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layF-91191 Gif-sur-Yvette CedexFran
eAbstra
t. During the last 
entury, in two apparently distin
t domains of physi
s, the theory of funda-mental intera
tions and the theory of phase transitions in 
ondensed matter physi
s, one of the mostbasi
 ideas in physi
s, the de
oupling of physi
s on di�erent length s
ales, has been 
hallenged. To dealwith su
h a new situation, a new strategy was invented, known under the name of renormalizationgroup. It has allowed not only explaining the survival of universal long distan
e properties in a situa-tion of 
oupling between mi
ros
opi
 and ma
ros
opi
 s
ales, but also 
al
ulating pre
isely universalquantities.We here brie
y re
all the origin of renormalization group ideas; we des
ribe the general renormal-ization group framework and its implementation in quantum �eld theory. It has been then possible toemploy quantum �eld theory methods to determine many universal properties 
on
erning the singularbehaviour of thermodynami
al quantities near a 
ontinuous phase transition. Results take the formof divergent perturbative series, to whi
h summation methods have to be applied. The large orderbehaviour analysis and the Borel transformation have been espe
ially useful in this respe
t.As an illustration, we review here the 
al
ulation of the simplest quantities, 
riti
al exponents.More details 
an be found in the workJ. Zinn-Justin, Quantum Field Theory and Criti
al Phenomena, Clarendon Press 1989, (Oxford4th ed. 2002).1 Renormalization group: Motivation and basi
 ideasDuring the last 
entury, in two apparently distin
t domains of physi
s, the theory of fundamentalintera
tions and the theory of phase transitions in 
ondensed matter physi
s, one of the most basi
ideas in physi
s has been 
hallenged:We have all been taught that physi
al phenomena should be des
ribed in terms of degrees offreedom adapted to their typi
al s
ale. For instan
e, we 
on
lude from dimensional 
onsiderationsthat the period of the pendulum s
ales like the square root of its length. This result impli
itlyassumes that other lengths in the problem, like the size of 
onstituent atoms or the radius of theearth, are not relevant be
ause they are mu
h too small or mu
h too large. In the same way, innewtonian me
hani
s the motion of planets around the sun 
an be determined, to a very goodapproximation, by 
onsidering planets and sun as point-like, be
ause their sizes are very small
ompared with the size of the orbits.It is 
lear that if this property also 
alled the de
oupling of di�erent s
ales of physi
s, wouldnot generally hold, progress in physi
s would have been very slow, maybe even impossible.However, starting from about 1930, it was dis
overed that the quantum extension of Ele
tro-dynami
s was plagued with in�nities due to the point-like nature of the ele
tron. The basi
 reasonfor this disease, the non-de
oupling of s
ales, was understood only mu
h later, but in the meantime physi
ists had dis
overed empiri
ally a re
ipe to do �nite 
al
ulations, 
alled renormalization.Super�
ially, the renormalization idea is 
onventional: to des
ribe physi
s, use parameters adaptedto the s
ale of observation, like the observed strength of the ele
tromagneti
 intera
tion and the ob-served mass of the ele
tron, rather than the initial parameters of the quantum lagrangian. However,�Laboratoire de la Dire
tion des S
ien
es de la Mati�ere du Commissariat �a l'Energie Atomique, Unit�e de re
her
heasso
i�ee au CNRS
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Figure 1: Initial latti
e and latti
e with double spa
ing.there remained two pe
uliarities, the relation between initial parameters and so-
alled renormal-ized parameters involved in�nities and the values of the renormalized parameters varied with thelength or energy s
ale at whi
h they were de�ned. This e�e
t was eventually observed very dire
tlyin experiments; for example, the �ne stru
ture 
onstant � = e2=4�~
 is about 1=137 at the s
alegiven by the ele
tron mass, but in
reases to 1=128 at the s
ale of Z ve
tor boson mass (one ofthe parti
les mediating weak intera
tions). The relation between the strength of intera
tions atdi�erent s
ales was 
alled renormalization group (RG).Later, similar diÆ
ulties were dis
overed in another bran
h of physi
s, in the study of 
ontin-uous phase transitions (liquid{vapour, ferromagneti
, super
uid helium). Near a 
ontinuous phasetransition a length, 
alled the 
orrelation length, be
omes very large. This means that dynami
allya length s
ale is generated, whi
h is mu
h larger than the s
ale 
hara
terizing the mi
ros
opi
intera
tions. In su
h a situation, some non-trivial ma
ros
opi
 physi
s is generated and it 
ouldhave been expe
ted that phenomena at the s
ale of the 
orrelation length 
ould be des
ribed by asmall number of degrees of freedom adapted to this s
ale. Su
h an assumption leads to universalquasi-gaussian or mean �eld 
riti
al behaviour, but it be
ame slowly apparent that 
riti
al phe-nomena 
ould not be des
ribed by mean �eld theory. Again the deep reason for this failure is thenon-de
oupling of s
ales, that is the initial mi
ros
opi
 s
ale is never 
ompletely forgotten.Both in the theory of fundamental intera
tions and in statisti
al physi
s, this 
oupling ofvery di�erent s
ales is the sign that an in�nite number of \sto
hasti
" (i.e. subje
t to quantum orstatisti
al 
u
tuations) degrees of freedom are involved.One 
ould then have feared that even at large s
ales physi
s remained 
ompletely dependenton the initial mi
ros
opi
 intera
tions, rendering a predi
tive theory impossible. However, this isnot what empiri
ally was dis
overed. Instead, phenomena 
ould be gathered in universality 
lassesthat shared a number of universal properties, a situation that indi
ated that only a limited numberof qualitative properties of the initial mi
ros
opi
 intera
tions were important.Remark. We have already referred to the 
orrelation length without de�ning it. In statisti
alsystems, the 
orrelation length � des
ribes the exponential de
ay of 
orrelation fun
tions in thedisordered phase. For instan
e, for a system where the degrees of freedom are spins S(x) at spa
eposition x, the two-point 
orrelation fun
tion hS(x)S(y)i de
ays exponentially at large distan
elike ln hS(x)S(y)ijx� yj �jx�yj!1�1� :The renormalization group idea. To explain this puzzling situation a new 
on
ept had to be in-vented, whi
h was given again the name of RG. The idea that we will shortly des
ribe, involveddetermining indu
tively the e�e
tive intera
tions at a given s
ale. The relation between e�e
tiveintera
tions at neighbouring s
ales is 
alled a RG transformation. A way to 
onstru
t su
h a RGwas proposed initially by Kadano�. One 
onsiders a statisti
al model initially de�ned in terms of
lassi
al spin variables on some latti
e of spa
ing a and 
on�guration energy Ha(S). The partitionfun
tion is obtained by summing over all spin 
on�gurations with a Boltzmann weight e�Ha(S)=T .The idea then is to sum over the initial spins, keeping their average on the 
oarser latti
e of spa
-ing 2a �xed (�gure 1). After this summation, the partition fun
tion is given by summing over the
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e of spa
ing 2a with an e�e
tive 
on�guration energy H2a(S). It is 
learthat this transformation 
an be iterated as long as the latti
e spa
ing remains mu
h smaller thanthe 
orrelation length � that des
ribes the de
ay of 
orrelation fun
tions. This de�nes e�e
tivehamiltonians H2na(S) on latti
es of spa
ing 2na. The re
ursion relationH2na(S) = T [H2n�1a(S)℄ ;is a renormalization group transformation. If the transformation T has �xed points:H2na(S) !n!1H�(S) ;or �xed surfa
es, then both the non-gaussian behaviour and universality 
an be understood. Wilsontransformed this idea based on an iterative summation of short distan
e degree of freedom, whoseinitial formulation was somewhat vague, into a more pre
ise framework, repla
ing, in parti
ular,RG in spa
e by integration over large momenta in the Fourier representation. Wegner, Wilson andothers then dis
overed exa
t fun
tional RG equations in the 
ontinuum with �xed points.However, these general equations do not provide a very eÆ
ient framework for �nding �xedpoints and 
al
ulating expli
itly universal quantities. On the other hand, it 
an be argued thatthe simplest universality 
lasses 
ontain some standard quantum �eld theories. Moreover, the �eldtheory RG that had been identi�ed previously, appeared as an asymptoti
 RG in the more generalframework. Therefore, previously developed quantum �eld theory (QFT) te
hniques 
ould be usedto prove universality and devise eÆ
ient methods of 
al
ulation, a domain in whi
h the Sa
laygroup has been espe
ially a
tive.A strong limitation of this strategy is that the 
onstru
tion is possible only when �xed pointsare gaussian or, in the sense of some external parameter, 
