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Abstract. During the last century, in two apparently distinct domains of physics, the theory of funda-
mental interactions and the theory of phase transitions in condensed matter physics, one of the most
basic ideas in physics, the decoupling of physics on different length scales, has been challenged. To deal
with such a new situation, a new strategy was invented, known under the name of renormalization
group. It has allowed not only explaining the survival of universal long distance properties in a situa-
tion of coupling between microscopic and macroscopic scales, but also calculating precisely universal
quantities.

We here briefly recall the origin of renormalization group ideas; we describe the general renormal-
ization group framework and its implementation in quantum field theory. It has been then possible to
employ quantum field theory methods to determine many universal properties concerning the singular
behaviour of thermodynamical quantities near a continuous phase transition. Results take the form
of divergent perturbative series, to which summation methods have to be applied. The large order
behaviour analysis and the Borel transformation have been especially useful in this respect.

As an illustration, we review here the calculation of the simplest quantities, critical exponents.

More details can be found in the work

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press 1989, (Oxford
4th ed. 2002).

1 Renormalization group: Motivation and basic ideas

During the last century, in two apparently distinct domains of physics, the theory of fundamental
interactions and the theory of phase transitions in condensed matter physics, one of the most basic
ideas in physics has been challenged:

We have all been taught that physical phenomena should be described in terms of degrees of
freedom adapted to their typical scale. For instance, we conclude from dimensional considerations
that the period of the pendulum scales like the square root of its length. This result implicitly
assumes that other lengths in the problem, like the size of constituent atoms or the radius of the
earth, are not relevant because they are much too small or much too large. In the same way, in
newtonian mechanics the motion of planets around the sun can be determined, to a very good
approximation, by considering planets and sun as point-like, because their sizes are very small
compared with the size of the orbits.

It is clear that if this property also called the decoupling of different scales of physics, would
not generally hold, progress in physics would have been very slow, maybe even impossible.

However, starting from about 1930, it was discovered that the quantum extension of Electro-
dynamics was plagued with infinities due to the point-like nature of the electron. The basic reason
for this disease, the non-decoupling of scales, was understood only much later, but in the mean
time physicists had discovered empirically a recipe to do finite calculations, called remormalization.
Superficially, the renormalization idea is conventional: to describe physics, use parameters adapted
to the scale of observation, like the observed strength of the electromagnetic interaction and the ob-
served mass of the electron, rather than the initial parameters of the quantum lagrangian. However,
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Figure 1: Initial lattice and lattice with double spacing.

there remained two peculiarities, the relation between initial parameters and so-called renormal-
ized parameters involved infinities and the values of the renormalized parameters varied with the
length or energy scale at which they were defined. This effect was eventually observed very directly
in experiments; for example, the fine structure constant o = e2/4rhe is about 1/137 at the scale
given by the electron mass, but increases to 1/128 at the scale of Z vector boson mass (one of
the particles mediating weak interactions). The relation between the strength of interactions at
different scales was called renormalization group (RG).

Later, similar difficulties were discovered in another branch of physics, in the study of contin-
uous phase transitions (liquid—vapour, ferromagnetic, superfluid helium). Near a continuous phase
transition a length, called the correlation length, becomes very large. This means that dynamically
a length scale is generated, which is much larger than the scale characterizing the microscopic
interactions. In such a situation, some non-trivial macroscopic physics is generated and it could
have been expected that phenomena at the scale of the correlation length could be described by a
small number of degrees of freedom adapted to this scale. Such an assumption leads to universal
quasi-gaussian or mean field critical behaviour, but it became slowly apparent that critical phe-
nomena could not be described by mean field theory. Again the deep reason for this failure is the
non-decoupling of scales, that is the initial microscopic scale is never completely forgotten.

Both in the theory of fundamental interactions and in statistical physics, this coupling of
very different scales is the sign that an infinite number of “stochastic” (i.e. subject to quantum or
statistical fluctuations) degrees of freedom are involved.

