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Abstract. The Fractional Quantum Hall effect provides a unique example of a quantum system with
fractional quantum numbers. We review the tunneling experiments which have brought into evidence
the fractionally charged excitations, the fractional occupation of the quantum states and the non-linear
quantum transport related to the chiral Luttinger liquids properties.

1 Introduction

The quantum Hall effect is one of the most remarkable macroscopic manifestation of quantum
mechanics in condensed matter after superconductivity and superfluidity. The phenomenon is ob-
served in a two-dimensional electrons gas (2DEG) at low temperature in a high perpendicular
magnetic field. Landau Levels (LL) form due to cyclotron motion quantization in 2D and are
highly degenerate. However, the degeneracy can be lifted by the interactions. The system can be
viewed as a flat macroscopic atom made of 10 electrons. As for atoms or nuclei, particular values
of the filling of the electronic states lead to more stable ground states with large energy gap for the
excitations. The equivalent of magic atomic quantum numbers are integer or fractional values of
the filling factor v = p/q of the electronic quantum states (p and ¢ integers). The filling factor, is
given by the ratio of the electron density ng to the density ny = B/¢o of flux quantum ¢o = h/e.
It can be varied either by sweeping the magnetic field or by changing the electron density. The
magic values of v are experimentally revealed by plateaus in the Hall resistance %e%. The Integer
Quantum Hall Effect, discovered by Klitzing [1], occurs when v = p (¢ = 1) when there is a com-
plete filling of the degenerate LLs. The Fractional Quantum Hall Effect [2, 3] occurs at v = p/q
(g = 2s + 1, s integer). The underlying physics is the Coulomb interaction which lifts the LL de-
generacy to form new correlated quantum liquids with energy gap and with topological excitations
having a fractional charge e/(2s + 1).

The Quantum Hall effect, and in particular the Fractional Quantum Hall effect [4], have
completely renewed our knowledge of quantum excitations. Topological fractionally charged ex-
citations [3], with anyonic or exclusonic fractional quantum statistics [5], composite fermions [6]
or composite bosons [7], skyrmions [8, 9], etc., ... are the natural elementary excitations required
to understand the quantum Hall effect. The quantum Hall effect have made real some concepts
invented for the purpose of particle physics theories or used in mathematical physics for quantum
integrable systems [10]. It is remarkable that Coulomb interaction and Fermi statistics, the sim-
plest ingredients one can imagine, are responsible for a so rich physics. No interaction with the host
material is needed as in the case of superconductivity. For macroscopic samples, however, a little
amount of disorder is required to localize the topological excitations and thus to allow observation
of Hall resistance quantization over a finite range of magnetic field (the Hall plateaus). It is a rare
example where imperfections help to reveal a fundamental quantum effect. For narrow mesoscopic
samples, disorder is to be avoid, and the QHE is revealed by the integer or fractional conductance
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quantization associated with the formation of chiral one dimensional edge modes. The properties
of chiral edge modes are deeply related to the bulk properties of the Quantum Hall electron fluid.

I will focus here on tunneling experiments which allow for probing the fractional excitations
and the fractional filling of the states. More general reviews on the quantum Hall effect can be found
for example in Refs [11, 12, 9]. In these tunneling experiments, the charge transfer occurs between
gapless chiral modes, called edge channels, which form at the periphery of a QHE fluid. Indeed,
as the longitudinal conductance in the bulk vanishes, only these modes can generate a current
in response to a potential drop. The edge channels can be easily connected to metallic contacts
arranged at the periphery of the sample and then to an external circuit. In the IQHE they can
be considered as good realization of 1D metals with the remarkable property that backscattering
is suppressed by chirality. In the FQHE regime, they inherit from the bulk several non-trivial
properties. First, they are no longer Fermi liquids. Their quantum dynamics is very similar to that of
Tomonaga-Luttinger liquids predicted for 1D interacting electrons. The relevant excitations which
propagate the charge information is no longer the fermionic Landau quasiparticle (the screened
electron) but bosonic collective neutral modes (plasmons) instead. A remarkable consequence is the
power law vanishing tunneling density of state (TDOS) at the Fermi energy. Indeed, an electron
locally injected from an external contact into an FQH edge must excite many of these collective
modes. If injected at the Fermi sea, no mode can be excited, and the tunneling rate vanishes
(orthogonality catastrophy). A second non-trivial property inherited from the bulk is the possibility
to extract from the edge a fractionally charged e/(2s + 1) quasiparticle for v = p/(2s 4+ 1). Such
quasiparticle tunneling between fractional edges is only observable when tunneling through the bulk
FQHE liquid. An additional requirement due to the Luttinger liquid physics is a large bias voltage
applied between the edges. Otherwise, at low voltage (and low temperature) near equilibrium, only
integer charge is observed in experiments (the Luttinger liquid properties of the edges forces the
quasiparticles to ‘bunch’ to form ordinary electrons). The detection of the fractionally charged
quasiparticles have been made possible by the current noise generally associated with tunneling
and called shot noise. This became recently possible thanks to the development of very sensitive
current noise measurements in mesoscopic physics. For weak tunnel current, the temporal statistics
of charge transfer is Poissonian, and the current noise is a direct measure of the charge carrier.
The fractional quantum Hall effect is the first, and until now unique, example of a system with
fractionally charged carriers. Also using shot noise, it has been also possible to follow the cross
over from fractional to integer charges when reducing the bias voltage. At equilibrium, voltage
lower than kpT the resonant tunneling of electrons between edge states can be used to probe the
fraction of charge associated with the addition of a single flux quantum in the ground state using
conductance measurement. The charge accumulated on a micrometer edge state ring is shown to
vary by fractional increments with flux either by changing the magnetic field or by varying the
size of the ring with a gate. This demonstrates that individual quantum sates participating to the
formation of the collective ground state are actually filled by a fraction of electron. This is this
fractional occupation which is responsible for the exact fractional quantization of the conductance.

The notes are organized as follows. Section II will describe the chiral edge one-dimensional
modes which form in a finite 2D electron gas in perpendicular magnetic field. In section III, the
chiral Luttinger liquid physics is presented. Tunneling experiments revealing the anomalous power
law density of states will be reviewed. In section IV, non equilibrium experiments probing the
charge carrier by measuring the shot noise of the current will be described. In V we will show how
equilibrium resonant tunneling experiments can probe the fraction of charge which fills individual
states participating to the ground state.
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Figure 1: Left: decomposition of the electron coordinates (z,y) into cyclotron orbit coordinates
(&,m) and the coordinates of the obit center (X,Y"). Right: energy Landau levels formed by quan-
tization of the cyclotron orbits

2 Tunneling in the Quantum Hall regime

2.1 Edge states in the integer quantum Hall regime

The kinetic energy K = (1:2_%)2’ q = —e, of an electron moving freely in the plane perpendicular
to a magnetic field B = Bz is quantized into Landau levels:
1
E,=(n+ §)hw° (1)

( we = eB/m* : cyclotron pulsation). This reflects the quantization of the cyclotron motion. As
the energy depends on a single quantum number n while there are two degrees of freedom, there
is a high degeneracy. The degeneracy comes from the freedom to choose the center of cyclotron
orbits and is equal to the number Ng = neS = eBS/h of magnetic flux quanta ®y = h/e in the
plane. To see this, one can replace the conjugate pairs of electron coordinates [z, p;] and [y, p,] by
a new set of conjugate pairs, see Fig.1, using the cylindrical gauge A = (—By/2, Bz/2,0):

[€,1] = [vy/we, vz /we] = —ih/eB (2)
[X,Y] =ih/eB (3)

with:
(z,y) = (X +&Y +n) (4)

The Hamiltonian now writes H = $mw?(¢2 4 1?), so the first pair of conjugate coordinates repre-
sents the fast cyclotron motion. For an eigenstate |n) of H, the cyclotron radius is:

1
= (] € 2 )2 = (n+ )2 5)

It increases with the orbital Landau level index n. The characteristic length I, = (%/ eB)l/ % is called
the magnetic length. H does not depend on the second pair of coordinates R = (X,Y"), the center
around which electrons perform cyclotron orbits. However, orbit center positions can not be chosen
completely freely in the plane as announced above. The commutation relation [X,Y] = ihi/eB put
restrictions on the number of possible distinct states. There is a finite degeneracy which is easy to
estimate using the following analogy. The plane is similar to the semi-classical phase space (P, Q)
of a one-dimensional system for which it is known that the effective area occupied by a quantum
state is h as [@, P] = ik . Similarly, the area occupied by a quantum Hall state is h/eB, the area
of a flux quantum. The degeneracy per unit area is thus ng, the density of flux quanta; it is the
same for all Landau levels. The semiclassical analogy will be usefull to get intuition about the
one-dimensional character of the dynamics of electrons in two dimensions contrained to stay in a
given Landau Level.
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Figure 2: Left: (a) Schematic representation of edge states and of (b) the Landau level bending.
(c) reflection of an edge state by a controlled artificial impurity called Quantum Point Contact.
(d) analogy with 1D semiclassical trajectories in the phase space.

