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1 Introduction

Flows of hard granular systems are ubiquitous in nature and technology, yet are still
poorly understood. Compared to truly microscopic dynamical or statistical mechan-
ical systems, an unusual feature of granular systems is that they are intrinsically
frictional and dissipative. Not only can dissipation arise through inelastic collisions
between the particles, but also from frictional sliding between smooth or rough grain
surfaces.

In the quasi-static “critical state” regime [1], the strain rates are smaller than
any time scale of the system. One would expect deformations in this regime to
be predominantly plastic in nature, corresponding to relatively long-lived particle
contacts on the time scale γ̇−1. Beyond this regime, there appears to be a “dense
granular flow” regime, marked by strain rates obeying√

P/ρgL2 < γ̇ <
√
P/ρgd2, (1)

with P the pressure, ρg the density, L a characteristic flow scale, and d the grain
diameter. It is suspected that this regime has a rheology that distinguishes it from
a higher strain-rate regime, in which

γ̇ >
√
P/ρgd2. (2)

This higher-strain rate regime seems to be appropriately described by kinetic-theory
based studies [2].

The degree to which such studies can be extended into the dense granular
flow regime defined by Eq. (1) remains controversial. A number of authors have
claimed that key aspects of the rheology of dense granular flow can be recovered
within kinetic theory treatments that include particle inelasticity and interparticle
friction [3]. Halsey and Ertaş, and Jenkins, have posited the appearance of coherent
structures in dense granular flows, which are difficult to reconcile with the underlying
assumptions of kinetic theories [4, 5]. A significant work by the group author GDR
MiDi pointed out that much of the phenomenology of dense granular flows can be
organized using the “Inertia Number” [6]

I ≡ dγ̇/
√
P/ρg. (3)

An interesting feature of these results is the anomalously large fluctuations in the
grain velocities, which scale with I in the dense flow regime,
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〈(~v(~x)− 〈~v(~x)〉)2〉
(γ̇d)2

∼ I−χ, (4)

where in dimensionalities D = 2, 3, χ ≈ 1 [6, 7]. Setting

I ≡ d/`, (5)

defines the scale ` of the coherent structures hypothesized by Halsey and Ertaş.
The motivation to consider the dimensionless parameter I as a ratio of the

particle diameter and a “mesoscopic” length scale ` arises from the overall phase
diagram of flow on an incline. The dominant observational fact about the steady-
state incline flows is the “Pouliquen flow rule,” which connects the average velocity
u of a flow of height h with the height hstop(θ) at which flow ceases for a chute of
inclination θ [8]. [The angle of repose θR(h) is the inverse of the function hstop(θ).]
The Pouliquen flow rule gives a scaling form for u,

u√
gh

= F (
h

hstop
), (6)

with g the gravitational acceleration, and where the function F (x) ≈ 0.136x for
glass beads, and has a similar linear form for other types of particles [8, 9, 10].

The scaling u ∝ h3/2 in the Pouliquen flow rule is consistent with the classical
Bagnold rheology [11]. But the Pouliquen flow rule also connects the coefficient of
this proportionality, u = ABag(θ)h3/2 with the thickness of the pile at that inclination
below which flow arrests. Halsey and Ertaş have pointed out that this feature of the
Pouliquen flow rule follows from the dependence of the rheology on I if it is assumed
that flow arrests for thicknesses less than hstop ∼ d/I = ` [4]. Although Halsey and
Ertaş proposed that this length scale corresponded to large-scale “eddy” structures
in the flow, such eddies have proven elusive; a direct attempt to measure ` by
measuring velocity correlations in flows was not successful [7].

The broad features of Pouliquen’s conclusions have been confirmed by a series
of numerical studies [9]. For relatively thin piles, the Bagnold rheology breaks down,
but the thicker piles show a Bagnold rheology and obey the Pouliquen flow rule,
albeit with a slightly larger value of β (The crossover is examined numerically in
[12]). Although at large but not enormous values of particle stiffness, instantaneous
coordination numbers are high (unlike in kinetic theory treatments), the duration
of two-body collisions is still short compared to inverse strain rates γ̇−1 [13]. The
density in the interior of the piles is independent of depth.

In this article I turn to the role of friction at enduring contacts in plastic flows.
Of course, assuming that such long-lived contacts persist into the dense granular
flow regime is problematic, due to the considerations regarding the short duration
of two-body collisions mentioned above. To extend the conclusions of this work into
this regime will require that the correlations characteristic of plastic flow with rolling
and sliding contacts survive in a regime of frequent, albeit short, collisions between
any particle and its neighbors. This would imply that a full theoretical description
of this regime will require a synthesis of plastic flow and kinetic theory concepts.

Provided that the microscopic coefficient of friction µ defining the maximum
value of the tangential force T at a contact divided by the normal force N is ap-
preciable, we would anticipate that a significant fraction of long-lived contacts in a
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deforming granular packing will be rolling as opposed to sliding. Simple counting of
the number of constraints vs the number of variables indicates that states in which
all contacts are rolling are not possible at coordination numbers Zc > 3 for D = 2
or Zc > 4 for D = 4. These results are simple extensions to the dynamical case of
the famous isostatic criteria for static packings [14].

An interesting soluble case in D = 2 is presented by the honeycomb lattice,
for which all particles have a coordination number Zc = 3 exactly. This allows for
a general solution of all states obeying the rolling constraint, corresponding to a
full solution of the kinematics for this packing, in the limit µ → ∞, over times
short enough that collisions do not degrade the lattice. It is also possible to solve
exactly for both the tangential and normal forces exerted between the particles in
this lattice; I present this explicitly for a particularly symmetric case of motion.

A striking feature of the kinematic solution is that even if the overall shear
remains moderate, the rotational velocities of the particles are quite large. For a
region of the packing of size ` with a constant shear γ̇, the typical rotational velocity
of the particles is ω ∼ γ̇`/d. In addition, forces develop that limit the size of these
regions of constant shear to

` <

√
P/ρg
γ̇

, (7)

due to the requirement that all normal forces remain compressive. (Dry granular
packings are unable to support tensions between the particles.) Equation (7) corre-
sponds to the definition of the coherent structure size ` given in Eqs. (3,5) above.

