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Abstract. We review at a tutorial level the many aspects of the concept of entropy, in thermodynamics,
information theory, probability theory and statistical physics. The consideration of relevant entropies
and the identification of entropy with missing information enlighten the paradoxes of irreversibility
and of Maxwell’s demon.

The concept of entropy, invented one and a half century ago, has given rise to an immense
literature. Under various guises it appears in many branches of physics, of mathematics, and even
of most other sciences. Like the Greek divinity Proteus, it uses to change its shape so as to escape
anyone who tries to grasp it, and it also presides prevision and deceit. To catch its meaning, we
need to recognize it through its metamorphoses. We shall therefore review with an introductory
scope some of its aspects, focusing on those which are relevant to statistical physics.

1 Macrophysics

1.1 Entropy in thermostatics

Entropy has first been introduced as a mathematical tool in the framework of thermodynamics.
This science, born in the first half of the XIXth century, deals with the general laws that govern
the transformations of systems. Actually, what is usually called “the laws of thermodynamics’ are
physical constraints about the transformations allowed by physics that lead from one equilibrium
state to another. These laws do not pertain to the dynamics of the processes, that is, their time-
dependence, but only refer to their initial and final state. We therefore prefer here to speak of
“thermostatics”.

In the modern formulation of thermostatics [1], a physical or mechanical or chemical isolated
system is analyzed into homogeneous subsystems referred to by the index a. The equilibrium state
of each one is characterized by a set of extensive variables A; such as volume, energy, number
of constitutive particles. These quantities can be transformed or transferred but are conserved
(the First Law and its extensions). For the composite system, the state variables are denoted as
A;, where ¢ = (j,a) is a double index indicating the nature j of the variable and the subsystem
a. In the initial state the exchanges between subsystems are blocked and the system lies in a
constrained equilibrium state with fixed A;’s. If we release some of these blockings by letting the
subsystems interact, only some constraints on the set {4;} remain, in particular those imposed
by the conservation laws. After some time, we reach a global equilibrium state. The extensive
variables of each subsystem take new values, and the Second Law, in the following formulation,
determines them. There exists for each subsystem a at equilibrium a function Sin({A4;}) of the
extensive variables that characterize its state, its thermodynamic entropy. It is concave, extensive
and additive: the entropy of the whole system is the sum of those of its subsystems. The overall
equilibrium state is then the one that mazimizes the total entropy Sin({Ai}), ¢ = (j,a) subject
to the constraints imposed on the variables A; by the initial state, the conservation laws and the
allowed exchanges.

By stating that the entropy of an isolated system cannot decrease when it goes from a con-
strained equilibrium state to a less constrained one, the Second Law expresses the irreversibility
of macroscopic processes. It also provides an upper bound for the efficiency of thermal machines,
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as was first shown by Carnot (1824). However its field of application covers not only thermal pro-
cesses (as suggested by the word “thermodynamics”) but also other types of transfers, for instance,
mixing of substances or chemical reactions: any such spontaneous process raises the entropy.

As a consequence of the Second Law, the partial derivative 7; of the entropy Sin({A4:})
with respect to one of its variables A; takes the same value for two systems that are in relative
equilibrium with respect to the considered quantity A;: if the two intensive variables ~y;’s are
equalized, no transfer of this quantity occurs although exchanges are allowed. The differential

dSth = Z’Yi dAi (1)

exhibits v; and A; as conjugate variables with respect to the entropy. In particular 8 = 8Sy,/OF
takes the same value for two systems which have been brought to relative equilibrium by thermal
contact. The Zeroth Law follows: relative thermal equilibrium between pairs of systems is a relation
of equivalence, implemented by the existence of relative temperatures, which are any functions of
B. In particular 3~! = T is the absolute temperature.

1.2 Entropy in thermodynamics

Thermodynamics proper describes the time-dependence of physical, mechanical or chemical pro-
cesses, in conditions of local quasi-equilibrium [2]. As above the system is analyzed into a set
of subsystems a, each of which is at any time nearly at equilibrium. For continuous media, the
subsystems a may be infinitesimal; more precisely each one should be a volume element large on
the molecular scale but sufficiently small so that the densities of conserved extensive quantities
(energy, particle, or momentum densities are nearly constant within it.

The instantaneous state is thus characterized, for continuous media, by the densities p;(r,t)
of the conserved quantities A;. These variables are labelled by a continuous index r and a discrete
index j. The conservation laws involve fluxes of local current densities J;(r,t) for each A;, which
satisfy

0p; .
a—t’+dej =0. (2)

Entropy is defined at each time as in thermostatics. In an isolated system, its time-dependence
is obtained from (1) and (2) as

dSn
d; :/d3r;Jj.V’yj, (3)

which exhibits the flures J; and the affinities V~y; as conjugate variables with respect to the
dissipation dSin/dt. One of the laws of the thermodynamics of non-equilibrium processes is the
Clausius—Duhem inequality, which expresses the fact that entropy cannot be destroyed in any
circumstance. For a continuous medium, one can associate with the entropy density ps a current
density of entropy Js, and dissipation is locally expressed by

ops ..
— > 4
ot +divlg >0, (4)

which implies that (3) is never negative. This inequality sets constraints on the response equations
that relate the fluxes J; to the affinities V;, and hence through (2) on the dynamical equations
for the densities p;.