2.1.1 Edge states

In real sample of finite size, the 2DEG is bounded thanks to a permanent electric field directed
perpendicular and toward the perimeter. The confining electric field compensates the long range
Coulomb electronic repulsion and prevents electrons to escape from the area. It can be provided
by ionized donor atoms in the host semiconductor lattice and uniformly distributed inside the
region filled by electrons. Alternatively, an extra confinement can be provided by a gate negatively
polarized with respect to the electrons and placed close and outside the electron area.

The Hamiltonian in presence of a potential U(z,y):

(p+eA)’
2m*

H= +U(z,y) (6)
can be simplified if the potential is smooth over the length I, and [.|VU| < hw.. The mixing
between Landau Levels can be neglected and H ~ )" |n) H, (n|. The dynamics of electrons
within the n'* Landau level is described by the projected Hamiltonian:

H, = (n+1/2)hw. + U™ (X,Y) (7)

where U™ (X,Y) = (n|U(z,y) |n) ~ U(X,Y) is the confining potential averaged over the fast
cyclotron motion. If the electric field due to confinement is along the ¥ direction, electrons drift
along the boundary, the Z direction, with velocity X = (1/eB)dU/dY . The Lorentz force com-
pensates the electrostatic field, a direct consequence of the quantization of the velocity modulus
(ZL(p—(—e)A)? =0). In the bulk, U ~ 0, the drift velocity is zero. Electrons do not move on
average although performing fast cyclotron motion.

2.1.2 Edge channels

At zero temperature, electrons fill the Landau level up to a Fermi Energy Er. The Fermi energy,
here measured from the zero of kinetic energy, is defined by the exchange of electrons with a
reservoir (practically: a contact somewhere on the edges). Here we disregard spin for simplicity
and assume U translationally invariant along ¥ and vanishing in the bulk.

In the bulk, when (p — 3)hw, < Ep < (p+ 3)hw. electrons fill all the bulk states of the first
p (integer) Landau Levels according to Fermi statistics. The filling factor is v = p. There is a gap
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hw, for creating internal excitations which leads to vanishing longitudinal conduction in the bulk.
There is also an energy cost Er — (n + 1/2)hw, to extract an electron from the n** Landau Level
to the Fermi energy.

Toward edges, Landau levels are adiabatically bend by the potential U(Y") and depopulate
when crossing the Fermi energy, see Fig.2(a) and (b). For the n** LL this occurs at Y = Yrn,
when the energy cost Er — (n + 1/2)lw. — U(YF,,) vanishes. This defines p lines along the edge
with gapless excitations. This lines of gapless excitations restore conduction.

The one dimensional chiral conduction modes so formed are called edge channels. They can
be connected to external contacts fixing their Fermi energy. The drift of electrons along the equipo-
tential lines generated by the confining potential gives rise to a persistent chiral current . When the
Fermi energy rises from Er to Er+¢eV , each mode contribute to increase the persistent chiral cur-

rent by an equal contribution: AI = e flf:((;;)ﬂv) dy.ne(1/eB)oU/JY = %V. Thus each edge
62

channel is associated with a conductance equal to the quantum of conductance <-. This result can
be equally viewed as a special case of the Landauer formula (which is valid in the more general case
of quantum conductors, even in zero magnetic field) or as the quantization of Hall conductance.
Landauer formula and quantized Hall conductance are direct consequence of the Pauli principle:
the filling factor of quantum states is one.

2.1.3 Tunneling between edge channels

Edge channels are ideal one dimensional (chiral) conductors : the physical separation between
pairs of opposite edge channels prevents backscattering and electrons propagate elastically over
huge distances (~mm at low temperature) as phonon scattering is reduced. These properties have
made them a convenient tool to test the generalization of the Landauer formula: the Landauer-
Biittiker relations [13, 14] derived in the context of the mesoscopic quantum transport. In order to
do that it is necessary to induce intentionally elastic backscattering in a controllable way.

The tool used is a Quantum Point Contact (QPC) as shown in Fig.2(c). A negative potential
applied on a metallic gate evaporated on top of the sample depletes electrons to realize a narrow
constriction in the 2DEG. This allows a controllable modification of the boundaries of the sample.
The separation between opposite pairs of edges channels of a given Landau level can be made so
small that the overlap between wavefunctions lead to backscattering from one edge to the other.
The QPC creates a saddle shape potential. When the potential at the saddle point is close but
below the value Er — (n + %)hwc, electrons emitted from the upper left edge channel start to be
reflected into the lower edge channel with probability R < 1 while they are still mostly transmitted
with probability 7' = 1 — R. When the saddle point potential is above Uf, electrons are mostly
reflected and rarely transmitted 7' < 1 and the reflection quickly reaches R = 1.

For getting better intuition on edge channel tunneling, Fig.2(d) shows the semi classical
analogy between the real space coordinates (Y, X) of the 2D Hall conductor and the (P, Q) phase
space coordinate of a real 1D conductor. The physics of tunneling between opposite edge channels
is clearly equivalent to that of the tunneling in a 1D system. However the chirality allows us to
inject or detect electrons at the four corners of the phase space, something impossible with 1D
systems.

Measuring the conductance is a good tool to know how many edge channels are transmitted.
According to the Landauer formula, the conductance G is defined as the ratio of the current I
through the QPC to the voltage difference V' between the upper left and lower right contacts.

G:%(p*1+T) (8)

if there are p — 1 channels transmitted while the p** channel is partially transmitted with trans-
mission 7.

Figure 3 shows the reflection of edge channels starting from v = 8 in the bulk. One starts with
8 channels transmitted and when applying negative voltage on the gate the successive reflection
6 edge channels is observed by quantized plateaux in the resistance (here, the ”access” resistance
h/8e? has been subtracted).
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Figure 3: resistance of the QPC versus the QPC gate voltage showing the reflection of the six first
edge states for v = 8, at T=45mK. The values of v are indicated on the resistance plateaus. The
resistance for v = 8 has been subtracted.

All this can be transposed to the fractional quantum Hall effect regime.

2.2 Edge states in the fractional quantum Hall regime

We will assume a spin polarized system and the first orbital Landau level partially filled : ny < ng or
v < 1. Before describing fractional edge states, we will briefly present some general characteristics
of the Fractional Quantum Hall effect.

Because of Landau level degeneracy, at partial filling there is a large freedom to occupy the
quantum states, i.e. to fill the plane with electrons. However electrons interact and the Coulomb
repulsion will reduce our freedom to distribute electrons in the plane. Let us first consider the limit
of infinite magnetic field when the filling factor goes to zero. The Gaussian wavefunctions describing
the cyclotron motion shrink to zero. Electrons being like point charges behave classically (no overlap
between quantum states) and minimize their energy to form a crystalline state (analogous to the
electron crystal observed in dilute classical 2D electron systems in zero field ). The Landau level
degeneracy is broken and a unique ground state is formed. In the present case, weaker magnetic
field, i.e. v not too small, the wavefunctions overlap. Electrons can not be localized to a lattice
but instead will form a correlated quantum liquid. For some magic filling factors, interactions will
break efficiently the Landau level degeneracy to form a unique collective wavefunction minimizing
the energy. The magic filling factors are found to be odd denominator fractions: v = 1/3,1/5, 2/3,
2/5,3/5,2/7, ... [15].