One could then have feared that even at large scales physics remained completely dependent
on the initial microscopic interactions, rendering a predictive theory impossible. However, this is
not what empirically was discovered. Instead, phenomena could be gathered in universality classes
that shared a number of universal properties, a situation that indicated that only a limited number
of qualitative properties of the initial microscopic interactions were important.

Remark. We have already referred to the correlation length without defining it. In statistical
systems, the correlation length ¢ describes the exponential decay of correlation functions in the
disordered phase. For instance, for a system where the degrees of freedom are spins S(z) at space
position z, the two-point correlation function (S(z)S(y)) decays exponentially at large distance
like

n(S@S() 1
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The renormalization group idea. To explain this puzzling situation a new concept had to be in-
vented, which was given again the name of RG. The idea that we will shortly describe, involved
determining inductively the effective interactions at a given scale. The relation between effective
interactions at neighbouring scales is called a RG transformation. A way to construct such a RG
was proposed initially by Kadanoff. One considers a statistical model initially defined in terms of
classical spin variables on some lattice of spacing a and configuration energy H,(S). The partition
function is obtained by summing over all spin configurations with a Boltzmann weight e~%=(5)/T
The idea then is to sum over the initial spins, keeping their average on the coarser lattice of spac-
ing 2q fixed (figure 1). After this summation, the partition function is given by summing over the
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average spins on a lattice of spacing 2a with an effective configuration energy Ha,(S). It is clear
that this transformation can be iterated as long as the lattice spacing remains much smaller than
the correlation length & that describes the decay of correlation functions. This defines effective
hamiltonians Hano(S) on lattices of spacing 2"a. The recursion relation

Hara(S) =T [Han-1a(9)],
is a renormalization group transformation. If the transformation 7 has fixed points:

Hona(S) — H*(S),
n—oo
or fixed surfaces, then both the non-gaussian behaviour and universality can be understood. Wilson
transformed this idea based on an iterative summation of short distance degree of freedom, whose
initial formulation was somewhat vague, into a more precise framework, replacing, in particular,
RG in space by integration over large momenta in the Fourier representation. Wegner, Wilson and
others then discovered exact functional RG equations in the continuum with fixed points.

However, these general equations do not provide a very efficient framework for finding fixed
points and calculating explicitly universal quantities. On the other hand, it can be argued that
the simplest universality classes contain some standard quantum field theories. Moreover, the field
theory RG that had been identified previously, appeared as an asymptotic RG in the more general
framework. Therefore, previously developed quantum field theory (QFT) techniques could be used
to prove universality and devise efficient methods of calculation, a domain in which the Saclay
group has been especially active.

A strong limitation of this strategy is that the construction is possible only when fixed points
are gaussian or, in the sense of some external parameter, close to a gaussian fixed point. This
explains the role of Wilson—Fisher’s e-expansion, where ¢ is the deviation from the dimension 4:
in dimension 4, non-trivial IR fixed points relevant for many simple phase transitions merge with
the gaussian fixed point.

Note, however, that a combination of clever tricks has allowed doing calculations also at fixed
dimensions, like the physical dimension 3.

Finally, let me notice that the understanding of non-decoupling of scales and universality
resulting from RG fixed points, has also led to an understanding of the renormalization procedure
in the theory of fundamental interactions. The quantum field theory that describes almost all
known phenomena in particle physics except gravitation (the Standard Model) is now viewed as
an effective low energy theory in the RG sense, and the cut-off as the remnant of some initial still
unknown microscopic physics.

2 Renormalization Group: The General Idea

Even, if initially a statistical model is defined in terms of lattice variables taking a discrete set
of values, asymptotically after RG transformations, the averaged variables will have a continuous
distribution, and space will also be continuous. Therefore, RG fixed points belong to the class of
statistical field theories in the continuum.