lose to a gaussian �xed point. Thisexplains the role of Wilson{Fisher's "-expansion, where " is the deviation from the dimension 4:in dimension 4, non-trivial IR �xed points relevant for many simple phase transitions merge withthe gaussian �xed point.Note, however, that a 
ombination of 
lever tri
ks has allowed doing 
al
ulations also at �xeddimensions, like the physi
al dimension 3.Finally, let me noti
e that the understanding of non-de
oupling of s
ales and universalityresulting from RG �xed points, has also led to an understanding of the renormalization pro
edurein the theory of fundamental intera
tions. The quantum �eld theory that des
ribes almost allknown phenomena in parti
le physi
s ex
ept gravitation (the Standard Model) is now viewed asan e�e
tive low energy theory in the RG sense, and the 
ut-o� as the remnant of some initial stillunknown mi
ros
opi
 physi
s.2 Renormalization Group: The General IdeaEven, if initially a statisti
al model is de�ned in terms of latti
e variables taking a dis
rete setof values, asymptoti
ally after RG transformations, the averaged variables will have a 
ontinuousdistribution, and spa
e will also be 
ontinuous. Therefore, RG �xed points belong to the 
lass ofstatisti
al �eld theories in the 
ontinuum.We thus 
onsider a general statisti
al model de�ned in terms of some, translation invariant,hamiltonian H(�), fun
tion of a �eld �(x) (x 2 Rd ), whi
h is assumed to be expandable in powersof �: H(�) = Xn=0 1n! Z ddx1ddx2 : : : ddxnHn(x1; x2; : : : ; xn)�(x1) : : : �(xn); (2.1)and has all the properties of the thermodynami
 potential of Landau's theory. For example, theFourier transforms of the fun
tions Hn, after fa
torization of a Æ fun
tion of momentum 
onserva-tion, are regular at low momenta (assumption of short-range for
es or lo
ality). In this framework,the spa
e of all possible hamiltonians is in�nite dimensional.
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ar�eTo a hamiltonian H(�) (really a 
on�guration energy), 
orresponds a set of 
onne
ted 
orre-lation fun
tions W (n)(x1; : : : ; xn):W (n)(x1; x2; : : : ; xn) = �Z [d�℄ �(x1) : : : �(xn) e��H(�)�
onne
t: : (2.2)Conne
ted 
orrelation fun
tions de
ay at large distan
e. One of the 
entral problems is the de-termination of the long distan
e behaviour of 
orrelation fun
tions, that is the behaviour ofW (n)(�x1; : : : ; �xn) when the dilatation parameter � be
omes large, near a 
ontinuous phasetransition. In what follows we will only dis
uss 
riti
al 
orrelation fun
tions, that is 
orrelationfun
tions at the 
riti
al temperature where the 
orrelation length is in�nite (T = T
, � = 1),although universal behaviour extends to the neighbourhood of the 
riti
al temperature where the
orrelation length is large.2.1 The renormalization group idea. Fixed pointsThe RG idea is to trade the initial problem, studying the behaviour of 
orrelation fun
tions asa fun
tion of dilatation parameter � a
ting on spa
e variables, for the study of the 
ow of as
ale-dependent hamiltonian H�(�) whi
h has essentially the same 
orrelation fun
tions at �xedspa
e positions. More pre
isely, one wants to 
onstru
t a hamiltonian H�(�) whi
h has 
orrelationfun
tions W (n)� (xi) satisfyingW (n)� (x1; : : : ; xn) = Z�n=2(�)W (n)(�x1; : : : ; �xn): (2.3)The mapping H(�) 7! H�(�) is 
alled a RG transformation. We de�ne the transformation su
hthat H�=1(�) � H(�). The 
hoi
e of the fun
tion Z(�) depends on RG transformations.In the 
ase of models invariant under spa
e translations, equation (2.3) after a Fourier trans-formation reads fW (n)� (p1; : : : ; pn) = Z�n=2(�)�(1�n)dfW (n)(p1=�; : : : ; pn=�) : (2.4)The simplest su
h RG transformation 
orresponds to res
alings of spa
e and �eld. However, thistransformation has a �xed point only in ex
eptional 
ases (gaussian models) and thus more generaltransformations have to be 
onsidered.The �xed point hamiltonian. Let us assume that a RG transformation has been found su
h that,when � be
omes large, the hamiltonianH�(�) has a limitH�(�), the �xed point hamiltonian. If su
ha �xed point exists in hamiltonian spa
e, then the 
orrelation fun
tions W (n)� have 
orrespondinglimits W (n)� and equation (2.3) be
omesW (n)(�x1; : : : ; �xn) ��!1Zn=2(�)W (n)� (x1; : : : ; xn): (2.5)We now introdu
e a se
ond s
ale parameter � and 
al
ulating W (n)(��xi) from equation (2.5) intwo di�erent ways, we obtain a relation involving only W (n)� :W (n)� (�x1; : : : ; �xn) = Zn=2� (�)W (n)� (x1; : : : ; xn) (2.6)with Z�(�) = lim�!1Z(��)=Z(�): (2.7)Equation (2.6) being valid for arbitrary � immediately implies that Z� forms a representation ofthe dilatation semi-group. Thus, under reasonable assumptions,Z�(�) = ��2d� : (2.8)The �xed point 
orrelation fun
tions have a power law behaviour 
hara
terized by a positivenumber d� whi
h is 
alled the dimension of the �eld or order parameter �(x).
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on
lude that Z(�) also has asymptoti
ally a power lawbehaviour. Equation (2.5) then shows that the 
orrelation fun
tions W (n) have a s
aling behaviourat large distan
es: W (n)(�x1; : : : ; �xn) ��!1��nd�W (n)� (x1; : : : ; xn) (2.9)with a power d� whi
h is a property of the �xed point. The r.h.s. of the equation, whi
h determinesthe 
riti
al behaviour of 
orrelation fun
tions, therefore, depends only on the �xed point hamilto-nian. In other words, the 
orrelation fun
tions 
orresponding to all hamiltonians whi
h 
ow afterRG transformations into the same �xed point, have the same 
riti
al behaviour. This propertyis an example of universality. The spa
e of hamiltonians is thus divided into universality 
lasses.Universality, beyond the gaussian theory, relies upon the existen
e of IR �xed points in the spa
eof hamiltonians.2.2 Hamiltonian 
ows. S
aling operatorsLet us 
onsider an in�nitesimal dilatation whi
h leads from the s
ale � to the s
ale �(1 + d�=�).The variation of the hamiltonian H�, 
onsistent with equation (2.5), takes the form of a di�erentialequation whi
h involves a mapping T of the spa
e of hamiltonians into itself and a real fun
tion �de�ned on the spa
e of hamiltonians: � dd�H� = T [H�℄ ; (2.10)� dd� lnZ(�) = �2d� [H�℄ : (2.11)Equation (2.10) is a RG transformation in di�erential form. Moreover, we look only for markovian
ows as a fun
tion of the \time" ln�, that is su
h that T does not depend on �.A �xed point hamiltonian H� is then a solution of the �xed point equationT [H�℄ = 0 : (2.12)The dimension d� of the �eld � follows d� = d� [H�℄ : (2.13)Linearized 
ow equations. To study the lo
al stability of �xed points, we apply the RG transfor-mation (2.10) to a hamiltonian H� = H� +�H� 
lose to the �xed point H�. The linearized RGequation takes the form � dd��H� = L�(�H�); (2.14)where L� is a linear operator, also independent of �, a
ting on hamiltonian spa
e. Let us assumethat L� has a dis
rete set of eigenvalues li 
orresponding to a set of eigenoperators Oi. Then, �H�
an be expanded on the Oi's: �H� =Xhi(�)Oi ; (2.15)and the transformation (2.14) be
omes� dd�hi(�) = lihi(�) ) hi(�) = �lihi(1): (2.16)Classi�
ation of eigenve
tors or s
aling �elds. The eigenve
tors Oi 
an be 
lassi�ed into fourfamilies depending on the 
orresponding eigenvalues li:(i) Eigenvalues with a positive real part. The 
orresponding eigenoperators are 
alled relevant.If H� has a 
omponent on one of these operators, this 
omponent will grow with �, and H� willmove away from the neighbourhood of H�. Operators asso
iated with a deviation from 
riti
alityare 
learly relevant sin
e a dilatation de
reases the e�e
tive 
orrelation length.
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an arise: either Im(li) does not vanish,and the 
orresponding 
omponent has a periodi
 behaviour, or li = 0. Eigenoperators 
orrespondingto a vanishing eigenvalue are 
alled marginal. To determine the behaviour of the 
orresponding
omponent hi, it is ne
essary to expand beyond the linear approximation. Generi
ally, one �nds� dd�hi(�) � Bh2i : (2.17)Depending on the sign of the 
onstant B and the initial sign of hi, the �xed point then is marginallyunstable or stable. In the latter 
ase, the solution takes for � large the formhi(�) � �1=(B ln�) : (2.18)A marginal operator generally leads to a logarithmi
 approa
h to a �xed point. In se
tion 3.2, weshow that in the �4 �eld theory, the operator �4(x) is marginally irrelevant in four dimensions.An ex
eptional example is provided by the XY model in two dimensions (O(2) symmetri
non-linear �-model) whi
h instead of an isolated �xed point, has a line of �xed points. The operatorwhi
h 
orresponds to a motion along the line is obviously marginal.(iii) Eigenvalues with a negative real part. The 
orresponding operators are 
alled irrelevant.The e�e
tive 
omponents on these operators go to zero for large dilatations.(iv) Finally, some operators do not a�e
t the physi
s. An example is provided by the operatorrealizing a 
onstant multipli
ative renormalization of the dynami
al variables �(x). These operatorsare 
alled redundant. In QFT, quantum equation of motions 
orrespond to redundant operatorswith vanishing eigenvalue.Classi�
ation of �xed points. Fixed points 
an be 
lassi�ed a

