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Collège de France, 11 Place Marcellin Berthelot, 75005, Paris, France

Abstract. Bohr played a central role in the interpretation of quantum mechanics.
He based many discussions of its strange consequences on thought experiments.
He imagined moving slit interferometers, able to record which path information,
he played with photon boxes, storing photons for such long times that they could
be weighed. The technological progress provided by quantum physics itself now
make it possible to realize some of these thought experiments. We describe in
this paper a few experiments based on microwave Cavity Quantum Electro-
dynamics (CQED) techniques. We trap photons in boxes and weigh them with
scales at the atomic level. We are able to count the number of photons in the box
without absorbing them in an ideal Quantum Non Demolition measurement of
the field intensity. We can record which-path information in an atomic interfer-
ometer and directly illustrate complementarity. We can also prepare mesoscopic
quantum superpositions reminiscent of the famous Schrödinger cat. We can get
insight into the decoherence of these states and into ways to protect them, for
instance by quantum feedback strategies.

1 Introduction

This Poincaré seminar celebrates the hundredth anniversary of Bohr’s model. In-
troducing Planck’s discontinuity hypothesis in a planetary atomic model, Bohr has
been able to predict for the first time the atomic line frequencies, that eluded any
classical interpretation so far. The Bohr’s atom could emit or absorb radiation dur-
ing a rather mysterious “quantum jump” between its quantized levels, leading to
the emission or absorption of a photon with the energy of the atomic transition.

The Bohr model did not led to a full-fledged atomic level theory, in spite of
the heroic efforts of Bohr, Sommerfeld and others. The final solution to the atomic
spectra clue was provided by the birth of modern quantum theory, a few years
later. John Heilbron’s contribution to this Volume will certainly cover this rich and
complex history. Even if the name of Bohr is not associated to one of the main laws
of quantum physics, as those of Heisenberg, Schrödinger, Dirac or Born, his role in
the development of the theory and of its interpretation has been considerable.

The founding fathers lifted the veil over a rather counter-intuitive quantum
world. The basic quantum phenomena, like state superposition, indeed escape any
simple interpretation in terms of our macroscopic world common experience. There
are, as Schrödinger once stated, many ‘ridiculous’ consequences of the quantum
theory. Perhaps for the first time in the history of physics, the theory required
an interpretation layer to link the mathematical objects of the formalism to the
experimental observations.
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Figure 1: Boh’s moving slit interferometer.

The standard ‘Copenhagen’ interpretation was mainly established under the
impetus and supervision of Bohr [1]. His (sometimes heated) discussions with col-
leagues (like Einstein) led to an increasingly clear and sound formulation of the
quantum theory. These discussions often relied on the discussion of thought experi-
ments. They enhanced the quantum phenomena up to a point where they could be
grasped more intuitively.

The Heisenberg microscope proposed to locate a single electron with light, for
a discussion of the unavoidable momentum perturbation due to a position measure-
ment. Bohr proposed the moving slit interferometer (Fig. 1) to illustrate the rather
complex concept of complementarity [2]. In this simple case, the moving slit recoils
when diffracting the interfering particle. It thus records a ‘which path’ information.
The final motional state of the slit ideally unambiguously indicates the path followed
by the particle in the interferometer. By a careful examination of Heisenberg uncer-
tainty relations, Bohr concluded that the interference fringes then disappear. The
particle (localized path) and wave (interference) characters of the quantum object
cannot be observed simultaneously.

Another striking example of thought experiment is the ‘photon box’ (Fig. 2)
imagined by Einstein and Bohr [3], once again in a heated debate on the Heisen-
berg uncertainty relations. They envisioned a box, covered with perfect mirrors,
that could hold a photon for an arbitrary lapse of time. Weighing the box allows
one to monitor the presence of the photon and to precisely determine its energy.
The clockwork mechanism was supposed to leave the photon escape at a precisely
defined time. About ten years later, Einstein and Bohr again debated the Einstein-
Podoldsky-Rosen situation [4, 5] illustrating in a vivid way the mind-bogging non-
local character of quantum physics.

Under the guidance of Bohr, quantum theory got a firm standing and a clear,
if counter-intuitive, interpretation. It led very rapidly to considerable developments.
In less than 20 years, its founding fathers got an almost complete understanding
of the bases of atomic, molecular and solid state physics. Immediately after World
War II, the renormalization procedures allowed one to treat consistently quantum
electrodynamics, providing us with one of the most predictive and precise physical
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Figure 2: The photon box.

theories so far.
The rise of the quantum also led to an impressive number of practical applica-

tions, with considerable societal and economical impact. The quantum understand-
ing of solid-state conduction led eventually to the transistors, to the integrated
circuits and finally to the modern computers and information processing devices.
The quantum atom-field interaction led to the development of lasers, and hence of
the fast communication technology. Atomic laser cooling and the Ramsey interfero-
metric method [6], led to atomic clocks with such a precision that they would drift
only by a few seconds over the full age of the universe [7]. Medical diagnostic also
benefited considerably from the quantum with the MRI imaging [8], which relies on
the quantum dance of nuclear spins in the magnetic field provided by a supercon-
ducting magnet, yet another quantum technology. A large fraction of our societies
GDP, a large fraction of our own life expectancy, thus rely on technologies deriving
directly from the quantum.

Of course, these developments had also a major impact on experimental physics.
With lasers, computers and superconducting devices, we achieve an unprecedented
level of control on the experiments. It is now possible to manipulate directly in-
dividual quantum systems, carefully screened from the parasitic influence of their
environment. In other words, we are now able to realize some of the thought exper-
iments proposed by Bohr and the founding fathers. We can operate single particle
interferometers, we can store photons in boxes and weigh them, we can study non-
local quantum states. These fascinating possibilities led to a considerable surge of
interest for fundamental quantum physics, in a wide range of domains, from atomic
physics and quantum optics to condensed matter physics.

Why should we devote efforts to these ‘thought experiments made real’, nearly
a century after they were proposed? First because they put our understanding of the
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quantum in direct scrutiny. Realizing these experiments and finding that they indeed
provide the expected ‘ridiculous consequences’ is the most stringent test quantum
physics could pass. We can also use these situations to explore the limits of the
quantum world. One of the main open questions is why the weird quantum features
never emerge at our scale. There are no conspicuous non-local effects, even no state
superpositions at our scale. This problem was vividly illustrated by Schrödinger in
yet another famous thought experiment [9], in which an unfortunate cat was cast
in a superposition of her dead and alive states. We can experiment with mesoscopic
quantum systems and prepare them in state superpositions reminiscent of this cat’s
fate. We can directly study the decoherence mechanism transforming very rapidly
these state superpositions into mere statistical mixtures.

Beyond such fundamental questions, these experiments also open the way to
new applications of the quantum. Quantum-enabled metrology is promising for more
precise clocks or sensors. Quantum information transmission and processing achieve
feats beyond the reach of standard binary machines. In particular, quantum sim-
ulation opens fascinating routes for a better understanding of complex quantum
systems.

Experiments on basic quantum physics is thus a thriving field worldwide. Cav-
ity Quantum Electrodynamics (CQED) [10] belongs to this trend. It focuses on the
matter-field coupling in the most extreme situation, where all matter has been re-
moved but the last atom. The field is reduced to a single mode, stored in a high
quality cavity, a modern equivalent of the Einstein-Bohr photon box. This mode
contains only a few photons, one photon or even no photon at all. This situation
implements thus one of the simplest non-trivial quantum systems, a spin-1/2 (the
two-level atom) coupled to a one-dimensional harmonic oscillator (the mode). The
experimental observations can thus be interpreted directly in terms of the most basic
quantum postulates and can illustrate the most fundamental quantum behaviours.

Cavity QED has already a long history, starting from a seminal remark by Pur-
cell [11] about the possibility to alter the spontaneous emission rate by imposing
limiting conditions to the electromagnetic continuum. It now focuses on the ‘strong
coupling’ regime, where the coherent atom-field coupling overwhelms the dissipative
processes (atomic spontaneous emission or cavity losses). Cavity QED now comes
in a variety of flavours [12]. Optical cavity QED studies atomic optical transitions
coupled to cavities, for instance open Fabry Perot. It has important possible appli-
cations as a light-matter interface for quantum information transmission [13]. Solid
state cavity QED couples artificial atoms, quantum dots for instance, to integrated
cavities, with a considerable potential for applications [14]. The recent flavour of
circuit-QED uses artificial atoms made up of superconducting circuits coupled to
superconducting stripline resonators or closed cavity modes [15].

This Chapter will be devoted to the microwave Cavity QED flavour. It uses
circular Rydberg atoms coupled to extremely high-Q superconducting cavities. The
damping rate of both the atomic and field systems are extremely low, making it
possible to achieve interesting quantum situations and to illustrate some of the
original Bohr’s proposals.

We will start, in Section 2 by rapidly reviewing the main tools of microwave
CQED. We will in particular focus on the circular Rydberg atoms, which are the
atomic levels closest to the Bohr’s model. We will see that, according to Bohr’s
correspondence principle, nearly all of their properties can be computed classically.



Bohr, 1913-2013, Vol. XVII, 2013 Bohr’s Legacy in Cavity QED 63

B

C
S

S'

D

R1
R2

Figure 3: Scheme of the microwave CQED experiments.

They are nevertheless ideal tools to unveil the quantum. We will also describe in
this Section the Jaynes and Cummings model [16] describing the coherent atom-field
coupling and we will give the master equation used to treat field relaxation.

The next Section (3) will be devoted to a very direct illustration of the original
concept of quantum jumps. We will show that atoms, crossing one by one the cavity
mode, can provide Quantum Non Demolition information about the photon number
[17, 18]. We can use their detection at the exit of a Ramsey atomic interferometer
to count the number of photons in the cavity without destroying them. This ideal
photo-detection process obeys all postulates for a quantum measurement. It allows
us to follow in real time the number of photons and to evidence the quantum jumps
of light when photons escape, due to the unavoidable residual cavity losses. The
statistical study of these jumps [19] provides an extremely stringent test of quantum
relaxation models. We will also show that, using a quantum feedback scheme, we
can counteract the effect of these jumps and maintain a constant photon number in
the mode in spite of cavity losses [20, 21].

The last Section (4) deals with Bohr’s complementarity, in a situation strongly
reminiscent of the moving-slit interferometer (Fig. 1). We use a mesoscopic coherent
field in the cavity as a path-recording device in the atomic Ramsey interferometer
and show that interference and which-path information are incompatible [22]. We
will show that the final field state in this experiment is a mesoscopic quantum super-
position quite reminiscent of the famous Schrödinger cat. Monitoring the evolution
of the cavity state by a variant of the QND procedure [23], we will be able to observe
directly the decoherence process transforming rapidly this superposition into a mere
statistical mixture. Section 5 will conclude this paper and present some perspectives
for microwave cavity QED.

