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1 Introduction

For these measurements one electron is suspended for months at a time within
a cylindrical Penning trap [1], a device that was invented long ago just for this
purpose. The cylindrical Penning trap provides an electrostatic quadrupole potential
for trapping and detecting a single electron [2]. At the same time, it provides a right,
circular microwave cavity that controls the radiation field and density of states for
the electron’s cyclotron motion [3].

Quantum jumps between Fock states of the one-electron cyclotron oscillator
reveal the quantum limit of a cyclotron [4]. With a surrounding cavity inhibiting
synchrotron radiation 140-fold, the jumps show as long as a 13 s Fock state lifetime,
and a cyclotron in thermal equilibrium with 1.6 to 4.2 K blackbody photons. These
disappear by 80 mK, a temperature 50 times lower than previously achieved with an
isolated elementary particle. The cyclotron stays in its ground state until a resonant
photon is injected. A quantum cyclotron offers a new route to measuring the electron
magnetic moment and the fine structure constant.

The use of electronic feedback is a key element in working with the one-electron
quantum cyclotron. A one-electron oscillator is cooled from 5.2 K to 850 mK us-
ing electronic feedback [5]. Novel quantum jump thermometry reveals a Boltzmann
distribution of oscillator energies and directly measures the corresponding temper-
ature. The ratio of electron temperature and damping rate (also directly measured)
is observed to be a fluctuation-dissipation invariant, independent of feedback gain,
as predicted for noiseless feedback. The sharply reduced linewidth that results from
feedback cooling illustrates the likely importance for improved fundamental mea-
surements and symmetry tests.

Electronic feedback that self-excites the axial oscillation of a single electron in
a Penning trap is used to detect spin flips and one-quantum cyclotron excitations
[6]. Large, stable, easily detected oscillations arise even in an anharmonic potential.
Amplitudes are controlled by adjusting the feedback gain, and frequencies can be
made nearly independent of amplitude fluctuations. Quantum jump spectroscopy of
a perpendicular cyclotron motion reveals the absolute temperature and amplitude of
the self-excited oscillation. The possibility to quickly measure ppb frequency shifts
opens the way to improved measurements of the electron magnetic moment.

The new experimental methods make it possible for the first time to use quan-
tum jump spectroscopy of the lowest cyclotron and spin levels for a single-electron
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quantum cyclotron [7]. The measured electron magnetic moment has an uncertainty
that is nearly six times lower than in the past, and the moment is shifted downward
by 1.7 standard deviations. The new magnetic moment, with a quantum electrody-
namics (QED) calculation, determines the fine structure constant with a 0.7 ppb
uncertainty [8, 9] – ten times smaller than for atom-recoil determinations. Remark-
ably, this 100 mK measurement probes for internal electron structure at 130 GeV.

A big additional reduction in the measurement accuracy is soon to be an-
nounced, based upon a new measurement for which the analysis is nearly finished.

2 Quantum Cyclotron

The quantum limit of an electron cyclotron accelerator was demonstrated and re-
ported in collaboration with my student S. Peil [4].

When the cyclotron is cooled to 80 mK, 50 times lower than previously realized
with an isolated elementary particle, quantum nondemolition (QND) measurements
show that the electron stays in the ground state of its cyclotron motion for hours,
leaving only in response to resonant photons deliberately introduced from outside.
At higher temperatures, blackbody photons are present in sufficient numbers to
occasionally excite the electron cyclotron motion. QND measurements show the
cyclotron oscillator remains in an excited energy eigenstate for many seconds before
making an abrupt quantum jump to an adjacent state. The striking isolation of
the electron from its environment is due to a 140-fold cavity-induced suppression of
the spontaneous emission of synchrotron radiation. Analysis of the quantum jumps
provides a way to measure the temperature of the electron, the average number of
blackbody photons, and the spontaneous emission rate. Quantum jump spectroscopy
provides a way to precisely measure the frequency separation of the lowest quantum
states. A variety of applications are mentioned in conclusion.

The quantum cyclotron provides an unusual opportunity to observe and ma-
nipulate long lived states of a harmonic oscillator. When written in terms of raising
and lowering operators, the Hamiltonian of the two dimensional cyclotron Hc =
hνc(a

†a + 1/2) is formally equivalent to that of the familiar one dimensional har-
monic oscillator. The energy eigenstates of the electron cyclotron (|n = 0〉, |n = 1〉,
... in Fig. 1a) are often called Landau levels. They are formally equivalent to the fa-
miliar number states of the harmonic oscillator, often called Fock states in quantum
optics. Though these states are well known to every student of quantum mechanics,
the production, observation and use of Fock states in experiments is surprisingly
difficult and rare. The unusually high probability P > 0.999 to be in the ground
state of the quantum cyclotron, and the extremely long lifetime of the Fock states,
should make it possible to excite any superposition of the lowest Fock states with a
properly tailored sequence of drive pulses.

We reported the nondestructive observation of Fock states as high as |n = 4〉.
At the time of this observation, only zero- and one-photon Fock states, |n = 0〉 and
|n = 1〉, had previously been observed for a radiation mode of a cavity [10, 11],
though efforts were underway to observe two-photon and higher Fock states [12]. A
ground state occupation fraction P = 0.95 was reported. Vibrational Fock states of
a laser-cooled Be+ ion in a potential well have also been selectively excited, starting
from a similar ground state occupation of P = 0.95 [13]. The formation of these Fock
states was deduced destructively, from repeated measurements which transferred the
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Figure 1: (a) Energy levels of the one-electron cyclotron oscillator. (b) Electrodes of the cylindrical
Penning trap cavity.

population of identically prepared states to internal energy levels, whose monitored
time evolution revealed the original state. Very recently, the |n = 0〉 and |n = 1〉
Fock states of neutral atoms oscillating in a one dimensional harmonic well were
also observed [14] with P = 0.92 for the ground state. More recently, very nice
observations of the Fock states of a radiation mode in a cavity show quantum jumps
that look very much like those of our cyclotron oscillator [15, 16].

The quantum cyclotron is realized with a single electron stored in a cylindrical
Penning trap [4, 2] that is cooled by a dilution refrigerator. The trap cavity (Fig. 1b)
is a good approximation to a cylindrical microwave cavity at frequencies up to 160
GHz [17]. Tiny slits (125 µm) in the walls of the cavity make it possible to apply
a trapping potential between the central ring electrode and the two flat endcap
electrodes. The small slits include quarter wave “choke flanges” to minimize the loss
of microwave radiation from the cavity. The potential is made a better approximation
to a harmonic potential along the central symmetry axis of the trap by tuning an
additional voltage applied to the two compensation electrodes.

Cavity radiation modes that couple to the cyclotron oscillator [17, 18] have
quality factors as high as Q = 5 × 104. The energy in a 150 GHz mode with this Q
value damps exponentially with a 50 ns time constant that is very short compared
to all relevant time scales. (The frequency widths of the cavity mode resonances,
for example, are much wider than the oscillator’s cyclotron resonance width.) The
radiation modes of the cavity are thus thermal states with the temperature of the
trap cavity. Thermal contact to a dilution refrigerator allows us to adjust the trap
temperature between 4.2 K and 70 mK (only to 80 mK when our detector is on.) We
detune the frequency of the one-electron cyclotron oscillator away from the radiation
modes to decrease the spontaneous emission rate.

Two of the three motions of a trapped electron (charge −e and mass m) in a
Penning trap [19] are relevant to this work. Our central focus is upon the circular
cyclotron motion, perpendicular to a vertical 5.3 T magnetic field, with cyclotron
frequency νc = eB/(2πm) = 147 GHz and energy levels separated by hνc. The
Fock states |n〉, often called Landau states for the particular case of a charged
particle in a magnetic field, decay via spontaneous emission to |n − 1〉 at a rate
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nγ, where γ is the classical decay rate of the oscillator. In free space for our field,
γ = (4πǫo)

−116π2ν2
c e

2/(3mc3) = (94 ms)−1. This is the rate that is inhibited by the
trap cavity.

The electron is also free to oscillate harmonically along the direction of the ver-
tical magnetic field, ẑ, at a frequency νz = 64 MHz ≈ νc/1000. We drive this axial
motion by applying an oscillatory potential between the ring and an endcap elec-
trode, and detect the oscillatory current induced through a resonant tuned circuit
attached between the ring and the other endcap. The electron axial motion damps
as energy dissipates in the detection circuit, yielding an observed resonance width of
5 Hz for the driven axial motion. With appropriate amplification and narrow band-
width detection we are able to measure small (1 Hz) shifts in νz. A heterostructure
field effect transistor (HFET), constructed with Harvard collaborators just for these
experiments, provides the radiofrequency gain that is needed while dissipating only
4.5 µW. The dilution refrigerator had difficulty with the nearly 700 times greater
power dissipation (3 mW) of the conventional MESFET used initially.

The cyclotron and axial motions of the electron would be uncoupled except that
we incorporate two small nickel rings into the ring electrode of the trap (Fig. 1b).
These saturate in and distort the otherwise homogeneous magnetic field. The re-
sulting “magnetic bottle”,

∆ ~B = B2

[(

z2 − (x2 + y2)/2
)

ẑ − z(xx̂ + yŷ)
]

, (1)

is similar to but much bigger than what was used to determine an electron spin state
[20]. Coupling the combined cyclotron and spin magnetic moment ~µ to ∆ ~B gives a
term in the Hamiltonian that is harmonic in z,

V = −~µ · ∆ ~B = 2µBB2(a
†a + 1/2 + Sz/~)z2, (2)

where µB is the Bohr magneton, Sz is the spin operator, and the electron g value
is taken to be 2. This V makes νz shift in proportion to the energy in the cyclotron
and spin motions,

∆νz = δ(n + 1/2 + ms). (3)

A one quantum excitation of the cyclotron oscillator shifts the monitored νz by
δ = 2µBB2/(mωz) = 12.4 Hz, substantially more than the 5 Hz axial linewidth and
the 1 Hz resolution.

