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Abstract. We summarize recent experimental and theoretical progress achieved
in the physics of information. We highlight the intimate connection existing
between information and energy from Maxwell’s demon and Szilard’s engine to
Landauer’s erasure principle. We will focus mainly on experiments on classical
systems and we will shortly discuss a few aspects of quantum systems. We
conclude by discussing applications in engineering and biology.
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1 Introduction

This review summarizes the contents of several articles [1, 2, 3, 4, 5], that we wrote
on the experimental aspects of the connections between thermodynamics and infor-
mation. We first define the theoretical framework of this connection by presenting
a short historical review starting from the article [6] of Rolf Landauer in which
he argued that information is physical. Since information is processed in physical
devices, he concluded that information has to obey the laws of physics, and in par-
ticular the laws of thermodynamics. Information is thus stored in physical systems,
such as books or memory sticks, and transmitted by physical means, for instance
with the help of electrical or optical signals. But what is ’information’? A simple,
intuitive answer is ’what you don’t already know’. If someone tells you that the earth
is spherical, you surely would not learn much: this message has low information con-
tent. However, if you are told that the oil price will double the day after tomorrow,
assuming for a moment this to be true, you would learn a great deal : this message
has hence high information content. Mathematically, the amount of information is
quantified by the so-called information entropy H introduced by Claude Shannon
in 1948; the larger the entropy, the bigger the information content [7]. The sim-
plest device to store information is a system with two distinct states, for example
up/down, left/right or magnetization/no magnetization. If the system is known to
be with probability one in one of either states, probing the system will not reveal
any new information, and the Shannon entropy is zero. On the other hand, if the
two states can be occupied with probability one-half, and the actual state is there-
fore initially undetermined, an examination of the system will provide information
about the state it is in. In this case, the Shannon entropy is equal to ln(2). This value
corresponds to the smallest amount of information and is called a bit. A two-state
system can thus store up to one bit of information.

The second law of thermodynamics, as formulated by Rudolf Clausius in 1850,
is based on the empirical observation that some processes only occur spontaneously
in one preferred direction [8]. Everyone who forgot a cup of hot tea on a table has
noted that heat flows by itself from a hotter (the cup) to a colder body (the room),
and never the other way around. Heat flow is therefore said to be irreversible. Clau-
sius characterized the irreversibility of natural macroscopic processes by defining
the thermodynamic entropy S, a quantity that is not conserved, in contrast to en-
ergy, but can only increase in isolated systems. This asymmetry in the change of
entropy imposes restrictions on the type of physical phenomena that are possible.
Similarly, the application of the second law of thermodynamics to information sets
limitations on information processing tasks such as transmission or erasure. More
general questions address the thermodynamic consequences of information gain. In
particular, whether it is possible to extract useful mechanical work from a system
by observing its state, and if yes how much. And at the more fundamental level: are
thermodynamic and information entropies related [2, 9]?

1.1 Maxwell’s demon and Szilard’s engine

The first hint of a connection between information and thermodynamics may be
traced back to James Clerk Maxwell’s now famous demon introduced in 1867 [10,
11, 12]. The demon is an intelligent creature able to monitor individual molecules
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Figure 1: Maxwell’s demon. By detecting the positions and velocities of gas molecules in two
neighboring chambers and using that information to time the opening and closing of a trapdoor
that separates them, a tiny, intelligent being could, in theory, sort molecules by velocity. By doing
so, it could create a temperature difference across the chambers that could be used to perform
mechanical work. If the trapdoor is frictionless, the sorting requires no work from the demon
himself, in apparent violation of the second law of thermodynamics (drawn by Claire Lebeau)

of a gas contained in two neighboring chambers initially at the same temperature,
as shown in Fig. 1. The temperature of the gas is defined by the mean kinetic
energy of the molecules and is hence proportional to their mean-square velocity.
However, not all the particles will have the same velocity. Some of the molecules
will be going faster than average and some will be going slower. By opening and
closing a molecular-sized trap door in the partitioning wall, the demon collects the
faster molecules in one of the chambers and the slower ones in the other. The two
chambers now contain gases with different mean-square velocities and hence different
temperatures. This temperature difference may be used to run a heat engine and
produce mechanical work. By gathering information about the position and velocity
of each particle and using this knowledge to sort them, the demon is therefore able
to decrease the entropy of the system and convert the acquired information into
energy. The problem is that the demon, assuming a frictionless trap door, is able to
do all this without performing any work himself, in apparent violation of the second
law of thermodynamics. The proper resolution of this paradox took 115 years.

A simplified one-particle engine has been suggested by Leo Szilard in 1929 [13].
In this setup, schematically shown in Fig. 2, the gas consists of a single molecule and
the wall separating the identical chambers is replaced by a moving piston to which
a weight can be attached. We now have a two-state system very similar to the one
discussed above. Initially, the particle has a probability of one half to be in one of the
two chambers. By looking into the container the demon acquires information about
the actual state of the system, learning what he did not know before. If the molecule
is found in the right chamber, the weight is attached to the right-hand side of the
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piston which is then released from its former position. During the expansion of the
gas, the piston is pushed to the left and the weight is pulled upwards, performing
work against gravity. The piston is attached to the left-hand side of the piston when
the molecule is observed in the left chamber. The second law of thermodynamics
limits the maximum amount of work that can be produced by the Szilard engine
to kBT ln(2), where kB is the Boltzmann constant and T the temperature of the
gas. This corresponds to the maximum amount of energy that can be obtained by
converting one bit of information, and is historically the first clear statement of
the relationship between information and energy. In modern language, this result
further implies that information and thermodynamic entropies are equal, S = kBH,
up to the multiplicative factor kB introduced for dimensional reasons (the Shannon
entropy H is dimensionless).

