state [13].

We have chosen to use generalized hydrodynamics. Hydrodynamic
theories have been very successful in the description of systems such as
superfluids, liquid crystals, polymers and of course simple fluids. They
are valid close to equilibrium. The advantage is that the equations are
expanded around a well defined state. The drawback is that biological
systems are not close to equilibrium: one might miss biologically rele-
vant terms. We will discuss such a candidate in the following. In order
to build a hydrodynamic theory, one has to identify conserved quanti-
ties, and continuous broken symmetries. From there on, the procedure is
well defined and systematic. We will not go here through all the steps,
referring the reader to references [14, 15, 16].

Conserved quantities are fairly easy to identify: the solvent, the cy-
toskeleton (actin in practice), the motors and most importantly momen-
tum. Two added complexities though. First, actin units are either in the
solvent as monomers or belong to polymerized filaments. There is, a pri-
ori, a chemical exchange between the two states, described by rates of
polymerization and depolymerization. The corresponding biochemistry
is well documented and original. We postpone its description to the dis-
cussion of biological examples. Second the motors can be either bound to
the filaments or unbound. This means that in principle the minimal de-
scription is that of a five-component system! One has to further identify
continuous broken symmetries: actin filaments are polar, and most of the
time even tough their directions are widely statistically distributed they
define a common polar direction. This means that on long time scales the
system behaves like a polar active nematic as described first by [3]. One
has thus to keep a polar order parameter as well. Deep into the ordered
phase it can be chosen as a unit vector p.

In the following , we discuss a simplified version of the equations, in
which we keep only the gel velocity field v and the polarization field p.
The validity range and limits of this approximation are currently being
investigated.

Constitutive equations are obtained by first identifying the fluxes
and the corresponding conjugate generalized forces. Constitutive rela-
tions are obtained by a general linear expansion of fluxes in terms of
forces, writing all terms which are consistent with the symmetries of
the system. For the conventional terms we follow the so called ”Harvard
choice”, taking as flux the symmetric part of the stress tensor σαβ and
the ”objective” polarization rate of change

Pα =
∂pα
∂t

+ vγ∂γpα +
1

2
(∂αvβ − ∂βvα)pβ, (1)

and for forces, the symmetric strain rate

uαβ =
1

2
(∂αvβ + ∂βvα), (2)
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and the orientational filed defined as the functional derivative of the free
energy F with respect to the polarization p.

hα = − δF
δpα

. (3)

The relevant part of the energy is the polarization free energy given by
the standard expression for a polar liquid crystal [18] :

F =

∫
dxdy

[
K1

2
(∇ · p)2 +

K2

2
(p.(∇× p))2 +

K3

2
(p× (∇× p))2 − 1

2
h‖p

2

]
(4)

where K1 = K, K2 and K3 are the splay, twist and bend elastic moduli.
We have introduced here a Lagrange multiplier h|| in order to satisfy the
constraint p2 = 1 and we have omitted surface terms such as the linear
splay term which is specific to polar systems.

Of particular significance for our theory is the existence of active
processes mediated by molecular motors. In general, a chemical fuel,
such as Adenosinetriphosphate (ATP), provides the energy source. Motor
molecules consume ATP by catalyzing the hydrolysis to Adenosinediphos-
phate (ADP) and inorganic phosphate and transduce the free energy of
this reaction to generate forces and motion along filaments. The energy of
ATP is also used in order to polymerize and depolymerize filaments. The
presence of the fuel represents a chemical ”force” acting on the system.
We characterize this generalized force by the chemical potential difference
∆µ of ATP and its hydrolysis products, ADP and inorganic phosphate.
The corresponding flux is the ATP consumption rate r. We thus have
the following set of fluxes and forces:

flux ↔ force

σαβ ↔ uαβ
Pα ↔ hα (5)

r ↔ ∆µ .

After some manipulations we obtain the following constitutive equa-
tions [16]:

2ηuαβ =

(
1 + τ

D

Dt

)
{σαβ + ζ∆µ(pαpβ −

δαβ
3

) +
ν1

2
(pαhβ + pβhα)

}
(6)

dpα
dt

= −(vγ∂γ)pα − ωαβpβ − ν1uαβpβ +
1

γ1

hα + λ1pα∆µ (7)

r = ζpαpβuαβ + Λ∆µ+ λ1pαhα . (8)

Here we have included geometric non-linearities but we have restricted
other terms to linear order in the logic of the expansion. Also, we have
neglected chiral terms which in principle exist in cytoskeletal systems,
and assumed an incompressible gel. Eq. (6) generalizes the expression
of the stress tensor of a visco-elastic Maxwell gel to active systems with
polarity. Indeed, if we first look at passive terms, i.e. those which survive
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when ∆µ = 0, it is straightforward to check that the equation describes
an elastic medium at short time scales, and an anisotropic fluid at long
time scales, i.e. a nematic liquid. For the sake of simplicity we have intro-
duced only one viscosity coefficient η and σαβ is the traceless symmetric
stress.The elastic modulus of the short time gel is E = η

τ
.

The term proportional to ∆µ is the only novel term compared to pas-
sive systems. If all flows are suppressed, for instance by suitable boundary
conditions (which is possible), the active terms generate a nonzero stress
tensor. A contractile stress corresponds to ζ∆µ < 0, and a dilative stress
to ζ∆µ > 0. In view of the fact that experiments show that the stress is
contractile in the case of the actin-myosin system, [19, 20] we call ζ∆µ
the contractility of the system; it has the dimensions of an elastic mod-
ulus. If by another choice of suitable boundary conditions, the stress is
maintained to zero, the active term generates spontaneous motion. We
illustrate both these situations in the following. Thus, ATP hydrolysis
can generate forces and material flow in the gel via the action of active
elements such as motors. These effects are characterized by one coefficient
ζ. Similarly, Eq. (7) describes the dynamics of a nematic liquid, with just
one added term weighted by the coefficient λ1. This term plays a role only
if the degree of order is not fixed, since it is a longitudinal term. If the
polarization field can be taken as a unit vector then this term does not
change the physics. An other term implying gradients of the polarization
is allowed by symmetry in Eq. (7), namely pβ∂βpα. Since this term does
not appear in a passive system, the coefficient characterizing it must be
proportional to ∆µ. It is thus a second order term, which should not be
retained in the logic of a linear expansion. It appears however naturally
in gradient expansions far from equilibrium [9, 21]. It is easy to realize
that it favors sharp polarization gradients. In cases where this term is
important, interesting structures are expected [22].