The measurement of the cyclotron energy is an example of a QND measurement
[21, 22] in that V and Hc commute, [V, Hc] = 0. The desirable consequence is that a
second measurement of the cyclotron energy at a later time will give the same answer
as the first (unless a change is caused by another source). This is not generally true
for measurements with a quantum system. For example, measuring the position of a
free particle would make its momentum completely uncertain. After additional time
evolution a second measurement of the particle’s position would give a different
outcome.

Five one-hour sequences of QND measurements of the one-electron oscillator’s
energy are shown in Fig. 2. Each is for a different cavity temperature T , as measured
with a ruthenium oxide sensor attached to the ring electrode. Greatly expanded
views of several quantum jumps are shown in Fig. 3. Energy quantization is clearly
visible, as are the abrupt quantum jumps between Fock states. The upward quantum
jumps are absorptions stimulated by the blackbody photons in the trap cavity. The
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downward transitions are spontaneous or stimulated emissions. Mostly we see the
oscillator in its ground state |n = 0〉, with occasional quantum jumps to excited Fock
states. Fig. 3b shows a rare event in which 4.2 K blackbody photons sequentially
excite the one-electron cyclotron oscillator to the Fock state |n = 4〉. It takes of
order 2 s of signal averaging for us to ascertain the quantum state of the cyclotron
oscillator. This true measurement time is less, being the time required to establish
the quantum state in principle. An estimate of this time [23] unfortunately uses
assumptions that do not correspond well to the experimental conditions.

We analyze the quantum jumps to measure the temperature of the cyclotron
oscillator, Tc. The measured probabilities Pn for occupying Fock states |n〉, averaged
over many hours, are shown to the right in Fig. 2 for each cavity temperature. The
measured Pn fit well to the Boltzmann factors Pn = Ae−nhνc/kTc which pertain for
thermal equilibrium, demonstrating that averaged over hours the oscillator is in a
thermal state. The fit determines Tc. Measurements with this “quantum Boltzmann
thermometer” (solid points in Fig. 4a) shows that Tc is equal to the cavity tempera-
ture T ; the cyclotron oscillator is in thermal equilibrium with the blackbody photons
in the cavity. The solid points in Fig. 4b show the measured average quantum num-
ber superimposed upon the curve n̄ = [ehνc/kT −1]−1 which pertains for an oscillator
in thermal equilibrium at the measured cavity temperature T . For temperatures of
4.2 K, 1 K and 80 mK, n̄ varies dramatically from 0.23, to 9 × 10−4, to 6 × 10−39.
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Figure 2: Quantum jumps between the lowest states of the one-electron cyclotron oscillator decrease
in frequency as the cavity temperature is lowered.

Below 1 K the oscillator resides in its ground state for so long (we estimate 1032

years for 80 mK) that it is difficult to directly measure the oscillator temperature Tc.
The best we can do is to establish that at some confidence level C, this temperature
is below a limit given by kTc ≤ hνc/ln[1− γt/ln(1−C )] if we observe no excitation
for time t. When no excitation is observed for t = 5 hours, for example, we establish
that Tc < 1.0 K at the C = 68% confidence level. For temperatures below 1 K,
blackbody photons have been essentially eliminated, and the one-electron cyclotron
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Figure 3: Excitations to excited Fock states which are stimulated by 4.2 K blackbody photons in
(a) and (b), and by an externally applied microwave field in (c) and (d).
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Figure 4: (a) The oscillator temperatures deduced from the measured occupation times in each
number state (solid points) and deduced from the transition rates (open points) are compared to
the temperature of a ruthenium oxide thermometer attached to a trap electrode. (b) Measured
average values n̄ and ℓ̄ as a function of cavity temperature.

We can separately measure the rate Γabs for the upward jumps (corresponding
to stimulated absorption), and the rate Γem for downward jumps (corresponding
to stimulated and spontaneous emission together). For T = 1.6 K, Fig. 5 shows a
histogram of the dwell times in |n = 0〉 in (a) and for |n = 1〉 in (b). Both histograms
decrease exponentially, indicating random processes, so the fitted lifetimes (Γabs)

−1

and (Γem)−1 are just the average values of the dwell times. The rates for stimulated
emission from |n〉 to |n − 1〉 and for stimulated absorption from |n − 1〉 to |n〉 are
expected to be equal by the principle of detailed balance. Thus the spontaneous
emission rate is simply the difference between the observed emission rate and the
observed absorption rate, γ = Γem − Γabs. At T = 1.6 K (Fig. 5) the measured
stimulated absorption rate is negligibly smaller so that γ−1 ≈ Γ−1

em = 13 s.
Comparing the 13 s spontaneous emission lifetime that is measured with the

94 ms expected for free space shows that spontaneous emission of synchrotron radi-
ation is strongly suppressed. The 140-fold inhibition is due to the copper trap cavity
that encloses the electron oscillator [24]. By adjusting the magnetic field, the fre-
quency of the cyclotron oscillator is tuned away from resonance with the radiation
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Figure 5: Histograms of the dwell times preceding stimulated absorption from n = 0 to n = 1 in
(a), and for spontaneous and stimulated emissions from n = 1 to n = 0 in (b), both for T = 1.6
K. Dwell times less than 5 s are excluded since short dwell times are obscured by detection time
constants.

modes of the trap cavity. The electron oscillator then couples only very weakly to
the modes of the radiation field, and spontaneous emission is suppressed. We would
not otherwise be able to signal average sufficiently to observe the quantum jumps
so distinctly, nor would the excited Fock states persist so long.

The measured emission and absorption rates determine the average number ℓ̄ of
resonant blackbody photons within the cavity. Quantum electrodynamics indicates
that stimulated emission from |n〉, and stimulated absorption into |n〉, both have
the same rate given by ℓ̄nγ. Applied to n = 1, this means that Γabs = ℓ̄γ and
Γem = (1 + ℓ̄)γ. The average number of blackbody photons in terms of measurable
quantities is thus given by ℓ̄ = Γabs/(Γem − Γabs). The measured open points in
Fig. 4b agree well with the expected curve ℓ̄ = [ehνc/kT −1]−1, and n̄ = ℓ̄ as predicted.
Fitting to the measured ℓ̄ gives an independent measurement of the temperature of
the cavity (open points in Fig. 4a). These agree well with the directly measured
cavity temperature.

Extremely precise quantum jump spectroscopy of the lowest levels of the quan-
tum cyclotron should become possible with blackbody photons eliminated from the
trap cavity. Quantum jumps (e.g. Fig. 3c-d) will take place only when externally
generated microwave photons are introduced into the trap cavity, increasing in rate
as the drive frequency is swept through resonance. One challenge is that the z2 term
in the magnetic bottle (Eq. 1) not only couples νz to the cyclotron energy (Eq. 3)
as is desired for good detection sensitivity. It also shifts the cyclotron frequency in
proportion to the axial energy Ez with ∆νc = δ Ez/(hνz). The measured distribution
of cyclotron frequencies shows that the current axial detector heats the axial motion
of the electron to 17 K, well above the 80 mK temperature of the trap and cyclotron
motion. However, the long lifetime of the first excited Fock state should make it
possible to introduce microwave photons while the axial motion is cooled to 80 mK,
before turning on the axial detector to observe whether a cyclotron excitation has
been made.

In conclusion, a quantum cyclotron is demonstrated using one electron in a
cylindrical Penning trap cavity. QND measurements of quantum jumps between
cyclotron Fock states shows that the temperature of the cyclotron motion tracks the
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cavity temperature where this can be measured, from 4.2 K to 1.6 K. At 80 mK the
electron is 50 times colder than previously demonstrated for an isolated elementary
particle. Blackbody photons are completely absent and the cyclotron remains in its
quantum ground state. The jumps also show that the Fock states are long lived; the
cavity suppresses the spontaneous emission of synchrotron radiation 140-fold.

The quantum cyclotron is so well prepared in its ground state, and so well
isolated from its environment, that it may be possible to excite any desired super-
position of excited states, to probe the nature of decoherence and quantum mea-
surement. Quantum jump spectroscopy offers the prospect to measure the frequency
between the lowest Fock states (and spin states) with the exquisite precision required
to significantly improve the very accurate measurement of the the electron magnetic
moment and the fine structure constants, as illustrated in following sections. A bet-
ter lepton CPT test, comparing the magnetic moments of the electron and positron,
should be possible, along with a better measurement of the proton-to-electron mass
ratio.

The work of this section was done as part of the Ph.D. work of S. Peil, with
early experimental contributions from K. Abdullah and D. Enzer. Support came
from the NSF with some assistance from the ONR.

3 Feedback Cooling

Feedback cooling of the axial motion of a single suspended electron in a cylindrical
Penning trap was initially reported in collaboration with my students B. D’Urso,
and B. Odom [5].

At a time when the importance of feedback for reducing amplifier noise was
already recognized [25], Kittel described the theory and limits of “noiseless” feed-
back damping [26]. Feedback damping has been applied in subsequent decades to a
variety of oscillatory systems including an electrometer[27], a torsion balance [28], a
mechanical gravity gradiometer [29], a laboratory rotor [30], a vibration mode of an
optical mirror [31], and to the stochastic cooling of particle beams [32]. The possi-
ble application of Kittel’s “noiseless” feedback to trapped particles was mentioned
[33], as was the relevance of the limitations he discussed [34] to proposed stochastic
cooling of trapped antiprotons [35]. Using feedback to improve measurements is an
active area of current research [36].

This section describes the feedback cooling of the simplest of oscillators – one
with demonstrated potential for fundamental measurements. A one-electron oscilla-
tor is cooled from 5.2 K to 0.85 K. A unique feature is that this classical oscillator’s
temperature and damping rate are both determined absolutely by measuring fre-
quencies. A novel feature is that quantum jump thermometry (utilizing quantum
electron cyclotron motion orthogonal to the cooled classical oscillation) directly dis-
plays the Boltzmann distribution of oscillator energies [4]. The measurements reveal
cooling to an ideal, noiseless feedback limit that is characterized by a fluctuation-
dissipation invariant. Noise added by the active feedback electronics limits the lowest
temperature attained.

