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1 Introduction

The quantum Hall effect (QHE) is one of the most remarkable condensed-matter phenomena dis-
covered in the second half of the 20th century. It rivals superconductivity in its fundamental
significance as a manifestation of quantum mechanics on macroscopic scales. The basic experimen-
tal observation for a two-dimensional electron gas subjected to a strong magnetic field is nearly
vanishing dissipation

σxx → 0 (1)

and special values of the Hall conductance

σxy = ν
e2

h
(2)

given by the quantum of electrical conductance (e2/h) multiplied by a quantum number ν. This
quantization is universal and independent of all microscopic details such as the type of semicon-
ductor material, the purity of the sample, the precise value of the magnetic field, and so forth. As
a result, the effect is now used to maintain (but not define) the standard of electrical resistance
by metrology laboratories around the world. In addition, since the speed of light is now defined, a
measurement of e2/h is equivalent to a measurement of the fine structure constant of fundamental
importance in quantum electrodynamics.

Fig. (1) shows the remarkable transport data for a real device in the quantum Hall regime.
Instead of a Hall resistivity which is simply a linear function of magnetic field, we see a series of
so-called Hall plateaus in which ρxy is a universal constant

ρxy = −1

ν

h

e2
(3)

independent of all microscopic details (including the precise value of the magnetic field). Associated
with each of these plateaus is a dramatic decrease in the dissipative resistivity ρxx −→ 0 which
drops as much as 13 orders of magnitude in the plateau regions. Clearly the system is undergoing
some sort of sequence of phase transitions into highly idealized dissipationless states. Just as in a
superconductor, the dissipationless state supports persistent currents.

In the so-called integer quantum Hall effect (IQHE) discovered by von Klitzing in 1980, the
quantum number ν is a simple integer with a precision of about 10−10 and an absolute accuracy
of about 10−8 (both being limited by our ability to do resistance metrology).

In 1982, Tsui, Störmer and Gossard discovered that in certain devices with reduced (but still
non-zero) disorder, the quantum number ν could take on rational fractional values. This so-called
fractional quantum Hall effect (FQHE) is the result of quite different underlying physics involv-
ing strong Coulomb interactions and correlations among the electrons. The particles condense into
special quantum states whose excitations have the bizarre property of being described by fractional
quantum numbers, including fractional charge and fractional statistics that are intermediate be-
tween ordinary Bose and Fermi statistics. The FQHE has proven to be a rich and surprising arena
for the testing of our understanding of strongly correlated quantum systems. With a simple twist
of a dial on her apparatus, the quantum Hall experimentalist can cause the electrons to condense
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Figure 1: Integer and fractional quantum Hall transport data showing the plateau regions in the
Hall resistance RH and associated dips in the dissipative resistance R. The numbers indicate the
Landau level filling factors at which various features occur. After ref. [1].

into a bewildering array of new ‘vacua’, each of which is described by a different quantum field
theory. The novel order parameters describing each of these phases are completely unprecedented.
A number of general reviews exist which the reader may be interested in consulting [2–10] The
present lecture notes are based on the author’s Les Houches Lectures. [11]

2 Fractional QHE

The free particle Hamiltonian an electron moving in a disorder-free two dimensional plane in a
perpendicular magnetic field is

H =
1

2m
Π2 (4)

where
~Π ≡ ~p+

e

c
~A(~r) (5)

is the (mechanical) momentum. The magnetic field quenches the kinetic energy into discrete,
massively degenerate Landau levels. In a sample of area LxLy, each Landau level has degeneracy
equal to the number of flux quanta penetrating the sample

NΦ = LxLy
B

Φ0
=
LxLy

2π`2
(6)

where ` is the magnetic length defined by

1

2π`2
=

B

Φ0
(7)

and Φ0 = h
e2 is the quantum of flux. The quantum number ν in the quantized Hall coefficient turns

out to be given by the Landau level filling factor

ν =
N

NΦ
. (8)
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In the integer QHE the lowest ν Landau levels are completely occupied by electrons and the
remainder at empty (at zero temperature). Under some circumstances of weak (but non-zero)
disorder, quantized Hall plateaus appear which are characterized by simple rational fractional
quantum numbers. For example, at magnetic fields three times larger than those at which the
ν = 1 integer filling factor plateau occurs, the lowest Landau level is only 1/3 occupied. The system
ought to be below the percolation threshold (that is the electrons should be entirely localized by the
weak random disorder potential) and hence be insulating. Instead a robust quantized Hall plateau
is observed indicating that electrons can travel through the sample and that (since σxx −→ 0) there
is an excitation gap (for all excitations except for the collective mode corresponding to uniform
translation of the system which carries the current). This novel and quite unexpected physics is
controlled by Coulomb repulsion between the electrons. It is best understood by first ignoring the
disorder and trying to discover the nature of the special correlated many-body ground state into
which the electrons condense when the filling factor is a rational fraction. Since the kinetic energy
has been quenched, the Coulomb interaction has strong non-perturbative effects.

For reasons that will become clear later, it is convenient to analyze the problem in the so-called
symmetric gauge

~A = −1

2
~r × ~B (9)

Unlike the Landau gauge which preserves translation symmetry in one direction, the symmetric
gauge preserves rotational symmetry about the origin. Hence we anticipate that angular momentum
(rather than one component of the linear momentum) will be a good quantum number in this gauge.

For simplicity we will restrict our attention to the lowest Landau level only and (simply to

avoid some awkward minus signs) change the sign of the B field: ~B = −Bẑ. With these restrictions,
it is not hard to show that the solutions of the free-particle Schrödinger equation having definite
angular momentum are

ϕm =
1√

2π`22mm!
zme−

1

4
|z|2 (10)

where z = (x+ iy)/` is a dimensionless complex number representing the position vector ~r ≡ (x, y)
and m ≥ 0 is an integer.

The angular momentum of these basis states is of course h̄m. If we restrict our attention to
the lowest Landau level, then there exists only one state with any given angular momentum and
only non-negative values of m are allowed. This ‘handedness’ is a result of the chirality built into
the problem by the magnetic field.

It seems rather peculiar that in the Landau gauge we have a continuous one-dimensional
family of basis states corresponding to one component of conserved linear momentum for this two-
dimensional problem. Now we find that in a different gauge, we have a discrete one dimensional
label for the basis states! Nevertheless, we still end up with the correct density of states per unit
area. To see this note that the peak value of |ϕm|2 occurs at a radius of Rpeak =

√
2m`2. The area

2π`2m of a circle of this radius contains m flux quanta. Hence we obtain the standard result of
one state per Landau level per quantum of flux penetrating the sample.