2 The tools of microwave CQED

The general scheme of our microwave cavity QED experiments is presented in
Fig. 3. The circular Rydberg atoms are prepared by laser and radio-frequency exci-
tation of a velocity-selected thermal rubidium beam in the box B (atomic velocity



64 S. Haroche and J.M. Raimond Séminaire Poincaré

v = 250 m/s). The atoms interact with the field stored in the open Fabry-Perot su-
perconducting cavity C. A coherent field can be injected in the cavity by the source
S, coupled to the cavity mode by diffraction on the mirrors edges. The atoms are
finally detected by efficient state-selective field ionization in D. Classical resonant
microwave pulses applied by the source S ′ in the two low-Q cavities R1 and R2

can be used to manipulate the atomic state before or after the interaction with C.
With π/2 pulses in R1 and R2, we realize a Ramsey atomic interferometer. We will
now briefly review the main components of this set-up, starting with the circular
Rydberg atoms.

2.1 Circular Rydberg atoms: the Bohr model revived

A circular Rydberg state [24, 25] is a very high-lying alkali atom level, in which
the single valence electron has been excited close to the ionization limit, in a state
with a large principal quantum number n and a maximum value ` = |m| = n − 1
for the orbital, `, and magnetic, m, quantum numbers (` and m are defined with
respect to the quantization axis Oz). This state will be denoted |nC〉. Typically, in
our experiments we use two adjacent circular levels with principal quantum numbers
51 and 50, that we will also denote |e〉 = |51C〉 and |g〉 = |50C〉.

The electron orbits at distances much larger than the size of the singly charged
ionic core of the alkali atom, which has a diameter of the order of a0 and the electronic
structure of a noble gas (krypton for rubidium). To an excellent approximation, this
core behaves as a point charge, creating a nearly perfect 1/r potential for the valence
electron. The energy of the circular states is thus given by the hydrogenic expression:

En = −R
n2

, (1)

where R is the Rydberg constant (we neglect for this simple discussion the contri-
bution of the finite core mass).

The spherical harmonic of maximum ` and m values take a simple form, leading
to the circular state wave function in spherical coordinates:

Ψ(r, θ, φ) =
1

(πa3
0)1/2

1

nnn!

(
− r

a0

sin θeiφ
)n−1

e−r/na0 . (2)

Figure 4 shows a surface of equal probability density (50% of the maximum value)
for n = 50. This surface defines a torus centred on a circular orbit, in the plane
perpendicular to the quantization axis Oz. This orbital is indeed the atomic level
closest to the circular orbits of the century-old Bohr model.

The relative dispersion of r, ∆r/r, and the fluctuation of θ, ∆θ, are equal:

∆r/r = ∆θ ≈ 1/
√

2n . (3)

The higher the level, the tighter is the confinement around the Bohr orbit. This
wave function provides a representation of the electron state as close as it can get
to a classical description. The phase of the orbital motion remains completely un-
determined and the electron delocalized along the orbit. The azimuthal localization
of the electron is precluded by Heisenberg uncertainty relations.

The analogy with the classical orbit goes beyond this simple geometrical prop-
erty. Since all quantum numbers are large, most features of circular Rydberg atoms
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Figure 4: Surface of equal value (50% of the maximum value) for the spatial probability distribution
of the valence electron in |g〉 = |50C〉. The dimensions are in units of the Bohr radius, a0.

can be explained by classical arguments, as stated by the correspondence principle,
another major contribution of Bohr to the development of quantum physics.

As a first example, let us consider the angular frequency ωnC,(n−1)C of the tran-
sition between neighbouring circular states |nC〉 and |(n− 1)C〉. It is, to the first
non-vanishing order in 1/n, obtained by differentiating the binding energy with re-
spect to n:

ωnC,(n−1)C ≈ 2
R

~
1

n3
. (4)

The corresponding frequency is 51.099 GHz for the |e〉 → |g〉 transition. In a classical
picture, this is the frequency of the orbital motion of the electron in a Bohr orbit.
The n−3 dependence of ωnC,(n−1)C can be interpreted in classical terms, by invoking
Kepler’s third law, which applies to all orbital motions in 1/r potentials. The period
2π/ωnC,(n−1)C of the electron must scale as the 3/2 power of the orbit radius a0n

2. The
relation between the Rydberg transition frequencies and the circular state sizes could
thus have been derived by Kepler or Newton without any quantum consideration!

This simple analysis does not account for the fine or hyperfine structure contri-
butions to the electron energy. These effects are very small in circular states. The
fine structure, due to relativistic corrections including spin–orbit coupling, scales
as 1/n5. It is only a few hundred Hertz for n = 50. Hyperfine structures due to
magnetic couplings between the atomic nucleus and the valence electron are three
orders of magnitude smaller.

The |nC〉 → |(n− 1)C〉 transition is σ+-circularly polarized. Its dipole matrix
element d is:

d = a0|q|n2/
√

2 , (5)

where |q| is the absolute value of the electron charge. This dipole is extremely large,
1770 atomic units for the |e〉 → |g〉 transition.

In the absence of external fields, the circular state is degenerate with a large
number of non-circular levels having the same n and smaller ` and m values. A small
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Figure 5: Classical Bohr orbit in an electric field. The field is vertical and the orbit is seen from
the side, appearing as a thick line. The large black dot represents the ionic core.

perturbing electric or magnetic field, transverse to the Oz axis, would efficiently
couple the circular state to the levels with ` = n − 2, which would in turn be
coupled to other levels with lower angular momentum. The circular orbit would be
rapidly lost, the atom evolving into an uncontrolled superposition of non-circular
states [26]. A perfect cancellation of the stray fields is impossible in practice, but
the circular orbit can be ‘protected’ by subjecting the atom to a directing electric
field, aligned with Oz. This field lifts the degeneracy between the circular level and
the levels with ` = n − 2. If it is much larger than the stray fields, the perturbing
transitions are suppressed. This field, as we will see, leads to severe constraints for
the microwave cavity design.

The circular state energy is shifted to second order by the directing field. This
Stark shift is convenient to tune the atomic transition frequency, a procedure used
in many of our experiments. A classical argument leads again to the electric polar-
izability of the circular state. Figure 5 shows a circular Bohr orbit – seen from the
side as a straight line – normal to the applied electric field F. The force produced
on the electron, qF, adds to the Coulomb force of the core, fc. The orbit remains
circular (due to symmetry), but the core pops out of the orbit’s plane, producing
an induced electric dipole. Let us call θ the angle between fc and the orbit plane
and r⊥ the radius of the perturbed orbit. When the external field is applied, the
electron angular momentum, m0ωr

2
⊥ (m0: electron’s mass) remains constant, equal

to (n − 1)~ ≈ n~, since no torque is produced by qF. The electron orbital angular
frequency ω and orbit radius r⊥, both affected by the electric field, remain linked
by:

ω ≈ n~
m0r2

⊥
. (6)

The core-to-electron distance is larger than r⊥ by the factor 1/ cos θ. The atomic
Coulomb force fc thus scales as cos2 θ/(r⊥)2 and its component along the vertical
direction as cos2 θ sin θ/(r⊥)2. Let us project Newton’s equation for the electron
motion onto the electric field axis and express the balance between the force induced
by the external field and the Coulomb force along this axis:

cos2 θ sin θ =

(
r⊥
a0

)2
F

F0

, (7)

where:

F0 = |q|/4πε0a
2
0 = 5.14 1011 V/m , (8)
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is the atomic electric field unit. In the orbit plane, the projection of the Coulomb
force, proportional to cos3 θ/(r⊥)2, balances the centrifugal force, m0ω

2r⊥. Elimi-
nating ω, we get:

cos3 θ = a0n
2/r⊥ . (9)

In the weak field limit (F � F0, θ � 1), the variation of the orbit radius is negligible:
r⊥ ≈ a0n

2. By a first order expansion, we obtain the induced dipole di:

di = a0|q|n6F/F0 , (10)

proportional to the applied field. The atomic polarizability scales as the sixth power
of the principal quantum number. The polarization energy, E2, is computed by
considering a process in which the dipole is built adiabatically in a field increasing
from zero to its final value F . Adding the elementary works done on the electric
charges as the field is increased, we get E2 = −diF/2. The second-order energy shift
is finally:

E2 = −Rn6(F/F0)2 . (11)

This expression of the Stark shift agrees with the quantum calculation, in the asymp-
totic limit of a large n. For n = 50, the level shift is −1.8 MHz/(V/cm)2. The
differential shift of the |e〉 → |g〉 transition is ≈ −250 kHz/(V/cm)2.

In the high-field limit, the variation of the orbit’s radius cannot be neglected.
Eliminating r⊥, we get:

cos8 θ sin θ = n4F/F0 . (12)

The left-hand side term in this equation is bounded. Its maximum value, about
0.2, is reached for θ = arcsin 1/3 ≈ 19◦. There is thus a maximum value of the
electric field compatible with a stable orbit, corresponding to an ionization threshold
Fi ≈ 0.2F0/n

4. The predicted values for |g〉 and |e〉 are, respectively 165 and 152
V/cm, to be compared to the measured values 145 and 134 V/cm. The differences
are due to the ionization by tunnel effect in a field slightly smaller than the classical
ionization threshold [25]. As far as the ionization is concerned, the classical limit
of correspondence principle is not yet fully reached for n = 50. The ionization
thresholds correspond to relatively low fields, easily applied to the atoms.

The detection in D (Fig. 3) uses field ionization. The resulting electrons are
detected with high efficiency, up to 90±10% [27]. The rapid variation of the ionizing
field with n provides a state-selective detection (the two atomic levels are ionized at
different times in a ramp of electric field). The errors in the attribution of n are a
few percent only.

The spontaneous emission rate Γn of a circular state |nC〉 can also be derived
by classical arguments. The electric dipole selection rule ∆` = ±1 allows a unique
decay channel for this state: the microwave transition towards the lower circular
state |(n− 1)C〉. In a classical picture, the electron, accelerated on its circular orbit,
radiates electromagnetic power proportional to the modulus square of its centripetal
acceleration a. Its mechanical energy accordingly decreases slowly, as it spirals down
to the core, jumping between circular states of decreasing principal quantum num-
bers. The radiative lifetime of the initial state corresponds to the loss of an energy
amount ~ωnC,(n−1)C ≈ 2R/n3.