We thus consider a general statistical model defined in terms of some, translation invariant,
hamiltonian H(¢), function of a field ¢(z) (z € R?), which is assumed to be expandable in powers
of ¢:

H() =) % /ddxlddacg A%, Hop (2, 20, 2n) (1) - (), (2.1)
n=0 "

and has all the properties of the thermodynamic potential of Landau’s theory. For example, the
Fourier transforms of the functions H,,, after factorization of a § function of momentum conserva-
tion, are regular at low momenta (assumption of short-range forces or locality). In this framework,
the space of all possible hamiltonians is infinite dimensional.
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To a hamiltonian H(¢) (really a configuration energy), corresponds a set of connected corre-
lation functions W (zy,...,2,):

W (2,20, ... an) = {/ [do] d(x1) ... p(x,) e FH) . (2.2)

connect.

Connected correlation functions decay at large distance. One of the central problems is the de-
termination of the long distance behaviour of correlation functions, that is the behaviour of
W(”)(Axl,...,)\xn) when the dilatation parameter A becomes large, near a continuous phase
transition. In what follows we will only discuss critical correlation functions, that is correlation
functions at the critical temperature where the correlation length is infinite (T' = T., £ = c0),
although universal behaviour extends to the neighbourhood of the critical temperature where the
correlation length is large.

2.1 The renormalization group idea. Fixed points

The RG idea is to trade the initial problem, studying the behaviour of correlation functions as
a function of dilatation parameter A acting on space variables, for the study of the flow of a
scale-dependent hamiltonian H(¢) which has essentially the same correlation functions at fixed
space positions. More precisely, one wants to construct a hamiltonian H(¢) which has correlation

functions W){n) (x;) satisfying
W @y, .. xn) = Z72 WD Az, Axy). (2.3)

The mapping H(¢) — Ha(¢) is called a RG transformation. We define the transformation such
that Ha=1(¢) = H(¢). The choice of the function Z(A) depends on RG transformations.

In the case of models invariant under space translations, equation (2.3) after a Fourier trans-
formation reads

W (pr, ... o) = Z 2N (py /XL pa /). (2.4)

The simplest such RG transformation corresponds to rescalings of space and field. However, this
transformation has a fixed point only in exceptional cases (gaussian models) and thus more general
transformations have to be considered.

The fized point hamiltonian. Let us assume that a RG transformation has been found such that,
when A becomes large, the hamiltonian # (@) has a limit H*(¢), the fixed point hamiltonian. If such
a fixed point exists in hamiltonian space, then the correlation functions W){n) have corresponding
limits W™ and equation (2.3) becomes

W Nay, . an) ~ Z720OW (@, z). (2.5)

A—00

We now introduce a second scale parameter y and calculating W (Auz;) from equation (2.5) in
two different ways, we obtain a relation involving only W*(n):

) (a1, ..., pey) = Zf/Z(p)W‘En) (T1,-.-,2n) (2.6)

with
Z.(u) = Jim Z(\)/Z (). (2.7)

Equation (2.6) being valid for arbitrary u immediately implies that Z, forms a representation of
the dilatation semi-group. Thus, under reasonable assumptions,

Zo(\) = A2, (2.8)

The fixed point correlation functions have a power law behaviour characterized by a positive
number dy which is called the dimension of the field or order parameter ¢(z).
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Returning now to equation (2.7), we conclude that Z(\) also has asymptotically a power law
behaviour. Equation (2.5) then shows that the correlation functions W (") have a scaling behaviour
at large distances:

W \zy, .. Azn) ~ AW (20, ) (2.9)

A—00

with a power dy which is a property of the fixed point. The r.h.s. of the equation, which determines
the critical behaviour of correlation functions, therefore, depends only on the fixed point hamilto-
nian. In other words, the correlation functions corresponding to all hamiltonians which flow after
RG transformations into the same fixed point, have the same critical behaviour. This property
is an example of universality. The space of hamiltonians is thus divided into universality classes.
Universality, beyond the gaussian theory, relies upon the existence of IR fixed points in the space
of hamiltonians.