Turning to disordered lattices, we see that the rotations arise from an underlying
short-ranged anti-ferromagnetic ordering in the rotational velocities of the individual
grains. This short-ranged ordering is frustrated by the existence in disordered lattices
of odd plaquettes with odd numbers of links around the plaquette. In fact, it follows
that it is not possible, even for quite large values of the coefficient of friction, for
all of the particle contacts in a lattice with odd plaquettes to be rolling contacts.
However, if sliding contacts are allowed, such that every odd plaquette has at least
one sliding contact, then the remaining contacts can be rolling contacts; results on
spin glasses then imply that it is possible that long-range ordered antiferromagnetic
“spin-glass” regions will form. Of course, given the lack of direct correspondence
between a statistical mechanical model (spin glasses) and a driven dissipative non-
equilibrium system, it is not possible to draw rigorous conclusions from this analogy.

The remainder of this article is divided into 4 sections. In Section 2, we derive the
critical coordination numbers for rolling states, and we solve the rolling kinematics of
the honeycomb lattice. In Section 3, we solve a special case for the dynamics of this
state. In Section 4, we turn to disordered lattices in D = 2, using a Fokker-Planck
approach to show the basis for the anti-ferromagnetic ordering and the analogy to
spin glasses. We also comment on the applicability of these results to the three-
dimensional case. In Section 5, we conclude.

2 Kinematics of Rolling States

Consider a set of Ng spherical grains of diameter d, indexed by i, in D dimensions
with velocities ~vi and rotational velocities (in D = 2 or D = 3, the generalization
to higher dimensions is obvious) ~ωi. We further suppose the existence of pairs of
grains 〈ij〉 in contact with one another, and for which there is no relative motion of
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the surface points in contact (corresponding to frictional locking of the particles.)
Suppose that the vector connecting the pair 〈ij〉 is δ ~w〈ij〉, with |δ ~w〈ij〉| = d. Then
the requirement that the relative motion of the surface points in contact be zero is

~vi − ~vj ≡ δ~v〈ij〉 =
1

2
(~ωi + ~ωj)× δ ~w〈ij〉. (8)

Taking the derivative with respect to time of this constraint yields a constraint
for the accelerations of the grains ~ai and angular accelerations ~Γi

δ~a〈ij〉 =
1

2
(~ωi + ~ωj)× δ~v〈ij〉 +

1

2
(~Γi + ~Γj)× δ ~w〈ij〉. (9)

These equations substantially constrain both the motion of the grains and the forces
between the grains. Equation (8) gives D − 1 constraints per contact. The require-
ment that the grains stay in contact gives one further constraint. Since each particle
has D(D + 1)/2 degrees of freedom without contacts, this means that the total
number of degrees of freedom NF is

NF

Ng

=
D

2
(D + 1− Zc), (10)

where Zc is the average coordination number of the grains. We thus see that the
average coordination Zc ≤ D + 1 in order for the rolling state to be mobile at all,
and Eq. (10) then gives the effective number of degrees of freedom remaining to the
packing.

Note that the coordination number can exceed this value if some of the contacts
are sliding instead of rolling. In this case, there are D constraints per rolling contact,
and only one constraint at a sliding contact. If we write the average number of rolling
and sliding contacts per particle respectively as ZR

C and ZS
C , then[16]

NF

Ng

=

[
D

2
(D + 1)− D

2
ZR
c −

1

2
ZS
C

]
, (11)

which is similar to an “isostatic” argument for a packing with a mixture of Coulomb
saturated and unsaturated contacts [17].

The forces are even more completely determined. The total number of contact
forces is exactly the same as the number of constraints on the accelerations given
by Eq. (9), with the result that all of these forces are determined by the contact
network, the velocities and angular velocities of the particles, and the boundary
conditions, even for Zc < D + 1. (This result can be extended to the case of sliding
contacts [18].)

With the kinematics thus determined, the equations of motion of the particles
can be integrated until one of two possible types of crisis occurs to disrupt the
network (See Figure 1).

1. If two grains collide, they will very rapidly (within a collision time set by
the Young’s modulus of the particles) establish a contact with a finite normal
force, provided they are sufficiently inelastic. This also changes the network, and
hence the kinematics. In this case the impulse arising from the collision will, in
general, result in a jump in the velocities and forces, which may be significant in
the neighborhood of the new contact. Corresponding to the change in kinetic
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Particle Collision Contact Failure

Figure 1: Two types of crisis can disrupt a lattice of rolling grains: a) two grains collide, creating
a new contact, or b) two grains separate due to the normal force between them reaching zero.

energy caused by the velocity jumps there will be a net energy dissipation
corresponding to the collision event [19].

2. If the normal force between two grains becomes zero, the grains will separate.
This effectively changes the contact network, and the kinematics must now be
solved with the new contact network. However, we do not anticipate that this
change in kinematics will correspond to any jump in the velocities or forces.
This event does not lead to any dissipation.

In a statistical steady state, the number of contact failures per unit time should
equal the number of new contacts created by collisions per unit time.

2.1 The Honeycomb Lattice

In D = 2, we can construct an explicit example of a rolling state at the critical coor-
dination number Zc = 3 by considering a honeycomb lattice (Figure 2). We consider
a relatively symmetric lattice, characterized by one angle θ; the basic plaquettes of
the lattice are equilateral (although not necessarily regular) hexagons.