Furthermore, material flow couples to the polarization dynamics via
the coefficients ν1 . The rate of ATP consumption r is primarily driven
by ∆µ and characterized by Λ. However, it is also coupled to the fluid
flow and to the field h acting on p.

These equations are complemented by the force balance condition:

∂βσ
tot
αβ = ∂βΠ (9)

where Π is the pressure and σtotαβ = σαβ+ 1
2
(pαhβ−pβhα). This last relation

is familiar to liquid crystal physics and results from rotational invariance.

3 Material Science Aspects

If one specializes Eq. (7), to steady state in the passive case of a nematic
liquid submitted to the action of a simple shear ∂vx

∂y
one finds that, in

the absence of any other orienting field or boundary effect, the nematic
director picks a well defined and stable direction making an angle θ with
the y axis such that cos(2θ) = 1

ν1
whenever −1 < 1

ν1
< 1 (1). This

means that the shear flow exerts a torque on the nematic director until it
reaches that direction. This flow alignment, has been well characterized
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Figure 1: Alignment of a nematic director in a simple shear, as described in the text.

Figure 2: Spontaneous distorsion (left) and flow field(right) of an initially homoge-
neous slab, with a free upper surface and parallel boundary conditions for the polar-
ization.

in nematics (it plays often an unwanted role in display devices). This
term is still present in the active polar case and the same shear will have
the same tendency to orient the polarization direction.

Conversely, Eq.(6) shows that in the absence of stress, a polariza-
tion tilt tends to result in a shear. One can thus understand, that with
appropriate signs of the coupling terms, a possibility for a dynamical
instability exists.

One can for instance look at a slab geometry with a free surface,
and in which the polarization field is oriented parallel to the surfaces in
a direction which we call y. We call x the normal to the slab surface. The
free surface guarantees that for any perturbation with zero wavevector
parallel to the slab the σyx stress vanishes. In the absence of activity
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ζ∆µ = 0 we know from thermodynamics that the homogeneous state
with the polarization parallel to the faces of the slab is the lowest energy
state. It is thus stable. Now, let us slowly increase activity. For small
activity, the system is still stable. However, for a well defined critical
activity threshold, simultaneously the polarization field becomes inho-
mogeneous and a shearing motion sets in. This situation is reminiscent
of the Frederiks transition: when a nematic liquid initially homogeneously
aligned in directiony, is submitted to the action of a magnetic field ori-
ented in direction x, it starts to distort under the action of the field only
after a well defined threshold has been reached[18]. This is the basis for
some display devices. There are two important differences: in nematics,
flows are only transient, and the distortion sets in because of the action
of an external orienting field. In active polar systems the distortion arises
spontaneously without any externally orienting field and permanent flow
results. Yet instability conditions, the polarization distortion and flow
field above threshold can be calculated in a way fairly similar to that of
the Frederiks transition[23]. The activity threshold reads:

ζ∆µc =
π2K(4η/γ1 + (ν1 + 1)2)

−2L2(ν1 + 1)
. (10)

The minus sign shows that the instability exists only if the gel is
contractile. L is the thickness of the slab and the other coefficients are
defined in Eq.(6). The threshold value tends to zero for large enough
thickness, at constant contractility: infinite size homogeneous active gels
do not exist. There is always an instability, which can be at finite wave
vector depending on boundary conditions for large enough systems. The
stability of fluctuating modes have been worked out, for thin and bulk
compressible systems [21, 24, 25].

Note that we have discussed here a simple shear since it is rather
easy to realize in the lab. A pure elongational shear orients the nematic
director either parallel or perpendicular to it. This geometry cannot be
obtained in any clean way with liquid crystals: we will show in section 6
that it occurs spontaneously in biological systems and that it is physio-
logically important.

Topological singularities provide nice signatures of the of the phase
symmetries. It is thus natural to characterize the topological singulari-
ties of active gels. In nematic liquid crystals such singularities are called
disclinations. They can be classified with homotopy groups [26]. Defining
a contour around the singularity point one counts the number of angular
rotations of the nematic director, obtained in one rotation around the
contour it can be integer or half-integer. For polar nematics, this number
is necessarily an integer, positive if the rotation of the polar vector is in
the sense of the contour and negative if it is in the opposite sense. It is
called the strength of the disclination. We give on 3 the three possibilities
corresponding to disclinations of strength one. Since active gels behave
like active polar nematics on long time scales, one expects the same geo-
metrical aspects for the disclinations. However, the temporal symmetry is
different: equilibrium systems are invariant upon time reversal (changing
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Figure 3: Disclinations of strength one in polar nematics. a)Definition of the an-
gles.b)Stable structure when K1 < K3.c)Stable structure when K1 > K3.d)When
K1 = K3 all spirals with indeterminateψ are are stable.From Ref. [14].

t in −t), whereas active systems are not. On general grounds one expects
thus, differences in the dynamical behavior of the disclinations. The case
d) of (3) is particularly interesting: the spatial symmetry is such that
the positive and negative rotations are not equivalent. Combined with
the absence of time reversal symmetry, one concludes that such spirals
should rotate permanently. Eqs.(6), (7) can be solved analytically, if we
chose boundary conditions such that at a radius R from the singularity
center, the angle ψ takes on the value such that cos(2ψ0) = 1

ν1
. Indeed,

we expect a shear flow to exist and thus the flow alignment to impose
this orientation in the bulk of the disclination, breaking the passive de-
generacy. Choosing the same orientation at the boundary, suppresses the
boundary layer and leads to simple results.

