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LPTHE
CNRS et Universités Paris 6 et 7
Tour 24-14 5e étage
4 place Jussieu
75252 Paris Cedex 05, France

and

Vincent Pasquier

Service de Physique Théorique
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1 Introduction

A glance at the behavior of resistance of a two dimensional electron system as a function of the
perpendicular magnetic field (Fig.1), reveals immediately why the quantum Hall effect has attracted
so much attention in the past years. One usually plots the resistivities along the direction of the
current (ρxx) and in the direction perpendicular to it (ρxy) as a function of the field B. Very
schematically, for certain range of the field ρxx is nearly equal to zero, and for other ranges it
develops a bump. On the average ρxy grows linearly with the field, but in the regions where ρxx

is equal to zero, ρxy presents a flat plateau which is a fraction times h/e2 to an extraordinary
accuracy. This is the quantized Hall effect which has led to two Nobel prizes, one in 1985 to Von
Klitzing for the discovery of the integer Hall effect, and the other in 1992 to Laughlin, Störmer
and Tsui for the fractional Hall effect.

The basic experimental observation is best recast using the conductivities σxx and σxy which
give the components of the inverse of the resistivity tensor 1. The quantized Hall regime corresponds
to a nearly vanishing dissipation:

σxx → 0 (1)

accompanied by the quantization of the Hall conductance:

σxy = ν
e2

h
(2)

In the integer Hall effect case, ν is an integer with a precision of about 10−10. In the fractional
case, ν is a fraction which reveals the bizarre properties of many electron physics. The fractions
are universal and independent of the type of semiconductor material, the purity of the sample and
so forth. The effect occurs when the electrons are at a particular density encoded in the fraction
ν as if the electrons locked their separation at particular values. Changing the electron density by
a small amount does not destroy the effect but changing it by a larger amount does, this is the
origin of the plateaus.

In this introductory seminar we shall present the basic tools needed to understand these
phenomena. We first review briefly the classical motion of an electron in a magnetic field and the

1
σxx = ρxx

q

ρ2
xx+ρ2

xy

, σxy =
ρxy

q

ρ2
xx+ρ2

xy
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Figure 1: Overview of the diagonal resistivity ρxx and Hall resistance ρxy After ref. [4].

classical Hall effect. We then move on to the quantum mechanical description. We introduce the
Landau levels and show their relevance to understand the integer Hall effect. Various theoretical
ideas to account for the robustness of the plateau values of the Hall conductance are then discussed.
Finally, we give some hints of how taking into account electron-electron interactions can explain
the occurrence of the fractional Hall effect.

Some classical review papers and references on the quantum Hall effect can be found in ref.
[1],[2],[3].

2 Single particle in a magnetic field

2.1 Classical motion in a magnetic field

As a first step we must understand the classical motion of an electron of charge −e confined in
a two-dimensional plane (x, y), and subject to a constant magnetic field Bẑ perpendicular to this
plane. The Newtonian equations of motion due to the Lorentz force are given by:

(

ẍ
ÿ

)

=
eB

m

(

−ẏ
ẋ

)

, (3)

m is the mass of the particle. In complex notations z = x + iy, with ω defined as:

ω = eB/m (4)

(3) rewrites:

z̈ = iωż (5)

The solution is given by:

z(t) = z0 + deiωt (6)

The trajectory is a circle of radius |d| run at a constant angular velocity. The frequency ω is
independent of the initial conditions and fixed by the magnetic field, the charge and mass of the
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Figure 2: Illustration of cyclotron motion for a classical charged particle in the presence of uniform
perpendicular magnetic and electric fields. The magnetic field is perpendicular to the plane of
the figure, pointing upwards. The electric field E lies in the plane as shown. The drift velocity
v0 = E∧B

B2 is also represented. We have drawn trajectories for both possible signs of the particle
electric charge.

particle. It is called the cyclotron frequency. The average position of the particle over the time,
z0 = x0 + iy0, is arbitrary, and is called the guiding center. The radius |d| of the trajectory
is proportional to the speed of the particle times its mass. In a Fermi liquid, the speed of the
electrons times their mass is frozen and equal to the Fermi momentum. The measurement of the
cyclotron radius can thus be used to determine the Fermi momentum 2.

Let us add to the magnetic field an electric field Eŷ in the y direction. The equation of motion
now becomes,

z̈ = iωż − ieE/m. (7)

This equation can be put into the form (5) if we use the variable z ′ = z − Et/B. It results from
the fact that the electric field can be eliminated through a Galilean transformation to the frame
moving at the speed E/B in the x direction perpendicular to E with respect to the laboratory
frame. As a result, in presence of an electric field E, the guiding center moves perpendicularly to
the electric field at a speed:

v0 =
E ∧ B

B2
. (8)

This classical motion is illustrated on Fig. 2.

2.2 Classical Hall effect

Let us study the simple consequences of the classical equation of motion for the resistivity tensor.
In a simple model, an electron travels with the Fermi velocity vf uniformly distributed over all
possible directions on a distance given by its mean free path l0 = vf τ0. Here the scattering time τ0

is the average time between two collisions. This electron is then scattered with the velocity vf over
all possible directions. In the presence of an electric field E it is uniformly accelerated with the

2Recently, the same experiment has been performed to determine the charge of quasiparticles when the Fermi
momentum was known. [32]
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acceleration −eE/m in the direction of the electric field in between two collisions. It thus acquires
a mean velocity v = −eE/mτ0 directed parallel to E. In the presence of a uniform magnetic field
B, the particles also acquire a uniform speed perpendicular to E. Adding up the contributions of
independent electrons with a two dimensional electron number density n, we deduce the resistivity
tensor ρ which expresses the linear relation between the current density j and the electric field E:

(

Ex

Ey

)

=

(

ρxx ρxy

−ρxy ρxx

) (

jx

jy

)

, (9)

where the longitudinal resistivity is:

ρxx =
m

ne2τ0
, (10)

and the transverse (or Hall) resistivity (ρxy), which relates the current density j⊥ perpendicular
to the electric field E to the field itself, has the expression:

ρxy =
B

ne
(11)

This result relies on Galilean invariance only and is not modified by interactions. The simplest way
to derive this expression is to assume that the current is known. To this current, we associate an av-
erage electronic velocity v̄ so that j = −nev̄. This velocity generates a Lorentz force fL = −ev̄ ∧B,
which has to be balanced by a transverse electric field E⊥ (E⊥.j = 0) so that fL − eE⊥ = 0, thus
giving E⊥ = j∧B

ne , in agreement with (9) and (11). An alternative viewpoint is that a Galilean
transformation to a frame with relative velocity v̄ suppresses the transverse electric field E⊥. If we
compare these predictions with the experimental situation mentioned in the introduction, we see
that classically the transport is dissipative with a constant longitudinal resistivity, and therefore,
the observed vanishing of ρxx is not predicted by this simple model. However, the average slope of
the transverse resistivity with respect to the magnetic field is accurately predicted. At the values
for which ρxx = 0, the transverse conductivity is given by the inverse transverse resistivity (11).
Comparing the prediction with the experimental result (2) we deduce that the Hall effect occurs
when the electron density is close to the value:

n = ν
eB

h
(12)

The quantity h/eB has the dimension of an area and we shall have more to say about it. The
fact that Planck’s constant appears explicitly in this expression suggests that quantum mechanics
plays a crucial role in the formation of those plateaus in ρxy. But before analyzing the new features
induced by quantum mechanics, it is useful to first describe in more detail the Hamiltonian approach
to classical motion.