We describe the system as a lattice of “doublets” made up of two grains in
contact. The positions of these doublets we index by (j, k), with either j, k both
even, or j, k both odd. The positions of the centers of the doublets are then (x, y) =
(cxj, cyk), with cx = d(1 + cos θ) and cy = d sin θ. Note that the axes of the Bravais
lattice of doublets are oriented along the angles ±θ/2. With the doublets oriented
along the x-axis, the requirement that the two grains stay in contact and have a
rolling contact constrains the velocities and rotational velocities of the left-hand and
right-hand grains, uLx , u

L
y ,Ω

L;uRx , u
R
y ,Ω

R

uLx = uRx ≡ ux, uLy ≡ uy − d
4
(ΩL + ΩR), uRy ≡ uy + d

4
(ΩL + ΩR) , (12)

which reduces the six degrees of freedom of the two grains taken independently to
the four degrees of freedom remaining after the imposition of the constraint that
the contact be a permanent, rolling contact. These four degrees of freedom are
conveniently taken as the average x and y velocities of the doublet, ux, uy, and two
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Figure 2: A honeycomb lattice has the critical coordination number Zc = 3 at which a frictional
packing becomes mobile in D = 2. We work with a set of honeycomb lattices characterized by the
single parameter θ. We also show the fundamental “doublet” and the coordinate system.

(re-dimensioned) combinations of the two rotational velocities ∆ = d
2
(ΩL + ΩR),

ξ = d
2
(ΩL − ΩR).

Now let us consider the constraints imposed by the requirement that the
contacts between the doublet and other grains be rolling. Consider the contacts
between the doublet at j, k and the doublets at j − 1, k − 1 and j + 1, k − 1. Let us
write the vector z(j, k) describing the doublet kinematical state,

z(j, k) = (ux(j, k), uy(j, k),∆(j, k), ξ(j, k)). (13)

The contact rolling equations have the form

z(j, k) = Ā−z(j − 1, k − 1) + Ā+z(j + 1, k − 1), (14)

with Ā−(θ) and Ā+(θ) given, after some labor, by

Ā− =


1
2

1
2

tan( θ
2
) 0 1

4
tan( θ

2
)

cot(θ)
2

1
2

1
4

0
0 − 1

1+cos θ
−1

2
1
2

cos θ
1+cos θ

csc θ 0 −1
2

1
2

 , (15)

and

Ā+ =


1
2

−1
2

tan( θ
2
) 0 −1

4
tan( θ

2
)

− cot(θ)
2

1
2

−1
4

0
0 1

1+cos θ
−1

2
−1

2
cos θ

1+cos θ

− csc θ 0 1
2

1
2

 . (16)

Solutions to Eq. (14) can be written in the Bloch-Floquet form

z(j, k) =

∫ π/2

−π/2

dq

π
eıqj

4∑
n=1

αn(q)(λn(q))kvn(q), (17)

with

Ā(q)vn(q) = λn(q)vn(q), (18)
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where Ā(q) is

Ā(q) = cos(q)

 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

+ı sin(q)


0 − tan( θ

2
) 0 −1

2
tan( θ

2
)

− cot(θ) 0 −1
2

0
0 2

1+cos θ
−1 − cos θ

1+cos θ

−2 csc θ 0 1 0

 .

(19)
We can now directly diagonalize Ā(q) to obtain the eigenvalues and eigenvectors.

{λ1(q); v1} = {−1; [0,−1/2, ı cot(q/2), 1]}, (20)

{λ2(q); v2} = {1; [0,−1/2,−ı tan(q/2), 1]}, (21)

{λ3(q); v3} = {e−ıq; [
sin θ

2
,
cos θ

2
, 0, 1]}, (22)

{λ4(q); v4} = {eıq; [−sin θ

2
,
cos θ

2
, 0, 1]}. (23)

These modes can obviously be combined to give a wide variety of different
possible motions. We are most interested, however, in motions corresponding to low
wavenumber deformations of the lattice. With some manipulations, we can determine
the general solution for constant velocity gradients. With β1,2,3,4 ∈ <, we write

z(j, k) =


sin θ

2
(β3(j − k)− β4(j + k))

cos θ
2

(β3(j − k) + β4(j + k))− β2

2
j + β1

4
(−1)k

β1j(−1)k

β2j + β3(j − k) + β4(j + k)− β1

2
(−1)k

 . (24)

Note that for β1 6= 0, but β2,3,4 = 0, there is no large-scale motion of the
lattice, but rather compensating motions of neighboring doublets. Although we have
not introduced the concept of an excitation energy, the β1 mode is reminiscent of
“optical” modes in standard lattice dynamics, which have finite energy even at zero
wave-vector, and corresponds similarly to compensating motions inside a Bravais
lattice cell.

The other three modes correspond to simple shear motions. The β2 mode cor-
responding to shear along the y-direction (Figure 3), while the β3 and β4 modes
corresponding to flow perpendicular to the directions ±θ. (see Figure 4). Flows such
as extensional flows that combine simple shear motions can be easily constructed
from these three simple shearing modes.

It is notable that in all of the simple shearing modes, the parameter ξ =
d
2
(ΩL−ΩR) increases linearly across the shearing region (Figure 3). While the average

angular velocity 〈ω〉 obeys

〈ω〉 ∼ γ̇, (25)

where γ̇ is the overall shear, the average value of the angular velocity squared, 〈ω2〉
depends additionally on the size of the system (or of the coherently shearing region
within the system) `,

〈ω2〉 ∼
(
γ̇`

d

)2

. (26)
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net velocity

Figure 3: The β2 mode from Eq. (24) corresponds to grains counter-rotating in each vertical chain,
with the magnitude of the rotations increasing linearly with the coordinate x. This generates an
overall pure shear, with the velocity in the vertical direction.

3 Forces in Rolling States

Simply showing that a state is kinematically possible does not imply that it is
dynamically feasible–to accomplish this latter, we must also determine a set of in-
terparticle forces with which it is consistent. For a granular system, this will be a set
of normal forces N and tangential forces T across each contact, subject to the two
constraints that N > 0, since grains cannot exert tensional forces on one another,
and T ≤ µN , with µ the coefficient of friction.

Note that despite the fact that we are considering rolling contacts, we assume
that any value of T ≤ µN is admissible, and do not restrict ourselves to values of
T corresponding to “free rolling” [19]. This is due to the fact that our particles are
in general constrained by several contact forces, so the contact dynamics will be
governed by the laws of “tractive rolling”, which allow any value of T ≤ µN .