The Clausius—Duhem inequality should not be confused with the Second Law although both
express an entropy increase. The inequality (4) holds locally and at each time, but it applies only
to systems evolving sufficiently slowly, in a local equilibrium regime. The Second Law compares
merely the global entropies of the initial and the final state, both being in equilibrium (but with
more constraints in the initial state); during intermediate times, the system may well be far from
equilibrium, for instance, if an explosive chemical reaction takes place, and its entropy need not
be defined.
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2 Information and probability

2.1 Entropy in communication theory

The theory of communication, founded in 1948 by Shannon and Weaver, aims at improving the
transmission of signals. At first sight, its only analogy with thermodynamics seems to be the search
for an optimum efficiency for the considered process, but we shall see that the entropies introduced
in the two fields of science are actually related to each other. The basic idea, here, is that the
amount of information transmitted by a message can be measured. One can then compare the
performance of different transmission devices or of different coding systems, so as to minimize the
duration of a transmission or the size of a memory.

Information is a concept related to probability. Indeed the information brought along by some
message to a receiver is meaningful only if this message is extracted from a set of messages m
that might a priori have been emitted. Before transmission the receiver ascribes to each message
m a probability p,,. His surprisal, that is, the amount I,, of information that he gains by getting
knowledge of some message m among the possible set should be a decreasing function I,,, =
I(pm) of the probability p,,: we gain very little information when being told about something we
were practically certain of, whereas nearly unexpected messages are very informative. Moreover,
a compound message mn consisting in two uncorrelated submessages m and n with respective
probabilities p,, and g, should carry an amount of information equal to the sum I,,, + I,,. Since
probabilities are then multiplicative while information is additive, the continuity and t! he! decrease
of the function I(p,,) imply

Iy, = —logpm , (5)
within a positive factor which defines the unit of information. This unit is the bit if the logarithm
in (5) has base 2.

While I,,, measures the amount of information gained by reception of the message m, Shan-
non’s entropy measures the amount of information which is missing before reception, and which on
average will be gained through reception. Since each message m has the probability p,, to reach
the receiver, Shannon’s entropy is defined by weighting I,, by the probability p,:

SSh({pm}) = me-[m = - me Ingm . (6)

For a number W of equally probable messages, for which p,, = 1/W (m =1,2,---W), Shannon’s
entropy reduces to the celebrated expression of Boltzmann within a multiplicative factor:

Ssp = logW . (7)

Shannon’s entropy thus characterizes the perplexity of the receiver before transmission of some
message among the set {m}, or the average missing information.

A direct proof of (6) was given by Shannon who postulated a strong additivity property of
Ssh({pm}): its expression should be additive, not only for compound events mn such that m and
n are uncorrelated, but also if information is gained by steps. Suppose the events m are grouped in
bunches, and suppose we are first informed about the occurrence of one among these bunches. The
entropy should contain a corresponding first contribution, which is a function of the probabilities of
the bunches. In addition, it should contain, weighted by the probability of each bunch, contributions
associated with the conditional probability of each event among the considered bunch. The identity
thus satisfied by Ssp ({pm }) for different numbers of events then implies the form (6).

Shannon’s entropy is a powerful tool for optimizing the amount of information involved in
the transmission of messages or the storing of data. In both cases, the messages should be coded.
Shannon and Weaver proved the existence of an optimum coding, which depends on the probabilities
Pm and on a possible noise that may destroy part of the messages.

2.2 Entropy of a probability distribution

Shannon’s expression (6) associates with any discrete probability set {p,, } a number S, whether the
index m labels messages or any other set of events. In the latter case S characterizes the uncertainty
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associated with this probability law, or its spreading. If the weights p,, are concentrated on some
events, the uncertainty is lower than when they are spread. If all events are equally probable
the uncertainty increases with their number. A quantitative evaluation of such an uncertainty is
provided by (6) and (7).

Many properties of the function (6) enforce this interpretation of entropy as a measure of
uncertainty. For a given number W of events, it is minimum and equal to 0 when one event
is certain while all other ones have probability zero. It reaches its mazimum (7) in the most
random situation where all probabilities p,, are equal (to 1/W). For compound events mn with
joint probabilities P, the separate probabilities of the m’s and the n’s are p,, = Y, Pmn and
dn = Y., Pmn, respectively. The entropy is then additive for independent events, subadditive for
correlated ones:

S{pm}) + S({an}) = S{Pman}) = S{Prun}) - (8)

(The equality holds only when Py, = pmqn.) This inequality expresses that correlations carry
some information. As another property of the entropy, consider a single set of events m, to which
two different sets of probabilities p,, and g,, can be ascribed for two different statistical ensembles.
If these two ensembles are mixed with non-vanishing weights A and (1 — ) into a single one, the
new ensemble is characterized by probabilities P, = Apm + (1 — A)@m- The concavity property of
entropy,

S{Pm}) > AS{pm}) + (1 = N)S{gm}) , (9)

ensures that the uncertainty, as measured by S, is raised by mixing of populations.

2.3 Continuous probabilities

A difficulty arises for continuous distributions of probability. Consider a random real variable z,
governed by a continuous probability density p(z). In order to extend to this situation the definition
(6), we split the x-axis into intervals ., , Tm + Ay = ZTimy1 and define p,, as the probability for
z to lie between x,, and Z;,+1. It would be natural to define S({p(z)}) as the limit of S({pn})
when all A,,’s tend to zero, but this quantity diverges. However, if all A,,’s are equal, adding the
constant log A to S({pm}) provides a finite limit

S({p(@)}) = - / dz p(z) log p(z) , (10)

which defines the entropy of the probability distribution p(x).

This quantity is not invariant under a change of the variable . Whereas a linear transforma-
tion simply adds a constant to it, a non-linear transformation or equivalently a choice of unequal
A,,’s may modify (10) arbitrarily. Additional hypotheses are therefore needed to define unambigu-
ously the entropy associated with a continuous distribution. For instance, translational invariance
over x of the phenomenon characterized by a probability law p(z) justifies the choice (10), which
arises from a uniform partition A,, = A.