The observed narrowing of an electron’s cyclotron resonance line, with similar
narrowing of the “anomaly” resonance [19] at the difference of its spin and cyclotron
frequencies, will allow higher precision measurements of these frequencies and more
precise systematic studies. The higher accuracy determination of these frequencies
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expected as a result could enable better measurements of the magnetic moments of
the electron and positron, an improved determination of the fine structure constant,
an improved CPT test with leptons, and a better measurement of the proton-to-
electron mass ratio.

The oscillation cooled with feedback is that of a single electron along the central
symmetry axis (ẑ) of a cylindrical Penning trap [1, 2] (Fig. 6). The trap electrodes are
biased so the electron oscillates in a harmonic potential well (∼ z2) with frequency
νz = 64.787 MHz. The z4 well distortion is tuned out by adjusting the potential on
small, orthogonalized compensation electrodes [1].
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Figure 6: Representation of trap and high frequency electronics used for feedback cooling. Static
potentials applied to suspend the electron at the trap center are not shown.

We treat the one-electron oscillator as a charge attached to a massless spring,
focussing upon potentials and currents that oscillate near νz, while ignoring the ad-
ditional static trapping potentials always applied to the trap. Oscillatory potentials
applied to either of the two endplate electrodes (Fig. 7) drive the electron oscillator.
The electron motion, in turn, induces a current I to flow through R, a resistance due
to unavoidable loss in an attached amplifier and inductor. The inductor (in parallel
to R but not shown) tunes out trap capacitance (e.g. between the plates).

With no feedback (Fig. 7a), the induced current I removes energy from the
electron oscillator at the familiar rate I2R, with the result that the damping rate
Γ ∝ R. The proportionality constant depends upon the electron charge, the electron
mass and the geometry of the trap [19]. Measurements to be discussed show that
the electron oscillator is weakly damped (i.e. Γ/2π ≪ νz) with Γ/2π = 8.4 Hz.

The random thermal fluctuations of electrons within R, in thermal equilibrium
at temperature T , produce a fluctuating Johnson-Nyquist noise potential [37, 38]
Vn. This frequency independent white noise, with

V 2
n = 4kTR∆ν (4)

in a frequency bandwidth ∆ν, drives the electron. This noise and the induced current
both contribute to the voltage on the upper plate, V = Vn + IR. A sensitive HEMT
(high electron mobility transistor) amplifier amplifies V so it can be detected.
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The measured power spectrum for V (Fig. 8a) has a constant baseline due to
the Johnson noise. The current induced by the noise-driven electron produces a
notch in this flat spectrum at νz; the angular frequency width of this notch is the
damping rate Γ. The notch is most easily understood if the oscillating charge is
represented as a familiar electrical oscillator, an inductor ℓ and a capacitor c in
series, connected between the plates. On resonance at νz the electron acts as an
electrical short between the plates since the reactances of the ℓ and c cancel. The
notch has the characteristic Lorentzian shape of a damped harmonic oscillator. The
observed noise cancellation is not perfect (i.e. the dip does not go perfectly to zero
power in Fig. 8a) because of amplifier noise, trap potentials that are not perfectly
stable, and residual trap anharmonicity.
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Figure 8: Oscillator damping rate Γe (the width of the notch in the white Johnson noise) without
feedback (a) and when decreased using feedback (b)-(c).

When the amplifier is on, as it must be for feedback to be applied, measurements
to be discussed show that R is at a temperature of 5.2 K. This is higher than the 1.6
K of the trap apparatus (maintained by thermal contact to a pumped 4He system),
despite the minimal 420 µW power dissipation of the current-starved HEMT, and
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heroic efforts to thermally anchor the HEMT at 1.6 K.
Feedback is applied as shown conceptually in Fig. 7b. The fluctuating upper

plate voltage V is fed back to the lower plate with feedback gain, g. A more com-
plete representation (Fig. 6) shows amplifiers, attenuators and variable cable lengths
used to adjust the feedback phases. Correctly phased feedback to two electrodes,
rather than just to the bottom plate in the conceptual Fig. 7b, applies feedback
to the electron while canceling feedback to the amplifier. Feedback to the amplifier
would modify its properties [25], perhaps improving particle detection in some sit-
uations [39], but would complicate the relationship between feedback gain, electron
temperature and electron damping.

For the electron, the effect of feedback is equivalent to the circuit in Fig. 7c,
with Re and Te chosen to make the motion-induced potential and the fluctuation
potential across the plates the same as for Fig. 7b.

To determine Re (and hence the damping rate Γe ∝ Re) we insist that electron
motion induces the same potential difference across the plates. Equating IR − gIR
for Fig. 7b with IRe for Fig. 7c yields Re = (1− g)R, and an electron damping rate

Γe = (1 − g)Γ. (5)

When g = 0 we recover the damping rate Γ for no feedback. When g = 1 the electron
oscillator is undamped.

To determine the effective temperature Te we insist that the electron see the
same noise fluctuations across the plates in Figs. 7b and 7c. Equating Vn − gVn for
Fig. 7b with Ve for Fig. 7c, yields

Te = (1 − g)T. (6)

We recover the resistor temperature T when there is no feedback (g = 0). The
temperature decreases as the feedback gain is increased. We shall see that noise
added in the feedback process prevents attaining 0 K as g → 1.

The fluctuations (characterized by a temperature) and the dissipation (charac-
terized by a damping rate) are related for ideal, noiseless feedback by a fluctuation-
dissipation invariant [26],

Te/Γe = T/Γ. (7)

Noiseless feedback with gain g < 0 increases the damping rate but at the expense of
also increasing the temperature and fluctuations. Noiseless feedback cooling, with
0 < g < 1, decreases the temperature, but at the expense of reducing the damping
rate. The advantage of a reduced Te is to reduce deleterious effects of axial fluctu-
ations upon other electron motions, as we will illustrate with a reduced cyclotron
linewidth.

Real feedback amplifiers add fluctuations Vg that increase Te above the the ideal
Eqs. 6-7, and reduce the depth of the observed Lorentzian noise notch. Equating the
fluctuations across the plates for Figs. 7b-c yields

Te = T

[

1 − g +
g2

1 − g

Tg

T

]

. (8)

Tg is a feedback “noise temperature” such that V 2
g /V 2

n = Tg/T . The relative depth
of the Lorentzian notch in the observed noise power,

F = 1 − (1 − g)−2(1 + T/Tg)
−1, (9)
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is the ratio of this noise power on and off resonance.
Te initially drops linearly with g increasing from zero as in the ideal case (Eq. 6).

(An example is the function fit to measured temperatures in Fig. 10a, discussed
later.) Te then rises rapidly as g → 1, the limit of an undamped oscillator driven by
feedback noise.

The lowest temperature is Te(min) ≈ 2
√

TgT , for Tg ≪ T , is at an optimal

feedback gain g ≈ 1 −
√

(Tg/T ), and our amplifier has Tg ≈ 40 mK. Meanwhile,
the deep notch (F ≈ 1 for g = 0) goes to essentially no notch at all (F ≈ 0) at the
gain that minimizes Te. Damping remains but we cannot measure its rate by this
method.

The temperature Te of the effective damping resistance is important because the
electron axial oscillation comes into thermal equilibrium at Te. Averaged over many
axial damping times Γ−1, the probability that the oscillator has energy between Ez

and Ez + dEz goes as the Boltzmann factor, e−Ez/kTe .
Remarkably, we can directly measure this Boltzmann distribution, and hence

Te, using quantum jump thermometry. The quantum jumps [4] are between the
ground and first excited states of the electron’s cyclotron motion in a 5.24 Tesla
magnetic field directed along the electron’s axial oscillation (Fig. 6). Compared to
the rapid 146.7 GHz cyclotron motion the axial motion is adiabatic. It is unaffected
by a single quantum cyclotron excitation except for the tiny shift of νz (Eq. 11) that
we discuss next. The cyclotron damping lifetime is extended to 15 seconds (from 0.1
seconds for free space) using a trap cavity that inhibits spontaneous emission [4].

The coupling of cyclotron and axial motion comes from the small “magnetic
bottle” gradient [19] from two small nickel rings (Fig. 6). The electron sees a mag-
netic field that increases slightly as z2 as it moves away from the center of the trap
in its axial oscillation. This coupling shifts the cyclotron frequency by a measured
[4] δ = 12 Hz for every quantum of axial excitation,

∆νc = δ(Ez/hνz). (10)

The axial frequency shifts by the same amount,

∆νz = δ(Ec/hνc), (11)

for every quantum of cyclotron excitation. Both tiny shifts are used for the quantum
jump thermometry.

A Boltzmann distribution of axial energies, owing to Eq. 10, makes an associated
distribution of cyclotron frequencies, given that the axial damping time is longer
than the time associated with the noise fluctuations of the axial frequency [19]. A
cyclotron driving force at frequency ν excites a quantum jump between the ground
and first excited cyclotron states with a probability

P (ν) ∼
{

0, ν < νc

e−
νz
δ

h(ν−νc)
kTe , ν > νc,

(12)

provided that the jumps happen more rapidly than the one per hour stimulated by
blackbody photons in the 1.6 K trap cavity.

To determine whether a quantum jump has taken place we look for the cor-
responding axial frequency shift (Eq. 11). We do not simply observe the center
frequency of a noise dip (Fig. 8), though this would likely suffice. Instead, before
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a cyclotron excitation decays (in typically 15 s), we observe the electron’s response
to a strong axial drive for the 1 second needed to measure ∆νz and determine the
cyclotron state.

The measurement cycle starts with 0.5 s of magnetron sideband cooling [19] to
keep the electron near the center axis of the trap. Feedback cooling is then applied
for 6 seconds, with the cyclotron drive at ν turned on for the last 2 of these seconds.
The axial drive to determine ∆νz and the cyclotron state is applied next, along with
more magnetron cooling. The cyclotron state is read out once each second until the
ground state is observed for 2 s. The cycle then repeats.
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Figure 9: Cyclotron resonances show a Boltzmann distribution of axial energies that decreases as
feedback gain g in increased. Dashed lines bound the 68% confidence area.