2.3 Hamiltonian formalism

Let us introduce a vector potential A(r) for the magnetic field:

B = ∂xAy − ∂yAx (13)

The vector potential A(r) is defined up to a gauge transformation A(r) → A(r) + c∇χ(r). The
action from which the equations of motion of a mass m and charge −e particle (confined to the
plane) in presence of the magnetic field Bẑ derive, is given by:

S =

∫ r2

r1

(m

2
ṙ2 − eA.ṙ

)

dt (14)

Note that the action is not gauge invariant and under a gauge transformation S → S − e(χ(r2) −
χ(r1)). Of course, since this change only involves the end points of the electron path, the classical
equations of motion are not affected by such a gauge transformation. In presence of a uniform
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magnetic field, if the particle makes a closed path and returns back to its position, the action
accumulated by the potential on the trajectory is eB times the area surrounded by the trajectory.

Using the canonical rules, we obtain a Hamiltonian:

H0 =
1

2m
(p + eA)

2
=

π
2

2m
, (15)

where p = mṙ − eA is the momentum conjugated to r, the quantities p and r obey the Poisson
brackets:

{pi, pj} = 0, {ri, rj} = 0, {pi, rj} = δij (16)

and the so-called dynamical momenta:

π = mṙ = p + eA, (17)

obey the Poisson brackets:

{πi, πj} = εijeB, {ri, rj} = 0, {πi, rj} = δij , (18)

where εij is the antisymmetric tensor εxy = −εyx = 1.
We can also define new coordinates Rx, Ry which have zero Poisson brackets with the dy-

namical momenta:

Rx = x − 1

eB
πy, Ry = y +

1

eB
πx, (19)

with the Poisson brackets given by:

{Ri, Rj} = −εij
1

eB
, {πi, Rj} = 0. (20)

One can verify that the coordinates so defined coincide with the guiding center defined in (6):
Rx + iRy = z0.

To understand the physical meaning of the guiding center it is instructive to consider the
motion of a charged particle in presence of an external potential V (r), which is supposed to vary
slowly (|∂i∂jV | << mω2 for all i, j):

H = H0 − eV (r). (21)

The case of the electric field we looked at in the last section, corresponds to V (r) = −Ey. We are
interested in the motion of the guiding center in presence of V (r). If the radius of the cyclotron
orbital is sufficiently small and the speed of rotation sufficiently fast so that the potential seen
during a rotation is approximatively constant, we can average over time; the dynamical momenta
acquire a zero expectation value and we can replace the position r by the guiding center R. In this
approximation, the guiding center motion is given by:

Ṙ =
B ∧ ∇V

B2
(22)

The motion decomposes into a fast rotation around the cyclotron orbit and a slow motion of the
guiding center along the the equipotential lines of V (r).

If the potential is smoothly varying, we can divide the equipotential lines into two kinds:
Those located near the maxima of V which are closed, and those located near its mean value
which can wind a long way through the saddle points of V . We can qualitatively understand why
the preceding picture of the transport can be dramatically affected if we take into account the
influence of an external potential. In presence of an electric field the potential seen by the electrons
becomes V (R) − eE.R, and according to whether the equipotential line we consider is closed or
extended, the electron traveling along it is localized or not. We shall return to this point later.
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A very important consequence of this effective dynamics for guiding centers in the high
magnetic field limit is that area is preserved under the time-evolution. This is a special case of
Liouville’s theorem on the conservation of phase-space volumes for Hamiltonian systems. But here,
very remarkably, phase-space has to be identified with the physical plane, since the two coordinates
of the guiding center are canonically conjugated according to (20). Physically, this means that if
the initial condition is such that the electronic density is constant inside a domain Ω0, and zero
outside, after the system has evolved according to the dynamics (22), it is still constant inside a
deformed domain Ωt of the same area as Ω0 and zero outside. In other words, the electronic fluid
is incompressible. As we shall see in section 3.2, this property plays a crucial role in understanding
the quantization of σxy. This can be formalized further if consider the set of Poisson brackets
between plane waves eik.R given by:

{eik.R, eik′.R} =
k ∧ k′

eB
ei(k+k′).R. (23)

This algebra is known as the algebra of diffeomorphisms which preserve the area.

2.4 Quantum-mechanical description

2.4.1 Quantum formalism

In the Hamiltonian formalism, the quantization of a charged particle in a magnetic field is straight-
forward. The momenta are operators pi = ~

i ∂ri
, where ~ = h/2π. The discussion of the preceding

section can be repeated with the Poisson brackets replaced by commutators: {X, Y } → ~

i [X, Y ].
The dynamical momenta and the guiding center define two sets of operators which obey the

commutation relations analogous to (18,20):

[πi, πj ] = −i~εijeB, [Ri, Rj ] = i~εij
1

eB
, [πi, Rj ] = 0. (24)

Note that the commutation relations (24) for the dynamical momenta πi involve the magnetic field
at the numerator, whereas those involving the guiding centers Ri are inversely proportional to the
magnetic field. We may therefore expect to recover two different classical limits, when the magnetic
field is weak and when it becomes very strong.

To compute the spectrum of H0 we can define creation and annihilation operators as linear
combinations of the two dynamical momenta :

a =

√

1

2~eB
(πx − iπy), a+ =

√

1

2~eB
(πx + iπy), (25)

obeying the Heisenberg relations:

[a, a+] = 1. (26)

In terms of these oscillators the unperturbed Hamiltonian is:

H0 = ~ω(a+a +
1

2
), (27)

and its spectrum is that of an oscillator:

En = ~ω(n +
1

2
), (28)

with n ≥ 0. Each energy branch is called a Landau level.
The strong magnetic field limit is when the cyclotron radius gets frozen, and the dynamics

is fully controlled by the guiding center coordinates. The fact that the guiding center coordinates
commute with H0 implies that its spectrum is extremely degenerate. The two coordinates Rx, Ry do
not commute with each other and cannot be fixed simultaneously. There is a quantum uncertainty
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∆Rx∆Ry = ~

eB to determine the position of the guiding center. It is customary to define the
magnetic length l by:

l =

√

~

eB
. (29)

Due to the uncertainty principle, the physical plane can be thought of as divided into disjoint cells
of area 2πl2 where the guiding center can be localized. This area coincides precisely with the area
threaded by one magnetic flux quantum Φ0 = 2π~/e. The degeneracy per energy level and per
unit area is 1/2πl2 so that in an area Ω, the number of degenerate states is:

NΩ =
Ω

2πl2
, (30)

so that electrons behave “as if ” they acquire some size under a magnetic field, the area being
inversely proportional to B.

Imagine now that we continuously fill a bounded region of the plane with noninteracting
electrons. Let n be the electron number density. We introduce the so called filling factor as the
number of electrons per cell:

ν = n2πl2 (31)

Due to the Pauli principle, a cell can be occupied by one electron only per energy level. Therefore,
each time the filling factor reaches an integer, an energy level gets filled and the next electron must
be added to the next energy level. Thus, the energy per added electron (chemical potential) jumps
by a quantity ~ω. This is the integer quantum Hall regime, and indeed, comparing (31) with (12)
we can identify the filling factors of the Hall effect with the fraction entering the expression of the
transverse conductivity (2). Not surprisingly thus, when the filling factor takes integer values, the
(integer) Hall effect is observed. This naive approach however, seems to indicate that the integer
Hall effect should be observed only at the specific values of the magnetic field for which ν given
by (12) or (31) is an integer, instead of some extended regions of B, as seen experimentally. Also,
the explanation for the fractional values of ν is out of reach in this approach.