More generally, for continuous variables z lying on some manifold, the existence of an in-
variance group or a metric is necessary to define unambiguously S({p(z)}). Actually such a group
already existed implicitly for the discrete probabilities p,, involved in S({pn,}), since all the events
m were treated on the same footing: the very construction of Shannon’s entropy implies that it is
invariant under permutation of theses events.

3 Statistical physics

3.1 Von Neumann’s entropy

Twenty years before Shannon, von Neumann introduced a similar expression, in the quite different
context of quantum theory. There, probabilities are unavoidable as exemplified by the Heisenberg
uncertainty relations. This irreducible intrusion of probabilities arises from the non-commutative
nature of the observables, the algebraic objects that represent the physical quantities. To this
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replacement of usual random variables A(m) by non-commuting observables A corresponds the
replacement of probability distributions p by density operators D, which are represented by matrices
in the Hilbert space associated with the considered system. The expectation value of A is given by

<A>=Tr DA, (11)

where the trace, taken on the Hilbert space, replaces the summation over the elementary events
m.

Since any quantity at a given time can be represented in quantum mechanics under the form
(11), our whole information at the considered time is represented in a probabilistic way by the
density matrix D. Anticipating the idea of Shannon, who associated the missing information (6)
with the set of probabilities p,,, von Neumann associated the entropy

Syn(D)=—Tr DInD (12)

with the density operator D. We thus interpret (12) as a measure of the uncertainty associated
with the description by D of the state of the system. When written in terms of the eigenvalues
pm Of D, the expression (12) is identical with (6). It can be constructed directly, starting from
some natural axioms [3]. The invariance of Ssn under the group of permutations of the events
m is replaced here by the unitary invariance in the Hilbert space: all representations by matrices
of quantum mechanics, deduced from one another by unitary transformations, are equivalent.
Through its diagonalization, D behaves, for a finite quantum system, more like a discrete than like
a continuous probability distribution, in spite of the continuity of the underlying unitary group.
The definition (12) of its entropy thus does not involve the difficulties of (10).

The properties of von Neumann’s entropy are similar to those of Shannon’s entropy: addi-
tivity, subadditivity, concavity. They enforce the interpretation of (12) as a measure of the lack
of information associated with the density operator D. The minimum, Syx = 0 of (12) is reached
when D is a pure state, that is, a projection onto a single wavefunction. Contrary to what happens
for discrete probabilities, such pure states still involve uncertainties but are the best defined states
allowed by quantum mechanics.

States D with non zero (positive) entropy occur in quantum statistical physics because the
wave functions of systems made of a large number of particles cannot be fully determined. The en-
tropy SVN(ﬁ) then measures the uncertainty about such a state. The von Neumann entropy is also
of interest in the framework of gquantum measurement theory. Even for a quantum system having
very few degrees of freedom, the measurement of some of its observables implies interaction with a
macroscopic apparatus, which can be described only by means of quantum statistical mechanics.
The equivalence between negentropy and information that we shall discuss in §5.2 below explains
why von Neumann’s entropy allows us both to measure the dispersion of a state D, which will
be identified with the thermodynamic entropy, and to evaluate the amount of information gained
through a quantum measurement.

3.2 Entropy in classical statistical mechanics

In classical statistical physics, a state is described by the density in phase D(ry,p1, - TN,PN,t),
which is a density of probability in the phase space of the N considered particles. If we were
to define for the entropy of such a state an expression similar to (10) with integration over the
3N-dimensional phase space, this entropy would depend on the measure of integration and thus
would not be defined unambiguously. However, regarding a density in phase as a limit of a state
D of quantum statistical physics, one can show that the trace in (11) and (12) tends to an integral
over phase space (as would be directly introduced in classical statistical mechanics), but with the

well-defined measure
1 N d’r,, &®pn,
NI Hl [
n—

where h is Planck’s constant, and where the factor 1/N! arises from Pauli’s principle about indis-
tinguishability of particles.
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As we shall see in § 4.2 the entropy Sy, of thermostatics can be identified with von Neumann’s
entropy for equilibrium states. Two problems arising in classical statistical mechanics are then
solved. On the one hand the Gibbs paradox, according to which the entropy of classical statistical
mechanics does not seem extensive for a set of identical particles, is elucidated owing to the factor
1/N!. On the other hand the limiting process which starts from quantum statistical mechanics
generates the absolute entropy, without any additive constant, which satisfies the Third Law, or
Nernst Law: the limit towards the zero absolute temperature of the absolute entropy vanishes.

3.3 The entropy as measure of disorder

Both Shannon’s entropy (6) for a probability set and von Neumann’s entropy (12) have been in-
troduced as a measure of missing information. They do not appear as properties of the object
under study in itself, but rather characterize the knowledge about it of its observers, who describe
it by means of probabilities. These entropies thus have a partly subjective character, since they
numerically characterize the uncertainty of the observers. Such a concept fits with the subjective
interpretation of probabilities [4]. They should be regarded as mathematical tools for making con-
sistent predictions, starting from the available information. The entropy (6) measures the quality of
such predictions. In fact, since all observers placed in the same conditions should attribute the same
probabilities to a set of possible events, probabilities are intersubjective rather than subjective.

Likewise, in statistical mechanics, a state represented by a density operator collects our infor-
mation on some system. It does not describe this system in itself, but as a sample chosen among
an ensemble of systems all prepared by the same procedure. This ensemble may be real, or may
just be a set of thought similar copies, not completely identical but all having the same known
features.

We may alternatively interpret the von Neumann entropy as a measure of disorder of the
state described by the (probabilistic) density operator D. Actually the concept of disorder should
be identified with that of uncertainty: when we say that a fully mixed pack of cards is disordered,
it only means that we know nothing about their ordering; for a conjurer who is aware of this
ordering, there is no disorder in the pack. Maxwell already wrote: “Confusion, like the correlative
term order, is not a property of material things in themselves, but only in relation to the mind
who perceives them.” Entropy allows us to make this idea quantitative.