The measured cyclotron lineshapes (Fig. 9) narrow significantly as the feedback
gain increases. Each shows the characteristic Boltzmann distribution that signifies
thermal equilibrium. Each is fit to Eq. 12 to determine the equilibrium axial tem-
perature, Te. The lowest observed Te = 850 mK (Fig. 9c) is a substantial reduction
of the 5.2 K realized without feedback.

The measured axial temperature (Fig. 10a) decreases linearly as g increases
from 0, as predicted in Eqs. 6 and 8. There is a good fit to Eq. 8, including the rapid
increase for g → 1 which corresponds to a nearly undamped system being driven by
the noise added in the feedback signal. It is difficult to fix g accurately enough to
measure points on this rapid rise.

The damping rate Γe, the width of a noise dip (e.g. Fig. 8), is measured directly
(Fig. 10b). The damping rate decreases linearly with increasing g as predicted in
Eq. 5. The vanishing dip width and the instabilities mentioned earlier keep us from
measuring Γ near to g = 1.

Because we directly measure Te (characterizing fluctuations) and Γe (character-
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Figure 10: Axial temperature (a), damping rate (b) and the fluctuation-dissipation invariant (c)
as a function of feedback gain. The dotted line in (c) is the weighted average.

izing dissipation) we can compare their ratio (Fig. 10c) to the fluctuation-dissipation
invariant that pertains for noiseless feedback (Eq. 7). The measured ratio is invariant
and is at the ideal limit, though we expect that it would rise above the ideal limit
if we could measure it for feedback gains closer to unity.

In conclusion, feedback cooling to the noiseless limit is demonstrated with the
simplest of oscillators. Characterization of the cooling of a one-electron oscillator
is direct and complete because both fluctuations and dissipation are directly and
absolutely determined by frequency measurements. In addition, sharply narrowed
cyclotron lineshapes present the possibility of much more accurate measurements of
the electron cyclotron frequency, with similar line narrowing and accuracy improve-
ment expected for the electron “anomaly” resonance [19]. Better measurements of
these frequencies for a single trapped electron and positron opens the way to better
measurements of their magnetic moments, a more accurate value of the fine struc-
ture constant, a more precise test of CPT invariance for leptons, and an improved
proton-to-electron mass ratio.

The work of this section was supported by the NSF, the ONR, and the AFOSR.
It was part of the Ph.D. work of B. D‘Urso, who was supported by the Fannie and
John Hertz Foundation.

4 First One-Particle Self-Excited Oscillator

The initial demonstration of the use of electronic feedback to produce a one-particle
self-excited oscillator was done in collaboration with my students B. D’Urso, R. Van
Handel, B. Odom and D. Hanneke [6].
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Figure 11: The vertical oscillation of a trapped electron, shown within a cutaway of a cylindrical
Penning trap, induces a voltage across resistor R that is amplified and fed back to drive the
oscillation. Unavoidable trap capacitance in parallel to R is tuned out at ωz with a parallel inductor.

The harmonic motion of an oscillator can be excited and sustained with a driving
force derived from its own oscillation. A wide range of macroscopic oscillators are
operated as self-excited oscillators (SEO), from the electromechanical clock [40] and
its ubiquitous quartz successors, to the nanomechanical cantilevers used in atomic
force microscopes [41] and sensitive electrometers [42]. A microscopic SEO is more
difficult to realize because such small signals and driving forces are involved. The
possibility of realizing a one-ion SEO in a Paul trap was once discussed [33], and
self-driven feedback cooling of a one-electron oscillator has been realized [5].

In this section we demonstrate a microscopic, one-particle SEO for the first
time. The axial motion of a single electron suspended in a Penning trap is driven
by an electric field derived from the current that its motion induces in an electrical
circuit. The principal challenge is in stabilizing the electron’s oscillation amplitude,
an amplitude measured here using quantum jump spectroscopy of a perpendicular
cyclotron motion. The frequency stability and the signal-to-noise allow detection of
a 5 parts in 1010 frequency shift in a few seconds – a sensitivity that allows the
detection of a one quantum change in the electron cyclotron energy and an electron
spin flip. Likely applications are improved measurements of the electron, positron,
proton and antiproton magnetic moments.

The oscillation which is self-excited is that of a single electron (charge −e and
mass m) along the central axis (ẑ) of a cylindrical Penning trap [1] (Fig. 11) main-
tained at either 0.1 or 1.6 K. A ring electrode at potential −V0 with respect to
grounded endcaps generates a potential on the z-axis,

Φ(z) =
V0

2

[

C2
z2

d2
+ C4

z4

d4
+ C6

z6

d6
+ · · ·

]

, (13)

where d = 0.35 cm indicates the trap size. The Ck are determined by trap geometry
and by the potential Vc applied to small compensation electrodes (Fig. 11) to adjust
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C4 and C6. An “orthogonalized” trap geometry [1] makes C2 essentially independent
of Vc.

A drive force Fd(t) and a damping force −mγz ż yield

z̈ + γz ż + [ωz(A)]2z = Fd(t)/m. (14)

The angular oscillation frequency ωz(A) is

ωz(A)

ωz
≈ 1 +

3C4

4C2

(

A

d

)2

+
15C6

16C2

(

A

d

)4

, (15)

for small (C4/C2)
2. It depends weakly upon the oscillation amplitude A [19], and

ωz =
√

eV0C2/(md2) pertains for small amplitudes.
The motion induces a voltage proportional to ż across a Q ≈ 600 tuned circuit

(R in Fig. 11). Energy dissipated in R damps the motion. The signal is amplified with
a high electron mobility transistor (Fujitsu FHX13LG) anchored to the cryogenic
environment, and operated at a very low current to minimize trap heating. For the
two realizations of the SEO that we will describe, typically 420 µW is used to detect
the comparator SEO operated at 1.6 K, and only 12 µW for the DSP SEO at 0.1 K.
Some amplified signal is phase shifted and fed back to the opposite endcap to drive
the SEO. The rest is fourier transformed to determine its amplitude and the SEO
oscillation frequency.

The feedback produces a force Fd(t) = Gmγzż. Feedback cooling of the electron
motion takes place if G < 1 [5]. Self-excitation occurs in principle when the feedback
cancels the damping, for unit feedback gain G = 1. Any noise will cause amplitude
diffusion and energy growth, however. Also, if G differs even slightly from unity, A
will either decrease or increase exponentially.

A stable and useful SEO thus requires a fixed oscillation amplitude Ao, arranged
using an amplitude-dependent gain G(A) that decreases with increasing A near
G(Ao) = 1. This gain in Eq. (14) yields

Ȧ = −1
2
γzA [1 − G(A)] (16)

for the time evolution of the amplitude [43]. In practice, the gain-control system may
average the signal for a time τ before determining A. Eq. (16) is valid if τ ≫ 1/ωz

and 1/τ is much larger than the resulting self-excited oscillator linewidth.
We demonstrate two methods of stabilizing the amplitude of a SEO – passing

the feedback drive through a comparator (Fig. 12a) and employing a fast digital
signal processor or DSP (Fig. 12b). The first was realized at ωz/(2π) = 64 MHz and
the second at ωz/(2π) = 200 MHz for reasons not related to this demonstration.
The comparator is simpler, but the DSP is the more flexible option that can be
made much more immune to noise. For both demonstrations the technical noise
added by the feedback amplifier is so small [5] that we neglect it in our analysis.
We were unable with the electrodes of our trap to realize a third method – applying
the signal induced on one electrode to a second electrode (not the image of the
first under z → −z) to make the effective feedback gain decrease with oscillation
amplitude.

A noiseless feedback drive passing through a comparator generates a fixed os-
cillation amplitude Ao. Thus G(A) = Ao/A and Eq. (16) together yield

Ȧ = −1
2
γz(A − Ao). (17)
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Figure 12: Overview of the comparator (a) and DSP (b) feedback used to obtain amplitude stabi-
lization. Phase shifters are labeled with φ.

The amplitude A damps exponentially to Ao; the time constant γz/2 is the same
as for damping without feedback. Noise injected into a comparator softens its gain
response, limiting the gain at low A [44]. Narrow band filters (Fig. 12a) to reduce
the noise are thus essential. A big challenge is in adjusting the trapping potential
to keep the shifting oscillation frequency centered on the filters. (The drives to two
electrodes in Fig. 12a are effectively one drive insofar as the electron mixes the two
frequencies [19].)

We program the DSP chip to calculate a running Fourier transform of the
amplified induced signal, and to adjust the feedback gain as a cubic function of the
largest transform amplitude, so

Ȧ = −1
2
γz[a1(A − Ao) + a2(A − Ao)

2 + a3(A − Ao)
3]. (18)

For this demonstration only the linear term is used, with a2 = a3 = 0. The effective
bandwidth (related to the fourier transform bin width) is 8 Hz, but the “filter”
is always centered on the oscillation frequency. No square wave is generated so no
filtering of harmonics is required.

Fig. 13 shows that ωz(Ao) − ωz depends approximately quadratically upon A2
o

as predicted by Eq. 15 for A ≪ d. Ao is varied by changing the gain for three
different Vc. Ao is determined from the size of the induced signal to which it is
proportional, with a proportionality constant that will be discussed shortly. Fits of
Eq. 15 to the measurements in Fig. 13 allow us to determine and adjust C4 and C6

with unprecedented accuracy.
One consequence is that extremely small frequency shifts can be quickly de-

tected with the SEO. In a given averaging time, a frequency can typically be mea-
sured to the familiar limit provided by the uncertainty principle, divided by the
signal-to-noise ratio (S/N) [45]. A large induced S is possible due to the large os-
cillation amplitudes, illustrated in Fig. 13. The effect of amplitude fluctuation noise
N (driven by thermal fluctuations in the detection resistor) is particularly small if
the oscillator amplitude is stabilized at a maxima (e.g. Fig. 13) caused when the
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Figure 13: The axial frequency measured as a function of the square of the axial amplitude Ao

using the comparator SEO.

effects of C4 and C6 of opposite sign cancel. An oscillator is locally harmonic at such
maxima, with the oscillation frequency insensitive to small, noise-driven, amplitude
fluctuations, despite the large oscillation in an anharmonic potential. Fig. 14a shows
the standard deviation of repeated frequency measurements as a function of averag-
ing time. With only four seconds of averaging time a 5 parts in 1010 (0.5 ppb) shift
in ωz can be measured – a substantial improvement on any other method.