Returning to our honeycomb lattice, consider a doublet at position (j, k). Such
a doublet is influenced by 8 forces exerted across its 4 contacts, as well as by two
internal forces exerted by the two grains on one another. It is convenient to use
a geographical notation to describe the external forces– the forces exerted by the
doublet at (j − 1, k + 1) on the doublet at (j, k) are termed NNW , TNW , with T
defined so that a force in the counter-clockwise direction is positive. Similarly, we
define the forces exerted by the (j + 1, k + 1), (j + 1, k − 1) and (j − 1, k − 1)
doublets respectively as (NNE, TNE), (NSE, TSE), and (NSW , TSW ) (see Figure 5).
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Figure 4: The three acoustic modes of the kinematics correspond to shear directed perpendicular
to the y-axis, and perpendicular to the directions ±θ/2.

The force exerted at the internal contact is (N0, T0), with T0 defined so that T0 > 0
corresponds to a counter-clockwise force on each grain.

With some tedious but straightforward algebra, we can convert the six equations
of motion of the two particles in the doublet into four equations coupled to our
natural kinematical variables, plus two equations determining the internal forces
N0, T0 (which we here omit). We write M and IM for the masses and moments of
inertia of the grains, with κ = IM/Md2. The result for the dynamical equation for
the doublet is [15]

 NNW

TNW
NNE

TNE

 = B̄(θ)

 NSW

TSW
NSE

TSE

+ 2MC̄(θ)


u̇x
u̇y

(1 + κ)∆̇

κξ̇

 , (27)
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(NNE,TNE )

(NSW,TSW )

(NNW,TNW )

(NSE,TSE )

RRLL uu ,,

fundamental doublet

(N0,T0 )

Figure 5: Eight forces are exerted on a fundamental doublet of the honeycomb lattice by its
neighbors; two additional forces are exerted by the doublet particles on one another.

with B̄(θ) and C̄(θ) given by

B̄(θ) =


2 sin2(θ/2) − sin θ cos θ − sin θ

sin θ − tan(θ/2) − cos θ − sin θ + tan(θ/2) 2 sin2(θ/2)
cos θ sin θ 2 sin2(θ/2) sin θ

sin θ − tan(θ/2) 2 sin2(θ/2) − sin θ + tan(θ/2) − cos θ

 , (28)

and

C̄(θ) =
1

2


1 − csc θ tan(θ/2) − cot θ

− tan(θ/2) 0 cos θ
1+cos θ

1
−1 − csc θ − tan(θ/2) − cot θ

− tan(θ/2) 0 cos θ
1+cos θ

−1

 , (29)

Note that (NSW (j, k), TSW (j, k)) = (NNE(j − 1, k− 1), TNE(j − 1, k− 1)), with
equivalent identities for the other forces. The forces can be written as NNW (j, k)

TNW (j, k)
NNE(j, k)
TNE(j, k)

 =

∫ π/2

−π/2

dq

π
eiqj

 NNW (q, k)
TNW (q, k)
NNE(q, k)
TNE(q, k)

 . (30)

We then can immediately write the equation determining solutions to the homoge-
neous problem,  NNW (q, k)

TNW (q, k)
NNE(q, k)
TNE(q, k)

 = B̄(θ)D̄(q)

 NNW (q, k − 1)
TNW (q, k − 1)
NNE(q, k − 1)
TNE(q, k − 1)

 , (31)
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with

D̄(q) =

 0 0 e−ıq 0
0 0 0 e−ıq

eıq 0 0 0
0 eıq 0 0

 . (32)

The eigenvalues and eigenvectors {νn;un} of B̄(θ, q) = B̄(θ)D̄(q) are given by

{ν1(q);u1} = {−1; [e−ıq tan θ, e−ıq,− tan θ, 1]}, (33)

{ν2(q);u2} = {1; [−e−ıq tan θ,−e−ıq,− tan θ, 1]}, (34)

{ν3(q);u3} = {e−ıq; [0, 0, cot(θ/2), 1]}, (35)

{ν4(q);u4} = {eıq; [− cot(θ/2), 1, 0, 0]}. (36)

These eigenvectors are in fact quite intuitive. Each of the eigenvectors 2-4 corre-
sponds to a set of parallel force chains in one direction in the lattice, as is illustrated
in Figure 6; eigenvector 1 is more complex.

Figure 6: The fundamental homogeneous modes of the forces correspond principally to force chains,
including both normal and tangential forces, directed along the lattice directions of the honeycomb
lattice. The force chains shown correspond to the second force eigenvector, given in Eq. (34).

Given the homogeneous solutions, it is straightforward to determine the solution
to the inhomogeneous problem for which the packing is moving. Writing

2MC̄(θ)


u̇x(q, k)
u̇y(q, k)

(1 + κ)∆̇(q, k)

κξ̇(q, k)

 =
4∑

n=1

υn(q, k)un(θ, q), (37)

with

υn(j, k) =

∫ π/2

−π/2

dq

π
eiqjυn(q, k), (38)
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we have the inhomogeneous equation NNW (q, k)
TNW (q, k)
NNE(q, k)
TNE(q, k)

 = B̄(θ, q)

 NNW (q, k − 1)
TNW (q, k − 1)
NNE(q, k − 1)
TNE(q, k − 1)

+
4∑

n=1

υn(q, k)un. (39)

This equation is easy to solve. Writing NNW (q, 0)
TNW (q, 0)
NNE(q, 0)
TNE(q, 0)

 =
4∑

n=1

τn(q)un, (40)

we immediately obtain NNW (q, k)
TNW (q, k)
NNE(q, k)
TNE(q, k)

 =
4∑

n=1

[
k−1∑
k′=0

νk
′

n υn(q, k − k′) + νknτn(q)

]
un. (41)

As an example, let us consider extensional flow: ux ∝ x, uy ∝ −y. This type of
flow has the advantage that it preserves the overall symmetries of the honeycomb
lattice, and can thus be interpreted parametrically by making the angle θ a function
of time, θ(t). Let us choose the simple case that

θ(t) = −Λt+ θ0. (42)

with Λ > 0.
With some labor, it is possible to determine the inhomogeneous contribution to

the forces corresponding to this motion,

 NNW (j, k)
TNW (j, k)
NNE(j, k)
TNE(j, k)


inhom.