Because all the basis states are degenerate, any linear combination of them is also an allowed
solution of the Schrödinger equation. Hence any function of the form [12]

Ψ(x, y) = f(z)e−
1

4
|z|2 (11)

is allowed so long as f is analytic in its argument. In particular, arbitrary polynomials of any
degree N

f(z) =

N
∏

j=1

(z − Zj) (12)

are allowed (at least in the thermodynamic limit) and are conveniently defined by the locations of
their N zeros {Zj ; j = 1, 2, . . . , N}. The fact that the Hilbert space for the lowest Landau level is
the Hilbert space of analytic functions leads to some beautiful mathematics [11–13].
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Another useful solution is the so-called coherent state which is a particular infinite order
polynomial

fλ(z) ≡ 1√
2π`2

e
1

2
λ∗ze−

1

4
λ∗λ. (13)

The wave function using this polynomial has the property that it is a narrow gaussian wave packet
centered at the position defined by the complex number λ. Completing the square shows that the
probability density is given by

|Ψλ|2 = |fλ|2e−
1

2
|z|2 =

1

2π`2
e−

1

2
|z−λ|2 (14)

This is the smallest wave packet that can be constructed from states within the lowest Landau
level.

Because the kinetic energy is completely degenerate, the effect of Coulomb interactions among
the particles is nontrivial. To develop a feel for the problem, let us begin by solving the two-body
problem. Recall that the standard procedure is to take advantage of the rotational symmetry to
write down a solution with the relative angular momentum of the particles being a good quantum
number and then solve the Schrödinger equation for the radial part of the wave function. Here
we find that the analyticity properties of the wave functions in the lowest Landau level greatly
simplifies the situation. If we know the angular behavior of a wave function, analyticity uniquely
defines the radial behavior. Thus for example for a single particle, knowing that the angular part
of the wave function is eimθ, we know that the full wave function is guaranteed to uniquely be
rmeimθe−

1

4
|z|2 = zme−

1

4
|z|2 .

Consider now the two body problem for particles with relative angular momentum m and
center of mass angular momentumM . The unique analytic wave function is (ignoring normalization
factors)

ΨmM (z1, z2) = (z1 − z2)
m(z1 + z2)

Me−
1

4
(|z1|

2+|z2|
2). (15)

If m and M are non-negative integers, then the prefactor of the exponential is simply a polynomial
in the two arguments and so is a state made up of linear combinations of the degenerate one-
body basis states ϕm given in eq. (10) and therefore lies in the lowest Landau level. Note that if
the particles are spinless fermions then m must be odd to give the correct exchange symmetry.
Remarkably, this is the exact (neglecting Landau level mixing) solution for the Schrödinger equation
for any central potential V (|z1 − z2|) acting between the two particles.1 We do not need to solve
any radial equation because of the powerful restrictions due to analyticity. There is only one state
in the (lowest Landau level) Hilbert space with relative angular momentum m and center of mass
angular momentum M . Hence (neglecting Landau level mixing) it is an exact eigenstate of any

central potential. ΨmM is the exact answer independent of the Hamiltonian!
The corresponding energy eigenvalue vm is independent of M and is referred to as the mth

Haldane pseudopotential

vm =
〈mM |V |mM〉
〈mM |mM〉 . (16)

The Haldane pseudopotentials for the repulsive Coulomb potential are shown in Fig. (2). These
discrete energy eigenstates represent bound states of the repulsive potential. If there were no
magnetic field present, a repulsive potential would of course have only a continuous spectrum
with no discrete bound states. However in the presence of the magnetic field, there are effectively
bound states because the kinetic energy has been quenched. Ordinarily two particles that have a
lot of potential energy because of their repulsive interaction can fly apart converting that potential
energy into kinetic energy. Here however (neglecting Landau level mixing) the particles all have
fixed kinetic energy. Hence particles that are repelling each other are stuck and can not escape
from each other. One can view this semi-classically as the two particles orbiting each other under
the influence of ~E × ~B drift with the Lorentz force preventing them from flying apart. In the

1Note that neglecting Landau level mixing is a poor approximation for strong potentials V � h̄ωc unless they
are very smooth on the scale of the magnetic length.
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Figure 2: The Haldane pseudopotential Vm vs. relative angular momentum m for two particles
interacting via the Coulomb interaction. Units are e2/ε`, where ε is the dielectric constant of the
host semiconductor and the finite thickness of the quantum well has been neglected.

m=4

(b)

(a)
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Figure 3: Orbital occupancies for the maximal density filled Landau level state with (a) two particles
and (b) three particles. There are no particle labels here. In the Slater determinant wave function,
the particles are labeled but a sum is taken over all possible permutations of the labels in order to
antisymmetrize the wave function.

presence of an attractive potential the eigenvalues change sign, but of course the eigenfunctions
remain exactly the same (since they are unique)!

The fact that a repulsive potential has a discrete spectrum for a pair of particles is (as we will
shortly see) the central feature of the physics underlying the existence of an excitation gap in the
fractional quantum Hall effect. One might hope that since we have found analyticity to uniquely
determine the two-body eigenstates, we might be able to determine many-particle eigenstates
exactly. The situation is complicated however by the fact that for three or more particles, the
various relative angular momenta L12, L13, L23, etc. do not all commute. Thus we can not write
down general exact eigenstates. We will however be able to use the analyticity to great advantage
and make exact statements for certain special cases.

2.1 The ν = 1 many-body state

So far we have found the one- and two-body states. Our next task is to write down the wave
function for a fully filled Landau level. We need to find

ψ[z] = f [z] e
− 1

4

∑

j
|zj |

2

(17)

where [z] stands for (z1, z2, . . . , zN ) and f is a polynomial representing the Slater determinant with
all states occupied. Consider the simple example of two particles. We want one particle in the orbital
ϕ0 and one in ϕ1, as illustrated schematically in Fig. (3a). Thus (again ignoring normalization)

f [z] =

∣

∣

∣

∣

(z1)
0 (z2)

0

(z1)
1 (z2)

1

∣

∣

∣

∣

= (z1)
0(z2)

1 − (z2)
0(z1)

1

= (z2 − z1) (18)
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This is the lowest possible order polynomial that is antisymmetric. For the case of three particles
we have (see Fig. (3b))

f [z] =

∣

∣

∣

∣

∣

∣

(z1)
0 (z2)

0 (z3)
0

(z1)
1 (z2)

1 (z3)
1

(z1)
2 (z2)

2 (z3)
2

∣

∣

∣

∣

∣

∣

= z2z
2
3 − z3z

2
2 − z1

1z
2
3 + z1

3z
2
1 + z1z

2
2 − z1

2z
2
1

= −(z1 − z2)(z1 − z3)(z2 − z3)

= −
3

∏

i<j

(zi − zj) (19)

This form for the Slater determinant is known as the Vandermonde polynomial. The overall minus
sign is unimportant and we will drop it.