In principle, a fixed frequency drive could sustain a large oscillation in an anhar-
monic potential. In practice, however, if the oscillator frequency changes suddenly
the oscillation could be lost. Also, a fixed frequency drive cannot generally build
up a large oscillation amplitude in the first place since the oscillator shifts out of
resonance with the drive as the oscillation amplitude increases.

The considerable advantage of a SEO is that its self-derived drive always stays
resonant, even if its oscillation frequency changes suddenly. It also stays resonant
while the oscillation amplitude builds up to a large value, during which time the
oscillation frequency is shifting. Typically our SEO is excited in less than 1 second.

A calibration of the axial oscillation amplitude – using quantum jump spec-
troscopy of an orthogonal cyclotron motion – is next. Noise applied to the oscillator
gives a distribution of axial energies Ez about the stable oscillation energy Eo, am-
plitude Ao and phase φo that pertain for no noise. A reservoir at temperature Tz,
weakly coupled to the axial motion, gives a distribution [46]

P (Ez; Eo, Tz) =
1

kTz
e−

Ez+Eo
kTz I0

(

2
√

EzEo

kTz

)

, (19)

where I0 is a modified Bessel function. No feedback drive gives Eo → 0 and a
Boltzmann distribution of Ez.

A simple derivation verifies this distribution and highlights the assumptions.
For small fluctuations from Ao the oscillation can be taken as harmonic at angular
frequency ωo = ωz(Ao), with Eo = 1

2
mω2

o |Aoe
iφo |2. Noise alone would drive the

oscillator into thermal equilibrium, to a Boltzmann distribution of energies En =
1
2
mω2

o |Aneiφn |2, where φn is a random oscillation phase. The oscillation amplitude
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Figure 14: Fractional standard deviation of repeated frequency measurements for SEO with indi-
cated bandwidth (a). Small shifts in the frequency of a 200 MHz SEO indicate a one-quantum
cyclotron excitation (b) and a separate spin flip (c). The SEO is off while a drive is applied to flip
the spin, giving the gap in (c).

Az and phase φz due to independent feedback and noise drives is the superposition
Aze

iφz = Aoe
iφo +Aneiφn for a harmonic oscillation. The combined effect of feedback

and noise for a particular φn arises from the distribution of the total amplitude

P̃ (Aze
iφz) ∝ e−

En
kTz = e−

mω2
o |Azeiφz −Aoeiφo |2

2kTz
. (20)

The probability distribution of Ez = 1
2
mω2

o |Aze
iφz |2 in Eq. 19 is the average of this

distribution over random φz.
Remarkably, quantum jump spectroscopy directly measures Eq. 19 and thus de-

termines Ao and Tz. The quantum jumps [4] are between the ground and first excited
states of cyclotron motion at frequency νc = 148 GHz in a B = 5.24 Tesla magnetic
field Bẑ. A small “magnetic bottle” gradient ∆B ∼ z2ẑ [47] from two nickel rings
(Fig. 11) weakly couples the cyclotron (or spin) magnetic moment µ to the axial
motion, adding a coupling term that goes as µ∆B ∼ µz2 to the Hamiltonian.

The corresponding small addition to the oscillator’s restoring force, ∼ µz, shifts
the observed axial oscillation frequency in proportion to µ. Our frequency resolution
makes it possible to observe that ωz shifts by δ for a single quantum excitation from
the cyclotron ground state (Fig. 14b). The probability Pc that a cyclotron driving
force at a frequency ν causes a quantum jump [4] thus becomes measurable. For the
200 MHz oscillator, δ = 3.9 Hz. For the 64 MHz oscillator, δ = 12 Hz.

The second consequence of the magnetic bottle coupling is that the magnetic
field averaged over an axial oscillation changes with oscillation energy, shifting νc by
δ for every quantum of axial energy. The quantum jump spectrum,

Pc(ν; Eo, Tz) ∝ P (~ωz(ν − νc)/δ; Eo, Tz), (21)

thus reveals the distribution of axial energies of Eq. 19.
Figs. 15a-c show examples for the three axial oscillation amplitudes that result

for the trap settings of Fig. 13a-c. The extracted temperature Tz (Fig. 15d) is inde-
pendent of oscillation amplitude. The detection amplifier makes Tz hotter than the
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0.0

0.1

0.2

0.3
(a)  0.21 mm pp

0.0

0.1

0.2

0.3
(b)  0.34 mm pp

e
x
c
it
a
ti
o
n
 f
ra

c
ti
o
n

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(c)  0.43 mm pp

frequency − νc (MHz)

0

2

4

6 (d)

te
m

p
e
ra

tu
re

 (
K

)

0.00 0.04

(e)

s
ig

n
a
l 
p
o
w

e
r

amplitude
2
 (mm

2
)
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ambient temperature, emphasizing that either this amplifier must be off, or feed-
back cooling must be applied, [5] to achieve low axial temperatures. Fig. 15e shows
that the extracted Eo ∼ A2

o is proportional to the induced signal power, which can
be measured in only seconds. The quantum jump spectroscopy in Fig. 15 which
calibrates this signal took about 40 hours.

The one-electron SEO allows such good detection of small frequency shifts that
a likely application is the measurement of electron and positron magnetic moments
– to provide the most accurate direct lepton CPT test, and the most accurate de-
termination of the fine structure constant α. Figs. 14b-c illustrate the detection of
a one-quantum cyclotron excitation and a spin flip. Quantum jump spectroscopy
– measuring the number of quantum jumps as appropriate drive frequencies are
changed – could provide the first fully quantum measurement of these moments.

Averaging the frequency of a one-antiproton (p) SEO over a long time, to detect
extremely small δ, may make possible the long-time goal [48] of measuring the
p magnetic moment. Improving the 0.3% current accuracy [49] by a factor of a
million or more seems conceivable. The needed νc can already be measured to such
an accuracy [50]. Measuring the needed spin precession frequency requires observing
a p spin flip. The δ that would signal such a flip is proportional to µ/

√
m for a particle

with magnetic moment µ and mass m. The challenge is that µ for the p is 658 times
smaller than that of the electron, and

√
m is 43 times larger, so that δ is a daunting

3 × 104 smaller than that of an an electron in the same trap.

Fortunately, the size of the frequency shift δ can be increased, since δ is pro-
portional to an apparatus factor βM/(d

√
Vo) [19]. For example, making the ring

electrode in the trap of Fig. 11 out of iron rather than copper would increase the
product of a relative geometry factor β and the magnetization M for the magnetic
material (and hence δ) by a factor of 16. Substantial additional increases could come
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from reducing the trap size and potential, d and Vo, limited by the extent to which
this makes a more anharmonic axial oscillation. The fractional stability required
in the trapping potential goes as µβM/Vo and seems possible. To avoid broadened
resonances, spin flips and cyclotron excitations would be made in a trap without
a magnetic gradient, then transferred to a detection trap with a large magnetic
gradient, as in measurements of magnetic moments of bound electrons [51].

In conclusion, self-excitation is demonstrated with the simplest of microscopic
oscillators - a single electron suspended in a Penning trap. Both a comparator and
a DSP are used to stabilize large, easily observed oscillations that are much larger
than noise-driven fluctuations. Despite the anharmonic trap potential, with the right
choice of feedback gain, the SEO rapidly excites itself to a large oscillation that is
locally harmonic – with an oscillation frequency largely independent of amplitude
fluctuations. It maintains the large oscillation even when its oscillation frequency
shifts suddenly. The great signal-to-noise ratio observed with the SEO makes it
possible to detect small frequency shifts quickly. The SEO could thus enable better
measurements of the electron and positron magnetic moments. It may also make it
possible to detect antiproton spin flips for the first time, thereby opening the way
to greatly improved measurements of the antiproton magnetic moment.

The work of this section was supported by the NSF. It was part of the Ph.D.
work of B. D‘Urso, who was supported by the Fannie and John Hertz Foundation.
D. Hanneke was supported by the ARO.

5 New Measurement of the Electron Magnetic Moment

The discussion of a new measurement of the electron magnetic moment in this
section is based a recent report [7] that was published in collaboration with my
students, B. Odom, B. D’Urso and D. Hanneke.

Measurements of the electron magnetic moment (µ) probe the electron’s inter-
action with the fluctuating vacuum of QED, and also probe for possible electron
substructure. As an eigenstate of spin S, the electron (charge −e and mass m) has
µ ∝ S,

µ = −g
e~

2m

S

~
. (22)

The g-value is a dimensionless measure of the moment1, with the dimensions and
approximate size given by the Bohr magneton, e~/(2m). If the electron was a me-
chanical system with an orbital angular momentum, then g would depend upon
the relative distributions of the rotating charge and mass, with g = 1 for identical
distributions. (Cyclotron motion of a charge in a magnetic field B, at frequency
νc = eB/(2πm), is one example.) A Dirac point particle has g = 2. QED predicts
that vacuum fluctuations and polarization slightly increase this value. Electron sub-
structure [52] would make g deviate from the Dirac/QED prediction (as quark-gluon
substructure does for a proton).

Measurements of the electron g have a long history [53, 54], with a celebrated
measurement [20] providing the accepted value [55] since 1987. The new g has a six
times smaller standard deviation and is shifted by 1.7 standard deviations (Fig. 16a).
A one-electron quantum cyclotron [4], cavity-inhibited spontaneous emission [24], a

1The “g” used here and in what follows should not be confused the feedback gain in Section 3 which unfortunately
is referred to with the same symbol.
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self-excited oscillator (SEO) [6], and a cylindrical Penning trap [1] contribute to
the extremely small uncertainty. For the first time, spectroscopy is done with the
lowest cyclotron and spin levels of a single electron fully resolved via quantum non-
demolition (QND) measurements [4], and a cavity shift of g is directly observed.

(g / 2 - 1.001 159 652 000)  / 10-12
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-12
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Figure 16: Measurements of the electron g-value.