=
dMΛ2

2
[cos θ tan(θ/2)]

k
2

2

 tan θ
1

tan θ
−1

+ jk

 − cot(θ/2)
1

cot(θ/2)
1


 . (43)

where we have neglected terms of less than quadratic order in j, k.
It is clear that this inhomogeneous contribution includes negative values of the

normal forces at sufficiently low values of k/j, and that these scale with k2 (at fixed
k/j). In addition, it is also easy to determine the inhomogeneous part of the internal
normal force within a doublet, N0,inhom. (at quadratic order in j, k) [15],

N0,inhom. = −dMΛ2 sin θ

2
k2 (44)

which is also negative, and also scales with k2.
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Thus, no matter what the value of the homogeneous term for the forces (corre-
sponding to the term proportional to τ in Eq. (41)), the requirement that normal
forces be positive will ultimately be overwhelmed by the growth of the inhomo-
geneous term. Note that it is the contacts most perpendicular to the direction of
acceleration that are most at risk of losing their normal forces. In addition, with a fi-
nite coefficient of friction, the tangential forces will ultimately saturate the Coulomb
criterion and slippage will occur at grain contacts, invalidating our kinematical as-
sumptions. However, even with an infinite coefficient of friction, the motion of the
packing is limited to a domain size controlled by the requirement that all normal
forces be compressional. If the scale of the homogeneous forces is determined by the
average pressure in the packing P , then the scale ` of this domain size is determined
by

`

d
=

1

Λd

√
P/ρg, (45)

with the density ρg ∼ M/d2. Comparing to Eqs. (3), we see that this is equivalent
to

` =
d

I
, (46)

which connects the length scale over which frictionally dominated motion can de-
termine the kinematics with the Inertia Number I, in a manner consistent with the
physical picture of Halsey and Ertaş.

Note that this result can also be obtained on dimensional grounds. The accel-
erations in a shearing state, as determined in the above calculation, will typically
be directed normal to the contacts, leading to a local relative acceleration of

~ai − ~aj ∼ γ̇2d. (47)

However, if the motions are coherent, as in a shearing motion, then accelerations
will accumulate across a region `, so that the typical acceleration in this region will
be

~ai ∼ γ̇2`. (48)

Similarly, the forces will need to accumulate to drive these accelerations, so we
conclude that the force scale will be

N ∼M
(γ̇`)2

d
(49)

which is the scale of the inhomogeneous forces computed explicitly above. This
follows entirely from the coherent nature of the accelerations, and does not require
that the contacts be rolling. Thus, any state in which Eqs. (47,48,49) hold will also
have its regions of coherent shear limited to the scale ` = d/I, including much more
disorderly states than the honeycomb lattice. I will return to this point in Section 4
below.
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4 Kinematics of Random Grain Packings

Let us reconsider the kinematics of the honeycomb lattice state, as defined by
Eq. (17). An initially surprising feature of this state is the role played by ξ =
d
2
(ΩL − ΩR), which increases linearly with distance in states with overall linear be-

havior of the average velocities ux and uy. Thus, one way to view the motion of the
honeycomb state is by decomposing it into alternating sub-lattices, A and B (see
Figure 7), on which the particles are approximately counter-rotating with respect
to one another. The spatial variations of these counter-rotations then determine the
overall spatial structure of the flow. Now we must consider random lattices, and
determine, in particular, if there is any remnant of this feature for such lattices.

A

A

A

A

A

A

A

B

B B

B

B

B

B

Figure 7: The honeycomb lattice shear solutions correspond to approximate counter-rotation of
two alternating sublattices of grains, here indexed by A,B.

To determine the nature of the random lattice solution that respects the
constraining large-scale motions, we apply a two-point Fokker-Planck approxima-
tion. Consider a random walk that moves entirely between grains in contact with
one another (see Figure 8). Provided that the instantaneous contact network per-
colates, such a random walk can access arbitrarily distantly separated parts of the
grain packing. Over the set of all particle contacts 〈ij〉 we can define a probability
distribution ρ(θ, δ~v) on the angles of the contacts θij and the differences in grain
velocity across the contacts δ~vij = ~vi−~vj. For simplicity of notation we are confining
ourselves to two dimensions; however, the generalization to arbitrary dimensions is
clear, and is assumed in much of the discussion below.

We now assume that in the random walk described in the previous paragraph,
subsequent steps in the random walk correspond to uncorrelated choices of θij, δ~vij
from the distribution ρ(θ, δ~v). (The neglect of correlations in this approximation is
clearly dangerous, particularly in lower dimensionalities, of which more later.)

Let us define a matrix corresponding to the average changes in position and
velocity corresponding to one step in this random walk,
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Figure 8: In the Fokker-Planck approximation, we consider random walks from grain to grain
passing always through contacts between the grains.

M̄ =

 〈δwxδwx〉 〈δwxδwy〉 〈δwxδvx〉 〈δwxδvy〉〈δwyδwx〉 〈δwyδwy〉 〈δwyδvx〉 〈δwyδvy〉
〈δvxδwx〉 〈δvxδwy〉 〈δvxδvx〉 〈δvxδvy〉
〈δvyδwx〉 〈δvyδwy〉 〈δvyδvx〉 〈δvyδvy〉

 . (50)

In this matrix, the averages are easily written, e.g.