The single Slater determinant to fill the first N angular momentum states is a simple gener-
alization of eq. (19)

fN [z] =

N
∏

i<j

(zi − zj). (20)

To prove that this is true for general N , note that the polynomial is fully antisymmetric and the
highest power of any z that appears is zN−1. Thus the highest angular momentum state that is
occupied is m = N − 1. But since the antisymmetry guarantees that no two particles can be in the
same state, all N states from m = 0 to m = N − 1 must be occupied. This proves that we have
the correct Slater determinant.

One can also use induction to show that the Vandermonde polynomial is the correct Slater
determinant by writing

fN+1(z) = fN(z)

N
∏

i=1

(zi − zN+1) (21)

which can be shown to agree with the result of expanding the determinant of the (N +1)× (N+1)
matrix in terms of the minors associated with the (N + 1)st row or column.

Note that since the Vandermonde polynomial corresponds to the filled Landau level it is
the unique state having the maximum density and hence is an exact eigenstate for any form of
interaction among the particles (neglecting Landau level mixing and ignoring the degeneracy in
the center of mass angular momentum).

The (unnormalized) probability distribution for particles in the filled Landau level state is

|Ψ[z]|2 =

N
∏

i<j

|zi − zj |2 e−
1

2

∑

N

j=1
|zj |

2

. (22)

This seems like a rather complicated object about which it is hard to make any useful statements.
It is clear that the polynomial term tries to keep the particles away from each other and gets larger
as the particles spread out. It is also clear that the exponential term is small if the particles spread
out too much. Such simple questions as, ‘Is the density uniform?’, seem hard to answer however.

It turns out that there is a beautiful analogy to plasma physics developed by R. B. Laughlin
which sheds a great deal of light on the nature of this many particle probability distribution. To
see how this works, let us pretend that the norm of the wave function

Z ≡
∫

d2z1 . . .

∫

d2zN |ψ[z]|2 (23)

is the partition function of a classical statistical mechanics problem with Boltzmann weight

|Ψ[z]|2 = e−βUclass (24)

where β ≡ 2
m and

Uclass ≡ m2
∑

i<j

(− ln |zi − zj |) +
m

4

∑

k

|zk|2. (25)
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(The parameter m = 1 in the present case but we introduce it for later convenience.) It is perhaps
not obvious at first glance that we have made tremendous progress, but we have. This is because
Uclass turns out to be the potential energy of a fake classical one-component plasma of particles
of charge m in a uniform (‘jellium’) neutralizing background. Hence we can bring to bear well-
developed intuition about classical plasma physics to study the properties of |Ψ|2. Please remember
however that all the statements we make here are about a particular wave function. There are no
actual long-range logarithmic interactions in the quantum Hamiltonian for which this wave function
is the approximate groundstate.

To understand this, let us first review the electrostatics of charges in three dimensions. For a
charge Q particle in 3D, the surface integral of the electric field on a sphere of radius R surrounding
the charge obeys

∫

d ~A · ~E = 4πQ. (26)

Since the area of the sphere is 4πR2 we deduce

~E(~r ) = Q
r̂

r2
(27)

ϕ(~r ) =
Q

r
(28)

and
~∇ · ~E = −∇2ϕ = 4πQ δ3(~r ) (29)

where ϕ is the electrostatic potential. Now consider a two-dimensional world where all the field
lines are confined to a plane (or equivalently consider the electrostatics of infinitely long charged
rods in 3D). The analogous equation for the line integral of the normal electric field on a circle of
radius R is

∫

d~s · ~E = 2πQ (30)

where the 2π (instead of 4π) appears because the circumference of a circle is 2πR (and is analogous
to 4πR2). Thus we find

~E(~r ) =
Qr̂

r
(31)

ϕ(~r ) = Q

(

− ln
r

r0

)

(32)

and the 2D version of Poisson’s equation is

~∇ · ~E = −∇2ϕ = 2πQ δ2(~r ). (33)

Here r0 is an arbitrary scale factor whose value is immaterial since it only shifts ϕ by a constant.
We now see why the potential energy of interaction among a group of objects with charge m

is
U0 = m2

∑

i<j

(− ln |zi − zj |) . (34)

(Since z = (x+ iy)/` we are using r0 = `.) This explains the first term in eq. (25).
To understand the second term notice that

−∇2 1

4
|z|2 = − 1

`2
= 2πρB (35)

where

ρB ≡ − 1

2π`2
. (36)

Eq. (35) can be interpreted as Poisson’s equation and tells us that 1
4 |z|2 represents the electrostatic

potential of a constant charge density ρB. Thus the second term in eq. (25) is the energy of charge
m objects interacting with this negative background.
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Notice that 2π`2 is precisely the area containing one quantum of flux. Thus the background
charge density is precisely B/Φ0, the density of flux in units of the flux quantum.

The very long range forces in this fake plasma cost huge (fake) ‘energy’ unless the plasma is
everywhere locally neutral (on length scales larger than the Debye screening length which in this
case is comparable to the particle spacing). In order to be neutral, the density n of particles must
obey

nm+ ρB = 0 (37)

⇒ n =
1

m

1

2π`2
(38)

since each particle carries (fake) charge m. For our filled Landau level with m = 1, this is of course
the correct answer for the density since every single-particle state is occupied and there is one state
per quantum of flux.

We again emphasize that the energy of the fake plasma has nothing to do with the quantum
Hamiltonian and the true energy. The plasma analogy is merely a statement about this particular
choice of wave function. It says that the square of the wave function is very small (because Uclass

is large) for configurations in which the density deviates even a small amount from 1/(2π`2). The
electrons can in principle be found anywhere, but the overwhelming probability is that they are
found in a configuration which is locally random (liquid-like) but with negligible density fluctuations
on long length scales. We will discuss the nature of the typical configurations again further below
in connection with Fig. (4).

When the fractional quantum Hall effect was discovered, Robert Laughlin realized that one
could write down a many-body variational wave function at filling factor ν = 1/m by simply taking
the mth power of the polynomial that describes the filled Landau level

fm
N [z] =

N
∏

i<j

(zi − zj)
m. (39)

In order for this to remain analytic, m must be an integer. To preserve the antisymmetry m must
be restricted to the odd integers. In the plasma analogy the particles now have fake charge m
(rather than unity) and the density of electrons is n = 1

m
1

2π`2 so the Landau level filling factor
ν = 1

m = 1
3 ,

1
5 ,

1
7 , etc. (Later on, other wave functions were developed to describe more general

states in the hierarchy of rational fractional filling factors at which quantized Hall plateaus were
observed [2, 3, 5, 7, 8].)

The Laughlin wave function naturally builds in good correlations among the electrons because
each particle sees an m-fold zero at the positions of all the other particles. The wave function
vanishes extremely rapidly if any two particles approach each other, and this helps minimize the
expectation value of the Coulomb energy.