1.2 Landauer’s principle and Bennett’s resolution

It is useful to distinguish two complementary aspects: the first one is information
gain, as we have just discussed with Maxwell’s demon, the second one is informa-
tion erasure, which has been investigated from a thermodynamic point of view by
Landauer in 1961. Let us again consider a two-state system and let us assume that
it initially stores one bit of information, that is, the two states are occupied with
equal probability one-half. This bit may be erased by resetting the system to one of
the states, which will then be occupied with unit probability, a situation that corre-
sponds to a zero Shannon entropy. By applying the second law of thermodynamics,
Landauer demonstrated that information erasure is necessarily a dissipative process:
the erasure of one bit of information is accompanied by the production of at least
kBT ln(2) of heat into the environment. This result is known as Landauer’s erasure
principle. It emphasizes the fundamental difference between the process of writing
and erasing information. Writing is akin to copying information from one device to
another: state left is mapped to left and state right is mapped to right, for exam-
ple. This one-to-one mapping can be realized in principle without dissipating any
heat (in statistical mechanics one would say that it conserves the volume in phase
space). By contrast, erasing information is a two-to-one transformation: states left
and right are mapped onto one single state, say right (this process does not conserve
the volume in phase space and is thus dissipative).

Landauer’s principle played a central role in solving the paradox of Maxwell’s
demon. In 1982 Charles Bennett noted that the demon has to store the information
he acquires about the gas molecules in a memory [14]. After a full information
gathering energy producing cycle, this memory has to be reset to its initial state
to allow for a new iteration, and its information content has thus to be erased (a
similar argument was put forward by Oliver Penrose in 1970 [15]). According to
Landauer’s principle, the erasure process will dissipate an amount of energy that is
always larger than the quantity of energy produced by the demon during one cycle.
The demon has consequently to pay an energetic price to sort the molecules and have
heat flow from the colder chamber to the hotter chamber, in full agreement with the
second law of thermodynamics. Before Bennett’s resolution, it was often believed,
following arguments put forward by Leon Brillouin and Dennis Gabor, that it was
the energetic price of the measurement, that is, of the act of gathering information,
that would save the second law [16]. However, as shown by Bennett, there is no
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Figure 2: Szilard’s engine. A crafty observer can turn a single particle in a box into an engine that
converts information into mechanical work. If, say, the particle is found on the box’s left-hand side,
the observer inserts a movable wall and attaches a weight to its left side. The free expansion of the
one-particle gas pushes the wall to the right, lifts the weight, and thereby performs work against
gravity (adapted from Ref. [12]).

fundamental energetic limitation on the measurement process, which like the copy
operation, may in principle be performed without dissipation, in stark contrast to
erasure.

Box 1: Landauer’s erasure principle
Landauer’s principle can be seen as a direct consequence of the second
law of thermodynamics. Consider a system (SYS) coupled to a reservoir
(RES) at temperature T . According to the second law, the total entropy
change for system and reservoir is positive: STOT = SSYS + SRES ≥ 0.
Since the reservoir is always at equilibrium, owing to its very large size,
we have following Clausius, ∆SRES = QRES/T . In other words, the heat
absorbed by the reservoir satisfies QRES ≥ T∆SSYS. For a two-state sys-
tem that stores one bit of information, there are initially two possible
states that can be occupied with probability one half, and the initial
Shannon entropy is Hi = ln(2). After erasure, the system is with unit
probability in one of the states and the final Shannon entropy vanishes
Hf = 0. The change of information entropy is thus ∆H = − ln(2).
During this erasure process the ability of the system to store informa-
tion has been modified. By further using the (assumed) equivalence be-
tween thermodynamic entropy S and information entropy H we can write
∆SSYS = kBH = kB ln(2). We hence obtain QRES ≥ kBT ln(2), showing
that the heat dissipated into the reservoir during the erasure of one bit
of information is always larger than kBT ln(2).
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2 Experimental implementations

For almost a century and a half, the demon belonged to the realm of a gedanken
experiment as the tracking and manipulation of individual microscopic particles was
impossible. However, owing to the remarkable progress achieved in the last decades,
such experiments have now become feasible. Just to give a hint on what can be
done, we will discuss in the following sections several experimental realizations of
Maxwell’s demon and Szilard’s engine, as well as several verification of Landauer’s
principle.

2.1 Experiments on Maxwell’s demon

Figure 3: Using a Maxwell’s demon to cool atoms. A pair of laser beams can be tuned to atomic
transitions and configured to create a one-way potential barrier; atoms may cross unimpeded in
one direction, from left to right left in this figure, but not in the other. Left panel : when the
barrier is introduced at the periphery of the trapping potential, (right side) the atoms that cross
the barrier will be those that have converted nearly all their kinetic energy to potential energy, in
other words, the cold ones. By slowly sweeping the barrier (from the right to the left) across the
trapping potential, one can sort cold atoms (blue) from hot ones (red), reminiscent of Maxwell’s
famous thought experiment, or cool an entire atomic ensemble. Because the cold atoms do work
against the optical barrier as it moves, their kinetic energy remains small even as they return to
the deep portion of the potential well. Right panel: schematic representation of the optical set-up
showing the optical trap (red beam), the translational stage and the two beams one way barrier
(adapted from Ref. [17]).