2.2.1 The Laughlin states

The ground state separated from a continuum of excitations by a gap A is described by a unique
collective wavefunction. For v = 1/(2s+ 1), s integer, Laughlin proposed a trial wavefunction for
the ground state which was found very accurate. The wavefunction is built from single particle
states in the cylindrical vector potential gauge. Using a representation of electron coordinates as
z = x + iy in unit of magnetic length ., the single particle states in the first Landau level are :

L mexp(— [2]) (9)
m = —————2""exp(— |z
14 V2m2mm! P
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Figure 4: the introduction of an extra flux quantum in a QHE fluid leaves a hole in the collective
wavefunction. In the IQHE the associated charge is e while in FQHE is it /3 for v =1/3

It is instructive to look first at the Slater determinant of electrons at filling factor 1 which is a
Vandermonde determinant. Its factorization gives the following wavefunction, up to a normalization

constant:
U= [[ G-z)ewm= ) |af) (10)

i<j<N i=1,N

The polynomial part ensures a uniform distribution of electrons in the plane with one state, or
equivalently one flux quantum, per electron on average. The zeros at z; = z; reflects the Pauli
principle and their multiplicity 1, the Fermi statistics. At filling factor 1/(2s + 1) the polynomial
for each z; should be of degree of (2s 4 1)(N — 1) such that all electrons are also uniformly
distributed on the (2s + 1)N states available. A uniform distribution of electrons in the plane
requires a very symmetrical polynomial. Also Laughlin proposed the simple polynomial form [3]:

Voo = [ Gi—z)* exp(= ) |al) (11)

i<j<N i=1,N

The correlation energy is efficiently minimized by the multiplicity 2s + 1 of the zeros which en-
sures that electrons keep away from each other. By exchanging two electrons the wavefunction
is multiplied by (—1)(**1) = —1. The requirement that electrons must obey Fermi statistics is
satisfied. But there is more: the extra factor (—1)2* expresses the fact that moving two electrons
around each other adds an extra phase. This phase can be viewed as the Aharanov-Bohm flux
of two fictive flux quanta bound to each electron. This is at the origin of the composite Fermion
picture mentioned below which allows to generate more complex fractions. One can also say that
electrons obey a super exclusion principle where each particle occupies 2s + 1 quantum sates (i.e.
the area of 2s + 1 flux quanta) so minimizing the interaction (there are deep connections with the
concepts of exclusonic statistics and anyonic statistics [5]).

One can show that the excitations above the ground state present a gap. The meaning of
the excitations is particularly clear in the case of the best known state occurring at v = 1/3. The
ground state corresponds to uniform distribution of electrons, one electron per area occupied by
three flux quanta. The unique wavefunction cannot be continuously deformed and the only way
to decrease the density is to empty a single particle quantum state, i.e. to create a hole having
the area occupied by a single flux quanta, see Fig. 4. This can be realized by multiplying the
Laughlin wavefunction by [[,_, y(z; —zn) where 2, is the position of the hole. The so called quasi-
hole carry a charge e* = —e/3. The energy cost A, can be obtained by estimating the energy
required to create a disc of size ®/B and charge e/3 : (4v/2/37)(e/3)? /4neeol,. Similarly quasi-
electron excitations with charge e/3 are possible and correspond to removing a flux quantum to
locally increase the electronic density with an energy A.. Quasi-electron or hole excitations with
charge +e/q can be generalized for other filling factor v = p/q with ¢ odd. The excitation gap for
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quasi-electron quasi-hole pairs has been numerically estimated and calculations agree with a value
A =~ 0.092¢%/4meegl, for ¢ = 3. It does not depend on p (as far as spin polarized electrons are
considered).

An interesting theoretical issue is the statistics associated with the excitations. It can be shown
that when moving adiabatically two quasi-holes around each other and exchanging their positions,
the collective wavefunction picks up a Berry’s phase factor exp(in/(2s+1)). The excitations are not
bosons nor fermions but obey a so-called anyonic statistics, a concept first introduced by Wilzeck
in the context of particle physics.

2.2.2 Composite Fermions

Following the work of Jain [6], a hierarchy of the fractional filling factors can be made using the
concept of Composite Fermions as a guide. This hierarchy followed more pioneering work made by
Halperin [17] using a different approach to built higher order fractions from the basic 1/(2s + 1)
states. The concept is based on statistical transmutation of electrons in 2D (or 1D). Topological
considerations show that purely 2D particles are not necessarily bosons or fermions but may have
any intermediate statistics (an example is the Laughlin quasi-particles). For the same reason, it is
easy to “manipulate” the statistics of 3D particles such as electrons which are Fermions provided
they are forced to live in 2D (or 1D). This can be done by attaching an integer number of fictive
flux quanta to each electron. The price to pay is a redefinition of the wavefunction and of the
Hamiltonian. An even number of flux quanta will transform Fermions into Fermions while an odd
number will transmute Fermions into Bosons. In the first case we have Composite Fermions (CF)
while in the second case Composite Bosons (CB). Both approaches have been used in the FQHE
context. Both have their own merit and a bridge between them is possible. CF are believed to be
appropriate for high order fractions and to describe the remarkable non Quantum Hall electronic
state found at ¥ = 1/2. CB make an interesting correspondence between the v = 1/2s 4 1 states
and superfluidity [7].

By attaching 2s flux quanta to each electron with a sign opposite to the external magnetic
field flux, the resulting CF experience a reduced mean field. A mapping can then be done between
FQHE states and IQHE states. As an example, for s = 1, the mean field attached to the “new
electrons”, the composite Fermions, is equivalent and opposite to the magnetic field B /5 at v = 1/2
[18]. The field experienced by the CF is thus Becp = B — Byj. A filling factor v = 1/3 for
electrons corresponds to a CF filling factor vop = 1. Similarly v = p/(2p 4+ 1) becomes vop = p.
This describes a series of fractions observed between 1/2 and 1/3. For fields lower than By,
v =p/(2p — 1) also becomes vor = (—)p and this describes fractions from 1 to 1/2. In general
attaching 2s flux quanta to electrons describe the fractions v = p/(p.2s = 1). The following table
shows the correspondence for 2s = 2:

v 1/3 2/5 3/7 .. 1/2 .. 3/5 2/3 1
ver 12 3 .. oo .. 3 2 1

The composite fermion picture is supported by experimental observations. The symmetric
variations of the Shubnikov-de Has oscillations around Bj/, are very similar to that observed
around B = 0. We should emphasize that this is not a real cancellation of the external field, as
the Meissner effect in superconductivity is, but the phenomenon is a pure orbital effect due to the
2s flux attachment. Convincing experiments have shown that the quasiparticles at v ~ 1/2 behave
very similarly to the quasiparticles at zero field ([19]; see also [20]).

The composite fermion picture can be used as a guide to understand multiple fractional edge
channels.

2.2.3 Fractional edge channels

The picture of edge channels can be extended to the fractional case. Now the gap hw. has to be
replaced by the gap A.+ Ay, of the FQHE. Lets consider for example a filling factor v = p/(2p+1)
in the bulk, i.e. p composite fermion Landau levels filled. Using this correspondence, the formation
of fractional edge channels is equivalent to that described previously for the integer Quantum Hall
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Figure 5: Fractional edge channel reflection observed for v = 2/3. The longitudinal resistance
quantization indicates vg = 2/5 and 1/3 fractional channels. The resistance for v = 2/3 has been
subtracted.

effect. Moving from the bulk to the edge, each time a CF landau level crosses the Fermi energy
a line of gapless excitation is built. These defines p chiral fractional edge channels (the last one
corresponding to the 1/3 edge channel).