ording to their lo
al stability prop-erties, that is, to the number of relevant operators. This number is also the number of 
onditionsa general hamiltonian must satisfy to belong to the surfa
e whi
h 
ows into the �xed point.The 
riti
al domain. Universality is not limited to the 
riti
al theory. For temperatures 
lose to T
,and more generally for theories in whi
h the hamiltonian is the sum of a 
riti
al hamiltonian anda linear 
ombination of relevant operators with very small amplitudes, universal properties 
an bederived. Indeed, for small dilatations, the RG 
ow is hardly a�e
ted. After some large dilatation,the 
ow starts deviating substantially from the 
ow of the 
riti
al hamiltonian. But at this pointthe 
omponents of the hamiltonian on all irrelevant operators are already small.This argument indi
ates that the behaviour of 
orrelation fun
tions as a fun
tion of amplitudesof relevant operators is universal in the limit of asymptoti
ally small amplitudes. One 
alls 
riti
aldomain the domain of parameters in whi
h universality 
an be expe
ted.3 Criti
al behaviour: The e�e
tive �4 �eld theoryIn the dis
ussion, we restri
t ourselves to Ising-like systems, the �eld � having only one 
omponent.A generalization to the N -ve
tor model with O(N) symmetry is straightforward.The main diÆ
ulty with the general RG approa
h is that it requires an expli
it 
onstru
tionof RG transformations for hamiltonians, whi
h have a 
han
e to possess �xed points. The generalidea is to integrate over the large momentum modes of the dynami
al variables, but its pra
ti
alimplementation is far from being straightforward. In the 
ontinuum, RG equations, known underthe name of Exa
t or Fun
tional RG, have been dis
overed, whi
h in simple examples have indeed�xed points. They 
an be written� dd�H(�; �) = � Z ddx ÆH(�; �)Æ�(x) "d�(H) +X� x� ��x�#�(x)�12 Z ddxddyD(x� y) � Æ2HÆ�(x)Æ�(y) � ÆHÆ�(x) ÆHÆ�(y)�� Z ddx ddy L(x� y) ÆHÆ�(x)�(y); (3.1)
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tions D and L are de�ned in terms of a propagator �, whose Fourier transform~�(k) 
an be written ~�(k) = C(k2)=k2 ; C(0) = 1 ;the regular fun
tion C(k2) de
reasing faster than any power for jkj ! 1. Then, the Fouriertransform of the fun
tion D is ~D(k2) = 2C 0(k2);and L(x) = 1(2�)d Z ddk eikx ~D(k) ~��1(k);Various approximation s
hemes like derivative expansions redu
e these equations to partial dif-ferential equations, whi
h 
an be studied numeri
ally. They are quite useful for exploring generalproperties, beyond perturbative expansions, but are somewhat 
ompli
ated for pre
ise 
al
ulationsof universal quantities.Another strategy is to start from the only �xed point that 
an be analyzed 
ompletely, thegaussian �xed point, the statisti
al analogue of free QFT. It 
orresponds to the hamiltonianHG(�) = 12 Z ddx X� ����(x)�2:An analysis of lo
al perturbations, even fun
tions of �, shows that �2(x), whi
h a�e
ts the 
orre-lation length, is always relevant. For d > 4, all other perturbations are irrelevant. For d = 4, �4(x)be
omes marginal and relevant for d < 4. For lower dimensions eventually other terms be
omerelevant too. The idea then is to work in dimension d = 4 or in the neighbourhood of dimension4 (the famous " = 4 � d expansion) and try to write an asymptoti
 RG (in a sense that will beexplained in next se
tion) for the simpli�ed e�e
tive lo
al hamiltonianH(�) = Z ddx�12r�(x)K(�r2=�2)r�(x) + 12r�2(x) + 14!g�4�d�4(x)� ; (3.2)where K is a positive di�erential operator, K(z) = 1 + O(z), r and g are regular fun
tions ofthe temperature for T 
lose to T
 and � is a large momentum analogous to the 
ut-o� used toregularize QFT, that is 1=� represents the s
ale of distan
e at whi
h this e�e
tive hamiltonian isno longer generally valid. The parameter g is 
hosen here dimensionless.The hamiltonian (3.2) generates a perturbative expansion of �eld theory type, whi
h 
anbe des
ribed in terms of Feynman, diagrams. The quadrati
 term in (3.2) 
ontains additionalhigher order derivatives, 
orresponding to irrelevant operators, re
exion of the initial mi
ros
opi
stru
ture. They are needed to render perturbation theory �nite and this is another manifestationof the non-de
oupling of s
ales.At g �xed, the 
orrelation length � diverges at a value r = r
, whi
h thus 
orresponds to the
riti
al temperature T
. In terms of the s
ale �, the 
riti
al domain, where universality is expe
ted,is then de�ned by jr � r
j � �2, distan
es large 
ompared to 1=� or momenta mu
h smaller than�, and magnetization M � h�(x)i � �(d=2)�1. These 
onditions are met if � is identi�ed withthe 
ut-o� of a usual QFT. However, an inspe
tion of the a
tion (3.2) also shows that, in 
ontrastwith 
onventional QFT, the �4 
oupling 
onstant has a dependen
e in � given a priori. Thisfollows from the assumption that the e�e
tive hamiltonian is derived from some initial mi
ros
opi
model, and, thus, all operators have 
oeÆ
ients proportional to powers of the 
ut-o� given by theirdimension at the gaussian �xed point. For d < 4, the �4 
oupling is thus very large in terms of thes
ale relevant for the 
riti
al domain. In the usual formulation of QFT, by 
ontrast, the 
oupling
onstant is also an adjustable parameter and the resulting QFT thus is less generi
.3.1 Renormalization group equations near dimension 4The hamiltonian (3.2) 
an be studied by QFT methods. Rather than writing RG equations forthe hamiltonian, it appears that it is simpler to �rst derive RG equations for 
orrelation or vertex
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tions dire
tly, as we now explain. Using a power 
ounting argument, one veri�es that the 
riti
altheory does not exist in perturbation theory for any dimension smaller than 4. If one de�nes, bydimensional 
ontinuation, a 
riti
al theory in dimension d = 4 � ", even for arbitrarily small "there always exists an order in perturbation (� 2 /") at whi
h infrared (IR, i.e. zero momentum)divergen
es appear. Therefore, the idea, originally due to Wilson and Fisher, is to perform a doubleseries expansion in powers of the 
oupling 
onstant g and ". Order by order in this expansion, the
riti
al behaviour di�ers from the gaussian behaviour only by powers of logarithm, and one 
an
onstru
t a perturbative 
riti
al theory by adjusting r to its 
riti
al value r
(T = T
).In the 
riti
al theory, 
orrelation fun
tions have the formW (n)(xi; g;�) = �n(d�2)=2W (n)(�xi; g; 1):Therefore, studying the large distan
e behaviour is equivalent to studying the large 
ut-o� be-haviour. One then 
an use methods developed for the 
onstru
tion of the renormalized massless �4�eld theory. One 
onsiders 
orrelation fun
tions of the Fourier 
omponents of the �eld, after fa
tor-ization of the Æ fun
tion of momentum 
onservation due to translation invarian
e. Furthermore, itis more 
onvenient to work with algebrai
 