The first realization of a Maxwell demon was used to cool atoms in a magnetic
trap. An ensemble of atoms is first trapped in a magnetic trap (see Fig. 3) [18]. A one
way barrier (which plays the role of the demon) sweeps the magnetic trap from the
right to the left, starting at a very large value of the potential. The atoms reaching
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this position have transformed almost all their kinetic energy in potential energy
and are, therefore, very cool. These atoms go through the barrier but they cannot
come back, i.e. the barrier behaves as an atom-diode [18, 19, 17]. Thus the hot atoms
are on the right and the cold atoms are on the left. At the end of the process when
the sweeping one-way barrier reaches the bottom of the magnetic potential all of the
atoms are cooled down. The one way barrier is composed by two laser beams suitable
tuned to atomic transitions. With reference to fig. one of the two lasers is on the left
of the barrier and forces the atoms in an excited state. The frequency of the second
laser, which is on the right of the barrier, is tuned in such a way that it has no effect
on the atoms in the excited state and it repels the atoms in the ground state. Thus
the atoms coming from the right, which are prepared in the excited state, go through
the barrier and relax to the ground state by emitting a photon. Instead the atoms
coming from the left, which are in the ground state, encounter first the barrier and
remain trapped because they are repelled. Where does the connection with Maxwell
demon come from? Indeed each time that an atom looses a photon the entropy of
the light shining the atoms increases because before all the photons were coherently
in the laser beam (low entropy state) and now the emitted photons are scattered in
all directions (high entropy state). This entropy is related to an information entropy
because each time that a photon is emitted we know that an atom has been cooled.
It can be shown that indeed this gain of entropy is larger than the reduction of
entropy produced by the cooling of the atomic cloud. It is important to notice that
in this example the demon has not to be an intelligent being but it is just a suitable
tuned device which automatically implements the operation.

2.1.1 The Szilard engine: work production from information

A Szilard engine has been realized in 2010 by using a single microscopic Brownian
particle in a fluid and confined to a spiral-staircase-like potential shown in Fig. 4
[20]. Driven by thermal fluctuations, the particle performs an erratic up and down
motion along the staircase. However, because of the potential gradient downwards
steps will be more frequent than upwards steps and the particle will on average fall
down. The position of the particle is measured with the help of a CCD camera.
Each time the particle is observed to jump upwards, this information is used to
insert a potential barrier that hinders the particle to move down. By repeating this
procedure, the average particle motion is now upstairs and work is done against
the potential gradient. By lifting the particle mechanical work has therefore been
produced by gathering information about its position. This is the first example of a
device that converts information into energy for a system coupled to a single thermal
environment. However there is not a contradiction with the second law because
Sagawa and Ueda formalized the idea that information gained through microlevel
measurements can be used to extract added work from a heat engine. [21] Their
formula for the the maximum extractable work is:

〈Wmax〉 = −∆F + kB T 〈I〉, (1)

where ∆F is the free energy difference between the final and initial state and the
extra term represents the so-called mutual information I. In absence of measurement
errors this quantity reduces to the Shannon entropy : I = −∑k P (Γk) ln[P (Γk)],
where P (Γm) is the probability of finding the system in the state Γk. Then in the
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Figure 4: (a) Experimental realization of Szilard’s engine. (a) A colloidal particle in a staircase
potential moves downwards on average, but energy fluctuations can push it upwards from time
to time. (b) When the demon observes such an event, he inserts a wall to prevent downward
steps. By repeating this procedure, the particle can be brought to move upwards, performing
work against the force created by the staircase potential. In the actual experiment, the staircase
potential is implemented by a tilted periodic potential and the insertion of the wall is simply
realized by switching the potential, replacing a minimum (no wall) by a maximum (wall) (adapted
from Ref. [20]).

specific case of the previously described staircase potential [20]: I = −p ln p− (1−
p) ln p where p is the probability of finding the particle in a specific region.

In this context the Jarzynski equality (see appendix A) also contains this extra
term and it becomes :

〈exp(−βW + I)〉 = exp(−β∆F ), (2)
which leads to

〈W 〉 ≥ ∆F − kBT 〈I〉. (3)
Equation (2) and (3) generalize the second law of thermodynamics taking into ac-
count the amount of information introduced into the system [22, 9]. Indeed Eq. (3)
indicates that thank to information the work performed on the system to drive it
between an initial and a final equilibrium states can be smaller than the free energy
difference between the two states. Equation (2) has been directly tested in a single
electron transistor [23].

2.1.2 The autonomous Maxwell demon improves cooling

An autonomous Maxwell demon using a local feedback mechanism which allows an
efficient cooling of the system [24, 25]. The device, whose principle is sketched in
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b)

c)

a)

Figure 5: a) Principle of the experimental realization of the autonomous Maxwell demon. The
horizontal top row schematizes a Single Electron Transistor. Electrons (blue circle) can tunnel
inside the central island from the left wall and outside from the right wall. The demon watches at
the state of the island and it applies a positive charge to attract the electrons when they tunnel
inside and they repels them when they tunnel outside. The systems cools because of the energy
released toward the heat bath by the tunneling events and the presence of the demon makes the
cooling processes more efficient. The energy variation of the processes is negative because of the
information introduced by the demon. b) The measured temperature variations of the left (bleu
line) and right (green line) leads as a function of the external control parameter ng when the
demon is active and the bath temperature is 50mK. We see that at the optimum value ng = 1/2
both leads are cooled of about 1mK and the current Ie flowing through the SET (black line) has
a maximum. At the same time in order to processes information the temperature of the demon
(red line) increases of a few mK. c) The same parameter of the panel b) are measured when the
demon is not active. We see that the demon temperature does not change, whereas both leads are
now heated by the current Ie (adapted from Ref. [24]).