The CF approach for edge channels is convenient for pedagogical presentation and gives
certainly a fair qualitative representation, but is certainly not complete. Including screening of
the external potential in a Thomas Fermi approach is a first step to improve quantitatively the
description [21] but this does not change qualitatively the overall picture. A important physics not
included in this approach is the Luttinger liquid properties described below: it changes the transport
properties. The hierarchy of fractional edge channels which can be derived in the Luttinger liquid
approach coincide with that of the CF approach.

Experimentally, the existence of fractional edge channels can be probed in transport exper-
iments using the reflection induced by a QPCs in a manner similar to the integer case. This is
shown in Fig.5. Here the filling factor in the leads is ¥ = 2/3 and the access resistance 3h/2e? has
been subtracted. The plateaus associated with the refection of the 2/5 and 1/3 edge channels are
clearly observable.

The picture described here is expected to apply to smooth edges, as it is the case in ordinary
samples. Another approach has been proposed for hard wall confinement in Ref.[22].

2.3 Fractional Edge Channels as Luttinger liquids

The tunnel transfer of an electron from a metallic contact to a v = 1/3 FQH liquid involves the
transformation of an electron into three quasiparticles. The number of possibilities to choose 3
quasiparticles in the range eV and satisfying the energy conservation required for elastic tunneling
increases rapidly with V', this immediately implies that the tunneling I-V characteristics should
be non-linear. So, the fractional edge states should not behave has an ordinary Fermi liquid for
which linear conduction is expected. On a different approach, a similar conclusion is obtained in
the Luttinger liquid description which uses bosonic collective charge mode on the fractional edge.
This is what we will describe below.

2.3.1 Hydrodynamical approach of fractional edge states

X.G. Wen [23] has first shown the deep connection between fractional edge channels and the concept
of Tomonaga-Luttinger liquids[24, 25] . We will here repeat the phenomenological hydrodynamical
approach of Wen in the simple case of a Laughlin state in the bulk, filling factor v = 1/2s+1. We
will start with a classical approach and keep only incompressibility as a quantum ingredient.



84 D.C. Glattli Séminaire Poincaré

S

Figure 6: Wen’s approach for the Chiral Luttinger liquid picture of a fractional edge channel at
v = 1(2s+1). The incompressibility of the FQHE fluid allows only periphery deformations y(X,t)
propagating at the drift velocity.

The only possible excitations are periphery deformations of the 2D quantum Hall conductor
which preserves the total area (like a 2D droplet of an ordinary liquid). This is shown schematically
in Fig.6 . If we denote y(X,t) the deformation of the boundary located at position Y = Yp, the
time varying electron density is given by :

n(X,Y,t) = n,0(Y — Yr — y(X,1)) (12)

where ny = veB/h and ©(z) is the Heaviside function. We wish to find the equations of motion for
y. To do that we have to remind that, within the first Landau level, the single particle motion is
given by the reduced Hamiltonian H; = %hwc +U(Y) and the coordinates X and Y are conjugate
with Poisson’s bracket {X,Y} = 1/eB. Using the equation of motion for the 2D density: dn/dt +
{H1,n} = 0 we get the equation describing the chiral propagation of the shape deformations y at
Y = YF:

Oy/ot + vpdy/0X =0 (13)
where vp = = [0U/0Y |y —y,| is the drift velocity.

The potential energy associated with the deformation is

1 6U hUD
= X X 14
U 2/d nsy? v = | (mney)? (14)

If we define qz the charge variation integrated on the upper edge in units of 7 as follows:
_ b'e
p=m / nsydX
— 00

and the excess charge density (per unit length) p by:

_ 109
piﬂ'@X

- 7—/dth— <—¢ + ngz) (16)

we get the action:
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and the Hamiltonian is H = U:

H = a&sax)z (17)
= M0 [ ax Gy (18)

So far the model is purely classical. By defining the conjugate of 5 as T = fﬂ—ﬁua%/ax and
we can quantize the fields using:

[%(X), a(Xf)} = ihd (X — X') (19)

At first sight, the dynamic of the bosonic modes describing the periphery deformations seems
not contain more physics than that of phonons or photons. The non trivial physics arises when
adding from outside an electron to the edge or removing a Laughlin quasiparticle to transfer it to
the opposite edge, as it is the case in tunneling experiments. Such operation involves an infinite
number of bosonic modes. This is at the origin of strong non-linearities in the transport properties,
a property not shared by ordinary Fermi liquids.

By definition, the creation operator v for one electron on the upper edge satisfies:

[A(X), w1(X")] = 6(X — X")pT(X) (20)

On the other hand, the 1D excess density p is related to the conjugate of q~5 by ™ = —%/7 and we
have: _
[A(X), 8(X")] = —ivhs (X - X) (21)

which immediately implies :
Y ocexp(i/v) (22)

Yt creates a unit charge at X but it is not an electron operator unless it satisfies Fermi statis-
tics. Exchanging two electrons at position X and X' gives ¢f(X")yT(X) = exp(—iZsgn(X —
XNt (X)yT(X'). The requirement that the bare particles are Fermions implies

v=1/(2s+1) (23)

The beauty of Wen’s hydrodynamical approach is that the series Laughlin filling factors
appear 1/(2s+ 1) naturally as a consequence of incompressibility and Fermi statistics.

To obtain more fractional filling factors, one must introduce additional bosonic modes at the
periphery (for example: p modes for p/(2ps + 1) which is consistent with the composite fermion
approach.

Finally, one can define similarly the quasiparticle operator which creates a charge 1/(2s+ 1)
on the edge:

[P(X), ], (X")] = v6(X — X")pl,(X') (24)
which writes as

Ul o expl(id) (25)

It shows fractional statistics 1}, (X )¢} (X) = e(_i””sgn(x_x/))z/J];p(X)w};p(X’) as do a Laughlin
quasiparticle.

The above set of equations for the electron operator ! and for the bosonic modes are char-
acteristics of those of a Luttinger liquid. Because of the direction of propagation imposed by the
magnetic field (no counter propagating mode on the same edge) it is called a Chiral Luttinger
Liquid. The conductance ve?/h correspond to the conductance ge?/h of a Luttinger Liquid and
one usually identifies ¢ = v. As for Luttinger liquids there is an algebraic decay of the correlation
functions.
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We have <q~3(X, t)q;(0,0)> = (0] et 3(X et $(0) |0) = const.— vIn(X — vpt) and the time

ordered single-particle Green’s function: (0|7 {%"(X,t)¥(0,0)} [0) = exp (712 <q~3(X, t)$(0,0)>)

decreases as (X — vpt)~'/¥. For 1/3 one see that this is the product of 3 Green’s functions,

reminiscent from the fact that an electron has to fill 3 states (or excite 3 quasiparticles). This gives
a Tunneling Density of State (TDOS) for electrons injected at energy ¢ above the Fermi energy Er
which decreases as ~ | — EF|(1/ v=1)  This implies that, for electrons tunneling between a Fermi
liquid and a chiral Luttinger fractional edge channel, the finite temperature tunnel conductance
G(T) and the zero temperature differential conductance dI/dV show the following power laws:

G(T) ~ (T/Tg)" (26)
dI V/Vg)? 27
A wve) @

v= % -1 (28)

where T and Vg are related to the coupling energy of the tunnel barrier. Power laws character-
izing the chiral Luttinger liquid in the Fractional Quantum Hall regime have been experimentally
observed (see below).

The chirality leads to some differences with ordinary Luttinger Liquids for which 1/v is to
be replaced by (g7 + ¢)/2. In 1D, g is related to the strength of a short range interaction which
can take arbitrary values and the relation: v = (g + ¢~ — 2) always holds. A continuous variation
of the g = v parameter is a priori not expected in the FQHE regime because the magnetic field
stabilizes special fractional values of v in the bulk (as the Jain’s series). A generalization of Wen’s
approach for v = p/(2sp + 1) shows that one must have p branches of bosonic modes (consistent
with the CF picture). These branches interact together and give a relation between the tunneling
exponent v and v not simply given by 28. For the simplest series of Jain’s filling factor p/(2p£1)
between 1 and 1/3 , the exponent v is expected to be

C2pHl 1
P |p|

(29)

i.e. constant (v = 2) between filling factor 1/2 and 1/3 and decreasing linearly (y = 1/v ~ B)
form 2 to 1 between filling factor 1/2 and 1.