The energy separation between levels must be compared with the other energy scales intro-
duced by the impurities and the interactions which will split the degeneracy. A necessary condition
to observe the Hall effect is that the splitting of the energy levels within each Landau level remains
small compared to ~ω, so that the Landau levels are well separated in energy. This picture however
is too naive to account for the width of the plateaus. We must invoke the existence two kinds of
energy levels. Extended levels narrowly dispersed around the Landau energy and localized levels
which do not carry current but spread in energy. The presence of these localized states is necessary
to enable the chemical potential to vary smoothly between two Landau levels instead of jumping
abruptly. This seems to ruin the quantization argument made just before, and we shall have more
to say to reconcile the quantized picture with the existence of localized states later.

We have just seen that the ν = n integer Hall effect occurs precisely when the density is
such that an integer number of electrons n occupy a magnetic cell. Conversely, we can expect that
the ν = 1/3 Hall effect occurs when one electron occupies three cells by himself! This locking of
the separation between electrons cannot be accounted for by the Pauli principle. The alternative
explanation is that it is due to the interactions between the electrons. This is the starting of
Laughlin’s theory for the fractional Hall effect, and this aspect is discussed in S. Girvin’s lecture.

2.4.2 Landau gauge

Although the bulk properties of a system of electrons must be independent of the gauge choice,
it is instructive to carry out the quantization procedure in different gauges. Different gauges can
be better suited to different geometries because the shape of the wave functions depends on the
gauge choice.

Let us consider the so-called Landau gauge which is well suited to a cylindrical geometry:

Ax = −By, Ay = 0. (32)
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In this gauge the dynamical momenta are:

πx = px − eBy, πy = py, (33)

and the guiding center coordinates are:

Rx = x − 1

eB
py, Ry =

1

eB
px, (34)

We can find the simultaneous spectrum of H0 and Ry, and thus fix the value of the x-momentum
px = ~k. We therefore look for eigenfunctions of H0 in the form:

Ψk(r) = eikxfk(y). (35)

Each value of Ry = kl2 determine an effective one dimensional Hamiltonian for fk(y):

Hk =
1

2m
p2

y +
1

2
mω2(y − kl2)2, (36)

where ω is the cyclotron frequency (4). This is the Hamiltonian of a harmonic oscillator centered at
a position y = kl2 determined by the momentum in the x direction. The spectrum is independent
of k and given by:

εn = (n +
1

2
)~ω. (37)

Let us for the moment concentrate on the lowest level n = 0. The wave functions fk0 are
Gaussian centered on kl2 of width l:

fk0(y) = exp

(

− (y − kl2)2

2l2

)

. (38)

To recover the degeneracy, imagine we impose periodic boundary conditions in the x direction
(x+Lx ≡ x). This imposes a quantization condition on k which must take the values km = 2πm/Lx

for the wave function (35) to be periodic. For each value of m the Gaussian wave packet fm0(y)
is centered on ym = 2πml2/Lx. The number of allowed values of m in an interval of length Ly is

thus
LxLy

2πl2 and we recover the degeneracy (30).
The nth Landau Level wave functions are obtained by acting with the creation operator (a+)n

on the ground state wave functions Ψk(x). One can verify that the wave functions are expressed
in terms of Hermite polynomials Hn as:

fkn(y) = Hn(
y − kl2

l
) exp

(

− (y − kl2)2

2l2

)

. (39)

2.4.3 Symmetric gauge

Another useful gauge well suited to study the system on a disc is the so-called symmetric gauge
defined by:

Ax = −By

2
, Ay =

Bx

2
. (40)

In this gauge the guiding center coordinates are:

Rx =
x

2
− 1

eB
py, Ry =

y

2
+

1

eB
px. (41)

We combine them into two oscillators:

b =
1√
2l

(Rx + iRy), b+ =
1√
2l

(Rx − iRy). (42)
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The lowest Landau level wave functions are obtained upon acting onto the ground state of (27)
with (b+)m. In this gauge, the angular momentum L is a good quantum number and they carry
an angular momentum L = −m. Their expression is proportional to 3:

Ψm0(z̄) = (z̄/l)m exp
(

− zz̄

4l2

)

, (43)

and they can be visualized as thin circular shells of radius
√

2ml around the origin. Thus if we
quantize the system in a a disk of finite radius R, we recover the expected degeneracy (30) by
keeping only the wave functions confined into the disk m ≤ m0 = R2/2l2. By taking linear
combinations of wave functions (43) we see that the general wave functions are proportional to
polynomials of fixed degree m0 in z. A useful way to characterize them is through the location of
their zeros Z̄i:

Ψ0(z̄) =

m0
∏

i=1

(z̄ − Z̄i) exp
(

− zz̄

4l2

)

. (44)

3 Hall conductance Quantization: the Integer Effect

3.1 Galilean invariant systems

The first important thing to emphasize is that for a two-dimensional Galilean invariant system,
(in the absence of impurities or boundaries) a full quantum-mechanical treatment yields the same

resistivity tensor as for the pure classical system, namely ρxx = 0 and ρxy = B/(ne), or equivalently,
σxx = 0 and σxy = ne/B.

To check this, let us consider the following Hamiltonian, for a system of N interacting electrons
in the presence of uniform time-independent perpendicular magnetic (B) and electric fields (E):

H =
1

2m

N
∑

j=1

(

(Pj + eA(rj))
2 − eV (rj)

)

+
1

2

∑

i6=j

U(ri − rj) (45)

where as usual, B = ∇ ∧ A, E = −∇V , and U is the pair interaction potential. Inspired by the
discussion of the classical case, let us now introduce the following transformation on the N -particle
wave-function Ψ(r1, r2, ..., rN , t):

Ψ(r1, r2, ..., rN , t) = exp





i

~

N
∑

j=1

θ(rj , t)



 Ψ̃(r′1, r
′
2, ..., r

′
N , t) (46)

where rj denotes the position of particle j in the laboratory frame and r′j its position in the moving
frame, with constant velocity v0 given by:

v0 =
E ∧B

B2
(47)

Therefore, we have the relation: r′j = rj−v0t. It is possible to choose the phase θ(r, t) in such a way

that Ψ̃ satisfies the time-dependent Schrödinger equation associated to the simplified Hamiltonian
H̃ deduced from H by removing the potential term −e

∑

j V (rj). So in the inertial frame moving
with constant velocity v0, there is no electrical field, and only the original magnetic field remains.
Note that the expression of θ(r, t) does depend on the choice of gauge. For instance, in the radial
gauge A = 1

2B ∧ r, we have:

θ(r, t) = mv0.r −
1

2
(mv2

0 + eE.r)t

3This convention is not usual, most people prefer to use conventions for which z̄ → z.
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The phase-factor does not alter the classical composition rule for currents, and we get:

〈Ψ|J(r)|Ψ〉 = −nev0 + 〈Ψ̃|J(r′)|Ψ̃〉 (48)

Now since there is no driving electric field in the moving frame, 〈Ψ̃|J(r′)|Ψ̃〉 = 0, so 〈Ψ|J(r)|Ψ〉 =
−nev0 which is exactly the classical result.