〈δwxδwx〉 =

∫
dθ

∫
d(δ~v)ρ(θ, δ~v)(d cos θ)2. (51)

We can now write directly the limiting result for the probability distribution
ρn(∆~w,∆~v) after n steps of the random walk, with n→∞,

ρn(∆~w,∆~v) =
1√

(2πn)4 det(M̄)
exp

{
− 1

2n

[(
∆~w ∆~v

)
M̄−1

(
∆~w
∆~v

)]}
. (52)

We can use this probability distribution to compute properties of the velocity
distribution arising from the fundamental two-particle correlations expressed in M̄.
Thus the expectation value of the velocity at the spatial point ~x is given by

〈~v(~x)〉 =

∫
dn
∫
d~v(~v)ρn(~x,~v)∫

dn
∫
d~vρn(~x,~v)

. (53)

As an example, consider a case in which 〈δwxδwy〉 = 〈δvxδvy〉 = 0, and 〈δwxδvx〉
= 〈δwyδvy〉 = 〈δwyδvx〉 = 0, but in which 〈δwxδvy〉 6= 0. In this case we can write
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M̄ =

 〈δwxδwx〉 0 0 〈δwxδvy〉
0 〈δwyδwy〉 0 0
0 0 〈δvxδvx〉 0

〈δvyδwx〉 0 0 〈δvyδvy〉

 . (54)

We can now invert M and use Eq. (53) to show that

∂〈vy〉
∂x

=
〈δwxδvy〉
〈(δwx)2〉

, (55)

and
∂〈vx〉
∂x

=
∂〈vx,y〉
∂y

= 0, (56)

corresponding to pure shear motion.
In this way, any motion that is linear in the coordinates can be associated with

values of the coefficients of the matrix M̄, corresponding to particular correlations
of neighboring grains. This approach has an interesting feature; however, in that it
leads to divergent fluctuations in dimensions below D = 4.

The generalization of the above formulae to ρ
(D)
n (~x,~v) with D > 2 is simple, so

we can consider, for instance,

〈(~v(~x)− 〈~v(~x)〉)2〉 = lim
N→∞

∫ N
0
dn
∫
d~v(~v2 − 〈~v〉2)ρ

(D)
n (~x,~v)∫ N

0
dn
∫
d~vρ

(D)
n (~x,~v)

. (57)

Simple power-counting leads immediately to the conclusion that

〈(~v(~x)− 〈~v(~x)〉)2〉 ∼ N2−D/2. (58)

If we suppose that ` ∼
√
N corresponds to some maximum “coherent” length scale

that can be probed by the random walk, then we see that

〈(~v(~x)− 〈~v(~x)〉)2〉 ∼ `4−D. (59)

Note that assuming that I = d/`, as is done in the theory of incline flow of Halsey
and Ertaş [4], gives a divergence of the squared velocity fluctuation

〈(~v(~x)− 〈~v(~x)〉)2〉 ∼ ID−4, (60)

compared to the numerical result

〈(~v(~x)− 〈~v(~x)〉)2〉 ∼ I−χ. (61)

The numerical results for the values of χ in D = 2, 3 are not definitive on its actual
value, although χ ≈ 1 in D = 2 is likely [6], and a similar and perhaps smaller value
seems to hold in D = 3 [7].

It is striking that an argument with so little physics predicts a divergence of
the velocity fluctuations, and with an exponent similar to that observed numerically
[6, 7]. However, the neglect of correlations undermines the quantitative credibility
of this argument1.

1Note that a similar argument could be used for a molecular fluid, in which case it would clearly be wrong, by
equipartition– highlighting the importance of correlations.
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Up to now, we have not implemented any requirement that the velocities be
determined by the angular motions of the particles. This is seemingly quite straight-
forward, e.g. the averages of δ~v appearing in M̄ can easily be written in terms of
the angular motions of the particles, using Eq. (8), for the rolling contacts. Then, as
remarked above, the percolation of the contact network insures that we can still con-
struct the master probability distribution for the fluctuations of ∆~w,∆~v, as in the
above argument. There is, however, a subtle and important flaw in this procedure.

Restricting ourselves for the moment to two dimensions, let us try to determine
large scale variations in the angular velocities Ωi using a procedure analogous to
that we used above for large scale variations in the velocity. Since the velocity
moments for neighboring particles are functions of the sum of the angular velocities,
~vi − ~vj = ẑ × (~wi − ~wj)(Ωi + Ωj), we will restrict ourselves to these variables in
computing large-scale variations of Ω, which is feasible provided we consider the
combination of two successive steps on the lattice of rolling contacts.

If we construct an analogous formula to Eq. (52) for the evolution of the distri-
bution of Ω over a random walk, we can write

∂Ω

∂x
=
〈δwxδΩ〉
〈(δwx)2〉

. (62)

Note that we have assumed above that there is a stationary distribution ρ(θ, δ~vij).
If such a distribution is not a function of position, then there is no local indicator
of position arising either from the angular distribution of contacts, nor from the
nearest-neighbor velocity differences. For rolling contacts, this implies, as utilized in
the above, a stationary distribution ρ(θ,Ωi+ Ωj). To use this to evaluate an average
of Ωi − Ωj, we can concatenate two subsequent steps in our random walk, from
i→ j → k, and write that for this compound step

〈δwx;i→k(Ωk − Ωi)〉 =

〈(δwx;i→j + δwj→k)× [(Ωk + Ωj)− (Ωj + Ωi)]〉 =

d〈cos θij(Ωi + Ωj)− cos θjk(Ωj + Ωk)〉 = 0, (63)

so that we conclude that it is not possible for a distribution with a stationary
ρ(θij,Ωi + Ωj) to describe a grain packing with any large-scale spatial variation of
Ω.

However, inspired by the discussion above regarding the role of ξ = d
2
(ΩA−ΩB)

in the honeycomb lattice case, we can immediately construct an exception to this.
Suppose the packing of grains connected by rolling contacts can be described as
consisting of two disjoint sub-packings A and B, so that no two A grains, nor any
two B grains, are in rolling contact with one another. In this case, we can posit that
the distribution used in the random walk depends on whether one is passing from
an A grain to a B grain or vice versa, i.e. ρAB(θ,ΩA + ΩB) 6= ρBA(θ,ΩB + ΩA) =
ρAB(θ + π,ΩA + ΩB), where this latter requirement follows from the reversibility of
the random walk. Then we see that in this case, supposing that i, k are on the A
packing, and j is on the B packing,

〈δwx;i→k(Ωk − Ωi)〉 =

〈(δwx;i→j + δwj→k)[(Ωk + Ωj)− (Ωj + Ωi)]〉 =

2d〈cos θij(Ωi + Ωj)〉AB, (64)
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where 〈〉AB is defined as the integral over ρAB(θ,ΩA+ΩB). Now we can develop linear
gradients in Ω on sub-lattice A, provided that the gradient of Ω on the alternating
sub-lattice B has the opposite sign, as in the honeycomb lattice solution.