2.3.2 Experimental evidence of chiral Luttinger liquids

Tunneling electrons from a metal to the edges: The best evidence for Luttinger liquid properties
is obtained by probing the tunneling density of states (TDOS). To do that, measurements have to
be non-invasive, i.e. a weak tunnel coupling is required. Indeed, a tunneling experiment measures
the TDOS only if higher order tunneling process are negligible, which means small transmission
and small energy. At large energy, the current varies ~ e — E F|7Jrl and so the effective coupling
will increase with voltage ¢ = eV or temperature ¢ = kpT.

Convincing experiments have been performed by the group of A.M. Chang [26, 27, 28]. The
tunnel contact is realized using the cleaved edge overgrowth technique. By epitaxial growth on the
lateral side of a 2DEG, a large tunnel barrier is first defined followed by a metallic contact realized
using heavy doped semiconductor. The advantage is weak coupling and high enough barrier (to
disregard change of the transparency when applying a large voltage). Also, probably important is
the fact that the metallic contact close to the edge provides screening of the long range Coulomb
interaction (short range is needed for having power laws).

Fig.7 shows example of I-V characteristics: a power law of the current with applied voltage
I ~ Ve a=v+1,is well defined over several current decades for v = 1/3. The exponent «
found is 2.7-2.65 close to the value 3 predicted by the theory for v = % — 1. For other filling
factors similar algebraic variations are also observed. In the same figure, the tunneling exponent
deduced from a series of I-V curves is shown as a function of the magnetic field or 1/v. For filling
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Figure 7: Left : Log-Log plot of an I-V curve at v = 1/3 clearly shows the algebraic variation
of current with voltage which characterizes a Luttinger liquid. Right : the exponent « is plotted
versus 1/v and compared with theoretical predictions (adapted from Ref.) .

factor 1/2 < v < 1/3 the constant exponent predicted [29, 30, 31] is not observed and instead
the exponent varies rather linearly with field or 1/v. However, some experiments made with the
cleanest samples have shown signs of a plateau in the exponent in a narrow filling factor value near
1/3.

Theoretical attempts to explain quantitatively the discrepancies have been made. Taking into
account the long range Coulomb interaction slightly lowers the exponent. The modified Luttinger
liquid theories can also include the finite conductivity in the bulk for non fractional filling factors.
Indeed a finite conductivity modifies the dispersion relation of the bosonic chiral modes and so
the exponents. With reasonable parameters these modifications are not yet able to fully reproduce
the data [30, 31]. The discrepancy between experiments and predictions may be due to the recon-
struction of the edge. Wen’s model assume a sharp density variation at the edge of the 2D sample.
In real samples, the density decreases smoothly and some additional edge states corresponding to
filling factor lower than the bulk filling factor may also strongly modify the exponents. A recent
work by Mandal and Jain shows that taking into account interactions between composite fermions
chiral edges may lead to a continuous variation of the exponent[32]. The reader will find more in
recent review made by A.M. Chang [33]

Tunneling between edges : Fractional Edge channel with an artificial impurity: Transport exper-
iments between two fractional edges can be done using an artificial impurity, a Quantum Point
Contact. Contrary to previous experiments where electrons were injected from an ordinary metal
(Fermi liquid) and the coupling was weak, we can probe here the transfer of charge through the
FQHE fluid. In particular there is no restriction on the nature of the charge (obviously e in the
previous case) while they can be fractional here. For quantitative comparison to theory, this strat-
egy however is less reliable than the previous one. For finite voltage difference Vs applied across
the QPC to induce a current, the shape of the scattering potential can change. This can induce
a trivial variation of the transmission with Vzs which can make identification of power laws diffi-
cult. Measurements are thus reliable only at very low temperature (<100mK) and small voltages
(<100uV) for comparison with theories.

strong barrier: We first consider the case where barrier is high and a tunnel barrier is formed
(so-called pinch-off regime). Electrons are strongly backscattered at all energies and the tunneling
current is weak. The results are expected similar to that obtained in A.M. Chang’s experiments.
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Figure 8: Schematic view of charge transfer in the case of a strong barrier (upper figure) and a
weak barrier. In the later case the FQHE fluid is weakly perturbed and charge transfer occurs via
the FQHE fluid.
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Tunneling occurring between two fractional edge (and not between a metal and a fractional edge)
the dI/dVys characteristics will be proportional to the square of the TDOS. The exponents for
the conductance is doubled. For example v = 4, i.e. 2(% — 1) for v = 1/3. This approach has
been used by several groups. A difficulty is that sample inhomogeneities around the QPC may
lead to transmission resonances difficult to control. Ref.[34] exploits the Luttinger predictions for
tunneling through such a resonant state. A further difficulty is the high value of the power law for
the conductance with temperature or voltage which is is expected to be measurable only at very low
conductance. For v = 1/3, for example, exact finite temperature calculations of IV characteristics,
see below, shows that the exponent 4, becomes the dominant term only when the conductance is
smaller than 10~%e?/3h [35] . Otherwise an effective exponent, much smaller than 2 is observed.
Up to now, no experimental group have tried to do measurements in this limit.

weak barrier: The regime where the barrier is very weak is more interesting. Practically, the
QPC gently pushes the upper edge close to the lower edge to induce a quantum transfer of particles
from one edge to the other. The QPC potential is weak enough to not make appreciable change
of the local filling factor. A characteristic signature of the Luttinger liquid physics is the vanishing
transmission at low temperature or bias voltage even in the case of a so weak coupling that the
transmission would be close to 1 in absence of interaction. The low energy strong backscattering
limit continuously evolves toward a weak backscattering limit at large energy (large transmission).
In this regime, we will see later that integer charges tunnel at low energy, while fractional charges
tunnel at large energy.

To describe the tunneling between the upper and lower edge of Fig.8 we introduce bosonic
modes p and ¢ previously derived with the subscript +/— for the upper and lower modes respec-
tively. Without coupling by the artificial impurity, they are independent and the Hamiltonian is
the sum of their Hamiltonian. The impurity of strength A situated in X = 0 induces a coupling
between the excitations: ~ 1/1,];]07 L Vgp,— + w;pJ/Jqur which gives the interaction term:

Hint = Acos(¢4+(0) — ¢ (0)) (30)

At low energy, the system flows to an insulating state and the conductance displays the same
power law with T or Vg, than the one expected for a strong impurity potential (tunnel barrier)

2 /e \2GD
G~ 0 (T—) —0 fore < Tp (31)
B
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where T’p is an energy scale related to the impurity strength A. At large energy, a conductance

close but smaller than the quantum of conductance < s recovered. The Luttinger liquid theory

3h
predicts

2 2 c 2(v—1)
Gp is called the backscattering conductance. If we call I the forward current, Iy = %VdS the

current without impurity, the current associated with particles backscattered by the impurity is
Ip = Iy — I from which one can define Gp = Ig/V. The above formula correspond to strong and
weak backscattering limits. In the first case there is a weak tunneling of particles between the left
and right side, while in the second case there is a weak quantum transfer of particles between the
upper edge and the lower edge. There is an interesting duality with v «—— 1/v.

Conformal field theories have been used to exactly solve the problem of a Luttinger liquid with
one impurity providing a continuous description between both limits [36, 37]. The so-called FLS
theory exploits the charge conservation when the particle are scattered by the impurity centered
in X = 0. By defining the even and odd charge modes (and corresponding fields):

Pe(X, 1) = —= (pr(X, 1) + p= (=X, 1)) (33)

1
V2
~ -1, _ N
°o(X,t) = — X, t)—p_(—X,t 34
p° (X, 1) \/5(0+( ) —p=( ) (34)
for which the variable X is now limited to the semi-infinite line X < 0.
The Hamiltonian to consider reduces to:

H= hvp ' dXx [ﬁO(X, £)? + A1 cos (\/5;55(0))} (35)

v J_o

while the even mode is decoupled.