With these values of ψ0, we find for the shear rate urθ:

urθ =
sin 2ψ0

4η + γ1ν2
1 sin2 2ψ0

ζ̃∆µ . (11)

The velocity is ortho-radial, along the θ direction; it is obtained from
(11)

vθ = 2r

(∫ r

0

urθ
r′
dr′ + v0

θ

)
(12)

where v0
θ is an integration constant. For a finite system with radius R
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and with the boundary condition that no motion occurs at the boundary,

vθ = 2urθr log
r

R
. (13)

In the cases a) and b) for ”small” ζ∆µ, we find that there is no motion.
Strictly speaking this result holds for the barycentric velocity only. The
absence of motion is obvious for case a). For case c) there are constant
fluxes indicating rotating motion for instance of the motors around the
singularity center, the term describing them appears in the densities con-
servation equations. For larger ζ∆µ, beyond a critical value depending on
the elastic moduli anisotropy K1 −K3, we find that the immobile discli-
nations become unstable with respect to the onset of a rotating state
[14, 15]. Strength one disclinations of type b), c), and d) are called re-
spectively asters, vortices and spirals. Biological systems which follow the
general definition of active gel, have shown the existence of both immo-
bile asters and rotating spirals [7]. A detailed comparison with our results
cannot be made though, because the experiments do not correspond to
the long wavelength limit. Eventually, the existence of moving spirals
provides a paradigm for what is called low Reynolds Number turbulence
[5, 24, 21].

4 Cell Motility

In section 2 we have derived generic hydrodynamic equations for active
gels and in section 3 we have discussed simple experimental situations
which except for the last one, have a priori little connection with Biology.
In this section we discuss some features of a Keratocyte lamellipodium.
Fish keratocytes are eukaryotic cells which can easily be obtained by
pulling out a fish scale and dipping it in an appropriate physiological
serum. If one squeezes a drop of the obtained suspension under a mi-
croscope, one observes after sedimentation, cells moving steadily on the
lower coverslip. The velocity is of the order of 10µ/min, which for a cell
is fast. The reason for this high speed is probably the function of kerato-
cyte cells in wound healing: they dash to the wound. They draw a sizable
attention because their motion is steady and their shape is smooth and
invariant during the motion: it looks like a good start for understanding
cell motility. The top image that one sees on Fig (4) shows a keratocyte
moving upwards. Aside from the nucleus which builds a protuberance of
the order of ten microns in the central rear region of the cell, the rest is
fairly thin, of the order of a micron or less. The flat region in front of the
nucleus is called the lamellipodium (sometimes the lamella), it extends
from the leading edge to the vicinity of the nucleus. This region is filled
with an actin gel, cross-linked by several proteins or protein complexes
which are displayed on the middle and bottom of the Fig (4). Since the
cross-links have a finite life time (of order tens of seconds), it is a phys-
ical gel. In addition, myosin motor bundles can grab two filaments at a
time and exert a stress on the structure. Since the motor activity requires
ATP hydrolysis the lamellipodium acto-myosin system obeys exactly our
definition of an active gel.
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Figure 4: Top image:keratocyte crawling on a substrate towards the top of the
image.Bar=5µ. Middle images: actin network viewed with electron microscopy (the
width of the filaments is 5 nanometers). Bottom image: close up view on a protein
complex (Arp2/Arp3) known to play an important role in the assembling process of
the network. [17].

The biochemistry involved in the motion is well documented. We give
here a minimal description. At the leading edge or very close to it, the
actin network is assembled by polymerization and cross-linking. Further
into the cell, in the vicinity of the nucleus actin depolymerizes. This
process is also typically out of equilibrium. The assembling units are ATP
actin monomers, whereas the disassembling ones are ADP monomers: the
filaments have been hydrolyzed along the way. It is known from molecular
biology, that this polymerization/depolymerization process is the main
mechanism responsible for motion. This is not true of all types of motility,
for instance it does not hold for ameoboid motion.

Ideally one would like to be able to describe the three dimensional
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Figure 5: Sketch of an advancing lamellipodium.

cell shape, how it relates to speed and what is its response to external
forces. We are not yet able to achieve such a task. We will just describe
the lamellipodium profile perpendicular to the leading edge, in the central
region of the keratocyte. In this region, in general, the leading edge is
fairly straight and one can consider that the problem is translationally
invariant in the direction parallel to the leading edge. A typical shape
is sketched on Fig.5. The lamellipodium moves globally to the left with
velocity U keeping its shape constant. By definition U is taken to be
positive. The gel moves with respect to the substrate with velocity v, it
is essentially oriented along the x direction. We call v this x component
omitting the subscript; it is positive if the gel motion is to the right. To
find the motion characteristics and the shape of the lamellipodium, we
must solve Eqs.6, 7, with appropriate boundary conditions, keeping track
of the polymerization process at the leading edge and of the interaction
between the gel and the phospholipid membrane which envelopes the cell
(plasma membrane). We take as an experimental input the fact that the
filament orientation does not seem to vary significantly in these regions of
the lamellipodium. We thus take p parallel to the x direction everywhere
which solves Eq. 7 trivially. We treat separately a proximal region where
the membrane is not in contact with the substrate (i.e. to the left of
the origin labeled O), and a distal one where it is in contact with the
substrate (to the right of the origin).

4.1 Proximal region

In this region, the main challenge is to describe the interaction of the
polymerizing gel and the plasma membrane [27]. The gel velocity field
varies over a length scale which is larger than that of the proximal re-
gion: thus it can safely be considered as constant there. Once we have
described the interaction with the membrane, all we have to do is match,
the velocity field and conserve forces in the plane of the origin O.

The velocities that we are considering are tens of microns per minute
and for steady state shapes, the hydrodynamic forces on the membrane
are totally negligible. Thus for all practical purposes the membrane is in
mechanical equilibrium:

0 =
δF tot

δrn
. (14)

For a fluid membrane, the variation has to be taken with respect to
displacements rn normal to it. F tot is the sum of the energy of the bare
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membrane Fm and the gel-membrane interaction energy. Its variation is
easy to express in terms of the gel stress normal to the membrane and
the bare membrane free energy:

δF tot = δFm +

∫
dsδrn(σn,n − δP ) . (15)

In this equation, the variations are taken again with respect to displace-
ments δrn; σn,n is the normal-normal component of the gel stress tensor
and δP the hydrostatic pressure difference between interior and exterior
of the cell and ds the surface element on the membrane. The membrane
bare free energy is that of a membrane under tension, with curvature
rigidity and possibly spontaneous curvature as first introduced by Hel-
frich [28]:

Fm =

∫
ds(σ +

K

2
(
dθ

ds
− C0)2) . (16)

The question of the membrane shape at the tip is a well posed problem
if one knows σn,n. The way it enters Eq. 15 shows that it provides an
effective pressure difference. σn,n can be obtained in an implicit way, by
imposing that the polymerization rate parallel to the x direction must
lead to a uniform displacement of the structure with velocity U to the
left. Indeed the polymerization rate Vp is a function of the stress Vp(σn,n),
and the continuity of the structure requires:

Vp(σn,n) = U + v . (17)

Thus for a given U , extracting v from our hydrodynamic equations one
can invert Eq.17 to obtain σn,n. Microscopic theories relating polymer-
ization rate and stress come into this relation [29, 30]. It is important
to understand that the stress value depends on v which involves solving
the hydrodynamic equations in the distal region: the effective pressure
exerted by the polymerizing gel is not a local property. One can illustrate
the argument further by considering a ”small” stress regime:

Vp(σn,n) = Vp0 + λσn,n . (18)

The effective pressure then reads:

δP eff = δP +
Vp0 − (v + U)

λ
. (19)

The shape of a membrane submitted to a pressure difference is a well
known problem. One can immediately infers that provided the length√

(K
σ

) is small compared to the lamellipodium thickness the radius of
curvature at the leading edge is given by Laplace’s law Rl = σ

δP eff and
that the global shape is as sketched on Fig.5. Conversely, taking the
curvature radius of the order of the thickness and typical membrane
tension values, we can estimate the value of the effective pressure to be
of the order of 103Pa.

Force balance imposes that the integrated effective pressure differ-
ence matches exactly the pulling forces due to membrane tension together



Vol. XII, 2009 Constructing Tools for the Description of Cell Dynamics 13

with external forces applied in the proximal region:

P effh(x = 0) = σ + σ′+ f extp (20)

σ is the tension of the membrane in the presence of the gel as already
introduced and σ′ is the tension ”dressed” by the interaction of the mem-
brane with the substrate. It could be negative and help the motion if the
membrane tends to wet the substrate.f extp is the integrated external force

on the proximal region. Replacing P eff by its expression Eq. 19 one can
express the polymerization velocity as a function of applied force and
membrane tensions:

Vp = U + v = Vp0 − λ
σ + σ′+ f extp

h(x = 0)
. (21)

This expression shows that for a given tension there is a minimum thick-
ness below which lamellipodia cannot grow. One sees also that an external
force can either speed up or halt polymerization at constant thickness. In
order to get a complete picture, we now need to calculate the gel velocity
field v and the height profile h in the distal region.

Figure 6: Velocity field determined by speckle microscopy in a lamellipodium. Figure
from Ref. [31]
.

4.2 Distal region

The gel dynamics is ruled by Eq. 6. Taking as boundary condition that
both the normal and tangential stresses must vanish at the free surface
of the lamellipodium, in a lubrication approximation we can recast the
equation in a form involving only the thickness averaged velocity field
h(x)v(x) =

∫
dzv(x, z) and the force f(x) =

∫
dzσx,x(x, z):

4η
dv

dx
= (1 + τU

d

dx
)
f

h
+ ζ∆µ . (22)

An important point concerns the dynamical interaction of the gel and
the substrate. The actin network is connected to the substrate by binding
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proteins. One could believe that the correct boundary condition is a no
slip boundary condition. This is not the correct choice, because the bound
state has a finite lifetime. For the slow motion we consider, the average
force transmitted to the substrate can be shown to be proportional to
the slip velocity [32, 33]. For large rates on can reach stick-slip regimes
which have been observed in the Listeria motility [32], this last regime
may correspond to fibroblast motion and in some cases to keratocytes
but most of time a linear friction is sufficient. Expressing the global
conservation of force reads:

df

dx
= ξv . (23)

Eventually, global volume conservation leads to the relation:

h(x)(U + v(x)) = const . (24)

With proper boundary conditions this set of equations is complete and
can provide both the gel velocity field and the height profile. At the ori-
gin, one has to match distal and proximal solutions. In particular, forces
must be conserved. At the rear of the lamellipodium, which we will also
call the trailing edge the boundary conditions are less well defined. The
depolymerization process being rather well localized in space we take as a
first attempt a depolymerization occuring in a well defined plane x = L.
In the case of cell fragments, we have discussed spatially distributed de-
polymerization [34], but for the case at hand, this simplification will be
sufficient. At the trailing edge x = L forces must be matched. We call
f extL the force that the rest of the cell is exerting on the lamellipodium (a
genuine external force could be added as well). With these ”rules” every-
thing can be calculated [35]. One can get further insight by noting that
the thickness variations are small. If on linearizes the equations around
the average thickness h̄, one can solve the equations analytically. An im-
portant point, comes from the comparison of Eqs.22 and 23: eliminating
the velocity in 22 with its value obtained from 23 one sees the emergence

of the length scale d =
√

2ηh̄
ξ

. Forces and velocities are screened over a

length scale d. In the regime where L� d we find:

f(x) = (ζ∆µh̄−(σ+σ′)+ξτv(0)(U+v(0)−f extp ) exp(−x
d

+(f extL +ζ∆µh̄)

exp(
x− L
d

)− ζ∆µh̄ (25)

and

v(x) =
1

ξd
(−(ζ∆µh̄−(σ+σ′)+ξτv(0)(U+v(0)−f extp ) exp(−x

d
+(f extL +ζ∆µh̄)

exp(
x− L
d

)) (26)

with

v(0) '
−ζ∆µh̄+ (σ + σ′) + f extp

ξ(d+ τU)
(27)
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and

v(L) ' f extL + ζ∆µh̄

ξd
(28)

and eventually

U = vdp − v(L) ' vdp(f
ext
L )− f extL + ζ∆µh̄

ξd
. (29)

In this last equation vdp is the depolymerization velocity. It can depend
on stress but not on monomer concentration. The values of the gel veloci-
ties at the leading edge and at the trailing edge are completely decoupled.
Note that v(0) in the absence of external force is positive since ζ∆µ is
negative and the tensions sum is in general positive. Thus, even though
the motion of the lamellipodium is to the left, the gel moves to the
right: this motion called retrograde motion is indeed found by biologists
(Fig.6)[31]. The measured profiles of both velocity and force exerted on
the substrate can be compared to the resuts of Eqs.(26, 25), in the case
when there is no applied force at the leading edge f extp = 0, and the force

at L is entirely due to the cell f extL = f cell. One can extract both the
contractility and the friction coefficients. One finds for the contractility
ζ∆µ ' −103Pa and for the substrate friction ξ ' 31010Pa. The contrac-
tility is about one tenth of the short time shear modulus and the friction
is of the same order of magnitude as that found experimentally in vitro
for a passive actin gel/polystyrene interface [36].