Fig. 5a), is composed by a SET (Single Electron Transitor) formed by a small normal
metallic island connected to two normal metallic leads by tunnel junctions, which
permit electron transport between the leads and the island. The SET is biased by a
potential V and a gate voltage Vg, applied to the island via a capacitance, controls the
current Ie flowing through the SET. The island is coupled capacitively with a single
electron box which acts as a demon which detects the presence of an electron in the
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island and applies a feedback. Specifically when an electron tunnels to the island, the
demon traps it with a positive charge (panels 1 and 2). Conversely, when an electron
leaves the island, the demon applies a negative charge to repel further electrons that
would enter the island (panels 3 and 4). This effect is obtained by designing the
electrodes of the demon in such a way that when an electron enters the island
from a source electrode, an electron tunnels out of the demon island as a response,
exploiting the mutual Coulomb repulsion between the two electrons. Similarly, when
an electron enters to the drain electrode from the system island, an electron tunnels
back to the demon island, attracted by the overall positive charge. The cycle of
these interactions between the two devices realizes the autonomous demon, which
allows the cooling of the leads. In the experimental realization presented in [24],
the leads and the demon were thermally insulated, and the measurements of their
temperatures is used to characterize the effect of the demon on the device operation.
In Fig. 5b) we plot the variation of the leads temperatures as a function of ng ∝ Vg
when the demon acts on the system. We clearly see that around ng = 1/2 the two
leads are both cooled of 1mK at a mean temperature of 50mK. This occurs because
the tunneling electrons have to take the energy from the thermal energy of the
leads, which, being thermally isolated, cool down. This increases the rate at which
electrons tunnel against Coulomb repulsion, giving rise to increased cooling power.
At the same time the demon increases its temperature because it has to dissipate
energy in order to processes information, as discussed in Ref. [26]. Thus the total
(system+demon) energy production is positive. The coupling of the demon with the
SET can be controlled by a second gate which acts on the single electron box. In
Fig. 5c) we plot the measured temperatures when the demon has been switched off.
We clearly see that in such a case the demon temperature does not change and the
two electrodes are heating up because of the current flow. This is the only example
which shows that under specific conditions an autonomous local Maxwell demon,
which does not use the external feedback, can be realized.

2.2 Experiments on Landauer’s principle

The experiments in the last section show that one can extract work from information.
In the rest of this section we will discuss the reverse process, i.e. the energy needed
to erase information. By applying the second law of thermodynamics, Landauer
demonstrated that information erasure is necessarily a dissipative process: the era-
sure of one bit of information is accompanied by the production of at least kBT ln(2)
of heat into the environment (see Box1). This result is known as Landauer’s erasure
principle. It emphasizes the fundamental difference between the process of writing
and erasing information. Writing is akin to copying information from one device to
another: state left is mapped to left and state right is mapped to right, for exam-
ple. This one-to-one mapping can be realized in principle without dissipating any
heat (in statistical mechanics one would say that it conserves the volume in phase
space). By contrast, erasing information is a two-to-one transformation: states left
and right are mapped onto one single state, say right (this process does not conserve
the volume in phase space and is thus dissipative).
Landauer’s original thought experiment has been realized for the first time in a real

system in 2011 using a colloidal Brownian particle in a fluid trapped in a double-well
potential produced by two strongly focused laser beams [3, 4, 5] (see also Appendix
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Figure 6: Experimental verification of Landauer’s erasure principle. A colloidal particle is initially
confined in one of two wells of a double-well potential with probability one-half. This configuration
stores one bit of information. By modulating the height of the barrier and applying a tilt, the
particle can be brought to one of the wells with probability one, irrespective of the initial position.
This final configuration corresponds to zero bit of information. In the limit of long erasure cycles,
the heat dissipated during the erasure process can approach, but not exceed, the Landauer bound
indicated by the dashed line (adapted from Ref. [3] for details).

B). This system has two distinct states (particle in the right or left well) and may
thus be used to store one bit of information. The erasure principle has been verified
by implementing a protocol proposed by Bennett and illustrated in Fig. 6. At the
beginning of the erasure process, the colloidal particle may be either in the left or
right well with equal probability of one half. The erasure protocol is composed of the
following steps: 1) the barrier height is first decreased by varying the laser intensity,
2) the particle is then pushed to the right by gently inclining the potential and 3) the
potential is brought back to its initial shape. At the end of the process, the particle
is in the right well with unit probability, irrespective of its departure position. As in
the previous experiment, the position of the particle is recorded with the help of a
camera. For a full erasure cycle, the average heat dissipated into the environment is
equal to the average work needed to modulate the form of the double-well potential.
This quantity was evaluated from the measured trajectory and shown to be always
larger than the Landauer bound which is asymptotically approaches in the limit
of long erasure times. However, in order to reach the bound, the protocol must be
accurately chosen because as discussed in Ref. [3] and shown experimentally [27]
there are protocols that are intrinsically irreversible no matter how slow are per-
formed. The way in which a protocol can be optimized has been theoretically solved
in Ref. [28] but the optimal protocol is not often easy to apply in an experiment

2.3 Other experiments on the physics of information

By having successfully turned gedanken into real experiments, the above four seminal
examples provide a firm empirical foundation to the physics of information and the
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intimate connection existing between information and energy. This connection is
reinforced by the relationship between the generalized Jarzinsky equality [29] and
the Landauer bound which has been proved and tested on experimental data in
Ref. [4] and shortly summarized in the appendix A of this chapter .