What can be learned from the more accurate electron g? The first result beyond
g itself is the fine structure constant, α = e2/(4πǫ0~c), determined from g and
QED with ten times smaller uncertainty compared to any other method [8]. This
fundamental measure of the strength of the electromagnetic interaction is a crucial
ingredient in our system of fundamental constants [55]. Second, the most demanding
test of QED continues to be a comparison of measured and calculated g-values, and
the way is now prepared for a ten times more stringent test. Third, even though muon
g-values [56] have nearly 1000 times larger uncertainties compared to the electron g,
heavy particles (possibly unknown in the standard model) make a contribution that
is relatively much larger for the muon. However, the contribution is small compared
to the calculated QED contribution which depends on α and must be subtracted
out. The electron g provides α and a confidence-building test of the required QED.

The g-value determines the spin frequency νs = g
2
νc for a free electron in a

magnetic field Bẑ. To weakly confine the electron, an electric quadrupole potential,
V ∼ 2z2 − ρ2, is added, with ρ = xx̂ + yŷ. Optimal biasing of the electrodes
(Fig. 17a) of an orthogonalized cylindrical Penning trap [1] minimizes an undesired
z4 term. The electron-trap system has four eigenfrequencies. The spin and trap-
modified cyclotron frequencies are approximately equal at νs ≈ ν̄c ≈ 149 GHz. A
harmonic axial oscillation along B is at ν̄z ≈ 200 MHz, and an orthogonal circular
magnetron oscillation is at ν̄m ≈ 134 kHz. The latter three frequencies are shifted by
the unavoidable leading imperfections of a real Penning trap – harmonic distortions
of the quadrupole potential, and a misalignment of the electrode axis and B [57].
Silver trap electrodes were used after the nuclear paramagnetism of copper electrodes
caused unacceptable temperature-dependent fluctuations in B near 100 mK.

The spin motion is undamped, being essentially uncoupled from its environment
[19]. The cyclotron motion would damp in ∼ 0.1 s via synchrotron radiation in free
space. This spontaneous emission is greatly inhibited in the trap cavity (to 6.7 s
or 1.4 s here) when B is tuned so ν̄c is far from resonance with cavity radiation
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Figure 17: Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous
emission (a), and the cyclotron and spin levels of an electron confined within it (b).

modes [24, 19]. Blackbody photons that would excite the cyclotron ground state
are eliminated by cooling the trap and vacuum enclosure below 100 mK with a
dilution refrigerator [4]. (Thermal radiation through the microwave inlet makes < 1
excitation/hr.) The axial motion, damped by a resonant circuit, cools below 0.3
K (from 5 K) when the axial detection amplifier is off for crucial periods. The
magnetron motion radius is minimized with axial sideband cooling [19].

For the first time, g is deduced from observed transitions between only the lowest
of the spin (ms = ±1/2) and cyclotron (n = 0, 1, 2, . . .) energy levels (Fig. 17b),

E(n, ms) =
g

2
hνcms + (n + 1

2
)hν̄c − 1

2
hδ(n + 1

2
+ ms)

2. (23)

The needed νc = eB/(2πm) (for a free electron in a magnetic field) is related to the
observable eigenfrequencies by the Brown-Gabrielse invariance theorem [57],

(νc)
2 = (ν̄c)

2 + (ν̄z)
2 + (ν̄m)2, (24)

which applies despite the mentioned imperfection shifts of the three eigenfrequen-
cies. The third term in Eq. 23, the leading relativistic correction [19] with δ/νc ≡
hνc/(mc2) ≈ 10−9, would add uncertainty to the measurement if cyclotron energy
levels were not resolved.

The anomaly and spin-up cyclotron frequencies (ν̄a ≈ 173 MHz and f̄c in
Fig. 17b) are measured, since

g

2
=

ν̄c + ν̄a

νc
≃ 1 +

ν̄a − ν̄2
z/(2f̄c)

f̄c + 3δ/2 + ν̄2
z/(2f̄c)

. (25)

We use the approximation to the right which requires no measurement of ν̄m. It
incorporates an expansion of the invariance theorem [57], using ν̄c ≫ ν̄z ≫ ν̄m ≫ δ.
Corrections go as the product of (ν̄z/ν̄c)

4 ∼ 10−12 and a misalignment/harmonic
distortion factor ∼ 10−4 [57].

A change in cyclotron or spin state is revealed by ν̄z shifts (Fig. 18a-b) of a
one-electron self-exited oscillator (SEO) [6]. The electron’s axial oscillation induces
a signal in a resonant circuit that is amplified and fed back to drive the oscillation.
QND couplings of spin and cyclotron energies to ν̄z [4] arise because saturated nickel
rings (Fig 17a) produce a small magnetic bottle, ∆B = β2[(z

2 − ρ2/2)ẑ− zρρ̂] with
β2 = 1540 T/m2.
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Anomaly transitions are induced by applying potentials oscillating at ν̄a to elec-
trodes, to drive an off-resonance axial motion through the bottle’s zρ gradient. The
electron sees the oscillating magnetic field perpendicular to B as needed to flip its
spin, with a gradient that allows a simultaneous cyclotron transition. Cyclotron tran-
sitions are induced by microwaves with a transverse electric field that are injected
into and filtered by the cavity. The electron samples the same magnetic gradient
while ν̄a and f̄c transitions are driven, because both drives are kept on, with one
detuned slightly so that only the other causes transitions.
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Figure 18: Sample ν̄z shifts for a spin flip (a) and for a one-quantum cyclotron excitation (b).
Quantum jump spectroscopy lineshapes for anomaly (c) and cyclotron (d) transitions, with a
maximum likelihood fit to the calculated lineshapes (solid). The bands indicate 68% confidence
limits for distributions of measurements about the fit values.

A measurement starts with the SEO turned on to verify that the electron is in
the upper of the two stable ground states, |n = 0, ms = 1/2〉. Simultaneous ν̄c − δ/2
and ν̄a drives prepare this state as needed. The magnetron radius is reduced with
1.5 s of strong sideband cooling [19] at ν̄z + ν̄m, and the detection amplifier is turned
off. After 1 s, either a f̄c drive, or a ν̄a drive, is on for 2 s. The detection amplifier
and the SEO are then switched on to check for a cyclotron excitation, or a spin flip
(from an anomaly transition followed by a cyclotron decay). Inhibited spontaneous
emission gives the time needed to observe a cyclotron excitation before an excited
state decays. We step through each ν̄c and ν̄a drive frequency in turn, recording the
number of quantum jumps per drive attempt. This measurement cycle is repeated
during nighttimes, when electrical and magnetic noise are lower. A low drive strength
keeps the transition probability below 20% to avoid saturation effects.

Quantum jump spectroscopy (measuring the quantum jumps per attempt to
drive them as a function of drive frequency) gives resonance lineshapes for f̄c and ν̄a

(Fig. 18c-d). For weak drives that avoid saturation, the line shape comes from ther-
mal axial motion within the magnetic bottle [46]. The small coherent axial oscillation
at ν̄a has no noticeable effect. However, otherwise undetectable ppb fluctuations in



Vol. XI, 2007 Probing a Single Isolated Electron 133

B, on time scales shorter than an hour, would smear the expected lineshapes.
At the first of two magnetic fields used, ν̄c ≈ 146.8 GHz. A 1.4 s damping

time gives good lineshape statistics (e.g., Fig. 18c-d) with 66 measurement cycles
per night on average. Three methods to extract ν̄a and f̄c from lineshapes give the
same g within 0.6 ppt – our “lineshape model” uncertainty in Table 1. The first is
maximum likelihood fitting of the Brownian motion lineshape. The second method
fits a convolution of this lineshape and a Gaussian resolution function, about 1 ppb
wide. The third method weights each drive frequency by the number of quantum
jumps it produces, and uses the weighted average frequencies in Eq. 25 for ν̄a and f̄c.
(Understood shifts proportional to axial temperature, common to both frequencies,
do not increase the uncertainty.) This weighted average method should account for
Brownian axial motion and additional fluctuations of B. At our second field, where
ν̄c ≈ 149.0 GHz, the 6.7 s damping time allows only 29 measurement cycles per
night on average. A long wait is needed to make certain that a spin flip has not
occurred. The weighted averages method is used for the lower statistics lineshapes.

The ν̄z in Eq. 25 pertains while f̄c and ν̄a are driven – not what is measured
when the SEO amplifier is on and increasing the axial temperature from 0.3 to 5 K.
Limits on axial heating shifts come from the width of a notch in the noise spectrum
resonance for the resonant circuit [19] (Table 1), measured less well for ν̄c ≈ 146.8
GHz.

Source ν̄c = 146.8 GHz 149.0 GHz

ν̄z shift 0.2(0.3) 0.00(0.02)
Anomaly power 0.0(0.4) 0.00(0.14)
Cyclotron power 0.0(0.3) 0.00(0.12)
Cavity shift 12.8(5.1) 0.06(0.39)
Lineshape model 0.0 (0.6) 0.00 (0.60)
Statistics 0.0 (0.2) 0.00 (0.17)

Total (in ppt) 13.0(5.2) 0.06(0.76)

Table 1: Applied corrections and uncertainties for g in ppt.

Although the g-value from Eq. 25 is independent of B, field stability is still
an important challenge, since ν̄a and f̄c are measured at different times. After the
superconducting solenoid settles for several months, field drifts below 10−9/night
have been observed. This requires regulating five He and N2 pressures in the solenoid
and experiment cryostats, and the surrounding air temperature to 0.3 K. We correct
for drifts up to 10−9/hr using a cyclotron resonance edge measured once in three
hours.