Note that the steady state velocity U depends on the external force
at the trailing edge f extL but not on the force at the leading edge. This may
seem surprising at first sight, but results from the steady state conditions.
The predicted effect of forces is non trivial and results from the fact that
at steady state monomer conservation imposes h(0)Vp = h(L)Vdp. Since
the polymerization rate vp = kpC(0) depends on the actin monomer
concentration at the leading edge C(0), and the monomers diffuse from
the cell body to the leading edge, the length of the lamellipodium adjusts
in such a way that the monomer concentration drops enough for the
former equality to hold. It is thus the depolymerization rate which fixes
the speed.

Suppose first that, starting from steady state, we turn on and main-
tain a force opposing the motion f extL at the trailing edge. The explicit
dependence of U on f extL suggests that one should observe a slowing down
of the lamellipodium. This will hold if vdp does not depend on force. How-
ever, biochemistry, tells us that vdp should increase exponentially with
f extL . Then applying an opposing force at the trailing edge could result in
a speeding of the lamellipodium, at steady state!

Suppose now that, starting from a steady state we turn on a force
f extp opposing the motion and which we maintain constant. The leading
edge naturally slows down (kp decreases), but as it slows down the length
L of the lamellipodium decreases and the actin monomer concentration
increases. This process goes on until the concentration is high enough for
the steady state to be restored. For not too large forces, the inequality
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L >> d still holds and U is still given by Eq. 29! If the force is larger, one
may get to a regime where L < d, in which the gel velocity is constant:

v ' 1

xi(L+ τU)
(f extL + f extp + σ + σ′) (30)

and the lamellipodium velocity now depends on all forces:

U ' vdp −
1

ξ(L+ τU)
(f extL + f extp + σ + σ′) . (31)

Thus the predicted response of a lamellipodium to an opposing force
applied at the leading edge is that the lamellipodium first shrinks without
slowing down and only when it is ”small” it does slow down.

5 Cell Oscillations

There are several instances where the shape of a cell shows periodic
oscillations. When the microtubules in a cell are depolymerized using a
drug, the cell oscillates by forming a bleb which is a protrusion where the
membrane is detached from the cytoskeleton [37]. Due to the contractility
of the cortical actin layer in the cell body, the pressure in the cell body is
larger than that in the bleb and the cytoplasm flows into the bleb. In an
oscillating cell, the bleb is unstable and the whole cytoplasm empties in
the bleb. The cortical layer then repolymerizes and the oscillation occurs
by successive formation of unstable blebs. An example of oscillating cell is
shown in Fig.7. The period of the oscillation is of the order of 10 minutes
and the oscillation disappears when either actin or myosins are inhibited
which is a clear indication that the contractility of the cortical layer
drives the oscillation. Cell fragments which are formed by extraction of
the nucleus show similar oscillations with a smaller period of the order of
2 minutes. These oscillations has been observed with several cell types.

Figure 7: Shape oscillations after microtubule depolymerization of mice fibroblasts: in
the first frame actin is fluorescently labeled; in the second frame myosin is fluorescently
labeled. The labeling clearly shows the cortical layer in the cell body and the growth
of a bleb which has no cortical layer and which invades the whole cell. After one
oscillation, a new bleb appears Courtesy C. Sykes, E.Paluch

Another type of shape oscillations is observed for fibroblast cells
floating in solution when adhesion on any surface is prevented as shown
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on Fig.8 [38]. The period of the oscillation is very well defined and of the
order of 30s. As in the previous example, disruption of the cortical actin
layer and inhibition of the myosin stops the oscillation. Myosin activity in
a cell can be modulated by introducing various drugs. These experiments
show that the oscillation period decreases when myosin activity increases.
Another key component for the oscillation is the presence of extracellular
calcium. The oscillation disappears if the medium is depleted in calcium.
This suggests that calcium channels play an important role. Although the
nature of calcium channels in these cells is not known, the addition of an
inhibitor of ion channels stops the oscillations. Similar oscillations have
been observed after depolymerization of the microtubules in Ref.[39]

Figure 8: Shape oscillations of non-adhering fibroblasts. The second frame shows the
periodic oscillation of the projected area of the cell and the associated Fourier spec-
trum. Figure from Ref.[38]

In order to study the oscillations of suspended cells we assume that
the membrane in these cells contains calcium channels and that these
channels are gated by the deformation of the actin cortical layer x de-
fined as the relative change in local area of the cortical layer [38]. If the
deformation is large, the channels are open and if the deformation is
small the channels are closed. For an incompressible layer of thickness e
any change in the deformation is related to a relative change in thickness
δx = −δe/e. The precize mathematical form of the opening probability
po(x) of the channels is not known but it is a sigmoidal function varying
between 0 and 1 with a sharp variation around a critical value xc that
we suppose to be small.

When calcium enters the cell, it undergoes a cascade of chemical
reactions with calmodulin and the myosin light chain kinase which even-
tually leads to a phosphorylation of the myosins light chains and an
increase in activity. A detailed study of the chemical reactions involved
leads to a variation of the free calcium concentration in the cell as

d[Ca]

dt
=
[
−k[Ca]([Ca]− [Ca]cell) + λp0(x)

]
. (32)

The first term describes the effect of calcium pumps which tend to drive
the concentration back to its equilibrium value [Ca]cell and the second
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term describe calcium penetration through the channel; the coefficient
λ is proportional to the difference of the calcium chemical potentials
inside and outside the cell and therefore depends on the calcium concen-
tration in the external medium. We will assume here that the calcium
concentration in the cell is not uniform and that the local opening of the
calcium channels only modifies the local calcium concentration. This is
justified by the fact that most of the calcium in the cell is sequestered
by calmodulin and diffuses very slowly.

For the sake of simplicity, we assume that a small change in the
calcium concentration δ[Ca] induces a small change in the local myosin
activity δζ∆µ proportional to δ[Ca]. This leads to an equation for the
local variation of the myosin activity of the form

d(δζ∆µ)

dt
= −k[Ca]δζ∆µ− kfδe/e (33)

where kf is a retroaction coefficient proportional to both λ and to the

variation of the opening probability with the deformation dpo(x)
dx

.
The mechanism of the instability is sketched on Fig.9. If the cortical

layer is stretched on one side of the cell and compressed on the other
one, the calcium channels are open on the side where the membrane
is stretched and calcium enters the cell on this side. The local increase
of contractility provokes a local compression of the cortical layer and a
closure of the channels. On the opposite side, the cortex is stretched and
the channels open. The oscillation can then proceed.