2.2 Hamiltonian flows. Scaling operators

Let us consider an infinitesimal dilatation which leads from the scale A to the scale A(1 + dA/A).
The variation of the hamiltonian Hy, consistent with equation (2.5), takes the form of a differential
equation which involves a mapping 7 of the space of hamiltonians into itself and a real function n
defined on the space of hamiltonians:

/\%’HA = TI[Ha], (2.10)
)\%an(A) — 2d, [y (2.11)

Equation (2.10) is a RG transformation in differential form. Moreover, we look only for markovian
flows as a function of the “time” In A, that is such that 7 does not depend on .
A fixed point hamiltonian #* is then a solution of the fixed point equation

T[H*]=0. (2.12)
The dimension dg of the field ¢ follows
dy =dy [H"]. (2.13)

Linearized flow equations. To study the local stability of fixed points, we apply the RG transfor-
mation (2.10) to a hamiltonian Hy = H* + AH, close to the fixed point H*. The linearized RG
equation takes the form

A%AHA = L*(AH)), (2.14)
where L* is a linear operator, also independent of A, acting on hamiltonian space. Let us assume

that L* has a discrete set of eigenvalues I; corresponding to a set of eigenoperators ;. Then, AH
can be expanded on the O;’s:

AHy =D hi(NO;, (2.15)
and the transformation (2.14) becomes
/\d%\hi(/\) =L;hi(\) = hi(\) = Nihi(1). (2.16)

Classification of eigenvectors or scaling fields. The eigenvectors O; can be classified into four

families depending on the corresponding eigenvalues [;:

(i) Eigenvalues with a positive real part. The corresponding eigenoperators are called relevant.
If H, has a component on one of these operators, this component will grow with A\, and H will
move away from the neighbourhood of #*. Operators associated with a deviation from criticality
are clearly relevant since a dilatation decreases the effective correlation length.



60 J. Zinn-Justin Séminaire Poincaré

(ii) Eigenvalues with Re(l;) = 0. Then, two situations can arise: either Im(/;) does not vanish,
and the corresponding component has a periodic behaviour, or [; = 0. Eigenoperators corresponding
to a vanishing eigenvalue are called marginal. To determine the behaviour of the corresponding
component h;, it is necessary to expand beyond the linear approximation. Generically, one finds

d
A—h;(\) ~ Bh; . 2.17
i) ~ B (217)
Depending on the sign of the constant B and the initial sign of h;, the fixed point then is marginally
unstable or stable. In the latter case, the solution takes for A large the form

hi(\) ~ —1/(Bln ). (2.18)

A marginal operator generally leads to a logarithmic approach to a fixed point. In section 3.2, we
show that in the ¢* field theory, the operator ¢*(z) is marginally irrelevant in four dimensions.

An exceptional example is provided by the XY model in two dimensions (O(2) symmetric
non-linear o-model) which instead of an isolated fixed point, has a line of fixed points. The operator
which corresponds to a motion along the line is obviously marginal.

(iii) Eigenvalues with a negative real part. The corresponding operators are called irrelevant.
The effective components on these operators go to zero for large dilatations.

(iv) Finally, some operators do not affect the physics. An example is provided by the operator
realizing a constant multiplicative renormalization of the dynamical variables ¢(z). These operators
are called redundant. In QFT, quantum equation of motions correspond to redundant operators
with vanishing eigenvalue.

Classification of fized points. Fixed points can be classified according to their local stability prop-
erties, that is, to the number of relevant operators. This number is also the number of conditions
a general hamiltonian must satisfy to belong to the surface which flows into the fixed point.

The critical domain. Universality is not limited to the critical theory. For temperatures close to T¢,
and more generally for theories in which the hamiltonian is the sum of a critical hamiltonian and
a linear combination of relevant operators with very small amplitudes, universal properties can be
derived. Indeed, for small dilatations, the RG flow is hardly affected. After some large dilatation,
the flow starts deviating substantially from the flow of the critical hamiltonian. But at this point
the components of the hamiltonian on all irrelevant operators are already small.

This argument indicates that the behaviour of correlation functions as a function of amplitudes
of relevant operators is universal in the limit of asymptotically small amplitudes. One calls critical
domain the domain of parameters in which universality can be expected.

3 Critical behaviour: The effective ¢* field theory

In the discussion, we restrict ourselves to Ising-like systems, the field ¢ having only one component.
A generalization to the N-vector model with O(N) symmetry is straightforward.