The equation is very similar to a Sine-Gordon equation (SG) but with the SG term only at the
boundary, while p° is solution of a free propagation equation (velocity vp) for X < 0. Classically, it
is easy to show that this boundary SG equation admits solutions using a combination of the natural
kink and anti-kink of the ordinary SG equation. By definition, a kink (or a soliton) in the field (of
the charge density) which is solution of the ordinary SG equation propagates without deformation
and is also solution of the free propagation equation for X < 0 . By linearity, superpositions of
kink and anti-kinks are also solutions. The effect of the boundary term is mainly to convert kink
into antikink. Physically, the effect of scattering is that a positive pulse of charge can be reflected
as a negative pulse. The step from classical to quantum integrability is made using conformal
field theories [36, 37]. One can show that applying a voltage bias Vs between reservoirs emitting
electrons in the upper and lower edges is, in the convenient basis for interacting electrons, equivalent
to send a regular flow of kink which are randomly transformed into antikink. Kink and antikink
respectively contribute to the forward and backscattered current. The Landauer formula adapted
to this approach gives the backscattering current which expresses simply as :

A(Vas) e2

Ip(Vys, T) = evD/ dapy(a)|Ss_(a—ap))® and I = V%Vds —Ip (36)

were p4(a) (not to be confused with previous notations) is the density of incoming kink at energy
parametrized by e%, and

1
" 1+ exp2(1—v)(a—agp)/v]

|S4— (a0 = ap)? (37)

is the probability for kink to anti-kink conversion (the scattering probability) with ap related to
the impurity strength Ts. A series expansion in Tg/Vys and Vys/Tp for respectively weak and



90 D.C. Glattli Séminaire Poincaré

high temperature

0,2
0,1
0,0

low temperature
0 5 10 15 20
eV/2k,T

differential conductance (e ’/ 3h )

Figure 9: Theoretical curves for the differential conductance versus voltage calculated for different
values of the ratio T//Tp. The numerical exact solution of Ref.[36, 37] is used. The conductance is
a universal function of the variable T/Tp and eVys/2nkpT.

strong backscattering gives the current where all coefficients are known analytically

2 17 2n(v—1)
Ip = IJEVC]S Z van,(v) <TS> forTs/Vis < 1 (38)
B
2 1 Vs 2n(%—1)
I= V%Vds Zan(;) (; ) forVys /T < 1 (39)
B

The curve I(Vys) describing the whole transition from strong to weak backscattering can be
calculated. Note again the duality v «— 1/v. For finite temperature numerical solutions are also
available giving the whole information I (Vgs,T').

For finite temperature, one can show that the conductance is a function of the reduced variable
T/Tp and eV, /2wkpT:

e? T eVys

CTVas) = 33 <TB’ zkaT) (40)
and measuring G(T',0) fixes the only parameter Tz. The Vy,/T scaling law also can be tested very
accurately. Fig.9 shows theoretical calculations of the differential conductance for various values
of the parameter T (the Bethe ansatz method for calculating the kink-antikink distribution at
finite temperature has been used for the numerical calculation following the results of Ref.[36, 37].
We can see that, increasing the energy (the voltage or the temperature), leads to a progressive
transition from the strong backscattering regime to the weak backscattering regime.

Fig.10 shows data obtained in our group for the conductance in the strong backscattering
regime for v = 1/3. Experiments are made in the intermediate regime (i.e. G > 10~%¢2/3h).
The effective exponent deduced from a series a dI/dVys curve for different impurity strength
is compared with the effective one calculated using the finite temperature exact solution. The
agreement is rather good. The theoretical graph in inset of the figure shows that the asymptotic
scaling exponent 2(v~! — 1) = 4 is not expected except for conductance lower than 10~%, which is
experimentally difficult to obtain. It is important to say that there are no adjustable parameters.

Indeed, there are still many open problems for a quantitative description of conductance
measurements using the Luttinger liquid model. Long range interactions are one of this. One can
show that the dispersion relation bosonic chiral edges modes which usually varies linearly with the
wavenumber k get a contribution kIn(k). Such contribution is known from edge magneto-plasmon
radiofrequency experiments realized in classical or in quantum Hall 2D electron systems where the
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Figure 10: Exponent of the algebraic variation of the differential conductance with voltage measured
in the strong backscattering regime versus the zero bias conductance normalized to e2/3h. The solid

line is a comparison with the FLS predictions. The scaling exponent o = 2(v~! — 1) = 4 is only
expected in a regime of extremely low conductance (107%).

neutral collective modes are excited and resonantly detected. When the energy is low enough such
that the wavelength is larger than the width of the sample, the Coulomb interaction couple the
edges. The power law of the TDOS is lost. Instead the TDOS is expected to vary with energy like
exp(const x (Ing)3/?) [38, 39, 40].

3 Fractionally charged carriers

Can an electrical current be carried by fractional charge? From quantum electrodynamics and
charge conservation, it is known that the total charge of an isolated body should always be an
integer number in units of e. While particles propagating freely in the vacuum are restricted to
integer charge, no such absolute requirement is imposed in condensed matter to quasiparticles, the
elementary excitations above the ground state which carry the current. They are the product of
a complex collective motion of many particles. The topological singularities of the wave-functions
may lead to many possibilities. The solitonic excitations predicted in polyacetylene or the Laughlin
charges in the Quantum Hall regime are exact fractions. Fractions manifest particular evident or
hidden symmetries. The quasiparticle charge may not be restricted to exact mathematical fraction:
in Luttinger liquid theories, describing one-dimensional interacting systems, charge ge and (1—g)e
are expected where g is related to the interaction strength. It can take any value between 0 and 1.

Up to now the only experimentally realizable system able to display fractional charge carriers
is the FQHE. But how to measure the charge carrying the current? Conductance is unable to
probes directly the charge. It informs on the average rate of quasiparticles received by a contact
which went through the conductor after they have been emitted by another contact. Conductance
measures the quasiparticle transmission and, if interference are observed, it is sensitive to the wave
nature of the quasiparticles. This is similar to optics where the average intensity of light tells
about transmission but says nothing about the photon. To probe the graininess of the current one
must make a further step and consider the fluctuations: the so-called shot noise. Measuring the
fluctuation of light beams has given the direct evidence of the photon as the elementary grain
of light. Similarly, measuring the electrical current fluctuations gives a direct information on the
quanta of charge carrying the current.

According to Schottky [41], the random transfer of charge ¢ across a conductor generates an
average current I but also finite temporal fluctuations of the current AI around the mean value.

Consider an observation during a finite time 7. The current is related to the average number
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of transferred electrons N via I = ¢N/7, while the square of the current fluctuations are (AT )2 =

ql/ T%. If the statistics of transfer events is Poissonian (AN )2 = N the well known Schottky
formula is obtained:

(AI? = 2qIAf = S;Af (41)

where we have introduce the effective frequency bandwidth of measurement Af = 2/7 and the
current noise power S;. The noise power is directly proportional to the carrier charge ¢ . This
expresses that noise is a direct consequence of charge granularity. The simultaneous measure of the
average current and its fluctuations gives a simple direct measurement of ¢, free of any geometrical
or material parameters.

To measure shot-noise, one performs a non-equilibrium experiment and therefore probe exci-
tations above the ground state: the quasiparticles. Also, the bias voltage across contacts has to be
larger than kpT otherwise the dominant noise measured is the thermal or Johnson-Nyquist noise:
St = 4GkpT . Johnson-Nyquist noise is an equilibrium quantity which only probes conductance
and not the charge of the excitations.