4 Maximum statistical entropy and applications

4.1 The maximum entropy criterion

According to this interpretation, the assignment of probabilities to a set of events should depend
on the data available to the observer, but should be made in a consistent way so that any other
observer makes the same inferences starting from the same data. In statistical physics the problem
is the same: which density operator D should we assign to describe the state of a system belonging
to some ensemble characterized by a set of macroscopic data?

When nothing is known but the list of the W possible events m, it is natural to resort to
Laplace’s principle of indifference or of insufficient reason, and to assign the same probability
Pm = 1/W to all these events, as is done in the theory of games. Likewise, if no information is

available about the spin % of a particle, the obviously unbiased choice for its density operator is

D= %f . This state describes an unpolarized spin, the expectation value of which vanishes in any
direction. This principle relies on the idea that any other probability distribution would introduce
bias, by favourizing without any reason the prediction of some events to which larger probabilities
would have been assigned.

The maximum entropy principle [5] extends this idea to situations where some probabilistic
information is given, in the form of expectation values. Suppose that, for instance in statistical
mechanics the expectation values 4; = < Ai > of some observables Ai are known. From this

information we wish to infer the expectation values of other quantities. To this aim we need to
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assign a density operator D to the system. It should of course satisfy the constraints

about the known quantities, but they do not suffice to determine D. Whithin this allowed set,
consider two density operators Dy and D, such that SyN (Dl) < SVN(DZ) This inequality means
that D; contains more information that Dz, by an amount SVN(Dz) - SVN(ﬁl). However the
density operator that should describe the state of the considered system (or rather of the considered
ensemble of systems) should not carry more information than what is contained in the data A;.
Thus Dl, which contains more information than f)g, is certainly biased. Hence we are led to select
for D the density operator that maximizes SVN(ﬁ), subject to the constraints (13) for the set A;.
This maximum entropy criterion means that we describe the situation by means of the least biased
density operator, or the mo! st! uncertain, or the most disordered, among the set compatible with
the available data.

The result of this procedure is found by introducing Lagrange multipliers v; for each constraint
on A; and ( for the normalization. We thus have to express that

é lSvN(E) - Z%’Tf DA; —(Tr D]

vanishes for any Hermitean variation 6];) of D. Letting ( =1In Z — 1 and regarding Z as a function
of the variables ~;, we thus obtain for D the generalized Gibbsian distribution

D=2 eXp ( Z% z) , Z({v}) = Trexp (- Z%'Az) ; (14)

where the multipliers 7; are related to the data A; through

0
Aj=—-;—InZ, 1
6’Yz'n (15)

a consequence of (13) and (14). The value of the von Neumann entropy (11) of the state (14),
larger than the entropy associated with any other D compatible with the data A;, is given by

Syn({4i}) =InZ + Z%‘Ai . (16)

Altogether, if the von Neumann or the Shannon entropy, which measures missing information or
disorder, is also regarded as a measure of bias, the least biased inferences based on the knowledge
of the set A; should rely on the probability distribution (14), (15). The unicity of this distribution
is ensured by the concavity of entropy.

The validity of the maximum entropy criterion has been questioned. For Shannon’s entropy,
its use can be justified by direct approaches where requirements on the consistency of the inference
procedure [6] lead to the same result as the maximization of Sgp, provided we deal with discrete
events m. In quantum statistical physics, an alternative justification for (14) was given, based on
the idea that the expectation value A; of A;, expressed by (13) in terms of the density operator D
of the considered system, may be identified with the mean value )" A% /N over an ensemble of N’
analogous systems a = 1,2,... N described by D, in the limit of large A [3, 7]. This identification
is consistent with the equivalence of the two interpretations of probabilities, either a tool for
predictions or a set of frequencies [4].

The maximum entropy criterion is currently used in various contexts. We resume below some
of its outcomes in statistical physics.

4.2 Equilibrium statistical physics

Equilibrium statistical physics underlies thermostatics at the microscopic level. It allows in par-
ticular to derive the Laws of thermostatics as statistical consequences of microphysics. It is based
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on a description of the state of a system by means of the density operator D constructed as above
from the same macroscopic equilibrium data A; as in thermodynamics.

Consider first a homogeneous piece of material contained in a volume V. Its macroscopic
equilibrium states are characterized by its number N of particles (we assume for simplicity that
they are all of the same kind) and by their energy. At the microscopic level these two quantities are
the only data (13); they are identified with the expectation values of the particle number operator
N, and of the Hamiltonian H, respectively. We therefore describe this piece of material by the
grand canonical density operator (14), where the observables A; are here N and H. From (15),
(16) we can derive for Syn the same equation (1) as for Sgp.

Consider now more generally a compound system as for the Second Law of thermostatics, but
described from the viewpoint of statistical physics. In the initial state the data A; (where i = (3, a)
now denotes both the nature j of the variable and the subsystem a) are the extensive conserved
variables of each subsystem; they may take arbitrary values since the exchanges are blocked. The
overall equilibrium density operator factorizes as a product of contributions associated with each
subsystem, e.g., grand canonical distributions, with multipliers 7; (i = (j,a)) taking independent
values for each subsystem a. Hence its von Neumann entropy is the sum of the entropies (16) of
all parts. The determination of the final equilibrium density operator may then be performed by
maximizing Syy in two steps. The first step, that we just described, leads to a function S,n({4;})
of the extensive conservative variables of all the subsystem! s,! which we have identified with those
entering the entropy Sin of thermostatics. Then the second step is exactly the same as in the Second
Law of thermostatics; to wit, this function Syn({A;}) is maximized as function of the variables
A;, subject to the remaining constraints. Since the entropy of thermostatics Sin is defined in a
unique fashion within a multiplicative constant, we can altogether identify it with the sum of the
von Neumann entropies of the subsystems, each one being evaluated at equilibrium. The Second
Law thus appears simply as this second step of the maximum entropy criterion.