The main difficulty with the general RG approach is that it requires an explicit construction
of RG transformations for hamiltonians, which have a chance to possess fixed points. The general
idea is to integrate over the large momentum modes of the dynamical variables, but its practical
implementation is far from being straightforward. In the continuum, RG equations, known under
the name of Exact or Functional RG, have been discovered, which in simple examples have indeed
fixed points. They can be written

AH(G,) =—/Mﬁ%%%%mm+§ﬁ%%hm>
1 gt bl PH M oM
5 [ ity ”[M@waw 6wm5aw]
OH

- [atsdty Lo -y 5t o), (31)

30(x)
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where the functions D and L are defined in terms of a propagator A, whose Fourier transform
A(k) can be written .
Aty = CO2)/R, C0)=1,

the regular function C'(k?) decreasing faster than any power for |k| — oo. Then, the Fourier
transform of the function D is }
D(k?) = 20" (),

and
1

(2m)

Various approximation schemes like derivative expansions reduce these equations to partial dif-
ferential equations, which can be studied numerically. They are quite useful for exploring general
properties, beyond perturbative expansions, but are somewhat complicated for precise calculations
of universal quantities.

Another strategy is to start from the only fixed point that can be analyzed completely, the
gaussian fixed point, the statistical analogue of free QFT. It corresponds to the hamiltonian

Ha(0) = 5 [ e Y (0,0()’.

L(z) = /ddk ek D(k)A k),

An analysis of local perturbations, even functions of ¢, shows that ¢?(x), which affects the corre-
lation length, is always relevant. For d > 4, all other perturbations are irrelevant. For d = 4, ¢*(x)
becomes marginal and relevant for d < 4. For lower dimensions eventually other terms become
relevant too. The idea then is to work in dimension d = 4 or in the neighbourhood of dimension
4 (the famous ¢ = 4 — d expansion) and try to write an asymptotic RG (in a sense that will be
explained in next section) for the simplified effective local hamiltonian

1o = [ ate{ VoKV ATo0) + 3réo) + a0} (2)

where K is a positive differential operator, K(z) = 1 4+ O(z), r and g are regular functions of
the temperature for T' close to T. and A is a large momentum analogous to the cut-off used to
regularize QFT, that is 1/A represents the scale of distance at which this effective hamiltonian is
no longer generally valid. The parameter g is chosen here dimensionless.

The hamiltonian (3.2) generates a perturbative expansion of field theory type, which can
be described in terms of Feynman, diagrams. The quadratic term in (3.2) contains additional
higher order derivatives, corresponding to irrelevant operators, reflexion of the initial microscopic
structure. They are needed to render perturbation theory finite and this is another manifestation
of the non-decoupling of scales.

At g fixed, the correlation length & diverges at a value r = r., which thus corresponds to the
critical temperature T,. In terms of the scale A, the critical domain, where universality is expected,
is then defined by |r —r.| < A2, distances large compared to 1/A or momenta much smaller than
A, and magnetization M = (4(z)) <« A4/2=1 These conditions are met if A is identified with
the cut-off of a usual QFT. However, an inspection of the action (3.2) also shows that, in contrast
with conventional QFT, the ¢* coupling constant has a dependence in A given a priori. This
follows from the assumption that the effective hamiltonian is derived from some initial microscopic
model, and, thus, all operators have coefficients proportional to powers of the cut-off given by their
dimension at the gaussian fixed point. For d < 4, the ¢* coupling is thus very large in terms of the
scale relevant for the critical domain. In the usual formulation of QFT, by contrast, the coupling
constant is also an adjustable parameter and the resulting QFT thus is less generic.