The radiated power Pr is given by the Larmor formula [28]:

Pr =
q2a2

6πε0c3
, (13)
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and the spontaneous emission rate is thus:

Γn =
n3Pr
2R

. (14)

Writing the electron acceleration as:

a = |a| = 1

m0

q2

4πε0(a0n2)2
=

1

m0n4

2R

a0

, (15)

and replacing R by its expression q2/(8πε0a0), we obtain:

Γn = 2R
q2

6πε0c3

1

m2
0a

2
0

n−5 . (16)

Writing a0 as 4πε0~2/(m0q
2), we can factorize the cube of the fine structure constant

α and get:

Γn =
1

Ta,n
=

4

3

R

~
α3n−5 , (17)

which coincides, for large ns with the expression derived from a Fermi Golden rule
argument in a quantum description of the spontaneous emission process. We can
finally express Γn in terms of the electron frequency ωnC,(n−1)C as:

Γn
ωnC,(n−1)C

=
2

3
α3n−2 = 1/Qa,n . (18)

The inverse of this very small dimensionless ratio defines the radiative quality factor
Qn = 3n2/2α3 of the circular to circular state transition. The large α−3 = 1373

factor entails that usual excited atomic excited states (n small) decay slowly at the
atomic time scale, with radiative damping times corresponding typically to 3 · 106

periods of the emitted field. This radiative quality factor is, in circular Rydberg
states, increased by a factor of n2. For n ≈ 50, the decay takes ∼ 1010 periods of the
emitted microwave. More precisely, Γ51 = 28 s−1, corresponding to a lifetime for |e〉
of 36 ms and to Qn = 1.14 1010.

In spite of their extremely strong coupling to the millimetre-wave field, the
circular Rydberg atoms are very stable. Among all possible bound orbits, the circular
ones have the smallest average acceleration, the electron always remaining far from
the core. The radiation loss is minimum, hence the advantage of using circular
Rydberg atoms for CQED physics. Elliptical orbits (low ` quantum states) have
a much shorter lifetime, proportional to n−3 instead of n−5, due to the stronger
acceleration of the electron near the core.

Circular atoms can travel over a few metres at thermal velocity within their
lifetime. Spontaneous emission is thus negligible in an experimental set-up whose
size is a few tens of centimetres. In the presence of a thermal field with nth photons
per mode on the average, the lifetime is reduced by a factor 1+nth. It is thus essential
to screen efficiently the room-temperature blackbody field, corresponding to tens to
hundreds of photons per mode in the millimetre-wave domain. In our experiments,
the circular Rydberg atoms propagate in a cryogenic environment cooled down to
0.8 K.
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Circular states, with their long lifetimes, simple structure and extremely strong
coupling to the field are clearly the closest to the Bohr’s model orbit. More im-
portantly, they are almost ideal tools for cavity QED experiments. However, they
cannot be simply excited from the atomic ground state using only lasers. A two-step
process needs to be implemented [24, 29]. A laser excitation first provides a large
energy to the atom and brings it into a low angular momentum Rydberg level. The
atom is then fed with a large number of radio-frequency photons, each adding one
unit of angular momentum, with a very small amount of energy. The process is
similar to a controlled change of orbit for a satellite, using successive rocket boosts.
The details of the method are rather complex. They are described in some details
in [10, 30]. We achieve the preparation of |e〉 or |g〉 with purity better than 98%.

This preparation occurs at a well-defined time (the initial laser pulse duration
is 2 µs typically). It operates on a pulsed velocity-selected atomic beam. The time of
flight selection between the pulsed velocity-selective optical pumping and the pulsed
excitation to the Rydberg levels provide a selection of the velocity with a ±1 m/s
accuracy. The position of the atomic sample is thus well known at any time during
its ≈40 cm travel through the apparatus. It is thus possible to address it selectively
along its path, for instance in the Ramsey cavities R1 and R2.

The weak laser excitation of the atomic beam produces Poissonian statistics for
number of atoms in circular states. Due to the finite detection efficiency, it is not
possible to rely on exact atom counting at detection time. We must choose instead
to prepare in a sample much less than one atom on the average (typically 0.1). When
an atom is counted, the probability that an undetected second atom is present is
small (< 10%).

This post-selection of single-atom events is obtained at the expense of a consid-
erable lengthening of the data acquisition time. This is of course a strong limitation
when it comes to performing predetermined complex sequences of quantum informa-
tion processing [31]. It is, as we will see in the next Section, not a serious problem in
using the atoms for a Quantum Non Demolition measurement of the field intensity.

2.2 Superconducting millimetre-wave cavities

The circular Rydberg states are stable only in a static directing electric field. It is
thus impossible to use a closed superconducting millimetre-wave cavity. We have to
use an open Fabry-Perot, made up of two mirrors facing each other, across which
a static field can easily be applied. The photon (or classical energy) storage time,
Tc, is the most critical parameter in these experiments. A long Tc requires a very
high mirror conductivity, which can only be provided by superconducting metals at
cryogenic temperatures. It also requires an excellent surface state to minimize losses
induced by diffraction on defects.

The quest for high-quality cavities has been a long process, since these two re-
quirements are somewhat incompatible. We finally developed a fabrication technique
based on diamond-machined copper substrates, with an extremely smooth surface
(10 nm roughness), covered with a thin (12 µm) layer of high-purity Niobium de-
posited by cathode sputtering [32].

The mirrors have a 50 mm radius and are L = 27 mm apart. They have a
toroidal shape in order to lift the polarization degeneracy. They sustain a non-
degenerate TEM900 Gaussian mode with a linear polarization orthogonal to the
cavity axis and a waist w = 6 mm. The frequency of the mode is adjusted by
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piezoelectric elements changing the cavity length. The damping times of the cavities
used in recent experiments range from 65 ms to 0.13 s, a macroscopic time interval.
The latter corresponds to a quality factor Q = 4.5 1010 and to a finesse F = 4.9 109,
a thousand times larger than that of the best optical cavities.

2.2.1 A harmonic oscillator

The mode is a quantum harmonic oscillator, with the Hamiltonian Hc = ~ωc(N +
1/2), where ωc is the field’s angular frequency and N = a†a is the photon number
operator (a is the photon annihilation operator). The eigenstates of Hc are the non-
classical Fock states |n〉, with a well-defined number n of photons, whose energy is
~ωc(n+ 1

2
). The ground state is the vacuum |0〉. The Fock states are an orthogonal

set:
〈n |p〉 = δnp . (19)

The photon annihilation and creation operators a and a† connect the Fock states:

a |n〉 =
√
n |n− 1〉 ; a† |n〉 =

√
n+ 1 |n+ 1〉 . (20)

The action of a on |0〉 gives a null vector (it is not possible to annihilate a photon
in vacuum). All Fock states can be generated from the vacuum by repeated applica-

tions of the photon creation operator: |n〉 = a†n |0〉 /
√
n!. Creation and annihilation

operators obey a bosonic commutation rule:
[
a, a†

]
= 11.

The cavity mode electric field operator at position r writes:

Ec = iE0

[
f(r)a− f∗(r)a†

]
. (21)

The dimensionless vector function f(r) = εcf(r) describes the spatial structure of
the field mode (relative field amplitude f and polarization εc). At the geometric
centre of the cavity, which we also take as the origin, the field mode amplitude is
maximum and f = 1. The ‘field per photon’ E0 is:

E0 =

√
~ωc
2ε0V

= 1.5 10−3 V/cm , (22)

where the cavity mode volume V is:

V =

∫
|f(r)|2 dV =

πw2L

4
. (23)

The field quadrature operators correspond to a mechanical oscillator’s position
and momentum:

X =
a+ a†

2
; P =

a− a†

2i
, (24)

with the eigenstates |x〉 and |p〉 (X |x〉 = x |x〉; P |p〉 = p |p〉). They satisfy the com-
mutation rule [X,P ] = i/2, which correspond to the uncertainty relation∆X∆P ≥
1/4. The expectation values 〈n|X |n〉 and 〈n|P |n〉 of the field quadratures in a
Fock state is zero. There is no preferred phase neither in the vacuum nor in any
Fock state, a feature which shows that these quantum states are quite different from
classical fields.



Bohr, 1913-2013, Vol. XVII, 2013 Bohr’s Legacy in Cavity QED 71

2.2.2 Coherent states

The classical source S (Fig. 3), weakly coupled to the mode via the diffraction loss
channels, can be used to inject in C a coherent semi-classical state |α〉 defined by
the complex amplitude α. This injection is represented by the unitary displacement
operator D(α) = exp

(
αa† − α∗a

)
, with |α〉 = D(α) |0〉. The coherent state is an

eigenstate of the annihilation operator a (with eigenvalue α). It follows that the
average values of the quadratures X and P are simply the real and imaginary parts
of the complex amplitude α and that their quantum fluctuations are the same as in
the vacuum state. Pictorially, the coherent states can be represented in the complex
amplitude plane (Fresnel plane) as a small disk of radius unity (representing the size
of the quantum fluctuations) centred on the classical amplitude α.

For very small fields (about one photon on the average) the complex amplitude
α is comparable to these uncertainties and quantum fluctuations play an important
role. For very large amplitudes, quantum fluctuations are negligible and the coherent
state can be viewed as a classical object, with well defined phase and amplitude.
Coherent states stored in a cavity thus span the quantum to classical transition,
with the mere adjustment of the source controls.

The coherent states can be expanded on the Fock states basis as |α〉 =
∑

n cn |n〉
with cn = exp(−|α|2/2)αn/

√
n!. Their photon number distribution, P (n) = |cn|2, is

Poissonian with an average n = |α|2. The square modulus of the scalar product of
two coherent states is thus:

|〈α | β〉|2 = e−|α−β|
2

. (25)

The overlap of two such states decreases exponentially with their ‘distance’ in phase
space. Although they are never strictly orthogonal, they become practically so when
the distance of their amplitudes is much larger than 1, the radius of the uncertainty
circle.

Note that the displacement operator describes a global translation in phase
space. In particular, it acts on an initial coherent state |β〉 according to D(α) |β〉 =
exp(αβ∗ − βα∗) |β + α〉, a quantum version of the addition of classical fields in the
Fresnel plane.

The coherent states have a simple time evolution. Starting from |α〉 at time 0,
we are at time t in the state:

|Ψ(t)〉 = e−iωct/2
∣∣αe−iωct

〉
. (26)

Besides a trivial phase factor (that could be removed by subtracting the constant
vacuum energy from the cavity mode Hamiltonian), the coherent state amplitude
evolves exactly as its classical counterpart. Accordingly, the average values of the
quadratures X and P oscillate at the angular frequency ωc, as the position and
momentum of a classical oscillator.

2.2.3 Cat states

We give here a special attention to superpositions of two quasi-orthogonal coherent
states, represented in the Fresnel plane by two non-overlapping circles. These states
are quantum superpositions of fields with different classical properties. They are thus
quite reminiscent of the Schrödinger cat thought experiment [9]. We will see later
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how these exotic states can be prepared in an experiment illustrating Bohr’s com-
plementarity and used to study the dynamics of decoherence. As a simple example,
we consider a linear superposition with equal weights of two coherent states with
opposite phases. This superposition, called a π-phase cat in the following, writes:

|Ψeven
cat 〉 =

|β〉+ |−β〉√
2
(
1 + e−2|β|2

) ≈ (1/
√

2) (|β〉+ |−β〉) , (27)

where β is the amplitude of the field (taken real). The denominator in the first r.h.s.
term is a normalization factor, taking into account the overlap of |β〉 and | − β〉. If
|β| � 1, this overlap is negligible and the cat state is expressed by the simpler form
given by the second r.h.s. term.