Since the kinetic energy is fixed we need only concern ourselves with the expectation value of
the potential energy for this variational wave function. Despite the fact that there are no adjustable
variational parameters (other than m which controls the density) the Laughlin wave functions have
proven to be very nearly exact for almost any realistic form of repulsive interaction. To understand
how this can be so, it is instructive to consider a model for which this wave function actually is
the exact ground state. Notice that the form of the wave function guarantees that every pair of
particles has relative angular momentum greater than or equal to m. One should not make the
mistake of thinking that every pair has relative angular momentum precisely equal to m. This
would require the spatial separation between particles to be very nearly the same for every pair,
which is of course impossible.

Suppose that we write the Hamiltonian in terms of the Haldane pseudopotentials

V =

∞
∑

m′=0

∑

i<j

vm′ Pm′(ij) (40)

where Pm(ij) is the projection operator which selects out states in which particles i and j have
relative angular momentum m. If Pm′(ij) and Pm′′ (jk) commuted with each other things would be
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Figure 4: Comparison of typical configurations for a completely uncorrelated (Poisson) distribution
of 1000 particles (left panel) to the distribution given by the Laughlin wave function for m = 3
(right panel). The latter is a snapshot taken during a Monte Carlo simulation of the distribution.
The Monte Carlo procedure consists of proposing a random trial move of one of the particles to a
new position. If this move increases the value of |Ψ|2 it is always accepted. If the move decreases
the value of |Ψ|2 by a factor p, then the move is accepted with probability p. After equilibration
of the plasma by a large number of such moves one finds that the configurations generated are
distributed according to |Ψ|2. (After R. B. Laughlin, Chap. 7 in [2].)

simple to solve, but this is not the case. However if we consider the case of a ‘hard-core potential’
defined by vm′ = 0 for m′ ≥ m, then clearly the mth Laughlin state is an exact, zero energy
eigenstate

V ψm[z] = 0. (41)

This follows from the fact that

Pm′(ij)ψm = 0 (42)

for any m′ < m since every pair has relative angular momentum of at least m.

Because the relative angular momentum of a pair can change only in discrete (even integer)
units, it turns out that this hard core model has an excitation gap. For example for m = 3, any
excitation out of the Laughlin ground state necessarily weakens the nearly ideal correlations by
forcing at least one pair of particles to have relative angular momentum 1 instead of 3 (or larger).
This costs an excitation energy of order v1.

This excitation gap is essential to the existence of dissipationless (σxx = ρxx = 0) current
flow. In addition this gap means that the Laughlin state is stable against perturbations. Thus
the difference between the Haldane pseudopotentials vm for the Coulomb interaction and the
pseudopotentials for the hard core model can be treated as a small perturbation (relative to the
excitation gap). Numerical studies show that for realistic pseudopotentials the overlap between the
true ground state and the Laughlin state is extremely good.

To get a better understanding of the correlations built into the Laughlin wave function it
is useful to consider the snapshot in Fig. (4) which shows a typical configuration of particles in
the Laughlin ground state (obtained from a Monte Carlo sampling of |ψ|2) compared to a random
(Poisson) distribution. Focussing first on the large scale features we see that density fluctuations
at long wavelengths are severely suppressed in the Laughlin state. This is easily understood in
terms of the plasma analogy and the desire for local neutrality. A simple estimate for the density
fluctuations ρ~q at wave vector ~q can be obtained by noting that the fake plasma potential energy
can be written (ignoring a constant associated with self-interactions being included)

Uclass =
1

2L2

∑

~q 6=0

2πm2

q2
ρ~qρ−~q (43)

where L2 is the area of the system and 2π
q2 is the Fourier transform of the logarithmic potential

(easily derived from ∇2 (− ln (r)) = −2π δ2(~r ) ). At long wavelengths (q2 � n) it is legitimate
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Figure 5: Plot of the two-point correlation function h(r) ≡ 1 − g(r) for the Laughlin plasma with
ν−1 = m = 3 (left panel) and m = 5 (right panel). Notice that, unlike the result for m = 1 given
in eq. (46), g(r) exhibits the oscillatory behavior characteristic of a strongly coupled plasma with
short-range solid-like local order.

to treat ρ~q as a collective coordinate of an elastic continuum. The distribution e−βUclass of these
coordinates is a gaussian and so obeys (taking into account the fact that ρ−~q = (ρ~q)

∗)

〈ρ~qρ−~q〉 = L2 q2

4πm
. (44)

We clearly see that the long-range (fake) forces in the (fake) plasma strongly suppress long wave-
length density fluctuations. We will return more to this point later when we study collective density
wave excitations above the Laughlin ground state.

The density fluctuations on short length scales are best studied in real space. The radial
correlation g(r) function is a convenient object to consider. g(r) tells us the density at r given that
there is a particle at the origin

g(r) =
N(N − 1)

n2Z

∫

d2z3 . . .

∫

d2zN |ψ(0, r, z3, . . . , zN )|2 (45)

where Z ≡ 〈ψ|ψ〉, n is the density (assumed uniform) and the remaining factors account for all
the different pairs of particles that could contribute. The factors of density are included in the
denominator so that limr→∞ g(r) = 1.

Because the m = 1 state is a single Slater determinant g(z) can be computed exactly

g(z) = 1 − e−
1

2
|z|2 . (46)

Fig. (5) shows numerical estimates of h(r) ≡ 1 − g(r) for the cases m = 3 and 5. Notice that for
the ν = 1/m state g(z) ∼ |z|2m for small distances. Because of the strong suppression of density
fluctuations at long wavelengths, g(z) converges exponentially rapidly to unity at large distances.
For m > 1, g develops oscillations indicative of solid-like correlations and, the plasma actually
freezes2 at m ≈ 65. The Coulomb interaction energy can be expressed in terms of g(z) as3

〈ψ|V |ψ〉
〈ψ|ψ〉 =

nN

2

∫

d2z
e2

ε|z| [g(z) − 1] (47)

where the (−1) term accounts for the neutralizing background and ε is the dielectric constant of
the host semiconductor. We can interpret g(z)− 1 as the density of the ‘exchange-correlation hole’
surrounding each particle.

2That is, Monte Carlo simulation of |Ψ|2 shows that the particles are most likely to be found in a crystalline
configuration which breaks translation symmetry. Again we emphasize that this is a statement about the Laughlin
variational wave function, not necessarily a statement about what the electrons actually do. It turns out that for
m ≥∼ 7 the Laughlin wave function is no longer the best variational wave function. One can write down wave
functions describing Wigner crystal states which have lower variational energy than the Laughlin liquid.

3This expression assumes a strictly zero thickness electron gas. Otherwise one must replace e
2

ε|z|
by

e
2

ε

∫ +∞

−∞
ds

|F (s)|2√
|z|2+s2

where F is the wavefunction factor describing the quantum well bound state.
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The correlation energies per particle for m = 3 and 5 are [14]

1

N

〈ψ3|V |ψ3〉
〈ψ3|ψ3〉

= −0.4100± 0.0001 (48)

and
1

N

〈ψ5|V |ψ5〉
〈ψ5|ψ5〉

= −0.3277± 0.0002 (49)

in units of e2/ε` which is ≈ 161 K for ε = 12.8 (the value in GaAs), B = 10T. For the filled Landau
level (m = 1) the exchange energy is −

√

π
8 as can be seen from eqs. (46) and (47).