Figure 9: Sketch of the oscillation mechanism. Figure from Ref.[38]

The change in the cortical layer thickness is due both to a lateral flow
of actin along the cortical layer and to the constant polymerization and
depolymerization of the filaments (the so-called treadmilling process).
We study the instability here ignoring treadmilling that we consider as
very slow and we only consider the lateral actin flow. This flow obeys
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Eqs. 9,6 since the cortical actin network obeys again our definition of an
active gel. It is similar to the lamellipodium gel, but different in that the
filament directions are on average parallel to the plasma membrane and
thus perpendicular to the local symmetry axis, which is also the p axis.
As a result, the gel is contractile in the plane parallel to the membrane.

In the absence of interaction with a substrate, cells are on average
spherical. Thus we consider a spherical cell and perform a linear pertur-
bation analysis expanding the shape in Legendre polynomials (assuming
azimuthal symmetry). It turns out that the most unstable mode always
corresponds to a Legendre Polynomial n = 1. This mode is somewhat
peculiar since a perturbation of a sphere with a mode n = 1 gives a trans-
lation of the sphere. The radius of the cell R is therefore not changed
by such a perturbation. The thickness of the cortical layer e however is
proportional to cos θ corresponding to a thinning of the cortical layer at
one pole and a thickening at the other pole. The amplitude of the n = 1
mode for the thickness of the cortical layer can be calculated from the
active gel theory. This leads to

τ
dδe/e

dt
=
ζ∆µ

6E
δe/e+ (1 + τ

d

dt
)
δζ∆µ

6E
(34)

The stability of the cortical layer can be studied from the dynamical
system formed by Eq.33, 34. The results are summarized in the stabil-
ity diagram of Fig.10. There are three regions in this diagram. At low

Figure 10: Stability diagram for a non adhering cell. The vertical axis is proportional
to the activity and the horizontal axis to kfτ where kf is the retroaction coefficient
associated to the channels and τ the Maxwell viscoelastic relaxation time

activity and large enough value of kfτ the spherical cell shape is stable.
At small values of kfτ , the cell is unstable but there is no oscillation. As
the instability grows the thickness decreases on one side of the cell and
eventually a hole forms in the cortex. In this range of parameters, one
expects either the blebbing oscillations of Paluch et al. or the apparition
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of blebs. In the central region of the stability diagram, the cell is unstable
with respect to an oscillatory mode with the symmetry of a mode n = 1.
The shape of the cell does not change in the linearized theory that we
present here. However if the prameters are not too close to the instability
threshold, there are couplings between the n = 1 mode and higher order
modes which could lead to an oscillation of the cell shape. The period of
the oscillations is given by

τosc =
2πτ√

ζδµ
6E

(4τkf − (1− τkf )2 ζδµ
3E

)
. (35)

As shown on Fig.11 the period decreases with the activity as observed
experimentally. Finally the horizontal line on Fig.10 corresponds to the

Figure 11: Variation of the oscillation period with the myosin activity

limit of validity of the theory. If the activity is smaller than Eτkf , tread-
milling is important and stabilizes the cortical layer.

6 Wound Healing and Cytokinesis

Cell division proceeds by successive steps. In a first step, the S phase, the
cell duplicates its biological material. During mitosis, the chromosomes of
the two daughter cells separate and form two nuclei precursor to the two
daughter cells [2]. After mitosis the two cells separate in a process called
cytokinesis. At the beginning of mitosis the cells are roughly spherical:
the actin cortical layer discussed in the previous section recruits myosin
motors and becomes more active leading to an increase of the cortical ten-
sion. After mitosis, the activity of the cortical layer is non-homogeneous,
there is an excess of myosins at the equator of the cell and the activity
is larger at the equator than at the poles [40]. The gradient in activity
drives a cortical flow from the pole to the equator, which has recently
been experimentally studied in details[41]. When the flow develops, an
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Figure 12: Cytokinesis and formation of the cleavage furrow. On the left pannel the
cell nuclei are labeled in blue. On the right pannel, the actin filaments are labeled in
blue, red or yellow. A blue or red color corresponds to an orientation of the filaments
from the pole to the equator and a yellow color to an orientation around the equator.
Figure from Ref.[42]

actin ring appears along the equator as shown on Fig.12 [42]. The ring
is contractile and pinches the cell to create a so-called cleavage furrow.
Eventually the cleavage furrow shrinks and leads to the formation of a
bridge and to the separation of the two daughter cells when the bridge
ruptures.

The aim of this section is to study quantitatively the apparition
of the cortical flow and the formation of the contractile ring appearing
during cytokinesis. There are several instances in cellular biology where
contractile rings form. A spectacular example is that of wound healing
in a xenopus embryo. The authors of ref.[43] make a wound in a xenopus
embryo by laser ablation. As shown on Fig.13, the wound is a circular
hole in the cortex with a size of the order of 50µm. Just after the wound
formation, myosins are recruited around the hole in a rim with a width
of the order of 5µm. There is thus in this rim an increase in activity [44].
As for cytokinesis, the gradient in activity induces a flow towards the
rim which heals the wound at a constant radial velocity of the order of
0.04µm/s. Before the wound formation the actin filaments in the cortical
layer are randomly oriented in the tangent plane to the embryo. When
the wound heals, the actin filaments are oriented radially towards the
center of the wound outside the rim of increased activity and tangent to
the wound edge inside the rim. They thus form a contractile ring around
the wound. Another similarity with cytokinesis is that the recruitment
of myosin motors around the wound is independent of actin but it seems
rather due to an increase of microtubule concentration around the wound.
Other contractile rings are observed during the first division of C.Elegans
embryos or in the dorsal closure of drosophila. In this last case the actin
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Figure 13: Wound healing in a xenopus embryo. Upper figure: time laps picture of
wound healing after hole punching in a xenopus embryo cortex. Figure from Ref.[44].
Lower figure: schematic representation of the actin filaments distribution, and defini-
tion of the symbols used in the text. Figure from Ref.[38]

ring is not observed in a single cell but rather in a tissue. It spans over
all the cells surrounding the closing hole.