For a homogeneous system, the Legendre transformation (15,16), where the expectation values
<A;> are identified with the extensive variables A; of thermostatics such as £ and N and S,nx with
Stn, justifies the identification of the Lagrange multipliers v; in (14) with the intensive variables
defined by (1). In particular the multiplier associated with H , noted B, is identified with the inverse
of the absolute temperature.

Actually, the Second Law alone defines the entropy Si, not only within a multiplicative
constant, but also within an additive constant. This arbitrariness is lifted by the Third Law. The
above definition Syn({A;}) of entropy issued from statistical physics involves no additive constant,
and it implies the Third Law since (16) tends to zero (for usual materials) in the zero-temperature
limit 8 — oo.

As regards the multiplicative constant it depends on the choice of units for Si,. The natural
choice, where Sin({4;}) = Syn({4;}) is dimensionless, leads to temperatures measured in energy
units and taking very small values, whereas entropies are very large since the uncertainty S,n
increases as the number N of elementary constituents of the material. On the other hand, measuring
temperatures in kelvin, a unit defined from the triple point of water, provides Sy, = kSyn where
k ~1.38 x 10723JK ! is Boltzmann’s constant.

The idea of reducing thermostatics to equilibrium statistical mechanics, and of interpreting
the entropy as a measure of the disorder or the uncertainty at the microscopic scale after intro-
duction of probabilities, can be traced back to Boltzmann who dealt with the kinetic theory of
classical gases. As we already noted, the advent of quantum mechanics has paradoxically brought
up simplifications: Owing to the introduction of discreteness, Syn is defined as unambiguously as
Sin- Accordingly, even for a classical system like a monatomic gas, Planck’s constant enters the
expression of the thermostatic entropy.

4.3 Relevant entropies and dissipation

A typical problem of non-equilibrium statistical physics is the prediction of the expectation value
of specified quantities at time ¢ from a set of initial data. The initial state D(#o) is assigned from
these data as in (14). The observables A; are, however, no longer constants of the motion as in



Vol. 2, 2003 Entropy, a Protean Concept 21

thermostatics, so that ﬁ(tg) does not commute with the Hamiltonian H. The density operator
D(t) at the time ¢ is then found by solving the Liouville-von Neumann equation

dD PR

ih e [H,D], (17)
and its construction provides the required quantities. However, the detailed description by means
of D(t) involves a huge amount of variables both without interest and unpracticable. We therefore
select some set of relevant observables A; which are expected to govern the evolution. Their choice
is guided by phenomenological macroscopic approaches; we shall give two examples below. Most
often they are the slowest variables, whereas the remaining irrelevant variables evolve on a much
shorter time scale. Their elimination may be performed, at least formally, by the projection method
of Nakajima and Zwanzig [8] that we now sketch.

The relevant variables A;(t) are deduced at each time from D(t) through (13). The observables
initially given belong to the relevant set {4;}, so that the initial density operator D(t) has the
form (14); if the set {A;} contains observables whose initial value A;(tg) is not specified, the
corresponding multipliers vanish. However, at later times, the solution D(t) of eq. (17) has no
reason to retain the same exponential form involving only the relevant observables A;. Starting
then from the set A;(t) = Tr D(t)A; of relevant variables at the time ¢, we can associate with
them by means of the maximum entropy criterion a reduced density operator ﬁo(t) of the form
(14), where the multipliers +;(¢) depend on time. Their value is determined by the conditions
A;(t) = Tr Do(t)A; where the A;(t) are deduced ! fr! om D(t), and where the right-hand side
satisfies eq. (15). Thus D(t) and Dy(t) are equivalent as regards the relevant variables, but Dy (t)
has the mazimum entropy, given by (16) in terms of the set {A;(¢)}. In other words both states
D(t) and Dy(t) account for the information A;(t), but Do(t) involves no more information. The
difference Syn[Do(t)] — Syn[D(t)] measures an extra amount of information about the irrelevant
variables, included in ﬁgt) which keeps full track of our knowledge of the initial data {A;(to)}-

The quantity Syn[Do(t)] defines the relevant entropy S({A;}) associated with the quantities
A;(t). Tt depends on the chosen set A; of observables, and characterizes the information which is
missing at the time ¢ when one follows only the evolution of their expectation values. By construc-
tion we have S({4;}) > Syn[D(t)]. On the other hand, we find from (12) and (17) that

D
?,hdSVN( )

=T [H,DllnD =0, (18)

and hence that Syx[D(#)] is constant. Thus the relevant entropy satisfies S({4;(t)}) > S({4;(to)}),
which means that some information about the relevant variables is lost during the evolution. On
the other hand the constancy of Synx[D(t)] implied by (18) means that our information about all
possible observables, which is described by D(t), is conserved by the Hamiltonian evolution (17).

(From a geometric viewpoint, this reduction of the description, which associates with D(t)
the less detailed distribution f)o(t), is in the space of states D a projection onto the manifold of
reduced sates (14), in the direction of constant relevant variables A;. Actually, the space of states
D has not only a structure of vector space, but can also be regarded as a Riemannian space, where
a natural metric generated by entropy [8] according to

ds? = —d*Syx (19)

allows to define distances between states and angles. The projection from D(t) to Do(t) then
appears as an orthogonal projection.