3.1 Renormalization group equations near dimension 4

The hamiltonian (3.2) can be studied by QFT methods. Rather than writing RG equations for
the hamiltonian, it appears that it is simpler to first derive RG equations for correlation or vertex



62 J. Zinn-Justin Séminaire Poincaré

functions directly, as we now explain. Using a power counting argument, one verifies that the critical
theory does not exist in perturbation theory for any dimension smaller than 4. If one defines, by
dimensional continuation, a critical theory in dimension d = 4 — ¢, even for arbitrarily small ¢
there always exists an order in perturbation (~ 2 /¢) at which infrared (IR, i.e. zero momentum)
divergences appear. Therefore, the idea, originally due to Wilson and Fisher, is to perform a double
series expansion in powers of the coupling constant g and . Order by order in this expansion, the
critical behaviour differs from the gaussian behaviour only by powers of logarithm, and one can
construct a perturbative critical theory by adjusting r to its critical value r.(T = T.).
In the critical theory, correlation functions have the form

W(n) (xia g, A) = An(d72)/2W(n) (Axl? 9, ]')

Therefore, studying the large distance behaviour is equivalent to studying the large cut-off be-
haviour. One then can use methods developed for the construction of the renormalized massless ¢*
field theory. One considers correlation functions of the Fourier components of the field, after factor-
ization of the ¢ function of momentum conservation due to translation invariance. Furthermore, it
is more convenient to work with algebraic combinations of correlation functions called vertex func-
tions, denoted below by T'(") | and derived from the Legendre transform of the generating functional
of connected correlation functions. For example,

W (p; g, )T (p; g, A) = 1.

One then introduces rescaled (or renormalized) vertex functions characterized by a new scale y < A
at which universal behaviour is expected,

where Z(g, A/u) is a field renormalization constant and g, a renormalized coupling constant, which
characterizes the strength of the ¢* interaction at scale y. At criticality

I'®(p=0;9,A) =T (0;9:, u,A) = 0.

The renormalization factor Z(g, A/u) and the renormalized coupling constant g, are then deter-
mined by additional conditions, for example, by renormalization conditions of the form

0
8_172F£2) (pu gra;uaA)|p2:u2 = ].,

T (p; = phisge i A) = pge, (3.4)

in which 6; is a numerical vector (6; # 0).
From renormalization theory (more precisely a slightly extended version adapted to the e-
(n)

expansion), one then infers that the functions Ty (ps; g, pt, A) of equation (3.3) have at p;, gr
and p fixed, large cut-off limits which are the renormalized vertex functions an) (pi; g, ). More-
over, renormalized functions an) do not depend on the specific cut-off procedure and, given the
normalization conditions (3.4), are universal. Since the renormalized functions Fﬁn) and the ini-
tial ones I'™ are asymptotically proportional, both functions have the same small momentum or
large distance behaviour. The renormalized functions thus contain the whole information about the
asymptotic universal critical behaviour. One could, therefore, study only renormalized correlation
functions, which indeed are the ones useful for many explicit calculations of universal quantities.
However, universality is not limited to the asymptotic critical behaviour; leading corrections have
also some interesting universal properties. Moreover, renormalized quantities are not directly ob-
tained in non-perturbative calculations. For these various reasons, it is also useful to study the
implications of equation (3.3) directly for the initial correlation functions.

RG equations. Differentiating equation (3.3) with respect to A at g, and p fixed, one obtains

A 272(g, AJp)T™ (pi; g, A) = O(A=*(In A)). (3.5)

g, fixed
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We now neglect corrections subleading by powers of A order by order in the double series expansion

of g and e. We assume that these corrections, generated by operators irrelevant from the point

of view of the gaussian fixed point, remain, after summation, corrections, that is that irrelevant

operators are continuously deformed into irrelevant operators for the non-trivial fixed points.
Then, using chain rule, one infers from equation (3.5):

0 0
Ao+ B0 A1) 5 = e M) | T i, 4) =0, 3:5)

The functions g and 7, which are dimensionless and may thus depend only on the dimensionless
quantities g and A/, are defined by

ﬁ(gvA/:u) = Aa_A g““gv (37)
oA = A gl (35)

However, the functions § and n can also be directly calculated from equation (3.6) in terms of
functions '™ which do not depend on p. Therefore, the functions 4 and 5 cannot depend on the
ratio A/p and equation (3.6) simplifies as

0 0 n

Mg+ 80055 = 51(0)| T g, A) =0, 3.9)

Equation (3.9), consequence of the existence of a renormalized theory, is satisfied, when the cut-off
is large, by the physical vertex functions of statistical mechanics which are also the bare vertex
functions of QFT. It follows implicitly from the solution of equation (3.9) (see section 3.2) that,
conversely, the equation implies the existence of a renormalized theory.