The geometry of wound healing in xenopus embryos which is almost
planar with a rotational symmetry is far simpler that that of the divid-
ing cells. We therefore first discuss wound healing and then present very
briefly our results on cytokinesis [45]. The closure of the wound is due to
a competition between the contractile active stress away form the wound
which tends to open the hole and the increased activity in the rim around
the wound which tends to close the wound. In the absence of increased
activity around the hole, the group of F. Brochard [46] has shown that a
hole in a visco-elastic film opens with a radius increasing exponentially
with time. The increased activity in the rim increases locally the cortical
tension and the local increase of the cortical tension drives the closure of
the wound. In order to use the active gel theory for a film with randomly
oriented filaments, it first must be generalized to systems with pretran-
sitional nematic order. The nematic order parameter is defined in two
dimensions as Qij = 〈ninj − δij/2〉 where ni is the ith component of the
local orientation of the actin filament. It is a traceless tensor and in a
system with rotational symmetry it has a single independent parameter
Q̃ which is positive if the actin filaments are pointing radially towards
the center of the wound and negative if the actin filaments are pointing
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tangentially around the wound. In polar coordinates, the generalization
of the active gel theory to gels in two dimensions with a nematic order
leads to the two following equations for the order parameter Q̃ and the
radial velocity vr.

4η∂r(∂r +
1

r
)vr + (∂r +

2

r
)(ζ∆µ+ β1χ)Q̃ = 0

∂Q̃

∂t
= − χ

β2

Q̃+
β1

2
(∂r −

1

r
)vr . (36)

The first equation is the force balance equation and the second equation
is the equation for the relaxation of the order parameter.The first term
on the left hand side of the force balance equation is the gradient of the
viscous stress, the second term is due to the gradient of the active stress
where in this section the activity coefficient ζ is positive and the last term
is the coupling to the order parameter. As already mentioned, contrac-
tility is in the plane of the cortex and perpendicular to the polarization
axis. The reactive coefficient β1 is related to the coupling coefficient ν1

introduced in Eq.6 by ν1 = −β1/S+o(1/S) where S is the nematic order
parameter. The sign of β1 is not imposed by the theory. We only consider
here the case where β1 is positive which corresponds to an orientation of
the actin filaments in the direction of an elongation (i.e. that of a positive
velocity gradient). The nematic susceptibility χ is positive. In the second
equation, the dissipative coefficient β2 is positive and it is related to the
rotational viscosity by γ1 = 2β2S.

We consider now the wound as a circular hole in the cortex of a
xenopus embryo with a radius r0. In the rim of size a = r1 − r0 around
the wound where the myosins are recruited, the active stress is ζ1∆µ.
Outside the rim, the myosin density is lower and the active stress is ζ∆µ
with ζ1 > ζ. The dynamic equations can be solved easily in the limit
where the relaxation of the order parameter is fast i.e. in the limit where

the ∂Q̃
∂t

term is negligible in Eq.36. The hole closes only if the activity is

large enough namely when ζ∆µ1 >
(

8ζ∆µηχr0
aβ1β2

)1/2

. Above the threshold

activity, we give in Fig.14 a plot of both the order parameter and the
radial velocity vr.

Outside the rim r > r1, the velocity modulus obtained from Eq. 36
decreases with increasing r as 1/r faster than the observed velocity which
decays exponentially to zero. This is accounted for in Fig.14 by adding
in the equation of motion 36 a viscous friction between the cortex and
the membrane. Outside the rim, the velocity gradient drives the order
parameter Q̃ to a positive value corresponding to a radial orientation of
the filaments. The gradient in the active stress drives thus a radial flow
which itself orients the actin filaments. Inside the rim r0 < r < r1, the
velocity gradient has the opposite sign, the order parameter is negative
and the actin filaments are oriented in the tangential direction. The ve-
locity modulus decreases with decreasing r and the maximal velocity is
reached at the edge of the rim r = r1. The variation of the radius of the
wound r0 is equal to the velocity at r0. If we assume as seems to be the
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Figure 14: Radial actin velocity (blue curve) and nematic order parameter (red curve)
during the wound healing of a xenopus embryo

case experimentally that the size of the active rim a is constant, we find
a constant closing velocity

vr(r0) = −ζ∆µ2
1β1β2

16η2χ
a+

ζ∆µr0

2η
. (37)

A direct comparison of the ring velocity with the experiments using a =
2µm, β1 = 2 and β2 = η, leads to the values ζ∆µ1/η = 0.5s−1 and
ζ∆µ1/χ = .3 which are used in Fig.14.

We now turn to the study of the formation of the contractile ring dur-
ing cytokinesis [45]. Prior to the formation of the contractile ring, the cell
is a sphere of radius R. The direction of the poles is perpendicular to the
plane of division of the chromosomes during mitosis. We use here spher-
ical coordinates with the pole direction as a reference axis. The angle θ
vanishes at one of the poles and is equal to π at the other pole. The equa-
tor of the cell is the circle corresponding to θ = π/2. At the beginning of
cytokinesis, an excess of myosin motors is recruited along the equator in
the region where the contractile ring will form. It has been shown experi-
mentally that the recruitment of myosins is not connected to actin but it
is rather related to an increase in the density of microtubule end points
along the equator [40]. Myosin motors are carried on microtubules to-
wars the equator by other molecular motors. The increase of the myosin
density induces an increase of the active stress δζ∆µ(θ). We describe

this increase by the mathematical form δζ(θ) = ζm exp
(
−R2 cos2 θ

a2

)
. The

size of the region around the equator where the myosins are recruited
is a. Away from the equator, the active stress ζ∆µ is constant and it is
equivalent to a cortical tension T = eζ∆µ/2 where e is the thickness of
the actin cortex. This tension maintains the cell spherical. The increased
activity along the equator of the cell tends to pinch the cell. It is the
competition between these two effects which monitors the formation of
the cleavage furrow. The dynamic equations for the formation of the con-



Vol. XII, 2009 Constructing Tools for the Description of Cell Dynamics 25

tractile ring and the cleavage furrow are obtained along the lines followed
to obtain the dynamic equations for wound healing in the xenopus em-
bryo. They must however be written on the surface of the spherical cell in
spherical coordinates for the velocity field along the cell surface and the
nematic order parameter. When the actin ring forms, the spherical cell
is deformed and contracted at the equator. There is therefore a third dy-
namical equation associated to force balance in the radial direction which
determines the cell deformation. The actual solution of these equations
requires an expansion of all quantities in Legendre polynomials. These
equations have been solved numerically and the results are displayed on
figure Fig.15. As in the case of wound healing, there is a cortical flow