3 Neutral Collective Excitations

So far we have studied one particular variational wave function and found that it has good corre-
lations built into it as graphically illustrated in Fig. 4. To further bolster the case that this wave
function captures the physics of the fractional Hall effect we must now demonstrate that there is
finite energy cost to produce excitations above this ground state. In this section we will study the
neutral collective excitations. We will examine the charged excitations in the next section.

It turns out that the neutral excitations are phonon-like excitations similar to those in solids
and in superfluid helium. We can therefore use a simple modification of Feynman’s ‘single mode
approximation’ (SMA) theory of the excitations in superfluid helium [15,16].

By way of introduction let us start with the simple harmonic oscillator. The ground state is
of the form

ψ0(x) ∼ e−αx2

. (50)

Suppose we did not know the excited state and tried to make a variational ansatz for it. Normally
we think of the variational method as applying only to ground states. However it is not hard to
see that the first excited state energy is given by

ε1 = min

{ 〈ψ|H |ψ〉
〈ψ|ψ〉

}

(51)

provided that we do the minimization over the set of states ψ which are constrained to be orthogonal
to the ground state ψ0. One simple way to produce a variational state which is automatically
orthogonal to the ground state is to change the parity by multiplying by the first power of the
coordinate

ψ1(x) ∼ x e−αx2

. (52)

Variation with respect to α of course leads (in this special case) to the exact first excited state.
With this background let us now consider the case of phonons in superfluid 4He. Feynman

argued that because of the Bose statistics of the particles, there are no low-lying single-particle
excitations. This is in stark contrast to a fermi gas which has a high density of low-lying excitations
around the fermi surface. Feynman argued that the only low-lying excitations in 4He are collective
density oscillations that are well-described by the following family of variational wave functions
(that has no adjustable parameters) labelled by the wave vector

ψ~k =
1√
N

ρ~k Φ0 (53)

where Φ0 is the exact ground state and

ρ~k ≡
N

∑

j=1

e−i~k·~rj (54)

is the Fourier transform of the density. The physical picture behind this is that at long wavelengths
the fluid acts like an elastic continuum and ρ~k can be treated as a generalized oscillator normal-
mode coordinate. In this sense eq. (53) is then analogous to eq. (52). To see that ψ~k is orthogonal
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Figure 6: (a) Configuration of particles in which the Fourier transform of the density at wave vector
k is non-zero. (b) The Fourier amplitude will have a similar magnitude for this configuration but
a different phase.

to the ground state we simply note that

〈Φ0|ψ~k〉 =
1√
N

〈Φ0|ρ~k|Φ0〉

=
1√
N

∫

d3R e−i~k·~R 〈Φ0|ρ(~r )|Φ0〉. (55)

where

ρ(~r ) ≡
N

∑

j=1

δ3(~rj − ~R) (56)

is the density operator. If Φ0 describes a translationally invariant liquid ground state then the
Fourier transform of the mean density vanishes for k 6= 0.

There are several reasons why ψ~k is a good variational wave function, especially for small
k. First, it contains the ground state as a factor. Hence it contains all the special correlations
built into the ground state to make sure that the particles avoid close approaches to each other
without paying a high price in kinetic energy. Second, ψ~k builds in the features we expect on
physical grounds for a density wave. To see this, consider evaluating ψ~k for a configuration of the

particles like that shown in Fig. (6a) which has a density modulation at wave vector ~k. This is
not a configuration that maximizes |Φ0|2, but as long as the density modulation is not too large
and the particles avoid close approaches, |Φ0|2 will not fall too far below its maximum value. More
importantly, |ρ~k|2 will be much larger than it would for a more nearly uniform distribution of
positions. As a result |ψ~k|2 will be large and this will be a likely configuration of the particles in
the excited state. For a configuration like that in Fig. (6b), the phase of ρ~k will shift but |ψ~k|2
will have the same magnitude. This is analogous to the parity change in the harmonic oscillator
example. Because all different phases of the density wave are equally likely, ρ~k has a mean density
which is uniform (translationally invariant).

This phonon mode should not be confused with the ordinary hydrodynamic sound mode
in classical fluids. The latter occurs in a collision dominated regime ωτ � 1 in which collision-
induced pressure provides the restoring force. The phonon mode described here by ψ~k is a low-lying
eigenstate of the quantum Hamiltonian.

At larger wave vectors there is a so-called ‘roton minimum’ (see Fig. (7)) in the dispersion
caused by the solid-like oscillations in the radial distribution function g(r) similar to those shown
in Fig. 5 for the Laughlin liquid. This minimum is in some crude sense a remnant of the zone
boundary phonon of the crystal.

As we mentioned previously Feynman argued that in 4He the Bose symmetry of the wave
functions guarantees that unlike in Fermi systems, there is only a single low-lying mode, namely
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Figure 7: Schematic illustration of the phonon dispersion in superfluid liquid 4He. For small wave
vectors the dispersion is linear, as is expected for a gapless Goldstone mode. The roton minimum
due to the peak in the static structure factor occurs at a wave vector k of approximately 20 in
units of inverse Å. The roton energy is approximately 10 in units of Kelvins.

Figure 8: Comparison of the single mode approximation (SMA) prediction of the collective mode
energy for filling factors ν = 1/3, 1/5, 1/7 (solid lines) with small-system numerical results for N
particles. Crosses indicate the N = 7, ν = 1/3 spherical system, triangles indicate the N = 6, ν =
1/3 hexagonal unit cell system results of Haldane and Rezayi [18]. Solid dots are for N = 9, ν = 1/3
and N = 7, ν = 1/5 spherical system calculations of Fano et al. [19] Arrows at the top indicate the
magnitude of the reciprocal lattice vector of the Wigner crystal at the corresponding filling factor.
Notice that unlike the phonon collective mode in superfluid helium shown in Fig. (7), the mode
here is gapped.

the phonon density mode. The paucity of low-energy single particle excitations in boson systems
is what helps make them superfluid–there are no dissipative channels for the current to decay
into. Despite the fact that the quantum Hall system is made up of fermions, the behavior is also
reminiscent of superfluidity since the current flow is dissipationless. Indeed, within the ‘composite
boson’ picture, one views the FQHE ground state as a bose condensate [8, 9, 17].