ombinations of 
orrelation fun
tions 
alled vertex fun
-tions, denoted below by �(n), and derived from the Legendre transform of the generating fun
tionalof 
onne
ted 
orrelation fun
tions. For example,fW (2)(p; g;�)�(2)(p; g;�) = 1 :One then introdu
es res
aled (or renormalized) vertex fun
tions 
hara
terized by a new s
ale �� �at whi
h universal behaviour is expe
ted,�(n)r (pi; gr; �;�) = Zn=2(g;�=�)�(n)(pi; g;�); (3.3)where Z(g;�=�) is a �eld renormalization 
onstant and gr a renormalized 
oupling 
onstant, whi
h
hara
terizes the strength of the �4 intera
tion at s
ale �. At 
riti
ality�(2)(p = 0; g;�) = �(2)r (0; gr; �;�) = 0 :The renormalization fa
tor Z(g;�=�) and the renormalized 
oupling 
onstant gr are then deter-mined by additional 
onditions, for example, by renormalization 
onditions of the form��p2�(2)r (p; gr; �;�)jp2=�2 = 1 ;�(4)r (pi = ��i; gr; �;�) = �"gr ; (3.4)in whi
h �i is a numeri
al ve
tor (�i 6= 0).From renormalization theory (more pre
isely a slightly extended version adapted to the "-expansion), one then infers that the fun
tions �(n)r (pi; gr; �;�) of equation (3.3) have at pi, grand � �xed, large 
ut-o� limits whi
h are the renormalized vertex fun
tions �(n)r (pi; gr; �). More-over, renormalized fun
tions �(n)r do not depend on the spe
i�
 