As we have seen, the natural way to measure the electronic density for a two-dimensional
quantum system in a magnetic field is the filling factor ν = nh

eB . So we end up with:

σxy = ν
e2

h
(49)

Although this expression does involve Planck’s constant, it is important to note once again that
it is identical to the the classical prediction for a uniform fluid of electrons of areal density n. As
illustrated on Fig. 1, this prediction for a Galilean invariant system coincides with the experimental
result for the Hall conductance when the filling factor ν is an integer. The existence of quantized

plateaus of the form σH = n e2

h , with n integer clearly indicates the breakdown of Galilean invariance
in real samples, since the two expressions differ when ν is not an integer. This fact is not too
surprising, since there is always a random electrostatic potential induced by the impurities which
are required to generate charge carriers at the interface between two semi-conductors. The most
surprising fact is that despite this random potential (without which there would be no observable
Hall quantization!) the measured plateau values are universal with a very high accuracy. Of course,
a lot of theoretical work has been dedicated to explain this remarkable phenomenon. To give a
simple outline, we may classify most of the existing approaches in the following way:
-The Laughlin argument [5]
-Expressing the Hall conductance as a topological invariant [6]
-The Edge-State picture [7]
We shall try here to give a flavor of these important contributions, but let us first begin to present
a rather simple and helpful semi-classical analysis [8].

3.2 An intuitive picture

It is indeed very illuminating to consider the limit of an extremely strong magnetic field, so that
the magnetic length l = ( ~

eB )1/2 is much smaller than the typical length-scales associated to the
spacial variations of the impurity potential Uimp(r). Classically, we have seen that the guiding
center R of classical orbits for a single electron obeys the following equations of motion:

Ṙ =
B ∧ ∇

B2
(V − Uimp

e
)(R) (50)

In particular, this implies that W (R) = (V − Uimp

e )(R) is conserved, so the classical trajectories
of guiding centers in the infinite B limit coincide with equipotential curves of the function W (R).
Using the intuition gained in section 1, we expect that after quantization, single particle eigenstates
are located along narrow strips of width l centered on these equipotential lines. As usual in semi-
classical quantization, only a discrete set of classical orbits are allowed. An extension of the Bohr-
Sommerfeld principle indicates that for closed classical orbits, only those which enclose an integer
number of flux quanta give rise to quantum eigenstates. Let us denote by Wi the potential energies
associated to these selected orbits. We get then the following semi-classical spectrum:

Ei,n = −eWi + ~ω(n +
1

2
) (51)

where n is any non-negative integer corresponding to quantizing the fast cyclotron motion around
the slow moving guiding center. For a fixed value of n, we may then speak of a generalized nth

Landau level, although the degeneracy of this level is lifted by the joint effect of the driving electric
field and the impurity potential. When such a level is completely filled, it induces a spacial density
of electrons (after coarse-graining on a length-scale of the order of the corresponding cyclotron
radius n1/2l) equal to eB

h , mostly insensitive to the form of the effective potential W (R).



Vol. 2, 2004 Physics in a strong Magnetic Field 27

Let us consider now our system to be a horizontal strip defined by 0 ≤ y ≤ Ly. We apply an
external field along the y direction, in such a way that the edges of the sample y = 0 and y = Ly

are equipotential lines for V . On average, we expect a global Hall current jx in the horizontal
direction. Each generalized Landau level produces a local current:

jx,n = −e

(

eB

h

)

θ(µ + eW (R) − ~ω(n +
1

2
))vx(R) (52)

where vx(R) = − 1
B

∂W
∂y (R), and µ is the chemical potential of the electronic system. The Heaviside

step function θ(µ + eW (R) − ~ω(n + 1
2 )) is the limiting form of the Fermi-Dirac distribution for

the semi-classical spectrum (51) at zero temperature. Let us now integrate this local current along
a vertical section of the sample, at fixed x = x0. This yields:

Ix,n(x0) =
e2

h

∫ Ly

0

dy θ(µ + eW (x0, y) − ~ω(n +
1

2
))

∂W

∂y
(x0, y) (53)

To simplify the discussion, let us assume that the impurity potential vanishes on the edges (for
y = 0 and y = Ly). The above integral is easily computed, and the result distinguishes between
four cases:
1)−eW (x0, y) + ~ω(n + 1

2 ) ≡ En(x0, y) > µ for both y = 0 and y = Ly.
This means that the nth generalized Landau level is unoccupied in the presence of the external
driving voltage, in the limit where the impurity potential vanishes. In this case, Ix,n(x0) = 0.
Note that this value is independent of the strength of the local impurity potential. In particular,
if Uimp(R) has deep local minima, it may happen that En(R) < µ in some finite areas, meaning
that there are occupied bound states in the nth Landau level localized near impurities. But in this
very large field limit, we see that such localized states do not contribute to the global Hall current.
2)En(x0, y) < µ for both y = 0 and y = Ly.
In the limit of vanishing impurity potential, the corresponding Landau level is then fully occupied.
We obtain:

Ix,n(x0) =
e2

h
(W (x0, Ly) − W (x0, 0)) =

e2

h
(V (Ly) − V (0)) (54)

Again, this result is independent of the strength of the impurity potential. Such a fully occupied

level provides therefore a contribution equal to e2

h to the total Hall conductance.
3)En(x0, 0) > µ and En(x0, Ly) < µ.
Then:

Ix,n(x0) =
e2

h

µ − En(x0, Ly)

e
(55)

4)En(x0, 0) < µ and En(x0, Ly) > µ.
Then:

Ix,n(x0) =
e2

h

En(x0, 0) − µ

e
(56)

These last two cases correspond to Landau levels which are partially filled in the absence of impurity
potential, but in the presence of the driving field. They destroy the quantization of σxy. In order to
avoid them, one has to fix the chemical potential in a gap of the unperturbed Landau level spectrum,
and impose a weak enough driving electric field, typically such that e|V (x0, Ly)−V (x0, 0)| < ~ω. If
these conditions are satisfied, we have an integer number p of filled Landau levels which contribute
to the Hall current, so that:

Ix(x0) = p
e2

h
(V (Ly) − V (0)) (57)

in perfect agreement with:

σxy = p
e2

h
(58)

When does this simple and appealing picture break down? Clearly, it is problematic when the
typical scale of the impurity potential becomes comparable to the magnetic length l. In this case,
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Figure 3: Illustration of cyclotron motion for a classical charged particle in the presence of uniform
perpendicular magnetic and electric fields. A hard circular point scatterer is depicted as a dashed-
filled circle.

it is no longer possible to preserve such a simple description of quantum energy eigenstates. Never-
theless, as shown on Fig. 3 illustrating the effect of a strong scatterer modeled as an impenetrable
disk of radius a, even when a is small compared to the cyclotron radius, we may expect that such
a scatterer does not disturb the shape of a strip-like eigenstate excepted in its immediate vicinity.
In particular, the overall direction of propagation of a wave-packet is not modified by the presence
of such impurities. These qualitative expectations are confirmed by more detailed perturbative
calculations [8].