Figure 15: Formation of a contractile ring during cytokinesis. a-Active stress profile.
b-Deformation of the cell around a spherical shape. c-Nematic order parameter. d-
Velocity profile. All the curves are plotted as a function of the angle θ

from the pole to the equator. If the increase in activity is switched on at
time t = 0, the velocity is first located in the vicinity of the equator and
then spreads towards the pole. At long times, a steady state is reached.
The orientation of the actin filaments is again coupled to the flow. Away
from the equator, the nematic order parameter is positive and the actin
filaments are oriented from the pole to the equator. In the vicinity of
the equator, the velocity gradient changes sign and the orientation of
the actin filament changes: the nematic order parameter Q̃ is negative
and the filaments are oriented in the φ direction along the equator form-
ing thus a contractile ring. The figure also shows the cell deformation.
The deformation reaches a steady state resulting from a balance between
the average activity which favors a spherical shape and the increase in
activity close to the equator which tends to develop the cleavage furrow.

This steady state is not observed in cell division where the cleavage
furrow develops and leads to the separation of the two cells. The devel-
opment of the cleavage furrow is due to non-linear effects that we have
not included in the theory and which drive an instability of the steady
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state. One of the possible non-linearities that could be introduced is a
coupling between the activity along the equator and the orientation of
the filaments. It is known experimentally that the recruitment of myosin
motors is larger on parallel filaments. The activity increases then with
the alignment of the filaments and this clearly makes the weakly per-
turbed steady state that we calculated unstable. A full non-linear theory
for the formation of the contractile ring is however very complex and has
not been performed.

The appearance of a cortical flow and the orientation of the actin
filaments during cytokinesis has been recently studied in details by the
group of Y. Wang [41]. The application of the active gel theory to the
cortical actin layer that we have done here clearly shows that once there
is a region of enhanced activity along the equator, the pure mechanical
effects taken into account by the theory are sufficient to explain the
existence of a cortical flow, the orientation of the actin filaments and the
formation of a cleavage furrow.

7 Conclusion

The linear theory which we have constructed has limitations. First we
have not discussed fluctuations. Fluctuations have a thermal and a non-
thermal component. The thermal component can be written in a system-
atic, well controlled procedure from the current theory Ref.[25]. There
are no added parameters. The non-thermal part can either be inferred
by educated guesses or measured Refs.[47], [25]. The non-thermal fluctu-
ations are again not universal and depend on molecular details. Related
theories, written for bacterial colonies, predict giant density fluctuations
observed in simulations Refs.[3, 13]. The importance of active gel fluctu-
ations in cell behavior remains to be assessed. They could for example
have a strong influence on endosome diffusion.

Second the linear hydrodynamic theory that we have presented is a
”gradient expansion” valid at long length scale. It is probably relevant to
the actin-myosin system involved in the biological phenomena discussed
here, but it does not apply to the microtubule system since individual
microtubules span basically half of the cell. This is not a problem since
microtubules are thought to play very little mechanical role. They are
important signaling players for which we have no generic description so
far.

The last limitation, is that we have described an active gel close to
equilibrium. We have already pointed out that by doing so we miss a
term in the dynamical equation for the polarization which can be added
easily [22]. There are other consequences: far from equilibrium the ten-
sion induced by motors renormalizes the value of the short time elastic
modulus together with the contractility in a spectacular way [20, 48],

E ∼ (fs)
3
2 , ζ∆µ ∼ fs, where fs is the motor stall force [48]. As a re-

sult, the ratio ζ∆µ
E

decreases like the inverse square root of the motors
stall force even though both E and ζ∆µ increase significantly! Thus in-
creasing motor activity, results in a decrease of the relative contractility.
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Furthermore, general barrier crossing theories tell us that the Maxwell
time should decrease exponentially with the same stall force. These fea-
tures help reconcile contradictory observations: some reports claim that
calcium fluidifies the gel, others that it rigidifies it and increases activity.
Indeed it does all of that depending on the observation time scale. At
”short” time scale it rigidifies the structure, but it shortens exponentially
the Maxwell time, which results in a decrease in the long time viscosity
η = τE! Such a remark is important if one wants to understand how
increasing motor activity helps us move in a dynamical diagram such as
the one of Fig.10. More generally, which non-linearity should be kept in
a non-linear theory is model dependent and needs close comparison with
experiments.

We have shown in this review that the ”active gel” theory has two
virtues. First it can help extract the relevant physics involved in impor-
tant biological processes such as cell motility, wound healing, cytokinesis
and help getting at quantitative biology. It is interesting to remark that
the orders of magnitude that we obtain for the contractility from cell
motility experiments are useful to understand cell oscillations, wound
healing and cytokinesis. Since the equations were obtained essentially
from conservation laws and symmetry arguments they are robust and do
not depend on molecular details. What depends on the protein details
is the value of the parameters such as viscosity, friction coefficient and
contractility. One of the main findings is that thin active gel layers such
as the cortical layer, are unstable without proper feedback. It was known
since the work of Hodgkin and Huxley that neural cells were electrically
excitable media. We now know that most eukaryotic cells are almost me-
chanically excitable systems, prone to strong shape responses since they
are sitting ”close” to mechanical instabilities. This is probably the main
reason for the observed cell plasticity. Getting to quantitative biology
will require measuring the parameters that we have introduced in this
macroscopic theory. Their number may look large at first sight, but there
are only a few additional terms as compared to liquid crystals for which
all coefficients have been measured and for which the theory has been
very successful. One could also get a profound insight by studying artifi-
cial systems for which it would be easier to vary parameters. For instance
it would be very useful to replace ATP by photons.

However, if the tool is useful it has it is not sufficient as it stands. We
have already seen in the example of the oscillations that signaling comes
into the game and is important. The second messenger calcium stabilizes
the cortical layer and the feedback efficiency compared to the Maxwell
time is the key feature controlling the oscillations. This feedback is not
universal and depends on many details, so that even though one starts
with a rather universal description the outcome depends on biological
details. This is in a sense reassuring since we knew from the start that
it had to, but it tells us that these details control the dynamical state of
the cell, in a prescribed generic diagram. It also tells us that only a close
collaboration between experiment and theory will allow to construct a
quantitative description of cell behavior.
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