It turns out that the SMA works extremely well in the FQHE as can be seen in Fig. (8).
Because of the lack of density fluctuations at long wavelengths in the Laughlin ground state, the
system is incompressible leading to a gap in the collective excitation spectrum at long wavelengths.
This is quite different from the case of superfluid 4He in which the mode is gapless. However like
the case of the superfluid, this ‘magnetophonon’ mode has a ‘magnetoroton’ minimum at finite
k as illustrated in Fig. (8). The figure also shows results from numerical exact diagonalization
studies which demonstrate that the single mode approximation is extremely accurate. Note that
the magnetoroton minimum occurs close to the position of the smallest reciprocal lattice vector in
the Wigner crystal of the same density. In the crystal the phonon frequency would go exactly to
zero at this point. (Recall that in a crystal the phonon dispersion curves have the periodicity of
the reciprocal lattice.)

Because the oscillator strength is almost entirely in the cyclotron mode, the dipole matrix
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element for coupling the collective excitations to light is very small. They have however been
observed in Raman scattering [20] and found to have an energy gap in excellent quantitative
agreement with the single mode approximation.

Finally we remark that these collective excitations are characterized by a well-defined wave
vector ~k despite the presence of the strong magnetic field. This is only possible because they are
charge neutral which allows one to define a gauge invariant conserved momentum [21].

4 Charged Excitations

Except for the fact that they are gapped, the neutral magnetophonon excitations are closely anal-
ogous to the phonon excitations in superfluid 4He. We further pursue this analogy with a search
for the analog of vortices in superfluid films. A vortex is a topological defect which is the quantum
version of the familiar whirlpool. A reasonably good variational wave function for a vortex in a
two-dimensional film of 4He is

ψ±
~R

=







N
∏

j=1

f
(

|~rj − ~R|
)

e±iθ(~rj−~R)







Φ0. (57)

Here θ is the azimuthal angle that the particle’s position makes relative to ~R, the location of the
vortex center. The function f vanishes as ~r approaches ~R and goes to unity far away. The choice
of sign in the phase determines whether the vortex is right or left handed.

The interpretation of this wave function is the following. The vortex is a topological defect
because if any particle is dragged around a closed loop surrounding ~R, the phase of the wave
function winds by ±2π. This phase gradient means that current is circulating around the core.
Consider a large circle of radius ξ centered on ~R. The phase change of 2π around the circle occurs
in a distance 2πξ so the local gradient seen by every particle is θ̂/ξ. We see that locally the center

of mass momentum has been boosted by ± h̄
ξ θ̂ so that the current density of the whirlpool falls

off inversely with distance from the core.4 Near the core f falls to zero because of the ‘centrifugal
barrier’ associated with this circulation. In a more accurate variational wave function the core would
be treated slightly differently but the asymptotic large distance behavior would be unchanged.

What is the analog of all this for the lowest Landau level? For ψ+ we see that every particle
has its angular momentum boosted by one unit. In the lowest Landau level analyticity (in the
symmetric gauge) requires us to replace eiθ by z = x + iy. Thus we are led to the Laughlin
‘quasi-hole’ wave function

ψ+
Z [z] =

N
∏

j=1

(zj − Z) ψm[z] (58)

where Z is a complex number denoting the position of the vortex and ψm is the Laughlin wave
function at filling factor ν = 1/m. The corresponding antivortex (‘quasi-electron’ state) involves
z∗j suitably projected into the Hilbert space [11, 12]:

ψ−
Z [z] =

N
∏

j=1

(

2
∂

∂zj
− Z∗

)

ψm[z] (59)

where as usual the derivatives act only on the polynomial part of ψm. All these derivatives make
ψ− somewhat difficult to work with. We will therefore concentrate on the quasi-hole state ψ+. The
origin of the names quasi-hole and quasi-electron will become clear shortly.

Unlike the case of a superfluid film, the presence of the vector potential allows these vortices
to cost only a finite energy to produce and hence the electrical dissipation is always finite at any

4This slow algebraic decay of the current density means that the total kinetic energy of a single vortex diverges
logarithmically with the size of the system. This in turn leads to the Kosterlitz Thouless phase transition in which
pairs of vortices bind together below a critical temperature. As we will see below there is no corresponding finite
temperature transition in a quantum Hall system.
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Figure 9: Illustration of an electron tunneling among the 1S orbitals of three protons. The tunneling
is exponentially slow for large separations which leads to only exponentially small lifting of what
would otherwise be a three-fold degenerate ground state.

non-zero temperature. There is no finite temperature transition into a superfluid state as in the
Kosterlitz Thouless transition. From a field theoretic point of view, this is closely analogous to the
Higg’s mechanism [17].

Just as in our study of the Laughlin wave function, it is very useful to see how the plasma
analogy works for the quasi-hole state

|ψ+
Z |2 = e−βUclass e−βV (60)

where Uclass is given by eq. (25), β = 2/m as before and

V ≡ m

N
∑

j=1

(− ln |zj − Z|) . (61)

Thus we have the classical statistical mechanics of a one-component plasma of (fake) charge m
objects seeing a neutralizing jellium background plus a new potential energy V representing the
interaction of these objects with an ‘impurity’ located at Z and having unit charge.

Recall that the chief desire of the plasma is to maintain charge neutrality. Hence the plasma
particles will be repelled from Z. Because the plasma particles have fake charge m, the screening
cloud will have to have a net reduction of 1/m particles to screen the impurity. But this means
that the quasi-hole has fractional fermion number! The (true) physical charge of the object is a
fraction of the elementary charge

q∗ =
e

m
. (62)

This is very strange! How can we possibly have an elementary excitation carrying fractional
charge in a system made up entirely of electrons? To understand this let us consider an example
of another quantum system that seems to have fractional charge, but in reality doesn’t. Imagine
three protons arranged in an equilateral triangle as shown in Fig. (9). Let there be one electron in
the system. In the spirit of the tight-binding model we consider only the 1S orbital on each of the
three ‘lattice sites’. The Bloch states are

ψk =
1√
3

3
∑

j=1

eikj |j〉 (63)

where |j〉 is the 1S orbital for the jth atom. The equilateral triangle is like a linear system
of length 3 with periodic boundary conditions. Hence the allowed values of the wavevector are
{

kα = 2π
3 α; α = −1, 0,+1

}

. The energy eigenvalues are

εkα
= −E1S − 2J cos kα (64)

where E1S is the isolated atom energy and −J is the hopping matrix element related to the orbital
overlap and is exponentially small for large separations of the atoms.
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The projection operator that measures whether or not the particle is on site n is

Pn ≡ |n〉 〈n|. (65)

Its expectation value in any of the three eigenstates is

〈ψkα
|Pn|ψkα

〉 =
1

3
. (66)

This equation simply reflects the fact that as the particle tunnels from site to site it is equally likely
to be found on any site. Hence it will, on average, be found on a particular site n only 1/3 of the
time. The average electron number per site is thus 1/3. This however is a trivial example because
the value of the measured charge is always an integer. Two-thirds of the time we measure zero and
one third of the time we measure unity. This means that the charge fluctuates. One measure of the
fluctuations is

√

〈P 2
n〉 − 〈Pn〉2 =

√

1

3
− 1

9
=

√
2

3
, (67)

which shows that the fluctuations are larger than the mean value. This result is most easily obtained
by noting P 2

n = Pn.
A characteristic feature of this ‘imposter’ fractional charge e

m that guarantees that it fluctuates
is the existence in the spectrum of the Hamiltonian of a set of m nearly degenerate states. (In our
toy example here, m = 3.) The characteristic time scale for the charge fluctuations is τ ∼ h̄/∆ε
where ∆ε is the energy splitting of the quasi-degenerate manifold of states. In our tight-binding
example τ ∼ h̄/J is the characteristic time it takes an electron to tunnel from the 1S orbital
on one site to the next. As the separation between the sites increases this tunneling time grows
exponentially large and the charge fluctuations become exponentially slow and thus easy to detect.