More serious problems arise when strong localized scatterers are densely packed, namely with
an average nearest-neighbor spacing of the order of l. In this case, classical trajectories become
very complicated. Quantum-mechanically, we expect that such a strong potential induces strong
mixing between different Landau levels, and therefore, a perturbative analysis is not very helpful.
Fortunately, a very interesting and famous argument has been given by Laughlin [5] which shows
that nevertheless a strict quantization of σxy is still possible.

3.3 The Laughlin argument

Let us consider the same strip as before, defined by 0 ≤ y ≤ Ly, but let us fold it into a cylinder by
identifying points (x, y) and (x + Lx, y). The magnetic field B is still normal to this finite domain,
and a driving electric field is still applied along the y direction. To evaluate the current jx(r) in
the quantum mechanical ground-state of this system, Laughlin uses the following exact relation:

jx(r) = − ∂〈H〉
∂Ax(r)

(59)

where A(r) is the external magnetic vector potential. Let us now impose spacial variations δA(r) of
the form: δAx(r) = δΦ

Lx
and δAy(r) = 0. Such variations do not modify the gauge-invariant electric

and magnetic fields, but they introduce an Aharonov-Bohm flux through any closed path winding
once around the cylinder in the positive x direction. The corresponding infinitesimal variation of
the system average energy is:

δ〈H〉 = −δΦ

Lx

∫ Lx

0

dx

∫ Ly

0

dy jx(r) = −δΦ Ix (60)

So the Hall current Ix is simply expressed as:

Ix = −d〈H〉
dΦ

(61)

Now Laughlin assumes that as Φ varies, the ground-state wave-function |Ψ0(Φ)〉 undergoes a
smooth evolution, Φ being considered as an external parameter of the system Hamiltonian. A
sufficient condition for this to occur is when the ground-state is unique, and well separated by a
finite energy gap from excited states created in the bulk of the system. This happens for instance
for non-interacting electrons with an integer filling factor in the limit of a weak impurity potential.

Let us now vary Φ by a finite quantity Φ0 = h/e. Note that the effect of changing Φ is
simply the same as changing the periodic boundary condition along the x direction, so its effect
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mInteger filling Non−integer filling

Φ ΦΦ+Φ Φ+Φ0 0

Figure 4: Illustration of the change in the spatial distribution of occupied energy states within a
single Landau level, as flux Φ is changed into Φ + Φ0. For integer filling, no change occurs in the
bulk of the system (depicted by the dashed parallelogram), and the global effect is to transfer one
electron from the lower to the upper boundary. For non-integer filling factor, this adiabatic process
also implies a change of the level occupancy pattern in the bulk of the system.

on a macroscopic system is expected to be small. One way to see this is to consider single particle
eigenstates in the Landau gauge (Ax = −By, Ay = 0). These states are localized in narrow strips

centered around horizontal lines such that ym = 2πl2

Lx
(m + Φ/Φ0), m integer. So changing Φ into

Φ+Φ0 amounts simply to changing m into m+1 and the single electron spectrum is invariant in this
operation. This in fact expresses the gauge-invariance of quantum-mechanics, as first emphasized
by Aharonov and Bohm. In particular, this periodicity of the spectrum as a function of Φ with
period Φ0 holds for interacting electron systems such as those described by the Hamiltonian (45).
Denoting by ∆〈H〉 the variation of the system energy during such process, Laughlin assumes that
we may still write:

Ix = −∆〈H〉
Φ0

(62)

Suppose now the chemical potential is such that the ground-state is well separated from
excited states by an energy gap, at least when the driving electric field vanishes. Again, this is
the case for non-interacting electrons with an integer filling factor in the limit of weak impurity
potential. Then upon changing Φ into Φ + Φ0, we cannot modify the wave-function in the bulk
of the system. However, as the example of non-interacting electrons suggests (see Fig. 4), we may
still transfer an integer number p of electrons (since the quantum number m is shifted into m + 1)
from the lower edge to the upper edge. More precisely, for non-interacting electrons with an integer
filling factor ν, then p = ν. In this situation, the energy variation ∆〈H〉 during the shift from Φ
to Φ + Φ0 is of purely electrostatic origin, so that:

∆〈H〉 = −pe(V (Ly) − V (0)) (63)

From Eq. (62), this yields:

Ix = p
e2

h
(V (Ly) − V (0)) (64)

or equivalently, σxy = p e2

h .
The strength of this argument is that it is also valid for interacting systems, in the presence

of a random potential, as long as the excitation gap present for the pure non-interacting system
at integer ν is preserved. To some extent, we may even drop the weak disorder assumption. To see
this, let us consider a non-interacting system, but with a possibly large disorder. The density of
states has schematically the shape shown on Fig. 5 where the gaps of the Landau level spectrum
have been partially filled under the influence of the random impurity potential. In two dimensions,
(and in absence of magnetic field), it is very likely that all energy eigenstates are spacially lo-
calized [9]. Such localized wave-functions are mostly insensitive to changing boundary conditions,
and therefore do not contribute to the adiabatic charge transport process involved in Laughlin’s
argument. This should yield a vanishing Hall conductance. However, there are theoretical argu-
ments [10, 11] and substantial numerical evidence [12] that in the presence of a uniform magnetic
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Figure 5: Schematic plot of the density of single particle energy levels, as a function of energy in
the presence of a static random impurity potential. The arrows correspond to positions of Landau
levels for a pure system, and to extended states in the disordered case. The random potential
lifts the huge degeneracy of each Landau level, and most of energy eigenstates become spatially
localized.

field, some delocalized eigenstates exist for a discrete set of energies, in one to one correspondence
with the original Landau levels (see arrows on Fig. 5). Understanding precisely the onset of such
extended states as the energy is tuned towards one of these critical values still remains a theoretical
challenge [13]. A recent review on these magnetic-field induced delocalization transitions may be
found in a paper by Kramer et al. [14]. Combining this picture of the single-particle spectrum
(mostly localized states, but isolated energies allowing for extended states) with Laughlin’s argu-

ment shows that the quantized Hall conductance σxy = p e2

h may still exist in a relatively strong
disorder regime.

Finally, let us mention briefly the case of arbitrary filling factors ν. We may still use Eq. (62)
to evaluate the Hall conductance. In the case of non-interacting electron for a pure system, we
have a partially filled Landau level crossing the Fermi energy. Therefore, the process of adding one
flux quantum Φ0 in the system translates the pattern of occupied and empty horizontal strip-like

single particle states by the amount ∆y = 2πl2

Lx
, as shown on Fig. 4. Another way to say this is that

this adiabatic process induces particle-hole excitations inside the partially occupied Landau level,
which affect now the bulk of the system, and not only its boundaries. The corresponding change in
electrostatic energy is then proportional to the total number of electrons, and this implementation

of the Laughlin argument yields the classical, unquantized value σxy = ν e2

h . The situation changes
dramatically in the presence of electron-electron interactions, and indeed plateau values of the form

σxy = p
q

e2

h have been observed, where p is an integer and q an odd integer [15]. In a pioneering

insight [16], Laughlin explained the appearance of these fractional values as a consequence of two
remarkable properties of the system:
i)Interactions are lifting completely the degeneracy of the partially filled Landau level, at least
for filling factors ν = 1/q, q odd. The corresponding ground-state is liquid-like, isotropic and
translationally-invariant.
ii)The elementary locally charged excitations correspond to collective reorganizations of the elec-
tron fluid producing a fractional charge e∗ = 1/q.
These two surprising properties of the energy spectrum and of elementary excitations have been
incorporated by Laughlin in his 1981 argument to account for the existence of quantized plateaus
in σxy with a fractional value. Since the theory of this fractional effect is the subject of S. Girvin’s
contribution to this seminar, we shall not discuss it further here.