The trap cavity modifies the density of states of radiation modes of free space,
though not enough to significantly affect QED calculations of g [58]. However, cavity
radiation modes do shift f̄c [3] – still a significant uncertainty, as in the past [3,
20]. We use a synchronized-trapped-electrons method [17] to observe quantitatively
understandable radiation modes (Fig. 19a) of a good cylindrical Penning trap cavity
[1]. Our best measurement comes from choosing ν̄c ≈ 149.0 GHz, maximally detuned
from modes that couple to a centered electron’s cyclotron motion. A measurement
at ν̄c ≈ 146.8 GHz, uncomfortably close to TE127, checks how well cavity shifts
are understood. Until the cavity spectrum and its frequency calibration is more
carefully studied, TE127 and TM143 are assumed only to lie within the shaded bands.
A renormalized calculation (Eq. 8.19 of [19]) gives a range of possible cavity shifts
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of the measured g (Fig. 19b) that is insensitive to mode quality factors for Q > 500.
Assigned shifts and uncertainties are indicated in Fig. 19b and in Table 1. The first
direct observation of a cavity shift of g, the difference between our two measurements
(Fig. 19c), lies within the predicted range.
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Figure 19: Modes of the trap cavity observed with synchronized electrons (a). Resulting assigned
cavity shifts (points and Table 1) (b). First measured cavity shift of g (point) is the shift between
measurements at 146.8 and 149.0 GHz (c). Gray bands are the assumed calibration and identifi-
cation uncertainties for mode frequencies in (a), and the resulting range of predicted cavity shifts
in (b) and (c).

A new value for the electron magnetic moment,

g/2 = 1.001 159 652 180 85 (76) (0.76 ppt), (26)

comes from the measurement at ν̄c ≈ 149.0 GHz. (A weighted average with the more
uncertain measurement at ν̄c ≈ 146.8 GHz is larger by 0.06 ppt, with a decreased
uncertainty of 0.75 ppt.) The standard deviation, about six times smaller than from
any previous measurement, arises mostly from the lineshape model and cavity shifts
(Table 1). Varying the ν̄a and f̄c drive power causes no detectable shifts of g.

QED provides an asymptotic series relating g and α,

g

2
= 1 + C2

(α

π

)

+ C4

(α

π

)2

+ C6

(α

π

)3

+ C8

(α

π

)4

+ ... + aµτ + ahadronic + aweak, (27)

with hadronic and weak contributions added, and assuming no electron substructure.
Impressive calculations, summarized in the next section, give exact C2, C4 and C6,
a numerical value and uncertainty for C8, and a small aµτ .

The next section details a new determination of α, from the measured g and
Eq. 27,

α−1(H06) = 137.035 999 070 (12) (37) (90) (28)

= 137.035 999 070 (98) [0.71 ppb], (29)

The first line gives the experimental uncertainty first and the QED uncertainty sec-
ond, including an estimated contribution from a yet uncalculated C10 [8]. The total
0.70 ppb uncertainty is ten times smaller than for the next most precise methods
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(Fig. 16b) – determining α from measured mass ratios, optical frequencies, together
with either Rb [59] or Cs [60] recoil velocities.

The most stringent test of QED (one of the most demanding comparisons of
any calculation and experiment) continues to come from comparing measured and
calculated g-values, the latter using an independently measured α as an input. The
next section shows that the new g, compared to Eq. 27 with α(Cs) or α(Rb), gives a
difference |δg/2| < 17× 10−12. The small uncertainties in g/2 will allow a ten times
more demanding test if ever the large uncertainties in the independent α values
can be reduced. The prototype of modern physics theories is thus tested far more
stringently than its inventors ever envisioned [61], with better tests to come.

The same comparison of theory and experiment probes the internal structure
of the electron [8, 52] – limiting the electron to constituents with a mass m∗ >

m/
√

δg/2 = 130 GeV/c2, corresponding to an electron radius R < 1 × 10−18 m. If
this test was limited only by our experimental uncertainty in g, then we could set
a limit m∗ > 600 GeV. These high energy limits seem somewhat remarkable for an
experiment carried out at 100 mK.

Are experimental improvements possible? A reduction of the 0.76 ppt uncer-
tainty of the measured electron g seems likely, given that this fully-quantum mea-
surement has only recently been realized. Time is needed to study the lineshapes
and cavity shifts as a function of magnetic field, to improve cooling methods, and
to make the magnetic field more stable.

In conclusion, greatly improved measurements of the electron magnetic moment
and the fine structure constant, and a sensitive probe for internal electron structure,
come from resolving the lowest cyclotron and spin levels of a one-electron quantum
cyclotron. A self-excited oscillation of the electron reveals one-quantum transitions.
A cylindrical Penning trap cavity narrows resonance lines by inhibiting spontaneous
emission. Electromagnetic modes of this understandable cavity geometry, probed
with synchronized electrons, shift g in a measurable way that can be corrected.
The new g/2 differs from a long accepted value by 1.7 standard deviations, and its
fractional uncertainty of 7.6 × 10−13 is nearly six times smaller. The new α has an
uncertainty ten times smaller than that from any other method to determine the
fine structure constant.

The work of this section was part of the thesis work of B. Odom and D. Hanneke.
S. Peil, D. Enzer, and K. Abdullah contributed to earlier versions of the apparatus
used for the measurements reported here, and J. McArthur gave electronics support.
The NSF AMO program provided long-term funding.

6 New Determination of the Fine Structure Constant

The new determination of the fine structure constant discussed in this section was
initially reported in collaboration with my students D. Hanneke and B. Odom, and
in collaboration with theorists T. Kinoshita and M. Nio [8]. This section has been
updated to include the most recent correction to the QED evaluation [9].

The electron g-value, the dimensionless measure of the electron magnetic mo-
ment in terms of the Bohr magneton, provides our most sensitive probe into the
structure of what is believed to be the only stable point particle with substantial
mass – a particle that seems very insensitive to physics at small distance scales. The
fundamental fine structure constant, α = e2/(4πǫ0~c), gives the strength of the elec-
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tromagnetic interaction, and is a crucial building block in our system of fundamental
constants [55]. Quantum electrodynamics (QED), the wonderfully successful theory
that describes the interaction of light and matter, provides an incredibly accurate
prediction for the relationship between g and α, with only small corrections for short
distance physics.

A new measurement of g [7] achieves an accuracy that is nearly six times more
accurate than the last measurement of g back in 1987 [20]. An improved QED
calculation that includes contributions from 891 Feynman diagrams [62] now predicts
g in terms of α through order (α/π)4. Together, the newly measured g, with the more
accurate QED calculation, determined a new and much more accurate determination
of α. It is the first higher accuracy measurement of α since 1987 (Fig. 20), and is
ten times more accurate than any other method to determine α. The most stringent
test of QED is also presented.
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Figure 20: A ten times expanded scale (a) is required to see the small uncertainties in the new
α announced here. Traditional determinations can be seen on a larger scale (b). Measured g are
converted to α using current QED theory.

Since g = 2 for a Dirac point particle, the dimensionless moment is often written
as g = 2(1 + a). The deviation a has come to be called the anomalous magnetic
moment of the electron or sometimes simply the electron anomaly. It arises almost
entirely from the vacuum fluctuations and polarizations that are described by QED,

a = a(QED) + a(hadron) + a(weak), (30)

with only small additions for short distance physics, well understood in the context of
the standard model [63] (unlike the case for the heavier muon lepton). Any additional
contribution to the anomaly would therefore be extremely significant, indicating
electron substructure [52], new short distance physics, or problems with QED theory
(and perhaps with quantum field theory more generally).
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A long tradition of improved measurements of g [53, 20] now continues after a
hiatus of nearly twenty years. A new measurement achieves a much higher accuracy
for g [7] by resolving the quantum cyclotron and spin levels of one electron suspended
for months at a time in a cylindrical Penning trap. Quantum jump spectroscopy of
transitions between these levels determines the spin and cyclotron frequencies, and
g/2 is essentially the ratio of such measured frequencies. The cylindrical Penning
cavity shapes the radiation field in which the electron is located, narrowing resonance
linewidths by inhibiting spontaneous emission, and providing boundary conditions
which make it possible to identify the symmetries of cavity radiation modes. A
QND (quantum nondemolition) coupling, of the cyclotron and spin energies to the
frequency of an orthogonal and nearly harmonic electron oscillation, reveals the
quantum state. This harmonic oscillation of the electron is self-excited, by a signal
derived from its own motion, to produce the large signal-to-noise ratio needed to
quickly read out the quantum state without ambiguity.

The newly measured g has an uncertainty of only 7.6 parts in 1013. Subtracting
off the g = 2 for a Dirac point particle gives an anomaly [7]

a(H06) = 1 159 652 180.85 (76)× 10−12 [0.66 ppb]. (31)

As detailed in the previous section, the uncertainty mostly originates from three
sources. The largest contribution arises from imperfect fits to the expected lineshape
model; likely these can be understood and reduced with careful study. Tiny magnetic
field instabilities are one possible cause. The second source of uncertainty is cavity
shifts, caused when the cyclotron frequency of an electron in trap cavity is shifted by
interactions with cavity radiation modes that are near in frequency. The frequencies
of cavity radiation modes are measured well enough to identify the spatial symmetry
of the modes, and to calculate and correct for cavity shifts to g from the known
electromagnetic field configurations. A smaller third uncertainty is statistical, and
could be reduced as needed with more measurements.

QED calculations involving many Feynman diagrams provide the coefficients
for expansions in powers of the small ratio α/π ≈ 2 × 10−3. The QED anomaly

a(QED) = A1 + A2(me/mµ) + A2(me/mτ )

+ A3(me/mµ, me/mτ ), (32)

is a function of lepton mass ratios. Each Ai is a series,

Ai = A
(2)
i

(α

π

)

+ A
(4)
i

(α

π

)2

+ A
(6)
i

(α

π

)3

+ . . . . (33)

The calculations are so elaborate that isolating and eliminating mistakes is a sub-
stantial challenge, as is determining and propagating numerical integration uncer-
tainties.