Thus, the state will be characterized by a function ΩA(x, y) on the A sub-lattice,
and by ΩB(x, y) on the B sub-lattice, with

∂〈ΩA〉
∂x

≈ −∂〈ΩB〉
∂x

≈ 〈cos θij(Ωi + Ωj)〉AB
d〈(cos θij)2〉AB

(65)

This criterion will enforce that relative local particle surface velocities will be
small where an A-lattice particle contacts a B-lattice particle, which is suitable to a
slowly strained system with frictional contacts. Both ΩA and ΩB vary linearly across
a shearing region. Thus, the dimensional constraint on the forces, Eq. (49), should
still apply for random lattices, resulting in a restriction of the coherently shearing
region to a scale ` = d/I. Finally, the overall shear is determined in this case by

∂〈vy〉
∂wx

=
〈cos2 θij(Ωi + Ωj)〉AB

2d〈(cos θij)2〉AB
. (66)

To build an explicit example of a shearing state on a random graph, suppose
that we fix the rotations on the A and B sub-lattices to be simple functions of
position alone,

ΩA = ΩA(~x) = Ω
(0)
A + ~Ω

(1)
A · ~x, (67)

ΩB = ΩB(~x) = Ω
(0)
B + ~Ω

(1)
B · ~x. (68)

Then for two particles in contact at positions ~x and ~x+ δ ~w,

ΩA(~x) + ΩB(~x+ ~w) = (Ω
(0)
A + Ω

(0)
B ) + (~Ω

(1)
A + ~Ω

(1)
B ) · ~x+ Ω

(0)
B · δ ~w. (69)

In order for local velocity gradients to be independent of position, as in the above,
we need

~Ω
(1)
B = −~Ω(1)

A ≡ ~Γ, (70)

and we also write, for convenience

Ω
(0)
A + Ω

(0)
B = ϕ. (71)

Since we have fixed the angular velocities ΩA,B as functions of position alone,
we can suppress the dependence of ρAB on ΩA + ΩB, and approximate

ρAB(θ) = ρ0 + ρ1
~b · δ ~w +O(~w2), (72)

with, of course,
δ ~w = d(cos θ, sin θ). (73)

Reviewing Eqs. (55,66), we see that to lowest order in the anisotropy, the numerator
of this expression will determine the overall shear structure. Thus let us consider
the following tensor,

Tlm,AB = 〈δwlδvm〉AB ≈
∫

(dδ ~w)(ρ0 + ρ1
~b · δ ~w)δwl

[
1

2
(ϕ+ ~Γ · δ ~w)ẑ × δ ~w

]
m

, (74)
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where we have used the vector structure appropriate to D = 2 as well as the funda-
mental contact rolling Eq. (8). The integral is easily performed, yielding

Tlm,AB =
d2

4
ρ0ϕεlm +

d2

16
ρ1

[
~b · ~Γεlm − bl(εmpΓp)− Γl(εmpbp)

]
. (75)

From this formula, it is easy to find, for any ~b, the values of ϕ and ~Γ corresponding
to any particular shearing motion. Note that it is necessary to have both a linear
gradient in the angular velocities (non-zero ~Γ) and anisotropy in the contact dis-

tribution among the two sub-lattices (non-zero ~b) in order to generate a shearing

motion. Of course, for any such motion, the value of ~b will be determined by the
kinetics of the motion, so in practice such motions will be realized as functionals of
(ϕ, ~Γ).

In general, it is not possible to decompose a random lattice into two alternate
sub-lattices such that no contacts are created among elements of a single sub-lattice.
The situation is analogous to an anti-ferromagnet on a random graph, for which
plaquettes bounded by odd numbers of particles are frustrated (see Figure 9) [22].
In order to preserve the structure of the state indicated above, with ΩA ≈ −ΩB, we
require that enough of the particle contacts are sliding so that all remaining contacts
can be rolling contacts between grains on alternate sublattices. It then follows that
ρAB is understood as the distribution across rolling contacts only, not including
sliding contacts.

A

A

A B A B

A B

B

B

A B

Figure 9: In a random lattice, a decomposition of the lattice into two alternating sub-lattices will
generally result in “frustrated” contacts, across which sliding must occur.

If we wish to apply the reasoning of Eqs. (45-49) to the random lattice, and
derive a length scale ` beyond which a coherently shearing patch will be destabi-
lized by the disappearance of normal forces, we must specify what we mean by a
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“coherently shearing patch” in a random lattice. For a general random lattice with
some density of “odd” plaquettes, there will be a number of possible choices of which
contacts must slide so that the others may roll. From the argument of the preceding
paragraph, it is clear that this enumeration problem is exactly analogous to the enu-
meration of the states of an anti-ferromagnet on the corresponding random graph.
The statistical mechanics of this latter problem has been studied–in two dimensions,
there appears to be a spin-glass phase at zero temperature, which does not extend
to finite temperature [21]. Although the granular problem is not a thermal statis-
tical mechanical problem, it is natural to identify the coherence that is destroyed
by the disappearing normal forces with the zero-temperature spin glass order of the
analogous anti-ferromagnet. With this interpretation of the meaning of “coherence”,
we again expect

` =
d

I
(76)

to set the maximum size of a coherent domain, following the argument of Eqs. (45-
49). A more dramatic indicator of the existence of the state which we are discussing
would be a strong short-ranged anti-ferromagnetic order corresponding to a predom-
inance of rolling contacts.