ut-o� pro
edure and, given thenormalization 
onditions (3.4), are universal. Sin
e the renormalized fun
tions �(n)r and the ini-tial ones �(n) are asymptoti
ally proportional, both fun
tions have the same small momentum orlarge distan
e behaviour. The renormalized fun
tions thus 
ontain the whole information about theasymptoti
 universal 
riti
al behaviour. One 
ould, therefore, study only renormalized 
orrelationfun
tions, whi
h indeed are the ones useful for many expli
it 
al
ulations of universal quantities.However, universality is not limited to the asymptoti
 
riti
al behaviour; leading 
orre
tions havealso some interesting universal properties. Moreover, renormalized quantities are not dire
tly ob-tained in non-perturbative 
al
ulations. For these various reasons, it is also useful to study theimpli
ations of equation (3.3) dire
tly for the initial 
orrelation fun
tions.RG equations. Di�erentiating equation (3.3) with respe
t to � at gr and � �xed, one obtains� ��� ����gr;� �xedZn=2(g;�=�)�(n)(pi; g;�) = O(��2(ln �)L): (3.5)
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t 
orre
tions subleading by powers of � order by order in the double series expansionof g and ". We assume that these 
orre
tions, generated by operators irrelevant from the pointof view of the gaussian �xed point, remain, after summation, 
orre
tions, that is that irrelevantoperators are 
ontinuously deformed into irrelevant operators for the non-trivial �xed points.Then, using 
hain rule, one infers from equation (3.5):�� ��� + �(g;�=�) ��g � n2 �(g;�=�)��(n)(pi; g;�) = 0 : (3.6)The fun
tions � and �, whi
h are dimensionless and may thus depend only on the dimensionlessquantities g and �=�, are de�ned by�(g;�=�) = � ��� ����gr;� g ; (3.7)�(g;�=�) = �� �������gr;� lnZ(g;�=�): (3.8)However, the fun
tions � and � 
an also be dire
tly 
al
ulated from equation (3.6) in terms offun
tions �(n) whi
h do not depend on �. Therefore, the fun
tions � and � 
annot depend on theratio �=� and equation (3.6) simpli�es as�� ��� + �(g) ��g � n2 �(g)��(n)(pi; g;�) = 0 : (3.9)Equation (3.9), 
onsequen
e of the existen
e of a renormalized theory, is satis�ed, when the 
ut-o�is large, by the physi
al vertex fun
tions of statisti
al me
hani
s whi
h are also the bare vertexfun
tions of QFT. It follows impli
itly from the solution of equation (3.9) (see se
tion 3.2) that,
onversely, the equation implies the existen
e of a renormalized theory.This RG is only asymptoti
 be
ause the r.s.h. of equation (3.5) and thus (3.6) have beennegle
ted.3.2 Solution of the RG equations: The "-expansionEquation (3.9) 
an be solved by the method of 
hara
teristi
s. One introdu
es a dilatation param-eter � and looks for fun
tions g(�) and Z(�) su
h that� dd� hZ�n=2(�)�(n)�pi; g(�); ���i = 0 : (3.10)Consisten
y with equation '3.9) implies� dd�g(�) = ��g(�)�; g(1) = g ; (3.11)� dd� lnZ(�) = ��g(�)�); Z(1) = 1 : (3.12)The fun
tion g(�) is the e�e
tive 
oupling at the s
ale �, and is governed by the 
ow equation(3.11). Equation (3.10) implies�(n)(pi; g;�) = Z�n=2(�)�(n)�pi; g(�); ���:It is a
tually 
onvenient to res
ale � by a fa
tor 1=� and write the equation�(n)(pi; g;�=�) = Z�n=2(�)�(n)�pi; g(�);��: (3.13)Equations (3.11)-(3.12) and (3.13) implement approximately (be
ause terms subleading by powersof � have been negle
ted) the RG ideas as presented in se
tion 2: sin
e the 
oupling 
onstant g(�)
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ar�e
hara
terizes the hamiltonian H�, equation (3.11) is the equivalent of equation (2.10) (up to the
hange � 7! 1=�); equations (2.11) and (3.12) di�er only by the de�nition of Z(�).The solutions of equations (3.11)-(3.12) 
an be written asZ g(�)g dg0�(g0) = ln� ; (3.14)Z �1 d�� ��g(�)� = lnZ(�): (3.15)Equation (3.9) is the RG equation in di�erential form. Equations (3.13) and (3.14)-(3.15) arethe integrated RG equations. In equation (3.13), we see that it is equivalent to in
rease � or tode
rease �. To investigate the large � limit we, therefore, study the behaviour of the e�e
tive
oupling 
onstant g(�) when � goes to zero. Equation (3.14) shows that g(�) in
reases if thefun
tion � is negative, or de
reases in the opposite 
ase. Fixed points 
orrespond to zeros of the�-fun
tion whi
h, therefore, play an essential role in the analysis of 
riti
al behaviour. Those wherethe �-fun
tion has a negative slope are IR repulsive: the e�e
tive 
oupling moves away from su
hzeros, ex
ept if the initial 
oupling has exa
tly a �xed point value. Conversely, those where theslope is positive are IR attra
tive.The RG fun
tions have been 
al
ulated in perturbation theory and one �nds�(g; ") = �"g + 3g216�2 +O(g3; g2"): (3.16)The expli
it expression (3.16) of the �-fun
tion shows that above dimension 4, that is, " < 0, ifinitially g is small, g(�) de
reases approa
hing the origin g = 0. We re
over that the gaussian �xedpoint is IR stable.By 
ontrast, below four dimensions, if initially g is very small, g(�) �rst in
reases, a behaviourre
e
ting the instability of the gaussian �xed point.However, the expli
it expression (3.16) shows that, in the sense of an expansion in powers of", �(g) has another zero g� = 16�2"=3 +O("2) ) �(g�) = 0 ; (3.17)with a positive slope for " in�nitesimal:! � �0(g�) = "+O("2) > 0 : (3.18)Then, equation (3.14) shows that g(�) has g� as an asymptoti
 limit. Below dimension 4, at leastfor " in�nitesimal, this non-gaussian �xed point is IR stable. In dimension 4, it merges with thegaussian �xed point and the eigenvalue ! vanishes indi
ating the appearan
e of the marginaloperator.From equation (3.15), we then derive the behaviour of Z(�) for � small. The integral in thel.h.s. is dominated by small values of �. It follows thatlnZ(�) ��!0 � ln� ; (3.19)where we have set � = �(g�):Equation (3.13) then determines the behaviour of �(n)(pi; g;�) for � large:�(n)(pi; g;�=�) � ��n�=2�(n)(pi; g�;�): (3.20)On the other hand, from simple dimensional 
onsiderations, we know that�(n)(pi; g;�=�) = ��d+(n=2)(d�2)�(n)(�pi; g;�): (3.21)Combining this equation with equation (3.20), we obtain�(n)(�pi; g;�) ��!0�d�(n=2)(d�2+�)�(n)(pi; g�;�): (3.22)
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riti
al vertex fun
tions have a power law behaviour for small momenta,independent of the initial value of the �4 
oupling 
onstant g, at least if g initially is small enoughfor perturbation theory to be meaningful, or if the �-fun
tion has no other zero.Equation (3.22) yields for n = 2 the small momentum behaviour of the vertex two-pointfun
tion, and thus of the two-point 
orrelation fun
tionfW (2)(p) = h�(2)(p)i�1 �jpj!0 1Æp2��: (3.23)The spe
tral representation of the two-point fun
tion implies � > 0. A short 
al
ulation yields� = "254 +O("3): (3.24)Finally, we note that equation (3.22) 
an be interpreted by saying that the �eld �(x), whi
h had atthe gaussian �xed point a 
anoni
al dimension (d�2)=2, has now a
quired an anomalous dimension(equation (2.13)) d� = 12 (d� 2 + �):Universality. Within the framework of the "-expansion, all 
orrelation fun
tions have, for d < 4, along distan
e behaviour di�erent from the one predi
ted by a quasi-gaussian or mean �eld theory.In addition, the 
riti
al behaviour does not depend on the initial value of the �4 
oupling 
onstantg. Therefore, the 
riti
al behaviour is universal, although less universal than in the quasi-gaussiantheory, in the sense that it depends only on some small number of qualitative properties of thephysi
al system under study.4 Cal
ulation of universal quantitiesWe present here some expli
it results obtained within the framework of the O(N) symmetri
 (�2)2statisti
al �eld theory. The results of the (�2)2 �eld theory, or N -ve
tor model do not apply onlyto ferromagneti
 systems. The super
uid helium transition 
orresponds to N = 2, the N = 0 limitis related to the statisti
al properties of polymers and the Ising-like N = 1 model also des
ribesthe physi
s of the liquid{vapour transition.We dis
uss only 
riti
al exponents, although a number of other universal quantities have been
al
ulated like the s
aling equation of state or ratios of 
riti
al amplitudes.4.1 The "-expansionCriti
al exponents in the N -ve
tor model are known up to order "5. The higher order 
al
ulationshave been done using dimensional regularization and a minimal subtra
tion s
heme. The equationof state is known up to order "2 for arbitrary N and to order "3 for N = 1. A number of resultshave also been obtained for the two-point 
orrelation fun
tion.4.2 Criti
al exponentsAlthough the RG fun
tions of the (�2)2 theory and, therefore, the 
riti
al exponents are known upto �ve-loop order, we give here only two su