3.4 The Hall conductivity as a topological invariant

Let us further modify the geometry used for the Laughlin argument by gluing together the lower
(y = 0) and upper (y = Ly) edges of the cylinder, thus forming a torus. The small external
driving field is still uniform, directed along ŷ, and we shall still measure the current density 〈jx〉
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along the x̂ direction. As we wish to apply linear response theory, it is convenient to work with a
time-dependent electric field:

Ey(t) =

∫

dω

2π
e−iωtẼy(ω). (65)

The frequency-dependent Hall conductivity σxy(ω) is defined by:

j̃x(ω) = σxy(ω)Ẽy(ω). (66)

Quantum-mechanically, the simplest way to introduce an electric field is through a time-dependent

vector-potential δA(t) such that Ey(t) = −∂δAy(t)
∂t , or equivalently: Ẽy(ω) = iωδÃy(ω). If we define

Kxy(ω) to be such that j̃x(ω) = Kxy(ω)δÃy(ω), then: σxy(ω) =
Kxy(ω)

iω . For a uniform electric field,
δAy is also spatially uniform. In real space and time, the response kernel Kxy is given by the
standard Kubo linear response formula:

Kxy(r, t; t′) =
i

~
〈[ δH

δAx(r)
,

∫

δH

δAy(r′)
d2r′]〉, (67)

where we have used again jx(r) = − δH
δAx(r) , and the fact that δAy is uniform. The quantum-

mechanical expectation values are taken in the ground state of the system, since we are assuming a
very low temperature. In the absence of impurities, we expect a uniform current, but if impurities

are present, only the total current Ix(x) =
∫ Ly

0 dy jx(x, y) is independent of x (because of current
conservation) in the static limit. It is therefore natural to average the above response function over
the “probe” position r. Introducing fluxes Φx and Φy as in the previous section, but now along the
two main directions of the torus, we may write this space-averaged response function as:

Kxy(r, t; t
′) =

i

~

1

LxLy
〈[
∫

δH

δAx(r)
d2r,

∫

δH

δAy(r′)
d2r′]〉 =

i

~
〈[ ∂H

∂Φx
,

∂H

∂Φy
]〉. (68)

Transforming to Fourier-space, we now obtain:

σxy(ω) =
i

~ω

∑

α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
ω − ωα0

− 〈0|∂yH |α〉〈α|∂xH |0〉
ω + ωα0

}

(69)

where |0〉 is the ground-state and |α〉 denotes a complete orthonormal basis of energy eigenstates
of H , with energies Eα. The Bohr frequencies ωα0 are equal to (Eα − E0)/~. In this expression,
H is the full Hamiltonian of the system in the absence of driving electric field. It may therefore
include both impurity potentials and interaction effects. To simplify notations, ∂xH and ∂xH stand
respectively for ∂H

∂Φx
and ∂H

∂Φy
. Gauge-invariance requires that the current vanishes when a static

uniform vector potential is applied. This enables us to replace the above expression by:

σxy(ω) =
i

~

∑

α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
ωα0(ω − ωα0)

+
〈0|∂yH |α〉〈α|∂xH |0〉

ωα0(ω + ωα0)

}

(70)

which has a well-defined static limit ω → 0 provided the system has a finite energy gap, so that
denominators are not vanishing in this limit. We may then write the static Hall conductance as:

σxy =
~

i

∑

α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
(E0 − Eα)2

− 〈0|∂yH |α〉〈α|∂xH |0〉
(E0 − Eα)2

}

(71)

It is now convenient to view the Aharonov-Bohm fluxes Φx and Φy as external parameters. The
ground-state |0〉 becomes a function of (Φx, Φy) ≡ Φ and we shall denote it by |Φ〉. This allows us
to recast the previous equation as:

σxy(Φ) =
~

i

(

∂〈Φ|
∂Φx

∂|Φ〉
∂Φy

− ∂〈Φ|
∂Φy

∂|Φ〉
∂Φx

)

. (72)
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This may be regarded as the curl of a two-dimensional vector:

1

i

(

〈Φ|∂|Φ〉
∂Φx

, 〈Φ|∂|Φ〉
∂Φy

)

. (73)

Since 〈Φ|Φ〉 = 1, this vector has purely real components. The above expression depends on a choice
of two Aharonov-Bohm fluxes (Φx, Φy), which by gauge transformations is equivalent to choosing
the following boundary conditions for the wave-functions (for simplicity of notation, we consider
just one electron here, since generalization to N electrons is obvious):

Ψ(x + Lx, y) = ei2π Φx
Φ0 Ψ(x, y) (74)

Ψ(x, y + Ly) = ei2π
Φy

Φ0 Ψ(x, y) (75)

This is of course connected to the idea that all physical quantities, like σxy(Φ) are periodic functions
of both Φx and Φy with period Φ0. So the Φ-plane may be folded onto a two-dimensional torus.

Let us now make the assumption that σxy(Φ) is only very weakly modified upon changing
these boundary conditions. In the case where the ground-state is well separated from excited states
by a finite energy gap, arguments have been given to show that σxy(Φ) becomes constant for a large
system, up to corrections of order l/Lx, l/Ly [6]. We may therefore replace σxy(Φ) by its average
over the Φ-torus and then transform the two-dimensional integral of a curl into a line-integral
along the boundary of the square [0, Φ0] × [0, Φ0]:

σxy =
e2

h

1

2πi

∫

�

〈Φ|d|Φ〉. (76)

But as shown in Appendix, the quantity 1
2πi

∫

�
〈Φ|d|Φ〉 is equal to 2πnC where nC is an integer

called a Chern number. Finally, we get [17, 6]:

σxy = nC
e2

h
. (77)

Note that this formula seems to be valid in great generality, so we may wonder how we
might explain fractional values for the Hall conductance. In fact, the above derivation requires the
ground-state to be unique for all values of Φ. For fractional filling factors of the form ν = p/q, Tao
and Haldane have shown that the ground-state is q-fold degenerate on a torus in the absence of
impurities [18]. Furthermore, since these degeneracies are associated only to the center of motion
of the electron fluid, the effect of impurities on the energy spectrum is rather small whenever there
is an energy gap for internal excitations. These authors have shown how such degeneracies induce
values of the form p/q in unity of e2/h for the Hall conductivity.

We have not covered here all the aspects related to this description of the Hall conductivity
as a topological invariant. A recent very accessible review may be found in [19]. We also mention
briefly that such topological ideas have generated a rigorous proof of the integer Hall conductance
quantization for an infinite disordered system of non-interacting electrons [20]. This work uses
a rather elaborate mathematical apparatus (K-theory for C∗ algebras) which we will not try to
describe here, so the interested reader is invited to consult the original paper [20].

3.5 Edge-state picture of the Quantum Hall effect

Starting from an influential paper by Halperin [21], this viewpoint has been emphasized by Büttiker
[7], and plays a crucial role in experiments aimed at showing the existence of fractionally charged
quasi-particles in the fractional regime. These experiments will be discussed in detail by C. Glattli.
Here, we shall just present a brief introduction to this approach.