Our dynamical problem of non-equilibrium statistical mechanics is then reduced to the search
for the projection of the detailed trajectory of D(t), which is generated by (17) and by an initial
condition lA)(toA) = f)o(to). The projection method provides for Dy(t) an integro-differential equation
that relates dDy/dt to Dg at the same time and also at earlier times. The corresponding memory
term results from the elimination of the irrelevant variables. We shall not write here this equation
of motion which expresses D (t) in terms of its past history between to and t; its explicit form can
be found in ref. [8].
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If the set {A;} has been suitably chosen, the memory time is short so that Do(t) is governed
within a good approximation by a mere differential equation. The memory term is replaced by a
dissipative term, which prevents dDg/dt from being generated by an effective Hamiltonian, and
which thus allows for a time-dependence of the relevant entropy S({4;}).

In physical situations where the selection of relevant variables thus leads to a differential
equation for Dg(t), Do(t + At) depends only on Dy(t), for At small but large compared to the
memory time associated with the evolution of the irrelevant variables. We would therefore have
found the same Dq(t+ At) by starting the evolution from D(t) = Dg(t), letting D evolve according
to (17), then projecting D(¢ + At) on the set of relevant states. Hence we have S(Dq(t + At)) >
S(D(t + At)) = S(D(t)) = S(Do(t)). Altogether, for a choice of the set {4;} such that the
memory time is short, we find S({A4;(t + At)}) > S({A4i(t)}); this inequality holds along the
motion of Dy(t): the relevant entropy cannot decrease, whereas the von Neumann entropy remains
constant. This means that information about the relevant observables is continuously lost towards
the irrelevant ones during the evolution, and this loss is irretrievable. In other words the dissipation
dS({A;})/dt > 0 measures the rate at which a loss of order takes place in the relevant variables
A; ().

We illustrate below this general approach by two examples.

4.4 The thermodynamic entropy as a relevant entropy

For the processes described by non-equilibrium thermodynamics, the variables A; governed by the
macroscopic equations are the conservative variables of each subsystem or of each volume element.
For instance, for a fluid, they are the densities p;(r) of particles, of energy and of momentum at
each point. They are identified at the microscopic level with the relevant variables A; (i = j,r)
of the projection method. It is the conservative nature of these variables which ensures that they
evolve over much longer time scales than the other variables which are discarded. Indeed, without
couplings between subsystems or volume elements, the thermodynamic variables A; or p;(r) would
remain constant. For sufficiently weak couplings and for small affinities V+;, the currents J; are
weak and from (2) it appears that the motion of the variables A; is slow.

The parameters v; of the reduced density operator Dq(t) given by (14) are then identified at
each time with the local intensive variables v;(r) (i = j,r) associated with the set p;(r), which are
directly related to the local temperature, chemical potential and hydrodynamic velocity.

Since Dy is factorized into a product of contributions from each subsystem, the relevant
entropy associated with it is the sum over all subsystems of the entropy of equilibrium statistical
mechanics, that we already identified with the entropy of thermostatics. The relevant entropy
relative to the present choice of variables A; is therefore the same as the entropy of macroscopic
non-equilibrium thermodynamics. Its increase gives a microscopic justification for the Clausius—
Duhem inequality (4) if the time-scale of the thermodynamic variables is longer than that of the
microscopic variables that have been projected out.

4.5 Boltzmann’s entropy

Boltzmann’s equation for gases describes their dynamics in terms of the density of particles f(r,p,t)
in the single-particle phase space: f(r,p,t) d°r d°p is the expectation value of the number of
particles lying in the volume element d®r d®p of this phase space at time ¢. This quantity evolves
according to Boltzmann’s equation

of(r,p,t)

p —
6t + E . Vrf(r7p7t) - I{f} ’ (20)

where the left-hand side accounts for the drift of f due to the free motion of the particles (with
mass m). The right-hand side is the collision integral; it is quadratic in f and describes the change
in f due to interparticle collisions. Since the collisions are nearly local in space and in time, 7
involves f(r,p’,t) at the same point and time as in the left-hand side, but involves integrations
over the two momenta entering the two f’s. The establishment of (20) requires that f(r,p,t) as
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function of r and ¢ varies slowly compared to the sizes of the particles and the duration of the
collisions.
Boltzmann proved that his equation obeys the H-theorem: the quantity

H(t) = / & Pp [(r,p,1)In f(r,p,1) (21)

is a decreasing function of time.

In order to recover Boltzmann’s equation and H-theorem from microphysics, we start from
the most detailed description, in terms of the density in phase, that is the probability density
D(r1,p1, - -TN,PnN,t) in the N-particle phase space. Its time-dependence is generated by the
Liouville equation, the classical limit of (17), where collisions are described by the interparticle
potential. We take as the set of relevant variables the values of the single-particle density f(r,p,?),
obtained by integrating D(r1,p1,---rn,PnN,t) over the phase space of N —1 particles. The index i
stands here for r, p. In the reduced density Do(r1,p1, - TN, PN, t) X f(r1,P1,t) XX f(r*N, PN, ),
all correlations that possibly exist in D are eliminated. (These correlations are generated at each
collision.) ! Th! e projection method then produces an equation of motion for Dg or equivalently
for f(r,p,t), in which the memory-time is the duration of a collision. The neat separation of time
scales allows us to neglect this duration, and f is thus governed by a differential equation that
reduces to Boltzmann’s equation with its instantaneous collision term.

The relevant entropy S; associated with the relevant variables f(r,p,t) is identified with
Boltzmann’s entropy, which is easily shown to equal —H (t) within a multiplicative and an additive
constant. The H-theorem is recovered as a special case of the increase of relevant entropies in
regimes where the memory is short. Here the increase of the Boltzmann entropy S; is interpreted
as a loss of information which results from the fact that, although correlations are created by each
collision, these correlations have no effect on the subsequent evolution because two particles which
underwent a collision have little chance to meet again. The evolution of f(r,p,?) is the same as if
all these correlations are forgotten.