The coherence between the two components of the cat state is revealed by
considering its photon number distribution. The state |Ψeven

cat 〉 develops only along
even number states, since the probability for finding n photons in it is proportional
to 1 + (−1)n, justifying the superscript ‘even’ in its name. Similarly the cat state:

|ψodd〉 = (1/
√

2)[|β〉 − | − β〉] , (28)

develops only along the odd photon numbers. We call it an ‘odd phase cat’. The
periodicity of the photon number is related to the coherence of the state, since a
statistical mixture of |β〉 and | − β〉 contains all photon numbers. The modulated
photon number distribution is a signature of the even and odd cats coherence.

It is hence convenient to introduce the photon number parity operator P [33]
which admits as eigenstates all the superpositions of even photon numbers with
the eigenvalue +1 and all the superpositions of odd photon number states with the
eigenvalue 1:

P = eiπa
†a . (29)

The odd and even phase cats |β〉 ± | − β〉 are eigenstates of P with the +1 and
−1 eigenvalues. The action of the annihilation operator on an even (odd) phase cat
results in the switching of the cat parity:

a[|β〉 ± | − β〉] = β[|β〉 ∓ | − β〉] . (30)

2.2.4 Field relaxation

The atom-cavity effective interaction time is at most in the 100 µs range, since the
atoms are crossing the w = 6 mm cavity mode waist at thermal velocities. This is
much shorter than the lifetime of the atomic levels (30 ms). Atomic relaxation can
be safely neglected in our experiments, and cavity damping is the main source of
decoherence.

The damping of a cavity mode, of a spring, has been described since the early
days of quantum relaxation theory [34]. When C is coupled linearly to a large en-
vironment, including many degrees of freedom, whose eigenfrequencies span contin-
uously a large interval around ωc, the master equation ruling the evolution of the
field density operator, ρ, can be cast in the general Lindblad [35] form:

dρ

dt
=

1

i~
[Hc, ρ] +

2∑
i=1

[
LiρL

†
i −

1

2

(
L†iLiρ+ ρL†iLi

)]
. (31)
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The operators Li are simply L1 =
√
κ(1 + nth) a and L2 =

√
κnth a

†, where
κ = 1/Tc = ωc/Q is the cavity energy damping rate and nth = 1/[exp(~ωc/kBT )−1]
the mean number of blackbody photons per mode at the mirrors temperature T ,
as given by Planck’s law (kB is the Boltzmann constant). Note that L2 vanishes
at zero temperature. In our experiment, T = 0.8 K and nth = 0.05. The L1 and
L2 operators, proportional to a and a† respectively, describe the modifications, the
‘quantum jumps’ of the cavity state when a photon leaks out from the cavity into
the environment or when a thermal photon is created.

Coherent states being eigenstates of the annihilation operator, they do not
change when a photon escapes into the environment. They are thus rather immune to
relaxation. A direct resolution of Eq. (31) at zero temperature shows that an initial
coherent state |α0〉 remains coherent, its amplitude being exponentially damped with
the time constant Tc/2. The average photon number decays thus as the classical
field energy, with the time constant Tc. This feature qualifies the coherent states as
(approximate) ‘pointer states’ for the cavity-environment coupling, according to the
definition by Zurek [36].

For the photon number distribution P (n) = 〈n|ρ|n〉, the master equation re-
duces to:

dP (n)

dt
= κ(1+nth)(n+1)P (n+1)+κnthnP (n−1)−[κ(1 + nth)n+ κnth(n+ 1)]P (n),

(32)
whose steady-state can be obtained by a detailed balance argument. It coincides
obviously with the equilibrium blackbody state. If we consider an initial Fock state
|n0〉 and the T = 0 K case, P (n0) is ruled at short times by:

dP (n0)

dt
= −κn0P (n0) , (33)

showing that the lifetime of the |n0〉 state is of the order of Tc/n0. The larger the
Fock state, the smaller its lifetime.

The Schrödinger cat state are also very sensitive to decoherence. We can easily
understand this sensitivity qualitatively. A cat state changes parity when we anni-
hilate a photon. Hence, after a time such that, on the average, one photon has been
lost, the parity of the cat is undetermined, and the cavity contains even and odd
photon numbers at the same time. This corresponds to a statistical mixture of two
coherent states, instead of a quantum superposition. The decoherence time scale is
thus of the order of Tc/n, where n is the average number of photons in the initial
cat.

The Fock state fragility is closely related to that of the cat states. In fact, any
Fock state with a large n0 can be expressed as a superposition of n0 non-overlapping
coherent components with the same average energy. Each coherent component is
rather immune to decoherence, but their quantum superposition is a fragile cat
state.

2.2.5 Pictorial representations of field states

We used so far very qualitative phase space depictions of the field states. These
pictures are made fully quantitative by associating unambiguously to the field state
real quasi-probability distributions in the phase plane. We discuss here only the
most useful, the Wigner function. It gives a vivid description of the state.
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Figure 6: Plot of W functions. (a) Schrödinger cat, superposition of two 5-photon coherent states
with opposite phases. (b) One-photon Fock state. (c) Two-photon Fock state.

The field is described by the density operator ρ. The Wigner distribution
W (α) = W (x+ ip) [37] is defined by:

W (x, p) =
1

π

∫
dx′e−2ix′p〈x+

x′

2
|ρ|x− x′

2
〉 . (34)

It is the Fourier transform of an off-diagonal matrix element of ρ in a quadrature
representation. The W function is real and normalized. It can take negative values
in domains of phase space, making it clear that it is not a probability distribution.
Negative values are, as shown below, a signature of non-classical states.

The W function of coherent states are Gaussian functions centred at the am-
plitude of the state. The W function of a π-phase cat is made up of two Gaussian
peaks and a large interference pattern between these peaks with an alternance of
positive and negative ridges [Fig.6(a)]. This pattern is a signature of the cat’s co-
herence, lacking in the W function of a statistical mixture. The W function is thus
quite appropriate for the study of a cat’s coherence. Fig. 6(b) and (c) present the
W function of the n = 1 and n = 2 Fock states which also exhibit negative parts.

By inverse Fourier transform of Eq.(34), the matrix elements of the field density
operator are:

〈x+
x′

2
|ρ|x− x′

2
〉 =

∫
dpe2ix′pW (x, p) . (35)

The field density operator is thus fully determined by W . In particular, the proba-
bility density of the quadrature X, is:

TrρX =

∫
dpW (x, p) . (36)

The probability that X takes a given value x is obtained by integrating W for this x
value, along all values of p. Schrödinger cats, for instance, have quadratures values
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occuring with 0 probability, a signature of their non-classical nature. The integral of
W along the orthogonal quadrature vanishes, which is possible only if W presents
alternances of positive and negative values. We thus understand that negativities of
W are related to non-classicality.

We conclude by giving an alternative expression of W [38]:

W (x, p) =
2

π
Tr[D(−α)ρD(α)P ] . (37)

The Wigner distribution at α is the expectation value in the state translated by
−α of the field parity operator. The Wigner function is thus a direclty measurable
quantity.

2.3 The Jaynes and Cummings interaction

The atom-field interaction is described by the Jaynes and Cummings model [16].
Incidentally, the celebration of the centennial of the Bohr model also coincides with
the fiftieth anniversary of this very important contribution to quantum optics. Pro-
posed as an approximate model for the interaction of atoms with a laser, this model
is a nearly exact description of the cavity QED situation.

The complete Hamiltonian is H = Ha + Hc + Hac, where Ha is the atomic
Hamiltonian, which can be written as

Ha =
~ωa
2
σz, (38)

where ωa = ω51C,50C is the atomic transition angular frequency, and σz is the stan-
dard Pauli operator for the z axis of the Bloch sphere representing the state of the
two-level atom.

The interaction term Hac is, in the rotating wave approximation neglecting
non-resonant terms, given by:

Hac = −i~Ω0

2
f(vt)[aσ+ − a†σ−] , (39)

where σ+ = |e〉 〈g| and σ− = |g〉 〈e| are the atomic raising and lowering operators.
The ‘vacuum Rabi frequency’, Ω0, measures the strength of the atom-field cou-

pling when the atom is located at the cavity centre, where the electric field amplitude
is maximal. It is proportional to the dipole matrix element of the atomic transition
and to the amplitude of a single photon field stored in the cavity. In our experi-
ments, Ω0/2π = 50 kHz. The function f(vt) reflects the variation of the atom-field
coupling with time while the atom crosses the Gaussian mode at right angle with
the cavity axis. Taking the origin of time when the atom reaches the axis, f simply
writes f(vt) = exp(−v2t2/w2).

The eigenstates of H, the atom-field ‘dressed states’ can be straightforwardly
expressed in the basis of the uncoupled atom-cavity states {|e, n〉} and {|g, n〉},
eigenstates of Ha + Hc [10]. We will only consider here either exact atom-cavity
resonance δ = ωa − ωc = 0 or the non-resonant dispersive case |δ| � Ω0.

At resonance (δ = 0), the uncoupled states {|e, n〉} and {|g, n+ 1〉} have the
same energy [(n + 3/2)~ωc]. Note that |g, 0〉 is apart and is not affected by the
atom-field coupling. The eigenstates of Ha +Hc form a ladder of twofold degenerate
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multiplicities. The coupling Hac lifts this degeneracy. The dressed states with n+ 1
excitations are |±, n〉 = (|e, n〉 ± i |g, n+ 1〉)/

√
2, with energies separated at cavity

centre (f = 1) by ~Ωn where Ωn = Ω0

√
n+ 1.

An atom initially prepared in |e〉 in an n-photon Fock state corresponds to an
initial quantum superposition of the two non-degenerate dressed states |±, n〉. The
later evolution is thus a quantum Rabi oscillation between |e, n〉 and |g, n+ 1〉 at
frequency Ωn, the atom periodically emitting and reabsorbing a photon in C.

Note that, at most times during this evolution the atom-cavity system is in an
entangled state. Quantum Rabi oscillations have been used in a variety of CQED
experiments to create and engineer atom-field entanglement, culminating in the
generation of a three-particle entangled state of the Greenberger, Horne and Zeilinger
(GHZ) type [39], with three two-qubit quantum gate action [30, 31].

Note that the atomic motion through the mode is simply taken into account in
this regime. A complete crossing of the mode at a constant velocity v is equivalent to
a constant coupling at cavity centre during an effective interaction time tr =

√
πw/v.