A number of additional experiments have verified the erasure principle in var-
ious systems [30, 31, 32, 33, 34, 35, 36]. The latter include an electrical RC circuit
[30] and a feedback trap [32, 33]. In addition, Ref. [34] has studied the symmetry
breaking, induced in the probability distribution of the position of a Brownian par-
ticle, by commuting the trapping potential from a single to a double well potential.
The authors measured the time evolution of the system entropy and showed how to
produce work from information. Finally, experiments on the Landauer bound have
been performed in nano devices, most notably using a single electron box [31] and
nanomagnets [35, 36]. These experiments open the way to insightful applications for
future developments of information technology.

3 Extensions to the quantum regime

3.1 Experiments on quantum Maxwell’s demon

The experimental investigation of the physics of information has lately been ex-
tended to the quantum regime. The group of Roberto Serra in Sao Paulo has
successfully realized a quantum Maxwell demon in a Nuclear Magnetic Resonance
(NMR) setup [37]. The demon was implemented as a spin-1/2 quantum memory
that acquires information about another spin-1/2 system and employs it to control
its dynamics. Using a coherent measured-based feedback protocol, the demon was
shown to rectify the nonequilibrium entropy production due to quantum fluctua-
tions and produce useful work. Concretely, the demon gained information about the
system via a complete projective measurement. Based on the outcome of this mea-
surement, a controlled evolution was applied to the system to balance the entropy
production. Using quantum state tomography to reconstruct the density matrix ρ
of the system at all times, the produced average work 〈W 〉, or equivalently the
mean entropy production 〈Σ〉 = β(〈W 〉 − ∆F ), was shown to be bounded by the
information gain, 〈Σ〉 ≤ Igain. The latter quantifies the average information that
the demon obtains by reading the outcomes of the measurement and is defined as
Igain = S(ρ) −∑i piS(ρi), where ρi is the state after a measurement which occurs
with probability pi (see Fig. 7).

More recently, a quantum Maxwell demon has been implemented in a circuit
QED system [38]. Here, the demon was a microwave cavity that encodes quantum
information about a superconducting qubit and converts that information into work
by powering up a propagating microwave pulse by stimulated emission. The power
extracted from the system was directly accessed by measuring the difference between
incoming and outcoming photons of the cavity. Using full tomography of the system,
the entropy remaining in the demon’s memory was further quantified and was shown
to be always higher that the system entropy decrease, in agreement with the second
law.

In addition in a quantum demon setting a multi-photon optical interferometer
allowed the measure of the extractable work which was used as a thermodynamic
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Figure 7: Thermodynamics of a quantum Maxwell demon. Verification of the second law for the
nonequilibrium mean entropy production, 〈Σ〉 = β(〈W 〉−∆F ) ≤ Igain, in the presence of quantum
feedback as a function of temperature. The parameter Igain quantifies the information gained
through the measurement (adapted from Ref. [37]).

separability criterion to assess the entanglement of two-qubit and three-qubit sys-
tems [39]. An experimental analysis of two-qubit Bell states and three-qubit GHZ
and W states has confirmed that more work can be extracted from an entangled
state than from a separable state. Bounds on the extractable work can therefore be
employed as a useful thermodynamic entanglement witness.

3.2 Experiments on quantum Landauer’s principle

Erasure of information encoded in quantum states has been first theoretically consid-
ered by Lubkin [41] and Vedral [42] (see also Ref. [12]). An experimental verification
of the Landauer principle in a quantum setting has been recently reported using
a molecular nanomagnet at a temperature of 1K [40]. One bit of information was
initially stored in a double-well potential of collective giant spin Sz = ±10 of a
Fe8 molecule. Work for the application of the tilt induced by a transverse magnetic
field was determined via measurements of the magnetic susceptibility. Contrary to
classical erasure which is achieved by decreasing the barrier height, here erasure was
promoted by a thermally activated quantum tunnelling process. As a result, full
erasure can be achieved much faster than in the classical regime. Using the prod-
uct of the erasure work and the relaxation time, W · τrel, as a figure of merit for the
energy-time cost of information erasure, this experiment has reached the lower value
to date with W · τrel ' 2 · 10−23 erg/bit. As compared to 10−12 erg/bit. s for the
classical experiment with the colloidal particle [3]. This puts the experiment close to
the fundamental limit imposed by the Heisenberg uncertainty relation (see Fig. 8).

4 Applications

Landauer’s principle applies not only to information erasure but also to all logi-
cally irreversible devices that possess more outputs than inputs. Thus, any Boolean
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Figure 8: Energy-time cost of erasure. The diagram shows the product of the energy and the time
needed for erasure, W · τrel, for various systems. The quantum limit is given by the Heisenberg
uncertainty relation, E ·∆t ≥ π~/2. The Fe8 molecule is currently the closest to the quantum limit
(red dot) (adapted from Ref. [40]).

gate operation that maps several input states onto the same output state, such as
AND, NAND, and OR, have several states which are logically irreversible and will
lead to the dissipation of an amount of heat of kBT ln(2) per processed bit, akin to
the erasure process. As a result, Landauer’s principle has important technological
consequences. Heating laptops are nowadays becoming part of everyday experience.
Heat production in microprocessors used in modern computers is known to be a
major factor hindering their miniaturization, as it gets more and more difficult to
evacuate excess heat when size, and thus surface, is reduced. While the overall heat
dissipated in microchips is steadily decreasing, it still several orders of magnitude
larger than the Landauer limit. However, the switching energy of a CMOS/FET
transistor is predicted to reach the Landauer bound by 2035, indicating that engi-
neers will soon face a fundamental physical limitation imposed by the second law
of thermodynamics [43, 44]. This is remarkable as kBT ln(2) is about 3.10−21 Joule
at room temperature and hence 22 orders of magnitude smaller than typical energy
dissipated on our macroscopic scale. Recently, an experiment has demonstrated that
Maxwell’s demon can generate electric current and power by rectifying individual
randomly moving electrons in small transistors [45].