essive terms in the expansion for illustration purpose,referring to the literature for higher order results. In terms of the variable~g = Nd g ; Nd = 2(4�)d=2�(d=2) ; (4.1)the RG fun
tions �(~g) and �2(~g) at two-loop order, �(~g) at three-loop order are�(~g) = �"~g + (N + 8)6 ~g2 � (3N + 14)12 ~g3 +O �~g4� ; (4.2)�(~g) = (N + 2)72 ~g2 �1� (N + 8)24 ~g�+O �~g4� ; (4.3)�2(~g) = � (N + 2)6 ~g �1� 512~g�+O �~g3� ; (4.4)
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ar�ek 0 1 2 3 4 5
 1:000 1:1667 1:2438 1:1948 1:3384 0:8918� 0:0 : : : 0:0 : : : 0:0185 0:0372 0:0289 0:0545Table 1: Sum of the su

essive terms of the "-expansion of 
 and � for " = 1 and N = 1The zero ~g�(") of the �-fun
tion then is ~g�(") = 6"=(N + 8) + O("2). The values of the 
riti
alexponents �, 
 and the 
orre
tion exponent !,� = �(~g�); 
 = 2� �2 + �2(~g�) ; ! = �0(~g�);follow � = "2(N + 2)2(N + 8)2 �1 + (�N2 + 56N + 272)4(N + 8)2 "�+O �"4� ; (4.5)
 = 1 + (N + 2)2(N + 8)"+ (N + 2)4(N + 8)3 �N2 + 22N + 52� "2 +O �"3� ; (4.6)! = "� 3(3N + 14)(N + 8)2 "2 +O �"3� : (4.7)Other exponents 
an be obtained from s
aling relations. Note that the results at next order involve�(3). At higher orders �(5) and �(7) su

essively appear. In table 1, we give the values of the
riti
al exponents 
 and � obtained by simply adding the su

essive terms of the "-expansion for" = 1 and N = 1.One immediately observes a striking phenomenon: the sums �rst seem to settle near somereasonable value and then begin to diverge with in
reasing os
illations. This is an indi
ation thatthe "-expansion is divergent for all values of ". Divergent series 
an be used for small values of theargument. However, only a limited number of terms of the series 
an then be taken into a

ount.The last term added gives an indi
ation of the size of the irredu
ible error. For the exponents 
and � we roughly 
on
lude from the series
 = 1:244� 0:050 ; � = 0:037� 0:008 ;where the errors are only indi
ative.4.3 The perturbative expansion at �xed dimensionCriti
al exponents and various universal quantities have also been 
al
ulated within the frameworkof the massive (�2)2 �eld theory, as perturbative series at �xed dimension 3. The basi
 reasonis that in dimension 3 one-loop diagrams have simple analyti
 expressions that 
an be used tosimplify most higher order diagrams. It has, therefore, been possible to 
al
ulate the RG fun
tionsof the N -ve
tor model up to six- and partially seven-loop order.Note that this massive �4 �eld theory is a somewhat arti�
ial 
onstru
tion: when the 
orrela-tion length in
reases, simultaneously the 
oeÆ
ient of the relevant �4 operator is tuned to de
reaselike g / (��)d�4. Then, all 
orrelation fun
tions have a limit for � ! 1, order by order in anexpansion in powers of g at �xed dimension d < 4. However, the usual 
riti
al theory 
orrespondsin this framework to an in�nite 
oupling 
onstant. Therefore, 
orrelation fun
tions renormalized atzero momentum are introdu
ed, and 
orrespondingly a renormalized 
oupling 
onstant gr, whi
his a universal fun
tion of g. Within the framework of the "-expansion, one proves that gr has a
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iated a fun
tion �(gr). For example,the RG �-fun
tion in three dimensions, for N = 1, has the expansion�(~g) = �~g + ~g2 � 308729 ~g3 + 0:3510695978~g4� 0:3765268283~g5+0:49554751~g6� 0:749689~g7+O �~g8� (4.8)with the normalization ~g = 3gr=(16�): (4.9)To 
al
ulate exponents or other universal quantities, one has �rst to �nd the IR stable zero g�r ofthe fun
tion �(gr), whi
h is given by a few terms of a divergent expansion. An obvious problem isthe absen
e of any small parameter: g� is a number of order 1. Already at this stage a summationmethod is required. Estimates of 
riti
al exponents are displayed in table 3. In re
ent years universalratios of 
riti
al amplitudes as well as the equation of state for Ising-like systems (N = 1) have alsobeen 
al
ulated. Note, however, that in this framework, the 
al
ulation of physi
al quantities in theordered phase leads to additional te
hni
al problems be
ause the theory is parametrized in termsof the disordered phase 
orrelation length m�1 whi
h is singular at T
. Also, the normalization of
orrelation fun
tions is singular at T
. This required developing a 
ombination of te
hniques basedon series summation, parametri
 representation and a method of order-dependent mapping.4.4 Series summationBe
ause all series, "-expansion or perturbative expansions at �xed dimension, are divergent, sum-mation methods had to be developed. We des
ribe here methods based on generalized Borel trans-formations. The ne
essary analyti
 