3.1 Shot-noise in quantum conductors

Here we discuss the origin and properties of noise in conductors. This applies immediately to the
case of the Integer QHE regime. For simplicity we consider a single mode conductor or equivalently
single edge channel. An artificial impurity, for example a Quantum Point Contact, is used to induce
backscattering. According to the Landauer formula the left contact injects electrons at a rate eV/h
where V is the voltage applied between the left and the right contact. This leads to an incoming
current Iy = e(eV/h). If T is the transmission through the QPC, the transmitted current is :

62
[=TILh=TV (42)

and the backscattered current:

62

IB:IO—I:(l—T)EV (43)

One can show that the Fermi statistics is responsible of a remarkable properties: for long
observation time, the incoming current appears to be noiseless (each electron arrives regularly at a
frequency eV/h leading to a temporally structureless electron flow). As a result the only fluctuations
arise from the binomial probability to be transmitted or reflected. The spectral density S; of the

low frequency current fluctuations is thus given by [42]:
S[ = 26[0T(1 - T) (44)

For multimode conductors 7, denoting the transmission of the n” mode, the generalization is
straightforward and is : S; = 2ely ), 7,(1 — 7,,). This prediction has been quantitatively verified
in very sensitive shot noise measurement using QPC [43, 44]. A review on the remarkable low noise
of quantum conductors can be found in [45]. At finite temperature, the shot noise is :

S1 =265 (72T + T(1 = T)eV coth -2 (45)
==y B O SkpT

At zero bias voltage the Johnson Nyquist equilibrium noise 4 (T %) kpT is recovered. Above a

cross-over voltage kpT'/2e, shot noise dominates.
Two limits are interesting to consider for the following:
- Strong backscattering regime 7 < 1: this is the regime of Poissonian transfer from left to
right of charge e.
Sr=2el ; I (46)

- Weak backscattering regime 1 — 7 < 1: most electrons are transmitted, but there is of
Poissonian transfer of “missing electrons”, i.e holes, from left to right. Alternatively, in the IQHE
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regime, this can be viewed as Poissonian transfer of electron from the upper to the lower edge via
the QHE fluid
S[ZQQIB 5 IB:IO_I<<IO (47)

3.2 Shot-noise in the fractional regime

In the limit of small transmission (I < I, strong backscattering) it is reasonable to expect transfer
of charge e as correlations between left and right FQHE quantum fluids are reduced. However, for
large transmission (Ip = Iy — I < Iy, weak backscattering) the weak effect of the impurity will
not affect the FQHE correlations, the Poissonian transfer of holes may correspond to Laughlin
quasihole with fractional charges as shown schematically in Fig.11.

A complete understanding requires to include the Luttinger liquid dynamics of the fractional
edge channels. This has been done in these two limiting cases in Ref.[46] and then by using the
exact FLS Theory. For Laughlin filling factor v = 1/(2s 4+ 1), including finite temperature, the
strong and weak backscattering limiting cases give respectively:

1 2
Sy ~ 2eI coth(eV/2kp0) I<Iy= g%v (48)
e e 1%
S ~2—C Ipcoth(—e——")  Ip=1Iy—1< I, 49
I=9s31 B (2s+12kBT) B=lo—1<h (49)

Here, the Johnson-Nyquist thermal noise contributions 4GkpT and 4G gkpT have been subtracted
respectively for clarity. In the first case only electrons are found to tunnel as expected. In the second
case fractional charge excitations are found. In this limit, the noise provides a direct way to measure
the fractional Laughlin charge e/2s + 1.

A fractional e/(2s + 1) charge is also found in the argument of the coth function. However
the meaning is different. The cross-over from thermal to shot noise corresponds to electro-chemical
potential difference Ay = eV/(2s + 1) comparable to kgT. However, this is not a measure of the
fractional quasiparticle charge. This is a measure of the fractional filling of the quantum state
at equilibrium, like the conductance €?/(2s + 1)h is. This is only in the large voltage limit that
S~ 2(ﬁ)l p really measures the quasiparticle charge. This is a non-equilibrium regime where
quasiparticles excitations dominate over ground state properties. Nevertheless observation of a
three times larger voltage for the thermal cross-over in noise experiments has been an important
confirmation of Eq.49.

The zero temperature limit of expressions 48 and 49 have been also derived in [47] using
Luttinger liquid in the perturbative limit. The exact solution of the FLS model presented in the
previous section allows not only to calculate the current in all regimes but also to calculate the
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I,+AI(t)

Figure 12: schematic view of the measurement. The fluctuations of the transmitted current I and of
the reflected current Ip are both measured. A very fast dynamic signal analyzer calculates in real
time the cross-correlation of the fluctuations. Uncorrelated noises are thus eliminated increasing
the sensitivity and reliability.

noise [36]. To obtain the noise, one can mimic the wavepacket approach used by T. Martin and R.
Landauer for the noise of non interacting Fermions Ref.[48] . The incoming kinks of the field éﬁv"
correspond to a regular flow of solitons in p°. The regular flow is noiseless but the random scattering
of kinks into anti-kinks produces noise in the outgoing current. When |S,_ (o — ag)|> < 1 this
a Poissonian process while if |S; _ (o — ap)|” is not negligible, the statistics is binomial and the
fluctuations are proportional to |Sy_ (o — a)|* (1 — |S4_ (o — ap)|?) which plays the role of the
7T (1 —T) factor for non-interacting electrons. The expression for the noise is thus simply

A(Vas) 5 5
Si(V) = 262“/ dopi (@) [Sy—(a —ap)|” (1= |S4—(a —ap)[") (50)

— 00

Here v = 1/(2s + 1). Exact expressions and technical mathematical details can be found in
Refs [36]. The special simple form of |S;_(a — ap)| leads to a relation between current and noise
where S; = 7= (V4L — 1) = 12 (Ip — V%). From it, using the weak and strong backscattering
limits of the Luttinger theory, we can easily check that S; — 2(velp) and 2el respectively in

agreement with the zero temperature limit of 48 and 49. Finite temperature predictions can also
be found in Ref. [37].

3.3 Measurement of the fractional charge using noise

A difficulty of shot noise measurements in the FQH effect is that the extremely low shot noise
has to be extracted from the background of relatively large amplifiers noise. Shot noise levels are
extremely small both due to the smaller charge and the small available current. The latter is
restricted by the fact that the FQH effect breaks down when the applied voltage is larger than the
excitation gap. This excitation gap, in turn, depends crucially on the quality of the material in
which the 2DEG resides. The state of the art technology currently yields samples with an excitation
gap of the of the order of a few 100 peV, leading to shot noise levels in the 10729A2? / H 2 range.
These measurements have been performed in Saclay and in the Weizmann Institute [49][50].
A QPC is used in order to realize a local and controllable coupling between two v = 1/3 frac-
tional edges to partially reflect the incoming current. The experiments are designed to have a
best sensitivity for the weak coupling limit where Poissonian noise of the e/3 Laughlin quasi-
particles is expected. In the experiment of Ref.[49], a cross correlation technique detects, at low
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Figure 13: experimental Poissonian noise of the fractionally charged excitations in the FQHE, from
Ref.[49] (left) and Ref.[50] (right).

frequency, the anticorrelated noise of the transmitted current I and the reflected current Ip, i.e.
S11, = (AIAIg) /Af ~ —2(e/3)Ip, see Fig.12. In situ measurements of the Johnson-Nyquist
noise versus temperature provide self-calibration of the current noise measured and are found
consistent with independent calibration, so the shot noise is free of adjustable parameters. The
magnetic field corresponds to a filling factor 2/3 in the bulk of the sample and a small region of
filling factor 1/3 is created close to the QPC using the depletion effect of the gates. The size of
the 1/3 region is estimated about 150 ¢, sufficient to establish FQHE correlations. The advantage
of doing this is that the coupling between edges occurs on a shorter scale and the controllable
QPC potential is larger than the potential fluctuations inherent of sample fabrication. In the two
samples measured, the combination of QPC and random potential lead to two dominant paths for
backscattering. The coherent interference between paths gives rise to nearly perfect resonant tun-
neling peaks in the conductance. Careful measurements of the conductance resonance showed that
tunneling was coherent. This was an important check for the quasiparticle charge measurement be-
cause this ruled out the possibility of noise suppression due to multiple uncorrelated hoping, similar
to the 1/3 noise reduction factor in zero field diffusive conductors. Also the resonant conductance
showed non-linear dependence on bias voltage consistent with Luttinger liquid model provided the
filling factor of the bulk is used. The other group [50] used a high frequency technique in order
to increase the signal bandwidth and measured the autocorrelation of the transmitted current.
Here the magnetic field corresponded to a filling factor 1/3 everywhere in the sample. They found
few non-linearities in the conductance, in contrast with the Luttinger liquid predictions, and this
allowed them to define a bias voltage independent transmission.