Man-made computers are not the only existing information processing devices.
Scientists have long realized that living biological cells can be viewed as biochem-
ical information processors that may even outperform our current technology [46].
Cells are, for example, able to reproduce and create copies of themselves, acquire
and process information coming from external stimuli, as well as communicate and
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exchange information with other cells. Recently, Landauer’s principle has been em-
ployed to evaluate the energetic cost of a living cell computing the steady-state
concentration of a chemical ligand in its surrounding environment [47]; it has been
argued that it sets strong constraints on the design of cellular computing networks,
as there is a tradeoff between the information processing capability of such a network
and its energetic cost. Another important problem is the investigation of ultrasen-
sitive switches in molecular biology. A concrete example is the flagellar motor of E.
coli bacteria that switches from clockwise to counterclockwise rotation depending
on the intracellular concentration of a regulator protein. Switching mechanisms are
highly complex and not fully understood. A mathematical framework that models
the sensing of the protein concentration by the flagellar motor as a Maxwell demon
has been successfully developed to calculate the rate of energy consumption needed
to both sense and switch, and provide a quantitative description of the switching
statistics [48]. More recent work has focused on the efficiency of cellular information
processing [49], biochemical signal transduction [50], as well as on cost and precision
of Brownian clocks [51] and computational copying in biochemical systems [52].

Maxwell’s demon is therefore still vibrant 150 years after its inception. Together
with Landauer’s principle, he continues to play a prominent role in modern research
as illustrated by the last examples. Having only very recently become an experimen-
tal science, information physics appears to have a promising future ahead.

APPENDICES

A Stochastic thermodynamics and information energy cost

When the size of a system is reduced the role of fluctuations (either quantum or
thermal) increases. Thus thermodynamic quantities such as internal energy, work,
heat and entropy cannot be characterized only by their mean values but also their
fluctuations and probability distributions become relevant and useful to make pre-
dictions on a small system. Let us consider a simple example such as the motion
of a Brownian particle subjected to a constant external force. Because of thermal
fluctuations, the work performed on the particle by this force per unit time, i.e.,
the injected power, fluctuates and the smaller the force, the larger is the impor-
tance of power fluctuations [53, 54, 55]. The goal of stochastic thermodynamics is
just that of studying the statistical properties of the above mentioned fluctuating
thermodynamic quantities in systems driven out of equilibrium by external forces,
temperature differences and chemical reactions. For this reason it has received in the
last twenty years an increasing interest for its applications in microscopic devices,
biological systems and for its connections with information theory[53, 54, 55].

Specifically it can be shown that the fluctuations on a time scale τ of the
internal energy ∆Uτ , the work Wτ and the heat Qτ are related by a first principle
like equation, i.e.,

∆Uτ = U(t+ τ)− U(t) = W̃τ −Qτ (4)
at any time t.

Furthermore the statistical properties of energy and entropy fluctuations are
constrained by fluctuations theorems which impose bounds on their probability dis-
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tributions (for more details see ref.[53, 54, 55]). We summarize in the next section
one of them which is can be related to information and to Landauer’s bound.

A.1 Estimate the free energy difference from work fluctuations

In 1997 [56, 57] Jarzynski derived an equality which relates the free energy difference
of a system in contact with a heat reservoir to the pdf of the work performed on
the system to drive it from A to B along any path γ in the system parameter
space. Specifically, when a system parameter λ is varied from time t = 0 to t = ts,
Jarzynski defines for one realization of the “switching process” from A to B the
work performed on the system as

Wst =
∫ ts

0
λ̇
∂Hλ[z(t)]

∂λ
dt, (5)

where z denotes the phase-space point of the system and Hλ its λ-parametrized
Hamiltonian 1. One can consider an ensemble of realizations of this “switching pro-
cess” with initial conditions all starting in the same initial equilibrium state. Then
Wst may be computed for each trajectory in the ensemble. The Jarzynski equality
states that [56, 57]

exp (−β∆F ) = 〈exp (−βWst)〉, (6)
where 〈·〉 denotes the ensemble average, β−1 = kBT with kB the Boltzmann constant
and T the temperature. In other words 〈exp [−βWdiss]〉 = 1, since we can always
write Wst = ∆F + Wdiss where Wdiss is the dissipated work. Thus it is easy to see
that there must exist some paths γ such that Wdiss ≤ 0. Moreover, the inequality
〈expx〉 ≥ exp 〈x〉 allows us to recover the second principle, namely 〈Wdiss〉 ≥ 0, i.e.
〈Wst〉 ≥ ∆F .