Usually, experiments and metrological applications of the quantum Hall effect involve
rectangular-shaped samples schematized on Fig. 6. Current is injected along the long axis of the
Hall bar, and voltage probes located on the sides of the sample are used to measure longitudinal
and Hall resistivities. In such systems, there is a strong but smooth lateral confining potential
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Figure 6: Typical geometry of a Hall bar. The current I is injected in the sample through contacts
labelled 1 and 2. Lateral contacts labelled from 3 to 6 are used to measure the longitudinal voltage
as for instance V3 − V4 or the Hall voltage as for instance V3 − V5.

for electron approaching outer boundaries. The corresponding semi-classical spectrum for non-
interacting electron has the shape shown on Fig. 7(a) inspired from [21]. From our description of
the dynamics in a large magnetic field, we expect that even in the absence of external electric
field, the strong confining potential gradients will induce static currents along boundaries. With
a positive magnetic field along the ẑ direction, electrons acquire a positive group velocity along
the upper boundary (y ' Ly) and a negative group velocity along the lower one (y ' 0). The
same reasoning as in section 3.2 applies here showing that the total current across a section of the
system vanishes, so there is no global current along the sample in equilibrium. What happens when
the system is driven out of equilibrium by a non-zero average longitudinal current injected in the
sample by external contacts (labeled 1 and 2 on Fig. 6)? This simply means that the population of
edge states will be increased (resp. decreased) with respect to their equilibrium values when edge
currents move in the same (resp. opposite) direction as the injected current. In other words, the
chemical potentials µ(Ly) and µ(0) on both edges are now different. The difference µ(Ly) − µ(0)
is precisely equal to −e(V (Ly) − V (0)) which is the energy cost to transfer an electron from the
Fermi level at y = 0 to the Fermi level at y = Ly. Adapting Eq. (53), we now have:

Ix,n(x0) =
e2

h

∫ ∞

−∞

dy θ(µ(y) + eW (x0, y) − ~ω(n +
1

2
))

∂W

∂y
(x0, y). (78)

Here, W (x, y) is the sum of random impurity and confining electrostatic potentials. By contrast
to the discussion in section 3.2, it does not include an external driving field, since the current is
viewed here as the result of imposing an out of equilibrium distribution of single-particle states
along edges. The integral has now been extended to [−∞,∞] since the precise locations of the
sample edges do depend on the populations of edges states as illustrated on Fig. 7(b). Each filled
Landau level produces now an integrated current:

Ix,n(x0) =
e2

h
(W (Ly) − W (0)). (79)

But we have:
−e(W (Ly) − W (0)) = µ(Ly) − µ(0) = −e(V (Ly) − V (0)) (80)

So finally:

Ix,n(x0) =
e2

h
(V (Ly) − V (0)) (81)

for each filled Landau level.
These edge states have been the subject of intense research during the last fifteen years. Many

directions have been explored, including the precise modeling of electron transport through meso-
scopic coherent samples [22, 23, 24], the theoretical and experimental investigation of interaction
effects [25, 26], the generalization of edge states to the fractional quantum Hall regime [27], and
possible applications of edge channels to quantum information processing [28, 29]...
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(a)

µ(0) Lyµ(    )
µ(0)

Lyµ(    )
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y y

Figure 7: Semi-classical energy spectrum for three Landau levels, as a function of the position
y across a Hall bar. In (a), an equilibrium situation is depicted, where the chemical potential
is uniform. Filled (resp. empty) circles represent occupied (resp. empty) single-particle states.
Currents flow along the x direction in regions where these levels depend strongly on y, that is near
the edges. In (b), a non-equilibrium state is depicted, with a smaller chemical for y = 0 than for
y = Ly. As a result, the sum of currents flowing along both edges is non-zero.

4 Interactions, a preview

This section has no ambition to be exhaustive, it reflects the author’s understanding of the role of
interactions in the Hall effect. We have seen earlier that the main feature of electrons in a strong
magnetic field is the large degeneracy of the Landau levels. It is therefore natural to expect that
in this regime, the physics can be understood through degenerate perturbation theory. In all phe-
nomena where the filling factor is less than one, the projection on the lowest Landau level should
therefore give an accurate description of the physics. Here, we indicate how the projection mecha-
nism results in rigid properties of the interacting electron system, which are fairly independent of
interactions involved. Also, the properties of the quasiparticles which emerge, such as their charge,
are completely different from those of the original electrons.

It is instructive to consider the dynamics of two particles within the lowest Landau level. The
two particles interact through a potential V (r1 − r2) which is supposed to be both translation and
rotation invariant. In a physical situation the potential is the Coulomb interaction between the
electrons, but it can in principle be any potential. For reasons that will become clear in the text we
consider particles with a charge respectively equal to q1 and q2 times the charge of the electron. Our
aim is to show that, to a large extent, the properties of the dynamics are independent of the detailed
shape of the potential. More precisely, the potential interaction is a two body operator which can
be projected into the lowest Landau level. Up to normal ordering ambiguities, the projection
consists in replacing the coordinates, r1, r2, with the guiding center coordinates, R1, R2. After
the projection is taken, the potential becomes an operator which is the effective Hamiltonian for
the lowest Landau level dynamics. By choosing conveniently a basis, we can see that the eigenstates
of the potential do not depend on it, as long as it is invariant under the isometries of the plane.
In other words, the two body wave functions of the Hall effect are independent of the interactions.
By extension, we are led to expect that the many body wave functions have some universality
properties, and do not depend on the details of the potential.

In this section, we use the symmetric gauge, and l denotes the magnetic length (29). The
guiding center coordinates for a particle of charge q > 0 times the charge of the electron have the
expression:

b =
√

2(l∂z̄ + q
z

4l
), b+ =

√
2(−l∂z + q

z̄

4l
). (82)

Together with the angular momentum, L, they generate a central extension of the algebra of the
isometries of the plane:

[b, b+] = q, [L, b+] = −b+, [L, b] = b. (83)
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This algebra commutes with the Hamiltonian H , and therefore acts within the lowest Landau level.
It plays a role similar to the angular momentum in quantum mechanics, and the operators b, b+, L
are the analogous of the angular momentum operators J−, J+, Jz . The Landau level index n plays
the same role as the representation index j in the rotation group, and it can be recovered as the
eigenvalue of a Casimir operator: C = 2b+b/q + L. The states within each Landau level can be
labeled by their angular momentum m ≤ n.

When two particles of positive charge q1 and q2 are restricted to their respective lowest Landau
level, we can form the operators b+ = b+

1 + b+
2 , b = b1 + b2 and the total angular momentum

L = L1 + L2. These operators obey the commutation relations of the algebra (83) with the charge
q = q1 +q2. Thus, as for the angular momentum, a product of two representations decomposes into
representations of the isometry of the plane (83). The physically interesting case is when the two
charges are equal to the electron charge (q1 = q2 = 1). It is easy to verify that each representation
is constructed from a generating state state annihilated by b: (b+

1 − b+
2 )n|0〉, and the value of the

Casimir operator is C = −n. The corresponding wave functions are:

Ψn(z̄1, z̄2) = (z̄1 − z̄2)
n exp

(

−(z̄1z1 + z̄2z2)/4l2
)

, (84)

an expression that plays an important role in the theory of the fractional Hall effect. The potential
being invariant under the displacements, it is a number Vn in each representation. Conversely, the
information about the Vn is all the information about the potential that is retained by the lowest
Landau level physics. The numbers Vn are called pseudopotentials, and turn out to be extremely
useful to characterize the different phases of the fractional Hall effect [30].