In the Poissonian limit Ip < Iy, the two experiments give the same conclusion (see Fig.13)
that near filling factor 1/3, shot noise is threefold suppressed. These experiments have given the
most direct evidence that the current can be carried by quasiparticle with a fraction of e and
that Laughlin conjecture was correct. In addition, the data showed a cross-over from thermal
noise to shot noise when the applied voltage satisfies the inequality eV/3 > 2k6f (rather than
eV > 2k0), indicating that the potential energy of the quasiparticles is threefold smaller as well as
predicted in Eq.(11).This experiment has been now reproduced many time with different samples
and measurement conditions in both laboratories.

Is it possible to go further and probe different fractional charges for less simple filling factor?
Measurements close to v = 2/5 have given indications that the e/5 quasiparticles are the relevant
excitations in this regime[51]. This last result has been analyzed in a model of non-interacting
composite Fermions where Luttinger effects are neglected [52]. More recently, the same group has
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Figure 14: Although the QPC potential is very weak, at low temperature Luttinger liquid effects
give rise to strong backscattering. The left figure shows the non-linear I(V') curve, the center figure
the shot noise versus voltage simultaneously measured, and the right figure the linear variation of
the noise with current.

extended their measurement up to the filling factor 3/7 [53] and found a charge e/7. At very low
temperature, they found an unexplained rapid increase of the effective charge. It would be useful
to have a better theoretical understanding of the noise for Jain’s filing factors to provide a basis
for comparisons with experiments.

3.4 Cross-over from fractional to integer charge

When the strength of the artificial impurity potential is slightly increased and the energy of mea-
surement is reduced, the strong backscattering regime sets in and one expects integer charges take
over fractional charge. This has been measured in shot noise experiments [54],[55]. In ref.[54] very
low temperature and pronounced Luttinger liquid effects are observed. In the same experiment
it is then possible to observe both the charge e/3 for weak scattering and charge e at strong
backscattering. Despite the strong linear I-V characteristics (due to Luttinger liquid effects), it is
remarkable that the shot-noise increase linearly with current, as shown in Fig.14. In ref.[55] less
non-linearities are observed as the electron temperature was higher but the strong backscattering
regime was obtained by increasing the impurity strength.

4 Fractional occupation in the ground state

In the Laughlin wave function, electrons are spread uniformly with each elementary quantum state
filled by 1/(2s + 1) electrons on average.

A fractional filling is a necessary condition for the formation of fractionally charge excitations
above the ground state. Indeed, the first excited state, a Laughlin wavefunction with a quasi-hole,
is obtained by emptying a quantum state, i.e. by introducing a hole in the wavefunction whose area
is that of one flux quantum. In a gedanken experiment, an infinitely small solenoid piercing the
plane adiabatically increases the flux from zero to ¢¢. In place of the fractionally filled quantum
state a fractional charge e/(2s + 1) is left.

The fractional filling is also responsible for the fractional quantization of the Hall conductance.
In a Corbino geometry (a ring of radius R and finite width W <« R ) it is possible to generate
an azimuthal solenoidal electric field Ey by a time varying flux ®(t) = ¢oL. If Gy is the Hall
conductance, the radial current density is j, = GgFEy . For each time slice 7, the flux variation
A® = ¢y radially shifts all states by one unit. As they are filled by a fraction of electron, a
charge AQ = ¢/(2s + 1) crosses the ring from the inner to the outer perimeter. The current is
I =j21R = GH% = ¥ and the Hall conductance is ﬁ%

Equilibrium conductance measurements have allowed to accurately determine the fraction of
charge filling the quantum states. Resonant tunneling experiments have been used to measure the
charge AQ in response to the flux variation A® = ¢ through a well defined area for filling factor
1/3 and filling factor 1 [56]. Comparison between the integer and the fractional case showed that
in the later case, the charge is accurately reduced by one third.
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Figure 15: Resonant tunneling experiment to measure the fraction of charge associated with a
quantum state at ¥ = 1/3. Compared to the integer case, the period in gate voltage are increase
by a factor 3 for 1/3 signaling a one third reduction of the charge.

In this experiment, a micron size disc fully depleted of electrons is realized inside a Hall bar
by etching a 2D electron gas. The width of the Hall bar is locally reduced to a size larger but very
close to the disc size, such that edge states running along the Hall bar can pass very close to the
edge states circulating around the disc, see Fig.15. Gates, placed nearby the two points where the
outer and inner edge channels meet, allow to control the tunnel coupling.

The disc free of electrons embedded in the 2DEG forms a so-called anti-dot (as opposed to
quantum dots which are small disc of electrons). Because of the finite size of the perimeter and of
the low temperature used, the available edge states do not appear as a continuum but are quantized.
In a semiclassical picture, the radius 7 of the k' edge state is given by Bmri = k¢o and its energy
is U(rg), where U(r) is the radial potential which confines the electrons (the kinetic energy has
been subtracted for presentation). Edge states with U(ry) < Ep are filled by one electron in the
integer regime or by one third of electrons for » = 1/3. A new state can be filled by increasing
the charge by AQ in the disc or by reducing the magnetic flux by ¢g. The filling of a new state is
revealed by equilibrium measurement of the tunnel conductance between the upper and lower outer
edge via the anti-dot. A resonant tunneling conductance peak is observed each time the edge state
energy level align with the Fermi energy. The experiment shows that the same A® = ¢ separates
two consecutive peaks for integer and fractional cases, while the backgate voltage variation AV
separating two peaks is found one third smaller for the fractional case. Knowing the area of the
antidot and the capacitance, the absolute variation of the charge AQ is found consistent with e
and e/3 (estimation of the capacitance assumes strong statements about screening in the QHE
regime, but the numbers are convincing). The results are shown in Fig.15.

5 Conclusion

The Fractional Quantum Hall effect is at present, the only system in condensed matter with
fractional quantum numbers. Out of equilibrium or equilibrium tunneling experiments have been
able to directly or indirectly probe fractionalization.

The Luttinger liquid properties which are revealed by power law variations of the tunnel
conductance can not be understood without associating carriers with non integer charge. This
fractionally charged carriers has been observed directly through the current noise associated with
their tunneling across opposite boundaries of FQHE fluid. The evolution of the charge from a
fraction in the weak backscattering limit at large voltage to an integer in the strong backscattering
limit at low voltage is consistent with the Luttinger picture and with common intuition. At the
root of the fractional excitations carrying the current is the fraction of charge in the ground state
which fills the individual quantum states to form Laughlin’s wavefunction. This fraction of charge
has been measured by equilibrium resonant tunneling conductance measurements.

To complete this picture, localized fractional charges have been observed in a recent exper-
iment using low temperature scanning probe imaging techniques [57]. The experiment is able to
map the charge distribution in a macroscopic sample. The localized charges do not participate to
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transport (by definition) and are responsible for the finite width of the Hall plateau and exact
quantization and is a key point in the understanding of the macroscopic QHE. Localized one third
charge are found both for the 2/3 and the 1/3 FQHE regime.

Fascinating properties of the FQHE excitations are still to be observe. To cite a few: the frac-
tional statistics which could be revealed by shot noise correlations techniques, the high frequency
singularity in the shot noise at frequency eV/(2s + 1)h, the fractional excitations in the non fully
polarized spin regime. The recent progresses in mastering cold atoms suggest that the QHE could
be observe in different systems with different statistics and interactions. New type of measurements
may also be possible and extend our range of investigation of the Quantum Hall Effect.
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