In a certain precise sense, the fractional charge of the Laughlin quasiparticles behaves very
differently from this. An electron added at low energies to a ν = 1/3 quantum Hall fluid breaks up
into three charge 1/3 Laughlin quasiparticles. These quasiparticles can move arbitrarily far apart
from each other5 and yet no quasi-degenerate manifold of states appears. The excitation gap to the
first excited state remains finite. The only degeneracy is that associated with the positions of the
quasiparticles. If we imagine that there are three impurity potentials that pin down the positions
of the three quasiparticles, then the state of the system is uniquely specified. Because there is no
quasidegeneracy, we do not have to specify any more information other than the positions of the
quasiparticles. Hence in a deep sense, they are true elementary particles whose fractional charge is
a sharp quantum observable.

Of course, since the system is made up only of electrons, if we capture the charges in some
region in a box, we will always get an integer number of electrons inside the box. However in order
to close the box we have to locally destroy the Laughlin state. This will cost (at a minimum) the
excitation gap. This may not seem important since the gap is small — only a few Kelvin or so. But
imagine that the gap were an MeV or a GeV. Then we would have to build a particle accelerator to
‘close the box’ and probe the fluctuations in the charge. These fluctuations would be analogous to
the ones seen in quantum electrodynamics at energies above 2mec

2 where electron-positron pairs
are produced during the measurement of charge form factors by means of a scattering experiment.

Put another way, the charge of the Laughlin quasiparticle fluctuates but only at high frequen-
cies ∼ ∆/h̄. If this frequency (which is ∼ 50GHz) is higher than the frequency response limit of
our voltage probes, we will see no charge fluctuations. We can formalize this by writing a modified
projection operator [22] for the charge on some site n by

P (Ω)
n ≡ PΩ PnP

Ω (68)

where Pn = |n〉 〈n| as before and

P (Ω) ≡ θ(Ω −H +E0) (69)

5Recall that unlike the case of vortices in superfluids, these objects are unconfined.
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is the operator that projects onto the subset of eigenstates with excitation energies less than Ω.

P
(Ω)
n thus represents a measurement with a high-frequency cutoff built in to represent the finite

bandwidth of the detector. Returning to our tight-binding example, consider the situation where
J is large enough that the excitation gap ∆ =

(

1 − cos 2π
3

)

J exceeds the cutoff Ω. Then

P (Ω) =

+1
∑

α=−1

|ψkα
〉 θ(Ω − εkα

+ εk0
) 〈ψkα

|

= |ψk0
〉 〈ψk0

| (70)

is simply a projector on the ground state. In this case

P (Ω)
n = |ψk0

〉 1

3
〈ψk0

| (71)

and
〈

ψk0

∣

∣

∣
[P (Ω)

n ]2
∣

∣

∣
ψk0

〉

−
〈

ψk0
|P (Ω)

n |ψk0

〉2

= 0. (72)

The charge fluctuations in the ground state are then zero (as measured by the finite bandwidth
detector).

The argument for the Laughlin quasiparticles is similar. We again emphasize that one can
not think of a single charge tunneling among three sites because the excitation gap remains finite
no matter how far apart the quasiparticle sites are located. This is possible only because it is a
correlated many-particle system.

To gain a better understanding of fractional charge it is useful to compare this situation
to that in high energy physics. In that field of study one knows the physics at low energies —
this is just the phenomena of our everyday world. The goal is to study the high energy (short
length scale) limit to see where this low energy physics comes from. What force laws lead to our
world? Probing the proton with high energy electrons we can temporarily break it up into three
fractionally charged quarks, for example.

Condensed matter physics in a sense does the reverse. We know the phenomena at ‘high’
energies (i.e. room temperature) and we would like to see how the known dynamics (Coulomb’s
law and non-relativistic quantum mechanics) leads to unknown and surprising collective effects
at low temperatures and long length scales. The analog of the particle accelerator is the dilution
refrigerator.

To further understand Laughlin quasiparticles consider the point of view of ‘flatland’ physicists
living in the cold, two-dimensional world of a ν = 1/3 quantum Hall sample. As far as the flatlanders
are concerned the ‘vacuum’ (the Laughlin liquid) is completely inert and featureless. They discover
however that the universe is not completely empty. There are a few elementary particles around,
all having the same charge q. The flatland equivalent of Benjamin Franklin chooses a unit of
charge which not only makes q negative but gives it the fractional value −1/3. For some reason
the Flatlanders go along with this.

Flatland cosmologists theorize that these objects are ‘cosmic strings’, topological defects left
over from the ‘big cool down’ that followed the creation of the universe. Flatland experimentalists
call for the creation of a national accelerator facility which will reach the unprecedented energy
scale of 10 Kelvin. With great effort and expense this energy scale is reached and the accelerator
is used to smash together three charged particles. To the astonishment of the entire world a new
short-lived particle is temporarily created with the bizarre property of having integer charge!

There is another way to see that the Laughlin quasiparticles carry fractional charge which
is useful to understand because it shows the deep connection between the sharp fractional charge
and the sharp quantization of the Hall conductivity. Imagine piercing the sample with an infinitely
thin magnetic solenoid as shown in Fig. (10) and slowly increasing the magnetic flux Φ from 0 to
Φ0 = hc

e the quantum of flux. Because of the existence of a finite excitation gap ∆ the process is
adiabatic and reversible if performed slowly on a time scale long compared to h̄/∆.