Far from resonance (|δ| � Ω0), the dressed states nearly coincide with the
uncoupled levels. Energy exchange between the atom and the field is prohibited by
mere energy conservation. The only effect of the mutual interaction is a slight shift
of the joint atom-cavity levels.

A simple second-order calculation shows that the atomic frequency is shifted
at cavity centre (f = 1) in the field of an n-photon state by ∆ωa = 2(n + 1/2)s0,
where s0 = Ω2

0/4δ. This energy shift includes a constant part, s0, which corresponds
to the Lamb shift of |e〉 induced by the vacuum fluctuations in C. The other part,
2ns0, proportional to the field intensity, is the few-photons limit of the light shifts
usually observed in strong laser fields.

This quantized light-shift can be revealed by an atomic Ramsey [6] interferom-
etry experiment. In the zone R1 (Fig. 3) a π/2 pulse of classical microwave field
produces, from the initial state |g〉, a superposition (|e〉 + |g〉)/

√
2. The transient

shift of the atomic frequency in C results in a phase shift of this superposition, by
an amount φ0(n + 1/2), where φ0 = 2s0td. The effective dispersive interaction time

is td =
√
π/2(w/v). The phase-shift per photon, φ0, can be adjusted by choosing

the atomic velocity v or the atom-cavity detuning δ.
A second π/2 pulse is then applied in zone R2. In a proper interaction repre-

sentation, this pulse realizes the transformations |g〉 → (|g〉+ exp(iφr) |e〉)/
√

2 and
|e〉 → (|e〉 − exp(−iφr) |g〉)/

√
2, where the phase φr of the Ramsey interferometer

can be tuned by adjusting the relative phase of the pulses in R1 and R2 or by ap-
plying a transient Stark shift on the atomic transition between R1 and R2. The final
probabilities πe(φr|n) and πg(φr|n) for detecting the atom in |e〉 or |g〉 conditioned
to the presence of n photons in the cavity are oscillating functions of φr (Ramsey
fringes):

πe(φr|n) = 1− πg(φr|n) =
1

2

{
1 + cos [φr + φ0(n+ 1/2)]

}
. (40)

The detection of an atom thus carries information on the photon number. Since
this atom is unable to absorb the cavity field, this information has been acquired
without modifying the photon number. We will use this remarkable property in the
next Section.

As a reciprocal effect, the cavity frequency is shifted when an atom is in the
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mode. An atom in |e〉 at cavity centre shifts the cavity resonance by ∆eΩc = s0. An
atom in |g〉 shifts it by an opposite amount ∆gΩc = −s0. This is the single-atom
limit of an index of refraction effect. The non-resonant atom, unable to absorb or
emit light, behaves as a piece of transparent dielectrics that modifies by its index the
effective cavity length and thus its resonance frequency. With the strongly coupled
circular atoms, this effect is large even though there is a single atom in the mode.

This index effect results in a global phase shift for a coherent state |α〉 in-
jected in C before the atom crosses it. The dispersive interaction realizes then the
transformations

|e, α〉 → exp(−iφ0/2) |e, exp(−iφ0/2)α〉 (41)

|g, α〉 → |g, exp(+iφ0/2)α〉 . (42)

3 The quantum jumps of light

Most actual measurements are quite far from the ideal, projective measurement
described in elementary quantum physics textbooks. This is particularly true when
it comes to counting the number of photons in a light field, for instance in a laser
pulse. Modern photodetectors can count photons with a high reliability. However,
instead of projecting the field on the Fock state corresponding to the obtained result,
they cast it onto the vacuum, since all detected photons are absorbed, their energy
being used to create the measurable electronic signal.

This total demolition of the light quantum state is not a requirement of quantum
physics. It allows Quantum Non Demolition measurement process [40]. They are
simply ideal projective measurements of an observable that is a constant of motion
in the evolution ruled by the system’s Hamiltonian. Repeated QND measurements
thus always give the same result as the first one in the series. A sudden transition
between two eigenvalues of the measured observable, a ‘quantum jump’, can be
traced to an extra source of evolution for the system, due to relaxation for instance.
Projective measurements of the photon number are obviously QND, since the photon
number operator, N , is a constant of motion.

QND measurements of a light beam intensity have been realized with non-
linear optical systems (for a review, see [41]). The intensity of the signal beam
changes the index of a non-linear material (an atomic vapour for instance). This
index of refraction modification is read out by a weak meter beam in an interfer-
ometric arrangement. Due to the weak optical non-linearities, these measurements
only operate with macroscopic signal and meter beams, whose quantum fluctuations
get correlated. They are not adapted for QND measurements at the single photon
level.

As we have seen above, an atom, initially in a superposition of |e〉 and |g〉 car-
ries, after interacting non-resonantly with the cavity, information about the photon
number, coded in the phase of the atomic superposition. The dispersive interaction
does not change the photon number. This information can thus be used for a QND
determination of the photon number, to count the number of photons in the cavity
without absorbing them. Moreover, we can send many atoms through the cavity
during the energy lifetime. We can thus follow in real time the photon number and
evidence the quantum jumps of light.
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Figure 7: Monitoring the blackbody field. Top trace: atomic detections over a 2.5 s time interval.
An atom found in |e〉 (|g〉) is depicted by an upwards (downwards) bar. Bottom trace: result of
a majority vote over eight consecutive atomic detections revealing the birth, life an death of an
exceptionnaly long-lived photon. Reprinted by permission from Macmillan Publishers Ltd: Nature
[17].

3.1 Birth, life and death of individual photons

The simplest situation is when C contains either 0 or 1 photon. This is the case
at thermal equilibrium. The residual blackbody field at 0.8 K contains nth = 0.05
photon on the average. Most of the time, the cavity is empty. When a thermal
photon is created out of the residual fluctuations, it remains in the cavity for a time
of the order of Tc. The likelihood to have two photons at the same time is extremely
low.

We monitor this field by sending repeatedly atoms through the cavity [17]. The
phase shift per photon φ0 is set to π and the Ramsey interferometer phase φr is set
so that the atom is ideally detected in |g〉 when the cavity is empty, in |e〉 when it
contains a photon. The top trace in Fig. 7 presents the atomic detections observed
over a 2.5 s time interval. During the first second, nearly all atoms are detected in
|g〉, indicating that the cavity is empty. The few atoms detected in |e〉 are due to the
finite contrast of the Ramsey interferometer. We can get rid of this residual noise
by a majority vote over eight consecutive atomic detections (bottom trace).

After about 1 s, the regime changes abruptly. Nearly all atoms are now detected
in |e〉. This sudden evolution reveals a quantum jump of light, the birth of a single
thermal photon in the cavity. For nearly half a second, all atoms crossing the cavity
agree on the presence of this photon. This is a clear indication of the Quantum Non
Demolition nature of this measurement. An ordinary absorptive measurement would
have resulted in the first atom after the jump exiting in the upper state |e〉. However,
the photon would have been absorbed by this atom and the cavity would have been
found empty by the next ones. Finally, the atoms witness the sudden death of the
photon in another quantum jump and the cavity returns to its vaccum state. This
particular photon has lived in the cavity for nearly 4 Tc.

This experiment is thus quite reminiscent of the famous photon box experiment
of Einstein and Bohr. We are also trapping the photon in a box (if not for an infinite
time) and we are weighing the box to monitor the presence of the photon. Our scale
is made up of the individual Rydberg atoms crossing the cavity. The observed signals
exhibit in a dramatic way the elusive quantum jumps. At the centre of the original
Bohr model, quantum jumps were put in the shadow by the continuous evolution
predicted by the Schrödinger unitary evolution. Many people doubted they indeed
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Figure 8: Evolution of the atomic Bloch vector in a QND photon-number measurement process.
(a) First Ramsey π/2 pulse in R1. (b) After the dispersive interaction with C, 8 orientations of the
Bloch vector are correlated to the photon numbers from 0 to 7, for φ0 = π/4. (c) After the second
Ramsey pulse in R2.

were real, until they were observed for the first time on the fluorescence of a trapped
ion [42, 43]. We observe them here for the first time on the light field itself. Quantum
jumps are the actual evolution of a continuously monitored quantum system.

3.2 Quantum Non Demolition photon counting

The scale used in the previous Section to weigh the photon box is too sensitive
to count more than one photon. The phase-shift of the atomic coherence for two
photons is close to 2π and, hence, we cannot distinguish the two-photon state from
the vacuum. The range of the scale can be somewhat extended. By reducing the
phase-shift per photon to φ0 = π/4, we can count up to seven photons.

Figure 8 presents the Bloch vector describing the atomic state at successive
stages in this QND process. The atom is originally prepared in |g〉 (south pole). The
first Ramsey pulse in R1 casts it in a superposition of |e〉 and |g〉 represented by a
vector along the Ox axis [Fig. 8(a)]. The atom then interacts dispersively with the
cavity mode, resulting in a phase shift of the atomic coherence. We have used an
implicit interaction representation such that the atomic state evolution is only due
to the interaction with C. After crossing the mode in the Fock state |n〉, the Bloch
vector has rotated by an angle (n+ 1/2)φ0.

Eight different orientations of the Bloch vector at the exit of the cavity are
entangled with the photon numbers from 0 to 7 (eight photons produce the same
rotation as the vacuum, φ0/2). A single atomic detection is clearly not sufficient
to pin-down the photon number. After a second π/2 rotation in R2 [Fig. 8(c)],
which maps one state of the equatorial plane onto |e〉, the atom is detected in the
{|e〉 , |g〉} basis, providing a single bit of information. This does not allow for a
complete discrimination of the eight non-orthogonal atomic states at cavity exit. In
simple terms, a single bit is not enough to count from 0 to 7!

A single atom detection realizes thus a weak measurement of the cavity field,
which nevertheless changes the cavity state. Since the atom cannot emit or absorb
photons, the cavity state modification is only due to its entanglement with the atom.
The corresponding (completely positive) map for the field density matrix ρ is:

ρ −→ ρj =
MjρM

†
j

πj(φr|ρ)
, (43)

where the index j = {e, g} indicates the measured atomic state.
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The measurement operators Me and Mg are:

Mg = sin

[
φr + φ0(N + 1/2)

2

]
, (44)

Me = cos

[
φr + φ0(N + 1/2)

2

]
, (45)

and define a Positive Operator Valued Measurement (POVM) with elements Ej =

M †
jMj, with Ee + Eg = 11. The denominator πj(φr|ρ) in Eq.(43) is the probability

for detecting the atom in state j conditioned by the field state ρ:

πj(φr|ρ) = Tr
(
MjρM

†
j

)
. (46)

Since the Mjs are diagonal in the Fock state basis, this probability can also be
written:

πj(φr|ρ) =
∑
n

P (n)πj(φr|n) , (47)

P (n) = 〈n|ρ|n〉 being the photon number distribution. The conditional probabilities
πj(φr|n) are given by Eq.(40).