ontinuation of the Borel transform outside its 
ir
le of 
onver-gen
e is then a
hieved by a 
onformal mapping.The method. Several di�erent variants based on the Borel{Leroy transformation have been imple-mented and tested. Let R(z) be the fun
tion whose expansion has to be summed (z here standsfor " or the 
oupling 
onstant ~g): R(z) =Xk=0Rkzk: (4.10)A plausible assumption is that the Borel transform is analyti
 in a 
ut-plane. One thus transformsthe series into R(z) = 1Xk=0Bk(�) Z 10 t� e�t [u(zt)℄k dt ; (4.11)u(z) = p1 + az � 1p1 + za+ 1 : (4.12)The 
oeÆ
ients Bk are 
al
ulated by identifying the expansion of the r.h.s. of equation (4.11) inpowers of z with the expansion (4.10). The 
onstant a is known from the large order behaviouranalysis in QFT based on instantons,a(d = 3) = 0:147774232� �9=(N + 8)�; (4.13)and � is a free parameter, adjusted empiri
ally to improve the 
onvergen
e of the transformedseries by weakening the singularities of the Borel transform near z = �a. Eventually, the methodhas been re�ned, whi
h involved also introdu
ing two additional free parameters.Needless to say, with three parameters and short initial series it be
omes possible to �nd o
-
asionally some transformed series whose apparent 
onvergen
e is de
eptively good. It is, therefore,essential to vary the parameters in some range around the optimal values to examine the sensitivityof the results upon their variations. Finally, it is useful to sum independently series for exponentsrelated by s
aling relations. An underestimation of the apparent errors leads to in
onsistent results.It is 
lear from these remarks that the errors quoted in the �nal results are edu
ated guesses basedon a large number of 
onsisten
y 
he
ks.
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ar�ek 2 3 4 5 6 7~g� 1:8774 1:5135 1:4149 1:4107 1:4103 1:4105� 0:6338 0:6328 0:62966 0:6302 0:6302 0:6302
 1:2257 1:2370 1:2386 1:2398 1:2398 1:2398Table 2: Series summed by the method based on Borel transformation and mapping for the zero~g� of the �(g) fun
tion and the exponents 
 and � in the �43 �eld theoryA few examples of transformed series are displayed in table 2 to illustrate the 
onvergen
e.The (�2)2 �eld theory at �xed dimensions. The RG �-fun
tion has been determined up to six-looporder in three dimensions, while the series for the dimensions of the �elds � and �2 have re
entlybeen extended to seven loops. The series of the RG �-fun
tion has been �rst summed and its zero~g� determined (~g = gr(N + 8)=(48�) for d = 3. The series of the other RG fun
tions have thenbeen summed for ~g = ~g�. Examples of 
onvergen
e are given in table 2.The "-expansion. The "-expansion has one advantage: it allows 
onne
ting the results in threeand two dimensions. In parti
ular, in the 
ases N = 1 and N = 0, it is possible to 
ompare the�4 results with exa
t results 
oming from latti
e models and to test both universality and thereliability of the summation pro
edure. Moreover, it is possible to improve the three-dimensionalresults by imposing the exa
t two-dimensional values or the behaviour near two dimensions forN > 1. However, sin
e the series in " are shorter than the series at �xed dimension 3, the apparenterrors are larger. Finally, as already emphasized, the 
omparison between the di�erent results is a
he
k of the 
onsisten
y of QFT methods 
ombined with the summation pro
edures.4.5 Numeri
al estimates of 
riti
al exponentsFixed dimension 3. Table 3 displays the results obtained from summed perturbation series at �xeddimension 3. The last exponent � = !� 
hara
terizes 
orre
tions to s
aling in the temperaturevariable.Note that shorter series have been generated in dimension 2 (�ve loops). Be
ause the seriesare short and the �xed 
oupling 
onstant larger, the apparent errors are large, but the results are
onsistent with exa
t N = 1 results.The "-expansion. In table 4, we give the results 
oming from the summed "-expansion for " = 2and 
ompare them with exa
t results.We see in this table that the agreement for N = 0 and N = 1 QFT and latti
e modelsis satisfa
tory. We feel justi�ed, therefore, in using a summation pro
edure of the "-expansionwhi
h automati
ally in
orporates the d = 2, " = 2 values. Note, however, that in both 
ases, theidenti�
ation of ! remains a problem.Table 5 then displays the results for " = 1, both for the " series (free) and a modi�ed " serieswhere the d = 2 results are imposed (b
).Dis
ussion. One 
an now 
ompare the two sets of results 
oming from the perturbation series at�xed dimension, and the "-expansion. First let us emphasize that the agreement is quite spe
ta
ular,although the apparent errors of the "-expansion are in general larger be
ause the series are shorter.Moreover, the agreement has improved with longer series.
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N 0 1 2 3~g� 1:413� 0:006 1:411� 0:004 1:403� 0:003 1:390� 0:004g� 26:63� 0:11 23:64� 0:07 21:16� 0:05 19:06� 0:05
 1:1596� 0:0020 1:2396� 0:0013 1:3169� 0:0020 1:3895� 0:0050� 0:5882� 0:0011 0:6304� 0:0013 0:6703� 0:0015 0:7073� 0:0035� 0:0284� 0:0025 0:0335� 0:0025 0:0354� 0:0025 0:0355� 0:0025� 0:3024� 0:0008 0:3258� 0:0014 0:3470� 0:0016 0:3662� 0:0025� 0:235� 0:003 0:109� 0:004 �0:011� 0:004 �0:122� 0:010! 0:812� 0:016 0:799� 0:011 0:789� 0:011 0:782� 0:0013� = !� 0:478� 0:010 0:504� 0:008 0:529� 0:009 0:553� 0:012Table 3: Estimates of 
riti
al exponents in the O(N) symmetri
 (�2)23 �eld theory