Boltzmann’s entropy S; related to (21) should not be confused with the thermodynamic
entropy of subsection 4.4: Even for a gas of non-interacting particles, S; coincides with Sg, only
when at each point f(r,p,t) behaves as a Gaussian in p; otherwise Sy is larger than S; for the
same values of the thermodynamic variables p;(r,t). Nor should the H-theorem be confused with
the Second Law or with the Clausius—Duhem inequality. On the one hand, Boltzmann’s equation
deals with gases only. On the other hand, it holds beyond local equilibrium, in ballistic regimes
that cannot be described in terms of the thermodynamic variables. Indeed, in a thermodynamic
or hydrodynamic regime, local equilibrium implies that f(r,p,t) has at each point r a Maxwellian
form, that is, behaves as a Gaussian in p. The reduced description provided by f(r,p,t), a function
of 6 variables, is! m! ore detailed than the reduced hydrodynamic description in terms of 5 functions
of 3 variables, the densities of energy, particles and momentum in ordinary space (or equivalently
the local temperature, chemical potential and hydrodynamic velocity).

Boltzmann’s entropy accounts for the uncertainty associated with the sole knowledge at each
time of the single-particle density f(r,p,t) of a gas enclosed in a vessel. For sufficiently large
times, a local equilibrium, then the global equilibrium corresponding to the initial values of the
total particle number and energy are attained. At these stages the Boltzmann entropy grows so
as to reach the entropy of non-equilibrium thermodynamics, then of thermostatics. Before the
thermodynamic regime is settled, starting from the full density in phase D(ry,p1,---,rn,t), we
can derive at the microscopic scale two-particle, three-particle, . .. correlation functions. More and
more detailed reduced descriptions are thus obtained by dropping all the correlations of more than
n particles [9]. Boltzmann’s description corresponds to n = 1, with Boltzmann’s entropy Si, and
we find a hierarchy of relevant entropies Sa,---S!,!--- such that

Sth> 81 >8> >8> > Sn(D) . (22)

Starting all from S,n(D (o)) = Syn(D(t)), the entropies Sy all increase as a function of time, but
later and later; all of them finally reach the thermostatic entropy, larger than the whole set.
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5 Two paradoxes

5.1 The paradox of irreversibility

Soon after the birth of the kinetic theory of gases, Zermelo and Poincaré pointed out the paradox of
irreversibility: although the microscopic evolution (17) is invariant under time-reversal, the macro-
scopic evolutions are not. As regards thermodynamic variables, viscosity and thermal conduction
are irreversible phenomena. In the dynamics of gases, the H-theorem also exhibits and “arrow of
time”. We gave a general explanation to such irreversible behaviours: whenever the memory-time
is short, the dissipative term in the reduced description generates an increase of the relevant en-
tropy, the signature of irreversibility. This increase is a statistical property; it measures a loss of
information towards the irrelevant variables.

This argument relies on the irretrievable nature of this loss. In principle, the equation of
motion (17) does not prevent, for a finite system, some order hidden within the irrelevant degrees
of freedom to surge back into the relevant ones, and to show off as a decrease of the relevant
entropy. If we forget about the observer and consider an initial microstate completely defined at
the initial time, it remains completely defined at all times so that nothing seems to prevent this
complete order from showing off. For instance, if the N particles of a gas are all grouped at the
initial time in the left half of a container, they will fill the full vessel after some delay. However the
equations of motion are reversible and allow the converse evolution, where the particles occupying
the full container spontaneously come together in its left half. Why do we never observe such a
behaviour in practice? The reason why it does not occur is that we deal with systems compos! ed!
with an extremely large number N of particles. Poincaré’s recurrence time, after which a system
governed by an equation such as (17) returns in the vicinity of its initial states, is then immensely
large, even compared to the age of the Universe.

Boltzmann’s explanation of the paradox of irreversibility is again probabilistic although we
consider here the single trajectory of a well defined configuration. It relies on an analysis of the
initial state. In the above example of the expansion of a gas, let us discretize the positions and
momenta of the particles so as to count the configurations (in agreement with quantum mechanics).
Denote as W the number of compressed states, such that the N particles lie in the left half of the
vessel. The total number of states in the full vessel is 2V, and in nearly all of them the particles
are spread all over. Among the latter states, those for which, after some time 7, the particles are
gathered in the left half are in one-to-one correspondence with the W compressed states. Hence
only a very tiny proportion 27V of the spread states gives rise to the anomalous grouping process.
Since N is of the order of the Avogadro number 6 x 10%®, we have no chanc! e ! whatsoever to
observe such a process.

More generally, consider an irreversible thermodynamic process for which the entropy in-
creases by ASi,. In the above example AS;, = kN In 2. The corresponding increase of the relevant
von Neumann entropy is ASn/k where k is Boltzmann’s constant 1.38 x 1023JK ! and where
AS;p has the order of JK 1. Noting from (7) that the ratio between the numbers W of initial and
final microstates is of the order of e=25n/k | we see that anomalous processes with reversed time
are not forbidden in principle but that the initial configurations from which they might arise are
completely improbable, as an exponential of —10%3, among the whole set of configurations involved
in the most disordered thermodynamic state.