The new photon number distribution after a detection in state j for the Ramsey
interferometer setting φr, P (n|j, φr), is thus:

P (n|j, φr) =
πj(φr|n)

πj(φr|ρ)
P (n) . (48)

We recover here the usual Bayes law of conditional probabilities [18]. The probability
for having n photons, conditioned to an atomic detection in j with the Ramsey
interferometer phase set at φr is, within a normalization factor (denominator in the
r.h.s.), the initial photon number distribution P (n) multiplied by the conditional
probability for detecting the atom in j with this Ramsey phase setting when there
are n photons in the cavity. Note that if the atom escapes detection, due to the finite
efficiency of D, it does not change the photon distribution, since the two density
matrices corresponding to a detection in |e〉 or |g〉 should then be summed, weighted
by the respective detection probabilities.

After each atomic detection, P (n) is thus multiplied by a sinusoidal function of
n, proportional to πj(φr|n). Some photon numbers are less likely to be found after
the measurement (those which correspond to the highest probability for detecting
the atom in the other state). Sending Na atoms one by one through C iterates this
photon number ‘decimation’ operation. The final P (n) is:

PNa(n) =
P0(n)

Z

Na∏
i=1

πji(φr,i|n) , (49)

where ji is the detected state for the atom labelled i in the series, φr,i the Ram-
sey interferometer phase used for this atom and P0(n) the initial photon number
distribution.

Each factor in the product on the r.h.s. decimates some photon numbers. Nu-
merical simulations and mathematical arguments [44] show that, after many atoms
have been detected, the final distribution reduces to a single photon number nm:
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Figure 9: Two individual realizations of the QND measurement of a coherent field. The histograms
show the evolution of the photon number distribution with the number Na of detected atoms.
Reprinted by permission from Macmillan Publishers Ltd: Nature [18].

PNa(n) = δn,nm , provided that the initial distribution P0(n) spans a photon number
range such that no two photon numbers lead to the same detected atomic state (for
instance, the {0, 7} range when φ0 = π/4). The accumulation of partial information
provided by weak measurements ends up in a complete, projective measurement
of the photon number. The final outcome is independent of the initial distribution
P0(n). We can thus choose it freely, provided it does not cancel in the relevant
photon number range. The logical choice is a flat distribution, reflecting our total
uncertainty upon the initial cavity field before measurement.

We realized such a measurement on a coherent field with an average photon
number n = 3.82 (the probability for having 8 photons or more in this field is a
few % only). We record the detection of Nt = 110 atoms, in a time of the order of
26 ms, with φ0/π = 0.233 rad. The Ramsey phase φr is randomly chosen among four
values differing by about π/4 to speed up convergence. We use a slightly modified
decimation law to incorporate the finite contrast of the Ramsey interferometer (see
[18] for details).

Figure 9 presents the evolution of the photon number distribution after the
detection of Na atoms (Na = 0 . . . Nt) for two realizations of the experiment. Let
us discuss that on the left. The initial P0(n) is flat. After one atomic detection, it
has a sine shape. After about 20 atomic detections, the decimation process leaves
only two possible photon numbers, 5 and 4. For a short time interval, 4 dominates,
but, after about 70 atomic detections, only 5 is left, completing the measurement.
The other realization (right part of the figure) exhibits a similar behaviour, the final
photon number being then 7. We observe here the progressive collapse of the field
state due to an accumulation of weak measurements.

The final photon number is selected by the random atomic detection outcomes.
Each realization of the experiment leads, after recording Nt atoms, to a different,
random photon number according to the basic postulates of quantum physics. “God
is playing dice” in a quantum measurement. The probability for obtaining the final
value nm must be ideally given by the initial photon number distribution P0(nm).
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Figure 10: Reconstructed photon number distribution in the initial cavity field. Histogram of the
average value 〈n〉 of the final photon distribution PNt

(n). The error bars reflect the statistical
uncertainty (2000 realizations of the experiment have been used). The blue circles (and the con-
tinuous line joining them for visual convenience) represent a Poisson law with 3.46 photons on the
average. Reprinted by permission from Macmillan Publishers Ltd: Nature [18].

We have recorded 2000 individual realizations of the detection sequence and
computed, for each of them, the average photon number 〈n〉 for the final distribution
PNt(n). The histogram of the measured 〈n〉 values is shown in Fig. 10. In about
80% of the cases, we do finally obtain an integer photon number, showing that the
decimation process has converged. The background in the histogram corresponds
to 20% of the experiments for which either Nt atoms have not been sufficient to
grant convergence or for which a quantum jump due to cavity relaxation occurred
during the measurement process itself. When convergence is obtained, the observed
probabilities fit nicely with a Poisson law (open blue circles). Its average photon
number, 3.46, coincides nicely with an independent calibration of the initial cavity
state.

3.3 Quantum trajectories

Since the probe atoms do not absorb the cavity field, we can follow the photon
number evolution over a long time interval. We keep sending dispersive atoms in C.
At each time t, we infer a photon number distribution and its average 〈n〉(t) from
information provided by the last Nt atomic detections. Figure 11(a) present the time
evolution of the inferred average photon number over 0.7 s for two realizations of
the experiment whose initial phases (first Nt atoms) are shown in Fig. 9.

The initial phase corresponds to the ' 26 ms time interval required to perform
the state collapse. Then, we observe a plateau with a constant photon number (5
or 7). In both cases, the duration of this plateau is long enough to allow for two
measurements of the photon number with two independent samples of Nt = 110
atoms. That these two measurements lead to the same result is a clear indication of
the QND character of this process.
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Figure 11: Repeated measurements. (a) Time evolution of the mean photon number 〈n〉(t) for the
two sequences whose collapse is shown in Fig. 9. (b) Four other trajectories with an initial collapse
in the nm = 4 Fock state. Reprinted by permission from Macmillan Publishers Ltd: Nature [18].

Our photon-counting procedure illustrates thus all the basic postulates for an
ideal projective quantum measurement. It provides a quantized result (an integer
photon number), whose value is randomly chosen with a statistical distribution given
by the initial cavity state. The repeatability of the measurement shows that it does
project the field state onto an eigenstate of the measured observable, the |nm〉 Fock
state, a situation radically different from that of all standard photo-detections.

After the initial plateau, we observe a stepwise relaxation of the photon number
towards zero. We monitor again the quantum jumps of light, while the photons
escape one by one from the cavity into the loss channels. The inset in the first curve
shows a zoom on the quantum jump between the 5 and 4 photon states. Recording
it requires the accumulation of information from a few tens of atomic detections
and is performed in about 10 ms. Note that the one-photon state in the trajectory
on the right has an exceptionally long lifetime (about 300 ms, nearly three average
lifetimes Tc).

Figure 11(b) presents four other trajectories, with an initial collapse in the 4-
photon state, exhibiting the randomness of the quantum jumps occurrences. Note on
the rightmost trajectory an upwards quantum jump corresponding to the creation
of a thermal excitation in C.

The master equation (31) predicts a smooth relaxation of the average energy,
the photon number decaying exponentially with a time constant Tc. This evolution
is quite different from the sudden jumps of Fig. 11. This is precisely the reason
why quantum jumps were sometimes considered as impossible before their actual
observation. This illustrates the difference between a single realization of a quantum
experiment and the ensemble average predicted by the density operator. Averag-
ing thousands of quantum jump trajectories, starting from randomly selected pho-
ton numbers, all exhibiting quantum jumps at different times, we indeed recover a
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smooth evolution in excellent agreement with the predictions of the master equation.
We have performed a detailed study of field relaxation [19]. By a careful analy-

sis of all quantum jumps trajectories, we reconstruct the damping-induced evolution
of the photon number distribution, starting from all Fock states with 0 to 7 pho-
tons. We get clear evidence of the fast decay of the high-lying Fock states, whose
lifetime is Tc/n. By a fit of the complete data, we extract the coefficients of the
most general linear master equation ruling the evolution of P (n, t). The results of
this partial quantum process tomography are in excellent agreement with Eq. (32).
Similar measurements have been performed simultaneously in the context of circuit
QED [45].

Finally, the QND measurement process leads naturally to the observation of the
quantum Zeno effect [46]. Whereas frequently repeated measurements do not affect
the dynamics of incoherent damping, they inhibit the coherent evolution of a quan-
tum system. An observed system does not evolve under the action of its Hamiltonian,
in clear correspondence with the second Zeno paradox negating motion. Quantum
Zeno effect has been observed on the evolution of a variety of two-level systems, first
on a trapped ion [47].

We have observed it for the coherent evolution of the cavity field under the
action of the classical source S [48]. We realize a long series of identical coherent
injections with a very small amplitude in the initially empty cavity. These amplitudes
add up and the field is finally in a mesoscopic coherent state, whose average photon
number grows quadratically with the number of injections, or with time. When we
perform, between injections, QND measurements of n, we project repeatedly, with a
high probability, the field back onto |0〉, since the probability for finding n = 1 after
a single injection is low. We observe that the field energy effectively remains nearly
zero, exhibiting the Zeno effect for the classical runaway process of field injection.

3.4 Quantum feedback: combating the jumps

The QND measurement procedure presented in the previous paragraph prepares
Fock states of the field. These highly non-classical states can be a quite interesting
quantum resource for quantum computing, quantum enabled metrology or quantum
communication. However, the measurement-based preparation is a random process.
We cannot predict which Fock state will be produced in one realization of the ex-
periment. Moreover, this resource is fragile and decoherence rapidly destroys it.

If non-classical states are to be used as a resource, it would be quite interesting
to prepare them on demand and to protect them from relaxation. A possible route
towards this goal is quantum feedback [49, 50], which extends to the quantum realm
the feedback circuits present in every complex classical system.

As in any feedback operation, a ‘sensor’ gets information on the system, a
‘controller’ estimates a proper distance between the present state of the system
and the ‘target’ one, and drives accordingly an ‘actuator’, which steers the system
towards the required operating point. The main difficulty quantum feedback has
to face is that the measurement by the sensor changes the system’s state, making
quantum feedback loops more subtle than their classical counterparts.

We have realized two experiments on a continuous feedback process preparing
Fock states and protecting them against decoherence [20, 21]. In both experiments,
the sensors are atoms, crossing the cavity in the dispersive regime. They provide
Quantum Non Demolition information about the number of photons in the cavity.
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Figure 12: Principle of the quantum feedback experiment for the preparation and protection of
Fock states.

This information is fed to the controller K (a fast real-time classical computer
ADwin-ProII by Jäger Messtechnik). The controller performs a Bayesian estimation
of the most likely state of the cavity field. It programs accordingly an actuator,
which should drive the cavity as close as possible to the target Fock state |nt〉.