A.2 Landauer bound and the Jarzynski equality

We discuss in this appendix the strong relationship between the Jarzynski equality
and the Landauer’s bound. In Box 1 we presented the Landauer’s principle as related
to the system entropy. Let us consider as a specific example the experiment on the
colloidal particle described in section 2.2 [4]. In the memory erasure procedure which
forces the system in the state 0, the entropy difference between the final and initial
state is ∆S = −kB ln(2). In contrast the internal internal energy is unchanged by the
protocol. Thus it is natural to await ∆F = kBT ln(2). However the ∆F that appears
in the Jarzynski equality is the difference between the free energy of the system in
the initial state (which is at equilibrium) and the equilibrium state corresponding
to the final value of the control parameter: F (λ(τ)) − F (λ(0)). Since the height of
the barrier is always finite there is no change in the equilibrium free energy of the
system between the beginning and the end of the procedure. Then ∆F = 0, which
implies

〈
e−βWst

〉
= 1. Thus it seems that there is a problem between the Landauer

principle (see Box 1) and the Jarzynski equality of Eq. 6.
Nevertheless Vaikuntanathan and Jarzynski [29] have shown that when there

is a difference between the actual state of the system (described by the phase-space
1 This is a more general definition of work and it coincides with the standard one only if λ is a displacement (for

more details see ref.[55]
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density ρt), and the equilibrium state (described by ρeq
t ), the Jarzynski equality can

be modified: 〈
e−βWst(t)

〉
(x,t)

= ρeq(x, λ(t))
ρ(x, t) e−β∆F (t), (7)

where 〈.〉(x,t) is the mean on all the trajectories that pass through x at time t.
In the experiment presented in section 2.2, the selection of the trajectories where

the information is actually erased, corresponds to fix x to the chosen final well at
the time t = τ . It follows that ρ(0, τ) is the probability of finding the particle in the
targeted state 0 at the time τ . Indeed because of the very low energy measured in
the protocol thermal fluctuations play a role and the particle can be found in the
wrong well at time τ , i.e. the proportion of success PS of the procedure is equal to
ρ(0, τ). In contrat the equilibrium distribution is ρeq(0, λ(τ)) = 1/2. Then:〈

e−βWst(τ)
〉
→0

= 1/2
PS

. (8)

Similarly for the trajectories that end the procedure in the wrong well (i.e. state 1)
we have: 〈

e−βWst(τ)
〉
→1

= 1/2
1− PS

. (9)

Taking into account the Jensen’s inequality, i.e. 〈e−x〉 ≥ e−〈x〉, we find that equations
8 and 9 imply:

〈Wst〉→0 ≥ kBT [ln(2) + ln(PS)]
〈Wst〉→1 ≥ kBT [ln(2) + ln(1− PS)] . (10)

Notice that the mean work dissipated to realize the procedure is simply:

〈Wst〉 = PS × 〈Wst〉→0 + (1− PS)× 〈Wst〉→1 , (11)

where 〈.〉 is the mean on all trajectories. Then using the previous inequalities it
follows:

〈Wst〉 ≥ kBT [ln(2) + PS ln(PS) + (1− PS) ln(1− PS)] , (12)
which is indeed the generalization of the Landauer’s bound for PS < 1. In the limit
case where PS → 1, we have: 〈

e−βWst
〉
→0

= 1/2. (13)

Since this result remains approximatively verified for proportions of success close
enough to 100%, it explains why in the experiment we find ∆Feff ≈ kBT ln(2).

This result is useful because it strongly binds the generalized Jarzynski equality
(a thermodynamic relation) to Landauer’s bound.

A.2.1 Experimental test of the generalized Jarzynski equality

The theoretical predictions of the previous section have been checked in the exper-
iment on the colloidal particle presented in Section 2.2 and in Fig.6. In ref. [4] the
authors experimentally compute ∆Feff which is the logarithm of the exponential
average of the dissipated heat for trajectories ending in state 0:

∆Feff = − ln
(〈

e−βWst ,
〉
→0

)
(14)
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Figure 9: Mean dissipated heat (∗) and effective free energy difference (Eq. 14) (×) for several
procedures, with fixed τ and different values of Fmax. The red points have a force too high, and
a PS ≥ 99 %. The blue points have a force too low and 91 % ≤ PS < 95 % (except the last point
which has PS ≈ 80 %). The black points are considered to be optimised and have 95 % ≤ PS <
99 %(adapted from Ref[5]).

where Wst in the experiment is equal to Q as explained in Appendix B.2 (Eq. 17).
Data are shown in Fig. 9. The error bars are estimated by computing the average

on the data set with 10% of the points randomly excluded, and taking the maximal
difference in the values observed by repeating this operation 1000 times. Except for
the first points (τ = 5 s), the values of ∆Feff are very close to kBT ln 2 for any value
of the protocol duration τ , which is in agreement with equation 9, since PS is close
to 100 %. Hence, we retrieve the Landauer’s bound for the free-energy difference, for
any duration of the information erasure procedure.

Note that this result is not in contradiction with the classical Jarzynski equality,
because if we average over all the trajectories (and not only the ones where the
information is erased), we should find

〈
e−βWst

〉
= 1.

In ref.[4, 5] the authors looked at the two sub-procedures 1 → 0 and 0 → 0
separately, finding an excellent agreement with Eq. 12.

B Set-up used in the experiment presented in Section 2.2

B.1 The one-bit memory system

The one-bit memory system, is made of a double well potential where one particle
is trapped by optical tweezers. If the particle is in the left-well the system is in
the state “0”, if the particle is in the right-well the system in the state “1”. Full
details of the experimental set-up can be found in ref.[5] and we summarize here
the main features. We use a custom-built vertical optical tweezer made of an oil-
immersion objective (63×, N.A. = 1.4) which focuses a laser beam (wavelength
λ = 1064nm) to the diffraction limit for trapping glass beads (2µm in diameter)
[5]. The beads are dispersed in bidistilled water in very small concentration. The
suspension is introduced in a disk-shaped cell (18mm in diameter, 1mm in depth),
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a single bead is then trapped and moved away from the others. This step is quite
important to avoid that during the measurement the trapped bead is perturbed by
other Brownian particles. The position of the bead is tracked using a fast camera
with a resolution of 108nm/pixels, which gives after treatment the position with an
accuracy better than 10nm. The trajectories of the bead are sampled at 502Hz. The
double-well potential is obtained by switching the laser at a rate of 10KHz between
two points at a distance df = 1.45µm, kept fixed. The form of the potential, which
is a function of df and the laser intensity IL, can be determined in equilibrium by
measuring the probability