We can contrast our results with numerical simulations reported by the group
of Alonso-Marroqúın et al. [20]. In a two-dimensional shear cell, this group observed
that the macroscopic shearing motions of a dense granular packing (simulating fault
gouge) decomposed, on smaller scales, into regions of coherent vorticity (which in
our notation corresponds to ∆ constant, ξ ≈ 0), regions of “ball-bearing motion”
(corresponding to the counter-rotating motion of our two sub-lattices), and shear
zones in which sliding dominated. Due to the predominance of rolling contacts,
particularly at high coefficients of friction, the overall macroscopic friction observed
in the shear cell was considerably less than the microscopic coefficient of friction.
The decomposition of the solution into regions with qualitatively different properties
violates the assumption that there is a uniform distribution ρ(θ, δ~v), on which our
argument above was based.

The first of the Alonso-Marroqúın motions, corresponding to large-scale vortic-
ity, was not observed in three-dimensional numerical studies specifically designed to
look for velocity correlations in chute flows [7]. Also, at high coefficients of friction,
the Alonso-Marroqúın kinematics was “earthquake-like”, with much of the slip oc-
curring in discontinuous jumps. We might suspect that such discontinuous kinetics,
associated with pattern formation, are more characteristic of low values of I (cor-
responding to ` � L, with L an overall flow scale), than they are of intermediate
values of I.

Finally, we are also able to use this picture to speculate on the nature of the
µ → ∞ limit. Consider the tangential and normal forces Tc, Nc at a typical sliding
contact, Tc/Nc = µ. These forces will be determined by the overall force balances
subject to the motions of the grains, and we expect that both Tc and Nc will be
∼ PdD−1. Since these forces have a fixed ratio at the sliding contacts, we see that
limµ→∞Nc = 0, since this will be the solution to the force balances in preference to
a case in which Tc →∞. Thus, in the limit, the sliding contacts will see their normal
forces driven to zero; i.e., these contacts will be eliminated as physical contacts. We
would thus expect that in the limit µ → ∞ all of the plaquettes will have even
numbers of sides, and the frustration will be eliminated, in any mobile state.
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4.1 Three-Dimensional Case

The extension of these arguments to three dimensions is straightforward. The orig-
inal contact-rolling equations Eqs. (8,9) clearly apply in three dimensions, and the
diamond lattice plays the same role in D = 3 of a potential model system as did the
honeycomb lattice in D = 2. To conserve the labor of the author and the patience
of the reader, we are not presenting details of the diamond lattice kinematics in this
work; we only wish to point out that the diamond lattice does support alternating A
and B sublattices analogously to the honeycomb lattice case, which allows shearing
states obeying ~ΩA ≈ −~ΩB to be constructed.

For random lattices, the arguments of the previous section should hold in three
dimensions just as in two dimensions (indeed, they should be more valid, since the
upper critical dimension of D = 4 is closer). Again, the optimal decomposition of
the random lattice into two alternating sublattices is analogous to the problem of
determining a ground state for an anti-ferromagnet on a random graph. Again, odd
plaquettes must have at least one sliding contact, corresponding to a frustrated bond
in the random anti-ferromagnet. In three dimensions, these odd plaquettes can be
viewed as threaded by “odd lines”, introduced by Rivier and Duffy [23]. For pure
shear, we expect the direction of the typical angular velocity to be perpendicular to
the shearing motions, so that the analogy is to an Ising anti-ferromagnet, and not
to a Heisenberg anti-ferromagnet. Note that the degenerate case in which particles
rotate about an axis through the contact between the particles is assumed not to
play a significant role.

5 Conclusions

The principal conclusions of this article are

1. Frictional packings, dominated by rolling contacts, cannot be mobile above a
coordination number Zc = 3 (D = 2) or Zc = 4 (D = 3). These thresholds are
consistent with those obtained using similar arguments by authors studying the
isostaticity of static packings. These criteria are modified in a straightforward
manner if some of the contacts are sliding as opposed to rolling.

2. The honeycomb lattice in D = 2 offers a case in which the rolling kinematics
can be exactly solved. The most surprising feature of the result is that the scale
of the angular velocities ω grows linearly with the size of the system, although
the average of the angular velocity is moderated by the fact that the rotations
on two alternating sub-lattices roughly cancel.

3. The dynamics of the honeycomb lattice can also be solved. The conclusion is
that the requirement that all normal forces be compressive can only be satisfied
for packings smaller than `, with

` ∼ d/I, (77)

where I is the Inertia Number, given by Eq. (3).

4. For random lattices, a Fokker-Planck approximation to the kinetics yields the
same key result as for the honeycomb lattice, i.e., that the typical angular veloc-
ity grows linearly with the size of a coherently rolling region. Again, the average
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angular velocity is much smaller. The presence of odd plaquettes of particles
in contact will require compensating sliding contacts even if the coefficient of
friction is large; the statistics of these sliding contacts are analogous to those
of frustrated bonds in random anti-ferromagnets.

There remains the very interesting question of the nature of the flow for scales
larger than `. We can understand the role of ` by considering the free volume in the
system. For flows in systems of size L < `, while free volume might be created by
collisions generating a granular temperature, such free volume can be removed from
the system through the role of inelasticity (or friction) in quenching the granular
temperature. On the other hand, for L > `, free volume must be created and persist
in the system, regardless of the quenching effect of inelasticity. It is simply no longer
possible for all of the stress-transmitting contacts to have lifetimes > γ̇−1, consistent
with observations of the relatively short duration of most two-particle collisions [13].
Although we have focused on the continuous motion of systems for which L < `, the
fact remains that the chute flow phase diagram, or the results of Alonso-Marroqúın
mentioned above, emphasize the difficulty of flowing granular systems of size < `,
suggesting that as a practical matter free volume is necessary to achieve a robust
flowing state.

I would claim that the rheology of this state, in which free volume plays a signif-
icant role, while many neighboring particles also have rotational motions effectively
locked to one another, is probably poorly addressed by conventional or modified
kinetic theory approaches, due to the presence of long-range correlations in particle
motion. The interpretation of the GDR MiDi or Pouliquen flow rule type rheologies
in terms of a length scale ` obviously disallows such approaches. In this article, I
have shown that this length scale ` does have a clear physical meaning for L < `;
however, it remains to be seen what aspects of this meaning persist for systems of
size L > `.
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