 � � � !N = 0 1:39� 0:04 0:76� 0:03 0:21� 0:05 0:065� 0:015 1:7� 0:2Exa
t 1:34375 0:75 0:2083 � � � 0:0781 � � � ?N = 1 1:73� 0:06 0:99� 0:04 0:26� 0:05 0:120� 0:015 1:6� 0:2Ising 1:75 1: 0:25 0:125 1:33 : : :?Table 4: Criti
al exponents in the �42 �eld theory from the "-expansion
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ar�eN 0 1 2 3
(free)
 (b
) 1:1575� 0:00601:1571� 0:0030 1:2355� 0:00501:2380� 0:0050 1:3110� 0:00701:317 1:3820� 0:00901:392� (free)� (b
) 0:5875� 0:00250:5878� 0:0011 0:6290� 0:00250:6305� 0:0025 0:6680� 0:00350:671 0:7045� 0:00550:708� (free)� (b
) 0:0300� 0:00500:0315� 0:0035 0:0360� 0:00500:0365� 0:0050 0:0380� 0:00500:0370 0:0375� 0:00450:0355� (free)� (b
) 0:3025� 0:00250:3032� 0:0014 0:3257� 0:00250:3265� 0:0015 0:3465� 0:0035 0:3655� 0:0035! 0:828� 0:023 0:814� 0:018 0:802� 0:018 0:794� 0:018� 0:486� 0:016 0:512� 0:013 0:536� 0:015 0:559� 0:017Table 5: Criti
al exponents in the (�2)23 �eld theory from the "-expansionN 0 1 2 3
 1.1575 �0.0006 1.2385� 0.0025 1.322�0.005 1.400�0.006� 0.5877�0.0006 0.631�0.002 0.674�0.003 0.710�0.006� 0.237�0.002 0.103�0.005 -0.022�0.009 -0.133�0.018� 0.3028�0.0012 0.329�0.009 0.350�0.007 0.365�0.012� 0.56�0.03 0.53�0.04 0.60� 0.08 0.54 �0.10Table 6: Criti
al exponents in the N -ve
tor model on the latti
eThe best agreement is found for the exponents � and �. On the other hand, the values of �
oming from the "-expansion are systemati
ally larger by about 3 � 10�3, though the error barsalways overlap. The 
orresponding e�e
t is observed on 
.Comparison with latti
e model estimates. The N -ve
tor with nearest-neighbour intera
tions hasbeen studied on various latti
es. Most of the results for 
riti
al exponents 
ome from the analysis ofhigh temperature (HT) series expansion by di�erent types of ratio methods, Pad�e approximants ordi�erential approximants. Some results have also been obtained from low temperature expansions,
omputer 
al
ulations using sto
hasti
 methods, and in low dimensions, transfer matrix methods.Table 6 tries to give an idea of the agreement between latti
e and QFT results. A histori
al remarkis here in order: the agreement between both types of theoreti
al results has improved as the HTseries be
ame longer whi
h is of 
ourse en
ouraging. The main reason is that, in the analysis oflonger HT series, it has be
ome possible to take into a

ount the in
uen
e of 
on
uent singularitiesdue to 
orre
tions to the leading power law behaviour, as predi
ted by the RG. The e�e
t of thisimprovement has been spe
ially spe
ta
ular for the exponents 
 and � of the 3D Ising model.The obvious 
on
lusion is that one observes no systemati
 di�eren
es. In parti
ular, theagreement is extremely good in the 
ase of the Ising model where the HT series are the mosta

urate. To the best of our knowledge, the N -ve
tor latti
e models and the (�2)2 �eld theory
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 � � � �(a) 1:236� 0:008 0:625� 0:010 0:325� 0:005 0:112� 0:005 0:50� 0:03(b) 1:23{1:25 0:625� 0:006 0:316{0:327 0:107� 0:006 0:50� 0:03(
) 1:25� 0:01 0:64� 0:01 0:328� 0:009 0:112� 0:007Table 7: Criti
al exponents in 
uids and antiferromagnets
 � � � �1:40� 0:03 0:700{0:725 0:35� 0:03 �0:09{ � 0:012 0:54� 0:10Table 8: Ferromagneti
 systemsbelong to the same universality 
lass.Criti
al exponents from experiments. We have dis
ussed the N -ve
tor model in the ferromagneti
language, even though most of our experimental knowledge 
omes from physi
al systems that arenon-magneti
, but belong to the universality 
lass of the N -ve
tor model. The 
ase N = 0 des
ribesthe statisti
al properties of long polymers, that is, long non-interse
ting 
hains or self-avoidingwalks. The 
ase N = 1 (Ising-like systems) des
ribes liquid{vapour transitions in 
lassi
al 
uids,
riti
al binary 
uids and uniaxial antiferromagnets. The helium super
uid transition 
orrespondsto N = 2. Finally, for N = 3, the experimental information 
omes from ferromagneti
 systems.Criti
al exponents and polymers. In the 
ase of polymers, only the exponent � is easily a

essible.The best results are � = 0:586� 0:004 ;in ex
ellent agreement with the RG result.Ising-like systems N = 1. Table 7 gives a survey of the experimental situation for 
riti
al binary
uids (a), liquid{vapour transition in 
lassi
al 
uids (b), and antiferromagnets (
). For binarymixtures, we quote a weighted world average. In the 
ase of the liquid{vapour transition, we quotea range of experimental results rather than statisti
al errors for all exponents but �, the reasonbeing that the values depend mu
h on the method of analysis of the experimental data. Theagreement with RG results is 
learly impressive.Helium super
uid transition, N = 2. The helium transition allows measurements very 
lose toT
 and this explains the remarkably pre
ise determination of the 
riti
al exponents � and �. Theorder parameter, however, is not dire
tly a

essible in helium. Most re
ent reported values are� = 0:6705� 0:0006 ; � = 0:6708� 0:0004 and � = �0:01285� 0:00038 :The agreement with RG values is quite remarkable but the pre
ision of � is now a 
hallenge to�eld theory.Ferromagneti
 systems, N = 3. Finally, table 8 displays some results 
on
erning magneti
 systems.Con
lusion and prospe
ts. If one takes into a

ount all data (
riti
al exponents, equation of state,amplitude ratios,...) one is for
ed to 
on
lude that the RG predi
tions are remarkably 
onsistent
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Figure 2: A few seven-loop diagrams.with the whole experimental and latti
e information available. Considering the variety of experi-mental situations, this is a spe
ta
ular 
on�rmation of the RG ideas and the 
on
ept of universality.The 
urrent e�ort goes in several dire
tions. First, improve the pre
ision of 
riti
al exponents,in parti
ular trying to 
omplete the seven loop 
al
ulation in three dimensions, whi
h is a verydemanding problem from the point of view of 
omputer algebra and numeri
al integration: itinvolves 
al
ulating about 3500 Feynman diagrams, ea
h of them being given a priori by a 21-dimensional integral (a few Feynman diagrams are displayed in �gure 2). After a large number oftri
ks have been used the number of integrations 
an be redu
ed (�gure 3).Criti
al exponents are only the simplest universal quantities, but many other universal quan-tities are worth 
al
ulating, like the equation of state, in parti
ular for N > 1 in 3 dimensions,N = 1 at higher orders in the " expansion, or the two-point 
orrelation fun
tion.Then, other models with more than one 
oupling are also of interest, like the model with
ubi
 anisotropy, whi
h has been investigated.These e�orts are paralleled by similar e�orts using HT series and simulations.Mu
h interesting work has been done in re
ent years using the fun
tional RG equationsexpanded in the form of a derivative expansion. The main problem there is that it is diÆ
ult to gobeyond the simplest approximation, and thus diÆ
ult to assess the reliability of the results whi
hare obtained. In the future e�orts to improve the approximation should be undertaken.Bibliographi
al NotesWe give here only a short bibliography.Many interesting details and referen
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on
erning the early history of Quantum Ele
trody-nami
s and divergen
es 
an be found inS. Weinberg, The Theory of Quantum Fields, vol. 1, 
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Figure 3: Number of remaining integrations after many tri
ks have been used (B.G. Ni
kel,R. Guida, P. Ribe
a).