The two experiments differ by the nature of the actuator. In [20], we use a classi-
cal source injecting a small coherent field in C, with controlled phase and amplitude.
The interplay of these tiny displacements with the repeated measurements by the
probe atoms results in the preparation and stabilization of Fock states containing
up to four photons. This experiment is nevertheless limited by the nature of its ac-
tuator. A classical source is not ideal to compensate for the single photon quantum
jumps due to decoherence. A quantum actuator would be much more appropriate.

In the second experiment [21], whose scheme is presented in Fig. 12, we use
resonant atoms as actuators. The scheme thus implies two type of atoms. The probe
atomic samples, prepared in g, undergo π/2 Ramsey pulses in R1 and R2 and interact
dispersively with the cavity mode. The final result of their detection is fed to the
controller K. The control atomic samples can be used as additional QND probes
when K estimates that the cavity field is close enough to the target state. When
the estimated photon number is higher than the target, K tunes these atoms at
resonance with C, via the Stark shift produced by the potential V applied across
the cavity mirrors. Left in the initial state g, they can thus absorb one photon out
of the mode. Prepared in e by a π resonant pulse in R1, they emit a photon in the
mode. Their final state is also recorded by K, providing additional information on
the feedback process. In order to get a good flux of information on the cavity state,
we send repeatedly sequences made up of 12 probe samples and 4 control ones.

The main task of K is to estimate the field state after the detection of each
sample, based on all available information. This estimation and the resulting actua-
tor settings must be performed within the Ta = 82 µs time interval between atomic
samples. Since the initial vacuum and the actuators bear no phase information, the
field density matrix remains diagonal in the {|n〉} basis and K needs only to update
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the photon number distribution p(n), a considerable simplification. Moreover, the
field Hilbert space is truncated to a maximum dimension of 8 and the code has been
carefully optimized.

In order to get a faithful estimation of the photon number, K takes into ac-
count all the available knowledge: all atomic detections (and the measured detection
efficiency in D), all actuator actions. It includes all the known and independently
measured experimental imperfections, It keeps track of cavity relaxation. For the
actuator atoms, K takes into account the independently measured resonant Rabi
oscillations in the field of N photons. It also includes the small probability to send
two resonant atoms in the same sample.

After this rather complex Bayesian inference, K obtains the estimated photon
number distribution p(n). It then computes all the possible photon number distribu-
tions corresponding to all choices for the next control sample at hand (which can be
used as an emitter, as an absorber, or as an additional QND probe). The controller
determines for each choice the expectation value of the distance to the target state
|nt〉, defined as d =

∑
n(n − nt)2p(n) = ∆n2 + (n − nt)2 (∆n2 and n are the pho-

ton number variance and mean value, respectively). This distance obviously cancels
only when the target is reached. The controller K finally implements for this control
atom the choice leading to the smallest distance.

Figure 13 shows the data of a single realization of the experiment with nt = 4.
It presents, as a function of time, from top to bottom, the detected sensor states, the
estimated distance d, the controller decisions to send emitter or absorber actuator
samples, and finally the evolution of the photon number distribution estimated by K
together with its average value. Starting from the vacuum at t = 0, emitting samples
are repeatedly sent until d comes close to zero. The photon number distribution is
then peaked on n = nt, with p(nt) ≈ 0.8 − 0.9. Around t = 50 ms, a downwards
quantum jump to n = 3 triggers the sending of few emitter samples, which rapidly
restore the target state. Close to t = 70 ms, another downwards jump is over-
corrected, leading to n = 5. Absorbers are then sent until restoration of the target.

The performance of the feedback procedure is assessed by reconstructing the
average final photon number distribution, independently from the estimation made
by K, and by comparing it to the reference Poisson distribution with nt photons on
the average shown in Fig. 14(a). The loop is interrupted at t = 140 ms. We then
send a few QND sensor samples [18]. From 4000 realizations of this experiment, we
reconstruct by a maximum likelihood procedure [19] the photon number distribution
plotted in Fig. 14(b). The measured fidelities with respect to the target state, are
about twice those of the corresponding Poisson distribution and the photon number
distributions are clearly sub-Poissonian.

Halting a feedback loop at a randomly preset time is not the optimal way of
using it. A much better performance is obtained when using the state estimation
by K for interrupting the feedback at a proper time. The histograms in Fig. 14(c)
present, for each nt, the p(n) distributions obtained with 4000 sequences interrupted
when K estimates that p(nt) > 0.8. The obtained fidelity is close to the expected
0.8 value up to nt = 3 and remains always larger than that of the histograms in
Fig. 14(b).

We have implemented a real-time quantum feedback operating in the steady-
state. The slow pace of the Rydberg atoms cavity QED experiments is a considerable
asset, since it allows K to perform its complex state estimation procedure in the time
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Figure 13: Single realization of the feedback experiment with nt = 4. The frames present versus
time, from top to bottom, the detected sensor states (upwards bars for e, downwards bars for
g), the distance d to the target, the actuators sent by K (emitters or absorbers) and the photon
number distribution p(n) inferred by K (gray scale) together with its average value (solid black
line). Reprinted by permission from Macmillan Publishers Ltd: Nature. [21].

Figure 14: Histograms of photon number distribution as a function of the target photon number nt.
(a) Reference Poisson distribution with nt photons on the average. (b) Photon number distribution
measured by an independent QND process after interrupting the feedback loop at t = 140 ms. (c)
Photon number distribution measured when K estimates that p(nt) > 0.8. Reprinted by permission
from Macmillan Publishers Ltd: Nature. [21].
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interval between two measurements of the cavity field. This is much more difficult
in optical or circuit QED experiments [51], in which the time scale is typically 1000
times faster.

4 Bohr’s complementarity and the Schrödinger cat

The cavity QED set-up can also be used, in a slightly different mode, to implement
another thought experiment, the Bohr’s moving slit interferometer (Fig. 1). Let us
consider the Ramsey interferometer made up of the zones R1 and R2. The oscillations
with φr of the probability πe for detecting the atom in |e〉 result from the quantum
interference between two different paths. Either the atom, initially in |g〉 and finally
in |e〉 absorbs a photon from the classical source in R1 or it absorbs it in R2. Since
the classical microwave field involves many photons, the addition of a single photon
in the low-Q Ramsey cavities does not modify appreciably their fields. Thus, the
two paths leading from the initial to the final state are indistinguishable and the
quantum interference of their probability amplitudes results in the Ramsey fringes.

When the cavity contains a Fock state, this picture is not modified. The Fock
state is unchanged by an atom crossing C either in |e〉 or in |g〉. The two paths
remain indistinguishable and we get Ramsey fringes, with a phase shift reflecting
the transient shift of the atomic enery levels in the cavity.

4.1 Atomic interferometry and “which-path” information

Let us now focus on the case where C initially contains a coherent field |γ〉. As seen
in Section 2.3, this coherent field is dephased in opposite directions for an atom
crossing the cavity in |e〉 or in |g〉. After the atom-cavity interaction, but before the
π/2 pulse in R2 we are thus left with the intermediate entangled atom-cavity state:

|Ψi〉 =
1√
2

[
e−iφ0/2 |e〉

∣∣γe−iφ0/2
〉

+ |g〉
∣∣γeiφ0/2

〉 ]
. (50)

The phase of the coherent field left in the cavity thus contains which-path informa-
tion about the atomic state inside the Ramsey interferometer. If this information is
unambiguous, i.e. if the phase-shift φ0 is much larger than the quantum uncertainty
on the coherent states phase, we expect that the Ramsey fringes should disappear
in direct application of the complementarity concept [2].

We can make this discussion more quantitative by writing the final atom-cavity
state after R2:

|Ψf〉 =
1

2
|g〉
[∣∣γeiφ0/2

〉
− e−iφ0/2e−iφr

∣∣γe−iφ0/2
〉]

+
1

2
|e〉
[
eiφr

∣∣γeiφ0/2
〉

+ e−iφ0/2
∣∣γe−iφ0/2

〉]
. (51)

From this state, we get the probability πe for detecting finally the atom in |e〉:

πe =
1

2

[
1 + Re e−i(φr+φ0/2)

〈
γeiφ0/2

∣∣γe−iφ0/2
〉 ]

, (52)

where the real part in the r.h.s. contains the Ramsey fringes signal oscillating with
φr.
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Figure 15: Schrödinger cat and complementarity. (a) Ramsey fringes for β = 3.1 and three different
Φ0 = φ0/2 values (0.1, 0.2 and 0.69 radians, corresponding to δ/2π = 712, 347 and 104 kHz
respectively from top to bottom). The insets give a pictorial representation of the two field phase
components. (b) Ramsey fringes contrast versus Φ0. The solid line corresponds to the theoretical
predictions, scaled by the finite Ramsey interferometer contrast. (c) Fringes shift (in radians) versus
Φ0. The slope of the fitted line provides a calibration of the photon number. Reprinted from [22].

When the cavity is initially empty, we obviously recover Eq. (40) for n = 0.
When the cavity field is non-zero, the Ramsey interference signal is multiplied by the
scalar product of the two coherent fields corresponding to the two quantum paths in
the interferometer. We recover here in a more quantitative way our complementarity
discussion. For a given phase shift per photon φ0, when γ is large, the two final field
states are nearly orthogonal. They record unambiguous which-path information and
the interference signal is lost. When γ is small, the two field states overlap, their
scalar product is nearly one and we get Ramsey fringes with a full contrast. More
precisely, we can write πe as a function of the average number of photons, n = |γ|2
in the initial coherent field:

πe =
1

2

[
1 + e−n(1−cosφ0) cos(φr + φ0/2 + n sinφ0)

]
. (53)

We recognise a light-shifted Ramsey signal, with a contrast decreasing exponentially
with n.

We have observed these Ramsey fringes with n = 9.5 [22] for different phase
splittings Φ0 = φ0/2 obtained by varying the atom-cavity detuning δ. The signals
for three different values of Φ0 are shown in Figure 15(a) with, in the insets, the
final field states represented qualitatively in phase space. The collapse of the fringe
amplitude when the field components separate is conspicuous. The fringe contrast
is shown versus Φ0 in Figure 15(b) and the fringe phase shift in Figure 15(c). In
these plots, the points are experimental and the curves given by theory, with an
overall contrast adjustment taking into account the imperfections of the Ramsey
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interferometer. Note that the theoretical formula above, valid in the dispersive limit,
do not apply for the smallest detuning δ = 104 kHz. An exact expression of the
phase shifts based on the exact dressed states is used for the largest value of Φ0.
This experiment presents a direct illustration of the complementarity concept in
a simple interferometer arrangement. Note that other complementarity tests, even
more directly related to Bohr’s moving slit original proposal have been performed
with the same set-up [52].