Nevertheless, experiments exist in which many microscopic variables that appear as irrelevant
at first sight can actually be controlled. The most celebrated ones are spin echo experiments, in
which only the total magnetic moment of a material containing N spins is observed, and only an
applied magnetic field can be controlled. Under normal circumstances, a relaxation of the total
magnetic moment occurs; the magnitude of this moment decreases, so that the relevant disorder
increases as expected. However, some time after the total moment has vanished, it is possible
through suitable pulses of the applied field to manipulate the individual spins in such a way that
the order hidden in their correlations manifests itself by an increase of the magnetic moment.
The conceptual interest of such experiments (which also have practical applications in NMR) is to
demonstrate that some initial information which is apparently lost within microscopic degrees of
freedom may in some e! xc! eptional cases be retrieved, and that the choice of relevant variables
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should depend on the circumstances.

5.2 Equivalence of information and negentropy

Another paradox has fed for one century many discussions about the meaning of entropy, the
thought experiment of Mazwell’s demon (1867). Two vessels A and B with the same volume are
filled with a gas, initially at the same density and temperature. They communicate through a hole
that the demon may open or close at will with negligible work. Whenever a particle arrives from
A towards B, the demon lets it pass, but he stops the particles arriving from B towards A. The
density thus increases on the side A, that eventually all the N particles reach. The Second Law
seems violated, since the entropy Sy, has decreased by kN In 2.

However, in order to operate, the demon must know on which side each particle lies. He must
therefore have gained an amount of information equal according to (5) or (7) to Ssn = Nlog2. If
entropy and information are measured in the same unit, it can be shown [10] that information may
be transformed into negentropy, with possible losses. One may let the entropy of a system decrease
by some amount, provided one uses to this aim at least the same amount of information.

Conversely, how is this information acquired? It can be shown that the measurements required
in this purpose involve macroscopic physical devices which undergo observable transformations,
and that in these transformations the entropy must increase by an amount at least equal to
the information gained. We indicated that the changes of the entropy (12) during measurement
processes were among the incentives of von Neumann when he introduced this expression. The
equivalence between negentropy and information which is exhibited by transformations in either
direction enforces the interpretation of the thermodynamic entropy in terms of Syn issued from
the maximum entropy criterion.

Thus, altogether, if the demon is automatized and if we do not consider the gain of information
in the intermediate steps of the process, the whole system including the vessels, the mechanism of
gate opening and closing and the measuring device that governs this operation, obeys the Second
Law. The decrease of entropy of the gas is compensated for by at least the same increase of entropy
in the measuring device. Proteus has exorcized Maxwell’s demon, owing to his two shapes, entropy
and information.

6 Other entropies
We list below various other entropies [3] which, in one way or another, measure disorder or missing

information.

6.1 Relative entropy

The relative entropy of Kullback and Leibler,
p
SPla) =) pm log(_ ™) » (23)

characterizes the gain of information when prior probabilities ¢,, are replaced by an actual prob-
ability set {pm}. Its introduction is natural in the continuum limit when no invariance exists to
support (10); in this case a prior distribution ¢(z) replaces the translationally invariant integration
measure. Its quantum equivalent

S(ﬁ2|b1) =Tr .Dg(ln _DQ —1In _Dl) (24)
is currently used to build mean-field approximations in which the exact Dy is replaced by a simpler

density operator Dy. Minimization of (24), which is positive for Dy # D,, provides the best D,
closest to D;.
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6.2 Rényi’s entropy

By releasing some among the conditions that characterize Shannon’s entropy, other entropies can
be defined. Rényi’s a-entropies

Sa({pm}) = 1—

1
" log z D, (25)
m
are additive for a pair of uncorrelated events, but not subadditive (eq.(8) is violated) except in the
limit as & — 1 where Shannon’s entropy (6) is recovered from (25). They are useful in the context
of fractality. The many attempts to build non extensive thermodynamics from the Tsallis entropy

S,({D}) = T[T 7 1], (26)

directly related to (25), run counter to the Zeroth and Second Laws, because maximization of (25)
or (26) introduces correlations between non-interacting subsystems [11].

6.3 Quantum information

Many recent works have been devoted to quantum information theory, in which a bit of information
taking values 0 or 1 is replaced by a g-bit, that is, by the quantum state of a two-level system.
In this context, it is useful to evaluate the intricacy of two systems, that is the purely quantum
contribution to their order of correlations, for which several expressions are being proposed. (The
von Neumann entropy takes into account both ordinary and quantums correlations.)

6.4 Kolmogorov’s entropy

In the theory of deterministic chaos, the evolution of a system is characterized by a non-linear
differential equation which generates a flow in the space of dynamical variables. Kolmogorov’s
entropy is a measure of the more or less disordered character of this flow, while all the entropies
considered above referred to the probabilistic description of a state at a given time.

Chaotic dynamics have been proposed to explain, even for systems with few degrees of free-
dom, the irreversibility paradox. Indeed, prediction becomes hazardous if the motion is chaotic.
However, the loss of information that the equations of motion (17) entail in statistical physics is
due to the complexity associated with the large number of variables, not to non-linearity.

6.5 Algorithmic complexity

All the types of entropy reviewed so far characterize statistical ensembles of systems, or for Kol-
mogorov’s entropy the full family of trajectories. The concept of algorithmic complexity has been
proposed to measure the disorder existing in an individual message or in the configuration of a sin-
gle system. The idea is the following. The considered configuration is first represented numerically
by coding all its specific features. One then imagines how the resulting number can be constructed
by means of algebraic operations in a Turing machine, that is, in an ideal computer. The algebraic
complexity is the logarithm of the number of steps of the shortest program needed to realize this
task. For a family of messages or of systems, its average can be identified with Shannon’s missing
information. This is still another face of the concept of entropy.

I wish to thank B. Duplantier for his careful reading.

The literature about entropy is immense, and specific searches should be made for each of its
very many aspects. We quote below only a few books or articles, either for their tutorial nature or
because they contain extensive bibliographies.
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