P (x, IL) = A exp[−Uo(x, IL)/(kT )] (15)

of the position x of the bead, i.e. Uo(x, IL) = −kT ln[P (x, IL)/A] (see Fig. 6 a,b
and f) The distribution P (x, IL) is estimated on about 106 samples. The measured
Uo(x, IL) are plotted in Figs. 6 a,b and f) and can be fitted by an eighth order
polynomial Uo(x, IL) = ∑8

n=0 un(IL, df )xn. The distance between the two minima
of the double-well potential is 0.9µm. The two wells are nearly symmetric with
a maximum energy difference of 0.4kT . The height of the barrier is modulated
by varying the power of the laser from IL = 48mW (barrier height > 8kT ) to
IL = 15mW (barrier height = 2.2kT ). In equilibrium for a barrier of 8kT , the
characteristic jumping time (Kramers time) between the two wells is about 3000s
which is much longer than any experimental time.

Figure 10: Erasure cycles and typical trajectories. a) Protocol used for the erasure cycles bringing
the bead from left (state 0) to right (state 1), and vice versa. b) Protocol used to measure the heat
for the cycles for which the bead does not change wells. The reinitialization is needed to restart the
measurement, but is not a part of the erasure protocol. c) Example of a measured bead trajectory
for the transition 0→ 1. d) Example of a bead trajectory for the transition 1→ 1.

The external tilt is created by displacing the cell with respect to the laser with



98 S. Ciliberto Séminaire Poincaré

a piezo, thus inducing a viscous flow. The viscous force is simply F = −γv, where
γ = 1.89N.s.m−1 is the friction coefficient and v the velocity of the cell. In the
erasure protocol, the amplitude of the viscous force is increased linearly during time
τ , F (t) = Fmax t/τ . In Figs. 6 a,b and f) , we plot U(x, t) = Uo(x, IL) − F (t)x
for IL = 15mW and for three different values of t. The typical erasure protocol is
presented in Fig.10. The reinitialization procedure shown in this figure is necessary
to displace the cell to its initial position but it does not contribute to the erasure
process. Notice that, contrary to the useful erasure cycles, this reinitialization is
performed when the barrier is high. Thus the bead remains always in the same
well. Note that for the theoretical procedure, the system must be prepared in an
equilibrium state with same probability to be in state 1 than in state 0. However, it
is more convenient experimentally to have a procedure always starting in the same
position. Therefore we separate the procedure in two sub-procedures: one where the
bead starts in state 1 and is erased in state 0, and one where the bead starts in state
0 and is erased in state 0. The fact that the position of the bead at the beginning
of each procedure is actually known is not a problem because this knowledge is
not used by the erasure procedure. The important points are that there is as many
procedures starting in state 0 than in state 1, and that the procedure is always the
same regardless of the initial position of the bead. Examples of trajectories for the
two sub-procedures 1 → 0 and 0 → 0 are shown in Fig.10.

Figure 11: a) Success rate PS of the erasure cycle as a function of the maximum tilt amplitude
Fmax. b) Heat distribution P (Q) for transition 0 → 1 with τ = 25s and Fmax = 1.89 × 10−14N.
The solid vertical line indicates the mean dissipated heat, and the dashed vertical line marks the
Landauer bound.

A key characteristic of the erasure process is its success rate PS, that is, the
relative number of cycles bringing the bead in the expected well. Fig.11a) shows the
dependence of the erasure rate on the tilt amplitude, Fmax. For definiteness, we have
kept the product Fmaxτ constant. We observe that the erasure rate drops sharply
at low amplitudes when the tilt force is too weak to push the bead over the barrier,
as expected. For large values of Fmax, the erasure rate saturates at around 95%.
This saturation reflects the finite size of the barrier and the possible occurrence of
spontaneous thermal activation into the wrong well. An example of a distribution
of the dissipated heat for the transition 0 → 1 is displayed in Fig.11b). Owing to
thermal fluctuations, the dissipated heat may be negative and maximum erasure
below the Landauer limit may be achieved for individual realizations, but not on
average [3, 5].
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B.2 Heat measurements

The heat dissipated by the tilt is

Q =
∫ Tlow+τ

Tlow

dt F (t)ẋ(t) =
∫ Tlow+τ

Tlow

dt Fmax
t

τ
ẋ(t), (16)

where Tlow is the time at which the barrier is reduced to its minimum value. The
velocity is computed using the discretization, ẋ(t + ∆t/2) ' [x(t + ∆t)− x(t)]/∆t.
To characterize the approach to the Landauer limit we note that, in the quasi-
static limit, the mean work < W > can be expressed in terms of the free energy
difference ∆F as < W >' ∆F + C/τ [53](see Appendix A). According to the first
law of thermodynamics, < ∆U >=< W > − < Q >= 0 for a cycle. As a result,
∆F = −T∆S and < Q >=< W >' kT ln 2 + C/τ .

Finally we notice that in the used protocol the Wst defined in Eq. 5 is equal to
Q. Indeed as F (t = Tlow) = 0 = F (t = Tlow + τ) it follows from an integration by
parts that the stochastic work is equal to the heat dissipated by the force:

Wst =
∫ Tlow+τ

Tlow
−Ḟ x dt′ =

∫ Tlow+τ

Tlow
Fẋ dt′ = Q. (17)
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