4.2 A cat in a box

Looking into the photon box at the end of the complementarity experiment leads
us to consider another thought experiment, the Schrödinger cat [9]. When the atom
is finally detected, we have no information on the state in which it actually crossed
the cavity, since the second π/2 pulse of the Ramsey interferometer mixes levels
|e〉 and |g〉. The field must thus be left in a quantum superposition of the two
phase-shifted coherent components

∣∣γe−iφ0/2
〉

and
∣∣γe+iφ0/2

〉
, a mesoscopic quantum

superpositions of two states differing by their classical phase.
More precisely, setting φr = −φ0/2, a final atomic detection after R2 projects

(within an irrelevant global phase) the field onto:

|Ψ±〉 =
1

N
(∣∣γe+iφ0/2

〉
±
∣∣γe−iφ0/2

〉)
, (54)

where the +(−) sign applies for a detection in e (g), N being a normalization factor.
When φ0 = π, we recognize the odd and even cat states introduced in Section 4. In
reference to this simple situation, we call even (odd) cat the state with the + (−)
sign for all φ0 values.

The cat state is, when |γ| is large, a quantum superposition of two quite distinct
classical states. It is expected to decay rapidly due to its coupling to the environ-
ment via the cavity losses. We have performed in an early experiment [22] a first
investigation of this decoherence process. It showed that the decay rate of the coher-
ence between the superposed states increases rapidly with their separation in phase
space, in good agreement with theoretical expectations.

A much more detailed insight into the cat decoherence can be obtained through
a complete reconstruction of the field density operator ρ as a function of time. As
discussed in Section 3.2, the QND measurement of the photon number leads to a
partial reconstruction. Many measurements performed on the same quantum state
allow us to reconstruct the photon number distribution, i.e. the diagonal of the
density operator in the Fock state basis. We have no access, however, to the non-
diagonal elements, which contain information on the field phase distribution. We
are unable, for instance, to distinguish a statistical mixture of Fock states with no
phase information from a coherent state, with a well-defined phase. Since we use
non-resonant probe atoms, they cannot extract information about the field phase.

A simple modification of the QND scheme allows us to reconstruct the full
density operator [23]. Before sending the QND probe atoms, we perform a dis-
placement of the cavity field, by letting the source S inject in C a coherent am-
plitude β with a well defined phase with respect to the initial cavity field ampli-
tude γ. This ‘homodyning’ procedure turns the cavity field density operator ρ into
ρβ = D(β)ρD(−β). We then send many QND probe atoms through C. By repeat-
ing the experiment many times, we measure the probability πe(φr|ρβ), conditioned
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Figure 16: Experimental Wigner functions of an even cat (a), odd cat (b) and statistical mixture
of two coherent components (c). The insets present the theoretical expectations. The average
photon number is 3.5 and the phase shift is φ0 = 0.74π. Reprinted by permission from Macmillan
Publishers Ltd: Nature [23].

to the translated cavity state. It writes simply πe(φr|ρβ) = Tr [G(β, φr)ρ], where
G(β, φr) = D(−β)M †

eMeD(β). We thus obtain finally, within statistical noise, the
average of the observable G(β, φr) in the initial cavity state.

Resuming the experiment for very many (up to 600) different translation am-
plitudes β carefully chosen in phase space, we obtain the average value of many
different observables G(β, φr) in the state ρ. We infer from these results all the ma-
trix elements of ρ, using an approach based on the maximum entropy principle [53].
This procedure determines the density matrix that best fits the data, while having
a maximum entropy −Trρ ln ρ. We thus make sure that the reconstructed state does
not contain more information than that provided by the experimental data. We fi-
nally represent the reconstructed density matrix by its Wigner function, which gives
a clearer insight into the main features of the states.

Figure 16(a) presents the measured Wigner function of the even cat (preparation
atom detected in |e〉), for |γ| =

√
3.5 and φ0 = 0.74π. The Wigner function presents

two positive bumps centred on the superposed classical amplitudes, γ exp(±iφ0/2)
(the cat’s ‘ears’). In between these two classical features, we observe a high contrast
interference pattern that reveals the quantum nature of the superposition (the cat’s
‘smile’). The observed Wigner function is quite close to the theoretical expectation
(shown in the inset).

The ‘size’ of this cat is measured by the square of the distance D between the
two classical components in phase space: D2 = 11.8 photons. The decoherence time
scale is expected to be Td = 2Tc/D2 at zero temperature. Note that the ears of our
cat are not exactly Gaussian (as should be for a superposition of coherent states).
This is not due to an imperfection in the reconstruction procedure, but to the cat
preparation stage. Since we are not deeply into the dispersive regime (the atom-
cavity detuning is δ/2π = 51 kHz, not very large compared to Ω0/2π), the phase
shift of a Fock state depends in a non-linear way on the photon number, leading to
a slight deformation of the coherent components.

Figure 16(b) presents the Wigner function of the odd cat. The classical compo-
nents are the same, but the interference pattern is phase-shifted by π as compared to
that of the even cat. Finally, Fig. 16(c) presents the Wigner function of a statistical
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Figure 17: For snapshots of the Wigner function of a decaying Schrödinger cat state. The initial
state is the even cat of Fig. 16(a). The snapshots are taken 1.3 ms, 4.3 ms, 15.8 ms and 22.9 ms
(from front to back) after cat preparation.

mixture of the two coherent components. It is obtained by mixing data correspond-
ing to different detected states of the preparation atom. The cavity state is then
a statistical mixture of the odd and even cat, or equivalently a statistical mixture
of the two coherent components. The classical ears are still there, but the smile is
gone, as expected.

For the reconstruction of ρ, we can repeat the experiment many times for each
β value. We thus use only a few QND atoms in each realization and still achieve
good statistics. We chose to detect about 20 atoms in a 4 ms time interval. We are
thus able to measure the time evolution of the field state (or of its Wigner function)
with a decent time resolution.

Figure 17 presents four snapshots of the even cat Wigner function evolution [the
conditions are those of Fig. 16(a)]. The quantum feature, the cat’s smile, decays
much faster than the energy (the energy decay corresponds to a slow motion of
the ears towards the origin, with a time constant Tc/2). After about 23 ms, the
contrast of the interference pattern is considerably reduced and we are left with a
mere statistical mixture. From these data, we deduce the decoherence time scale,
Td, defined as the damping time of the non-diagonal elements of the density matrix
in the coherent state basis. We get Td = 17± 3 ms, in excellent agreement with the
theoretical expectation, 19.5 ms, taking into account the finite mode temperature.

We get in this way a detailed insight into the cat state decoherence. More precise
measurements, with quite larger cats, could allow us to realize a full quantum process
tomography of the cavity relaxation. Experiments on ‘decoherence metrology’ are
interesting to test alternative interpretations of the conspicuous lack of quantum
superpositions at the macroscopic scale [54].
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5 Conclusion

We have briefly described microwave cavity QED experiments which implement
some of the thought experiments proposed by Bohr and the founding fathers of
the quantum theory. We can trap photons in boxes and weigh them with scales at
the atomic level. We are able to count the number of photons in the box without
absorbing them in an ideal Quantum Non Demolition measurement of the field
intensity. This process directly illustrates all the prescriptions of the Copenhagen
interpretation for quantum measurements. We can record which-path information in
an atomic interferometer, as with Bohr’s thought moving slit device for interfering
particles. We directly illustrate the complementarity concept by showing that full
which-path information and interference fringes are mutually incompatible.

These experiments lead to the preparation of mesoscopic quantum states and
mesoscopic quantum superpositions. The QND measurement process prepares Fock
states. We have performed a detailed study of their relaxation. The slow pace of these
experiments and the exquisite controllability of the atomic system make it also pos-
sible to test strategies to combat decoherence. Quantum feedback uses information
extracted by QND probes to deterministically steer the cavity field towards a pre-
scribed Fock state. It also protects these non-classical resources from decoherence
by reversing rapidly the adverse effects of quantum jumps.

The complementarity experiment leads to the preparation of a quantum su-
perposition of mesoscopic coherent states, a mesoscopic equivalent of the famous
Schrödinger cat. A full quantum state reconstruction procedure, also based on the
QND atomic probes, allows us to get a detailed insight into the decoherence of this
cat state. These experiments are thus also well suited for the exploration of the
boundary between the quantum and the classical worlds.

All these achievements open promising perspectives. One of them involves the
interaction of slow circular Rydberg atoms with the cavity. In the present set-up,
the atom-cavity interaction time is limited to about 100 µs by the thermal velocity
of the atomic beam. This is an asset when we need to extract information rapidly
out of the cavity, but it is a severe limitation for other experiments. We are thus
developing a new set-up, represented in Fig. 18, where the atoms will be prepared
inside the cavity itself, out of a slow atomic beam in a fountain arrangement. Atoms
excited near their turning point interact with the mode for times in the millisecond
range, only limited by their free fall through the mode’s waist. The limited levels
lifetime makes it mandatory to perform the field ionization detection also in the
cavity structure.

With these long interaction times, we could generate large cat states, containing
up to a few tens of photons with high fidelities and monitor their decoherence. We
could realize quantum random walks for the phase of the cavity field, driven by a
single atom [55]. We could realize engineered reservoirs for the cavity field relaxation,
made up of atoms crossing the cavity one by one. We have shown recently that this
strategy prepares and stabilizes against mundane decoherence a large class of non-
classical states [56, 57].

Finally, the atom-cavity interaction time could be long enough to resolve the
anharmonicity of the dressed-levels ladder and to address selectively a transition
corresponding to one precise photon number. We have shown recently that we could
realize a Quantum Zeno Dynamics (QZD) in this context [58, 59]. QZD [60] gener-
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Figure 18: Experimental set-up under construction, featuring a slow atomic beam in a fountain
arrangement to prepare circular atoms nearly at rest in a high-Q cavity (only one mirror is shown).
The electrodes around the cavity are used for the circular state preparation and field-ionisation
detection. A fast horizontal atomic beam with its Ramsey zones and detectors is used for cavity
diagnostic.

alizes the Quantum Zeno Effect to measurements of an observable with degenerate
eigenspaces. Under such frequently repeated measurements, the system evolution
is confined in one of these subspaces, and proceeds under the restriction of the
Hamiltonian in the subspace.

Frequent interrogation of a photon-number selective transition in the dressed
levels implements such a dynamics, restricting the evolution to photon numbers
smaller or larger than the addressed one. This leads to non-trivial dynamics and to
the efficient generation of non-classical states. Combining these interrogations with
global displacements, we proposed ‘phase space tweezers’, able to pick out a sin-
gle coherent component in a complex cat-like superposition and to move it at will,
independently from the others. Moreover, these tweezers can be adapted to pre-
pare such superpositions rapidly from the initial vacuum state, a rather fascinating
perspective.
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