Faraday’s law tells us that the changing flux induces an electric field obeying
∮

Γ

d~r · ~E = −1

c

∂Φ

∂t
(73)
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Φ(t)

E(t)
J(t)

Figure 10: Construction of a Laughlin quasiparticle by adiabatically threading flux Φ(t) through a
point in the sample. Faraday induction gives an azimuthal electric field E(t) which in turn produces
a radial current J(t). For each quantum of flux added, charge νe flows into (or out of) the region
due to the quantized Hall conductivity νe2/h. A flux tube containing an integer number of flux
quanta is invisible to the particles (since the Aharanov phase shift is an integer multiple of 2π)
and so can be removed by a singular gauge transformation.

where Γ is any contour surrounding the flux tube. Because the electric field contains only Fourier
components at frequencies ω obeying h̄ω < ∆, there is no dissipation and σxx = σyy = ρxx =
ρyy = 0. The electric field induces a current density obeying

~E = ρxy
~J × ẑ (74)

so that

ρxy

∮

Γ

~J · (ẑ × d~r) = −1

c

dΦ

dt
. (75)

The integral on the LHS represents the total current flowing into the region enclosed by the contour.
Thus the charge inside this region obeys

ρxy
dQ

dt
= −1

c

dΦ

dt
. (76)

After one quantum of flux has been added the final charge is

Q =
1

c
σxyΦ0 =

h

e
σxy. (77)

Thus on the quantized Hall plateau at filling factor ν where σxy = ν e2

h we have the result

Q = νe. (78)

Reversing the sign of the added flux would reverse the sign of the charge.
The final step in the argument is to note that an infinitesimal tube containing a quantum

of flux is invisible to the particles. This is because the Aharonov-Bohm phase factor for traveling
around the flux tube is unity.

exp

{

i
e

h̄c

∮

Γ

δ ~A · d~r
}

= e±2πi = 1. (79)
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Here δ ~A is the additional vector potential due to the solenoid. Assuming the flux tube is located
at the origin and making the gauge choice

δ ~A = Φ0
θ̂

2πr
, (80)

one can see by direct substitution into the Schrödinger equation that the only effect of the quantized
flux tube is to change the phase of the wave function by

ψ → ψ
∏

j

zj

|zj |
= ψ

∏

j

eiθj . (81)

The removal of a quantized flux tube is thus a ‘singular gauge change’ which has no physical effect.
Let us reiterate. Adiabatic insertion of a flux quantum changes the state of the system by

pulling in (or pushing out) a (fractionally) quantized amount of charge. Once the flux tube contains
a quantum of flux it effectively becomes invisible to the electrons and can be removed by means
of a singular gauge transformation.

Because the excitation gap is preserved during the adiabatic addition of the flux, the state
of the system is fully specified by the position of the resulting quasiparticle. As discussed before
there are no low-lying quasi-degenerate states. This version of the argument highlights the essential
importance of the fact that σxx = 0 and σxy is quantized. The existence of the fractionally quantized
Hall transport coefficients guarantees the existence of fractionally charged elementary excitations

These fractionally charged objects have been observed directly by using an ultrasensitive
electrometer made from a quantum dot [23] and by the reduced shot noise which they produce
when they carry current [24].

Because the Laughlin quasiparticles are discrete objects they cost a non-zero (but finite)
energy to produce. Since they are charged they can be thermally excited only in neutral pairs. The
charge excitation gap is therefore

∆c = ∆+ + ∆− (82)

where ∆± is the vortex/antivortex (quasielectron/quasihole) excitation energy. In the presence of a
transport current these thermally excited charges can move under the influence of the Hall electric
field and dissipate energy. The resulting resistivity has the Arrhenius form

ρxx ∼ γ
h

e2
e−β∆c/2 (83)

where γ is a dimensionless constant of order unity. Note that the law of mass action tells us
that the activation energy is ∆c/2 not ∆c since the charges are excited in pairs. There is a close
analogy between the dissipation described here and the flux flow resistance caused by vortices in
a superconducting film.

Theoretical estimates of ∆c are in good agreement with experimental values determined from
transport measurements [25]. Typical values of ∆c are only a few percent of e2/ε` and hence no
larger than a few Kelvin. In a superfluid time-reversal symmetry guarantees that vortices and
antivortices have equal energies. The lack of time reversal symmetry here means that ∆+ and ∆−

can be quite different. Consider for example the hard-core model for which the Laughlin wave
function ψm is an exact zero energy ground state as shown in eq. (41). Equation (58) shows that
the quasihole state contains ψm as a factor and hence is also an exact zero energy eigenstate for
the hard-core interaction. Thus the quasihole costs zero energy. On the other hand eq. (59) tells
us that the derivatives reduce the degree of homogeneity of the Laughlin polynomial and therefore
the energy of the quasielectron must be non-zero in the hard-core model. At filling factor ν = 1/m
this asymmetry has no particular significance since the quasiparticles must be excited in pairs.

Consider now what happens when the magnetic field is increased slightly or the particle
number is decreased slightly so that the filling factor is slightly smaller than 1/m. The lowest
energy way to accommodate this is to inject m quasiholes into the Laughlin state for each electron
that is removed (or for each mΦ0 of flux that is added). The system energy (ignoring disorder and
interactions in the dilute gas of quasiparticles) is

E+ = Em − δN m∆+ (84)
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Figure 11: Energy cost for inserting δN electrons into the Laughlin state near filling factor ν = 1/m.
The slope of the line is the chemical potential. Its discontinuity at ν = 1/m measures the charge
excitation gap.

where Em is the Laughlin ground state energy and −δN is the number of added holes. Conversely
for filling factors slightly greater than 1/m the energy is (with +δN being the number of added
electrons)

E− = Em + δN m∆−. (85)

This is illustrated in Fig. (11). The slope of the lines in the figure determines the chemical potential

µ± =
∂E±

∂δN
= ∓m∆±. (86)

The chemical potential suffers a jump discontinuity of m(∆+ + ∆−) = m∆c just at filling factor
µ = 1/m. This jump in the chemical potential is the signature of the charge excitation gap just
as it is in a semiconductor or insulator. Notice that this form of the energy is very reminiscent of
the energy of a type-II superconductor as a function of the applied magnetic field (which induces
vortices and therefore has an energy cost ∆E ∼ |B|).

Recall that in order to have a quantized Hall plateau of finite width it is necessary to have
disorder present. For the integer case we found that disorder localizes the excess electrons allowing
the transport coefficients to not change with the filling factor. Here it is the fractionally-charged
quasiparticles that are localized by the disorder.6 Just as in the integer case the disorder may fill in
the gap in the density of states but the DC value of σxx can remain zero because of the localization.
Thus the fractional plateaus can have finite width.

If the density of quasiparticles becomes too high they may delocalize and condense into a
correlated Laughlin state of their own. This gives rise to a hierarchical family of Hall plateaus at
rational fractional filling factors ν = p/q (generically with q odd due to the Pauli principle). There
are several different but entirely equivalent ways of constructing and viewing this hierarchy which
we will not delve into here [2, 3, 5].

5 Summary

In these notes I have discussed the Laughlin ground state and the basic facts of the neutral and
charged collective excitations above it. These topics barely scratch the surface of the rich phe-
nomenology of two-dimensional electron gases in the quantum Hall regime. The reader interested
in further details about fractional statistics, edge states, Chern-Simons field theories, bilayer quan-
tum Hall systems, quantum Hall ferromagnets and other more advanced topics is directed to the
various reviews that are available. [2–11]

6Note again the essential importance of the fact that the objects are ‘elementary particles’. That is, there are no
residual degeneracies once the positions are pinned down.
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