Fig. 21 compares the contributions and uncertainties for g/2. The leading con-
stants for second [64], third [65, 66, 67] and fourth [68, 69, 70, 71, 72] orders,

A
(2)
1 = 0.5, (34)

A
(4)
1 = −0.328 478 965 579 . . . , (35)

A
(6)
1 = 1.181 241 456 . . . , (36)
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contribution to g/2 = 1 + a
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Figure 21: Contributions to g/2 for the experiment (green), terms in the QED series (black),
and from small distance physics (blue). Uncertainties are in red. The µ, τ and µτ indicate terms
dependent on mass ratios me/mµ, me/mτ and the two ratios, me/mµ and me/mτ , respectively.

have been evaluated exactly. The latter confirms the value 1.181 259 (4) obtained
numerically [73]. Mass-dependent QED additions [74, 75, 76, 77, 78, 79],

A
(4)
2 (me/mµ) = 5.197 386 70 (27) × 10−7,

A
(4)
2 (me/mτ ) = 1.837 63 (60) × 10−9,

A
(6)
2 (me/mµ) = −7.373 941 58 (28) × 10−6,

A
(6)
2 (me/mτ ) = −6.581 9 (19) × 10−8,

A
(6)
3 (me/mµ, me/mτ )

= 0.190 95 (63) × 10−12,

(37)

make only very small contributions. Uncertainties derive from the uncertainties in
measured lepton mass ratios.

Crucial progress came in evaluating, checking, and determining the uncertainty

in the eighth order A
(8)
1 , which includes contributions of 891 Feynman diagrams.

Typical diagrams of the 13 gauge invariant subgroups are shown in Fig. 22. Inte-
grals of 373 of these (Groups I - IV) have been verified (and corrected) by more
than one independent formulation [80, 62]. The 518 diagrams of Group V, with no
closed lepton loops, await completion of an independent verification. However, their
renormalization terms are derived by systematic reduction of original integrands ap-
plying a simple power-counting rule [81], allowing extensive cross-checking among
themselves and with exactly known diagrams of lower order [82]. Numerical integra-
tions with VEGAS [83], on many supercomputers over more than 10 years [62, 84],
then yields

A
(8)
1 = −1.9144 (35) (38)

The uncertainty, determined using estimated errors from VEGAS, is improved by
an order of magnitude over the previous value [85].

This value differs from that listed in [8]. An automated code generator [62],
produced to calculate the tenth-order contribution to g/2, was used to examine the



Vol. XI, 2007 Probing a Single Isolated Electron 139

518 of 891 eighth-order QED diagrams that had no previous independent check. Only
47 integrals represent the 518 vertex diagrams when the Ward-Takahashi identity
and time-reversal invariance are used. A diagram-by-diagram comparison with the
previous calculation [86] showed that 2 of the 47 require a corrected treatment of
infrared divergences [84], leading to the corrected value used here.

Is it likely that other adjustments of the QED theory will shift the α that is de-
termined from the electron g? Hopefully not, now that all eighth-order contributions
have been checked independently by two or more methods for the first time. What
could further shift this determination of α would be a larger-than-expected tenth-
order QED contribution to g/2 – now being evaluated using the new computational
method that revealed the need for this update.

The summary of precise α determinations (Fig. 20) differs from that of one
year earlier [8] in several ways. The corrected QED evaluation shifts the α from the
Harvard and UW g measurements. The atom-recoil determination of α(Rb) shifts
due to an experimental correction [87]. The neutron α is no longer included awaiting
a change required by the reevaluations of the Si lattice constant and its uncertainties
(eg. [88]).

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

Figure 22: Typical diagrams from each gauge invariant subgroup that contributes to the eighth-
order electron magnetic moment. Solid and wiggly curves represent the electron and photon, re-
spectively. Solid horizontal lines represent the electron in an external magnetic field.

The high experimental precision makes the tenth order contribution to g po-

tentially important if the unknown A
(10)
1 is unexpectedly large, though this seems

unlikely. To get a feeling for its possible impact we use a bound

|A(10)
1 | < x (39)

with an estimate x = 4.6 [55], while awaiting a daunting evaluation of contributions
from 12672 Feynman diagrams that is now underway [62].

Also owing the high precision, non-QED contributions,

a(hadron) = 1.682 (20) × 10−12,

a(weak) = 0.030 (01) × 10−12, (40)

must be included. Fortunately, these are small and well understood in the context
of the standard model [55, 63]. They are much larger and more important for the
muon.

The new experimental measurement of g, and the greatly improved QED calcu-
lation, thus determine a value of α that is ten times more accurate than any other
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method to determine α,

α−1(H06) = 137.035 999 070 (12) (37) (90) (41)

= 137.035 999 070 (98) [0.71 ppb], (42)

In the first line, the first uncertainty is from the calculated A
(8)
1 and the last is

from the measured g. The middle uncertainty is from the estimated bound on the

unknown A
(10)
1 in Eq. (39). More generally it is (8x), which rounds to (37) for the

estimate x = 4.6 [55].
Note that while the tenth order impact on α is not large since 8x ≪ 90, a real

calculation will be needed before a much more accurate α can be deduced from a
better g. Note also that the exact A

(6)
1 of Laporta and Remiddi, in Eq. (36) and

[72], eliminates an earlier numerical uncertainty [73] that would add (60) to the list
of three uncertainties in Eq. (41), significantly increasing the total uncertainty in
Eq. (42).

Testing QED requires an independent measurement of α, to be used with QED
theory, to determine an anomaly that can be compared to what is measured. Recent
measurements utilizing Cs and Rb atoms yield

α−1(Cs06) = 137.036 000 00 (110) [8.0 ppb], (43)

α−1(Rb06) = 137.035 998 84 ( 91) [6.6 ppb]. (44)

The latest versions rely upon many experiments, including the measured Rydberg
constant [89], the Cs or Rb mass in amu [90], and the electron mass in amu [91, 92].
The needed ~/M [Cs] comes from an optical measurement of the Cs D1 line [60, 93],
and the “preliminary” recoil shift for a Cs atom in an atom interferometer [94]. The
needed ~/M [Rb] come from a measurement of an atom recoil of a Rb atom in an
optical lattice [59] as recently corrected[87].

The Cs and Rb determinations of α, together with QED theory (and hadronic
and weak corrections), give

a(Cs06) = 1 159 652 173.00 (0.10) (0.31) (9.30)× 10−12,

a(Rb06) = 1 159 652 182.80 (0.10) (0.31) (7.70)× 10−12.

Uncertainties are from the eighth order calculation, the estimated tenth order limit,
and the determinations of α. Calculated and measured anomalies differ by

a(Cs06) − a(H06) = − 7.9 (9.3) × 10−12, (45)

a(Rb06) − a(H06) = 1.9 (7.7) × 10−12, (46)

with the uncertainties limited by the uncertainties in α(Cs) and α(Rb), in Eqs. (43)-
(44).

What theory improvements might be expected in the future? The theory contri-
bution to the uncertainty in the new α is less than that from experiment by a factor

of 3. The eighth order uncertainty in A
(8)
1 can be reduced with the accumulation of

better statistics in the numerical evaluation of integrals. Ambitious efforts underway
aim for an analytic evaluation of this coefficient [95]. Another big theory challenge

is in evaluating the tenth-order coefficient, A
(10)
1 , with the mentioned contributions

from 12672 Feynman diagrams. Work underway suggests that it should be possible
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to evaluate A
(10)
1 to a few percent, reducing the theoretical uncertainty in ae to 0.1

ppb or less.
What experimental improvements can be expected? A reduction of the 0.76 ppt

uncertainty of the measured electron g seems likely, given that this fully quantum
measurement has only recently been realized. With time to study the lineshapes
and cavity shifts at many values of the magnetic field, to improve cooling methods,
and to incorporate a more stable magnetic field, an improved α from g and QED
seems quite possible. Experiments are also underway under the assumption that
a substantially higher accuracy can be achieved in atom recoil measurements –
currently the weak link in determinations of α that are independent of g and QED.
A ten-fold improved accuracy in the independent α would allow a QED test that is
more stringent than current tests by this factor, even without improved measurement
of g, or more accurate QED theory.

In conclusion, a slightly shifted and much more accurate determination of the
fine structure constant comes from the new measurement of the electron g value, and
improved QED theory. It is more accurate than any other method to determine α by
a factor of ten. The working assumption is that the electron has no internal structure
that is not described by QED, nor by small distance scale physics other than what
is well understood within the context of the standard model of particle physics.
Comparing the α from g and QED, to the α determined with Cs and Rb atoms,
shows that QED continues to be a superb description of the interaction of atoms
and light. However, a ten times more stringent QED test awaits a determination of
α that is independent of the electron g and QED, but achieves the accuracy in the
α reported here. We expect more accurate measurements of the electron g, along
with more accurate QED calculations, and are thus optimistic that more accurate
future determinations of α may be possible.

Experiments at Harvard to measure g used in this section were supported by the
NSF AMO experimental program. Theory work by T.K. was supported by the NSF
theory program of the US, the Eminent Scientist Invitation Program of RIKEN,
Japan, and a grant-in-aid from Japan’s Ministry of Education, Science and Cul-
ture. M.N. was partly supported by a JSPS grant-in-aid, and used computational
resources of the RIKEN Super Combined Cluster System.

7 Almost Outdated

As these notes are being prepared for publication, my student D. Hanneke and I
are nearly finished with our analysis of new measurements of the electron magnetic
moment and the fine structure constant that look to have a precision that is two to
three time better than what is reported here. Stay tuned.

8 Conclusion

Quantum jump spectroscopy of the lowest spin and cyclotron energy levels of a
one-electron quantum cyclotron yields the most precise measurement of the electron
magnetic moment, and the most precise measurement of the fine structure constant.
The electron is suspended for months at a time in a cylindrical Penning trap, the
electrodes of which provide the electrostatic quadrupole potential for trapping the
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electron, and also modify the radiation field and density of states as needed to in-
hibit the spontaneous emission of synchrotron radiation. Feedback methods provide
cooling possibilities and turn the electron into a one-particle self-excited oscillator
that is used for QND measurements of the cyclotron and spin states. One spin-off
measurement being pursued, in collaboration with my student S. Fogwell, is mak-
ing the most stringent test of CPT invariance with a lepton system, by comparing
measured g values for the electron and positron. Another spin-off measurement un-
derway, in collaboration with my student N. Guise, is to make a one-antiproton
self-excited oscillator to measure the antiprotons magnetic moment a million times
more accurately than has been possible so far. A third spin-off measurement being
contemplated is a direct measurement of the electron-to-proton mass ratio.
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