A case of even more interest is when the two particles have charges of opposite sign, q1 > 0
and q2 < 0, |q2| < q1. Because of the sign of the second charge, b+

2 and b2 become respectively
annihilation and creation operators and the lowest Landau level wave functions are polynomials in
z2 instead of z̄2. The same analysis can be repeated, but now the Casimir operator has a positive
value n exactly as for the Landau levels. The physical interpretation is that a couple of charges with
opposite sign behaves exactly like a bound state of charge q∗ = q1 − |q2|. The states annihilated
by b have a wave function independent of the precise expression of the potential, given by:

Ψn(z̄1, z2) = zn
2 exp

(

−q1z̄1z1/4l2 − |q2|z̄2z2/4l2 + |q2|z̄1z2/2l2
)

, (85)

and they are the nth Landau level’s wave functions with the largest possible angular momentum
L = n.

Heuristically, let us indicate how a scenario involving these composite particles enables to
apprehend the region of magnetic field between 21 and 27 Tesla on Fig.1. For this, we use the
well established theoretical fact that a quantized Hall effect (for bosons) develops at the filling
factor ν0 = 1/2. We assume that the ground state is the ν0 = 1/2 quantum Hall liquid made of
particles of charge −q1e. The physical motivation to start from this bosonic ground-state is that
it exhibits a rather low Coulomb energy, since the probability for two particles to come close from
each other is small in this state. More details on these correlated ground-states are presented in S.
Girvin’s contribution to which we direct the reader. To recover fermionic statistics, we add on top
of this ground state a sea of quasiparticles which are the bound-states introduced above, made of
an electron of charge −e and a hole (of charge q1e) in the ν0 = 1/2 ground state . The charge of
the quasiparticles is thus −q∗e, with:

q∗ = 1 − q1. (86)

To obtain the values of the filling factor that give rise to a Hall effect, using (29) and (31)
generalized to particles of an arbitrary charge, we see that for a fixed magnetic field and a fixed
density, the following proportionality relation between the charge and the filling factor holds:

charge ∝ 1

filling factor
, (87)

When the magnetic field is varied, the charge q1e adjusts itself so that the filling factor of the
ground-state is always equal to 1/2. Thus, q1e ∝ 2. Then, an integer quantum Hall effect will
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develop when the filling factor of the quasiparticles is an integer p. So, when q∗e ∝ 1/p. Finally,
we can recover the normalization coefficient through the relation between the filling factor of the
electrons and their charge: e ∝ 1/ν. Substituting these relations in (86) we obtain the following
expression for the filling factors giving rise to a Hall effect:

1

ν
= 2 +

1

p
. (88)

These filling factors are those predicted by Jain [31], and fit well with the Hall effect observed at
ν = 3/7, 4/9, 5/11, 6/13 in Fig.1. The fractions on the other side of 1/2 are the complement to
one of the previous ones, and the corresponding states can be obtained through a particle hole
transformation. In the region, close to ν = 1/2, the quasiparticles have practically zero charge, and
therefore see a weak magnetic field. They should therefore behave very much like a neutral Fermi
liquid. This has been confirmed by several experiments. One of them measures directly the charge
q∗ of the quasiparticles through the cyclotron radius of their trajectory [32] (see the footnote of
section 2.1).

At ν = 1/2 exactly, let us introduce a simple model to grasp the physics of these composite
particles. At this value of the magnetic field, the particle and the hole have exactly opposite charge
so that the quasiparticle has exactly zero charge (86). Let us assume for simplicity that the particle
and the hole are linked by a spring of strength K. In a strong magnetic field, we disregard the
kinetic energy term in the action (14). Thus, after we include the interaction term, the action
becomes:

S =

∫ (

−eA(r1).ṙ1 + eA(r2).ṙ2 −
K

2
(r1 − r2)

2

)

dt (89)

If we denote by P = p1 + p2 the total momentum of the system, straightforward quantization
leads to:

P = ~ẑ ∧ r1 − r2

l2
, (90)

and

H =
P2

2m∗
, (91)

where the quasiparticle mass is m∗ = (Be)2/4K. Thus, these neutral quasiparticles behave like
free particles, and do not feel the external magnetic field. Note that their effective mass m∗ is
independent of the true electron mass, and reflects the properties of the interactions. Eq. (90) tells
us that the quasiparticles are dipoles oriented perpendicularly to P, with a dipole size proportional
to the momentum. At this moment, no experimental evidence of their dipolar structure has yet
been given.

Finally, let us say a few words about the second quantized formalism in the lowest Landau
level. If V (r) denotes the interacting potential, the dynamics is governed by the Hamiltonian:

H =

∫

Ṽ (q)ρqρ−qd2q, (92)

where Ṽ (q) are the Fourier modes of the potential multiplied by the short distance cut-off factor

e−q2l2/2, and ρq are the Fourier modes of the density. Again, due to the projection to the lowest
Landau level, the density Fourier modes do not commute as in the usual case. Instead, they obey
the commutation relations analogous to (23) (ρq ≡ ∑Ne

i=1 eiq.Ri):

[ρq, ρq′ ] =
1

i
sin

lq ∧ lq′

2
ρq+q′ . (93)

It can be verified that for a finite size system, q can take only N 2 values where N = area/2πl2

is the degeneracy of the lowest Landau level, and the algebra (93) is the Lie algebra of the group
U(N). In the limit of strong magnetic field, l → 0, and one recovers the algebra of area preserving
diffeomorphisms (23) as the classical limit of (93).
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A Chern number for a two-dimensional torus

In section 3.4, we have introduced the ground-states |Φ〉, where Φ ≡ (Φx, Φy) denotes two
Aharonov-Bohm fluxes associated to the two main topologically non-trivial closed loops wind-
ing around the real-space torus defining our electron system. These states are periodic functions
of Φ, up to possible phase-factors, so we may write:

|Φ0, Φy〉 = eiλ(Φy)|0, Φy〉 (94)

|Φx, Φ0〉 = eiµ(Φx)|Φx, 0〉 (95)

(96)

In particular, we get:

|Φ0, Φ0〉 = ei(λ(0)+µ(Φ0))|0, 0〉 = ei(µ(0)+λ(Φ0))|0, 0〉 (97)

Consequently:
λ(Φ0) − λ(0) − µ(Φ0) + µ(0) = 2π n (98)

where n is an integer. Now:

1

2πi

∫

�

〈Φ|d|Φ〉 =
1

2πi

∫ Φ0

0

dΦx

(

〈Φ| ∂

∂Φx
|Φ〉(Φx, 0) − 〈Φ| ∂

∂Φx
|Φ〉(Φx, Φ0)

)

+
1

2πi

∫ Φ0

0

dΦy

(

〈Φ| ∂

∂Φy
|Φ〉(Φ0, Φy) − 〈Φ| ∂

∂Φy
|Φ〉(0, Φy)

)

(99)

=
1

2πi

∫ Φ0

0

dΦx

(

−i
∂µ

∂Φx
(Φx)

)

+
1

2πi

∫ Φ0

0

dΦy

(

i
∂λ

∂Φy
(Φy)

)

(100)

=
1

2π
(λ(Φ0) − λ(0) − µ(Φ0) + µ(0)) (101)

= n (102)
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