This RG is only asymptotic because the r.s.h. of equation (3.5) and thus (3.6) have been
neglected.

3.2 Solution of the RG equations: The c-expansion

Equation (3.9) can be solved by the method of characteristics. One introduces a dilatation param-
eter A and looks for functions g(A) and Z(\) such that

A% Z="2(\)r) (pi;g()\),/\A)] =0. (3.10)

Consistency with equation ’3.9) implies

d

o) = B, e =g, (3.11)
/\di/\an(/\) = n(g\)), Z(@1)=1. (3.12)

The function g()\) is the effective coupling at the scale A, and is governed by the flow equation
(3.11). Equation (3.10) implies

T (pis 9,A) = Z7"2 (VT (pi; g(N), AA).
It is actually convenient to rescale A by a factor 1/A and write the equation
T (ps; g, AJA) = Z72 (VT (pis g(A), A). (3.13)

Equations (3.11)-(3.12) and (3.13) implement approximately (because terms subleading by powers
of A have been neglected) the RG ideas as presented in section 2: since the coupling constant g(\)
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characterizes the hamiltonian #y, equation (3.11) is the equivalent of equation (2.10) (up to the
change A — 1/)); equations (2.11) and (3.12) differ only by the definition of Z(\).
The solutions of equations (3.11)-(3.12) can be written as

/g(x) ﬂ‘gj) = In)\, (3.14)
A
/l%n(g(a)) = InZ(\). (3.15)

Equation (3.9) is the RG equation in differential form. Equations (3.13) and (3.14)-(3.15) are
the integrated RG equations. In equation (3.13), we see that it is equivalent to increase A or to
decrease A. To investigate the large A limit we, therefore, study the behaviour of the effective
coupling constant g(A) when A goes to zero. Equation (3.14) shows that g(\) increases if the
function (3 is negative, or decreases in the opposite case. Fixed points correspond to zeros of the
[S-function which, therefore, play an essential role in the analysis of critical behaviour. Those where
the g-function has a negative slope are IR repulsive: the effective coupling moves away from such
zeros, except if the initial coupling has exactly a fixed point value. Conversely, those where the
slope is positive are IR attractive.
The RG functions have been calculated in perturbation theory and one finds

2

39
B(g,e) = —eg + 62 +0(g%, g%). (3.16)

The explicit expression (3.16) of the S-function shows that above dimension 4, that is, £ < 0, if
initially g is small, g(\) decreases approaching the origin g = 0. We recover that the gaussian fixed
point is IR stable.

By contrast, below four dimensions, if initially g is very small, g(\) first increases, a behaviour
reflecting the instability of the gaussian fixed point.

However, the explicit expression (3.16) shows that, in the sense of an expansion in powers of
g, B(g) has another zero

g* =167%¢/3+ 0(c*) = B(g*) =0, (3.17)

with a positive slope for ¢ infinitesimal:
w=p(g")=ec+0(*)>0. (3.18)

Then, equation (3.14) shows that g(\) has ¢* as an asymptotic limit. Below dimension 4, at least
for ¢ infinitesimal, this non-gaussian fixed point is IR stable. In dimension 4, it merges with the
gaussian fixed point and the eigenvalue w vanishes indicating the appearance of the marginal
operator.

From equation (3.15), we then derive the behaviour of Z(A) for A small. The integral in the
L.h.s. is dominated by small values of . It follows that

In Z(X) )‘:Onln/\, (3.19)

where we have set
n=nlg").
Equation (3.13) then determines the behaviour of T(") (p;; g, A) for A large:

L (pis g, A/X) ~ AT (pg; g7, A). (3.20)
On the other hand, from simple dimensional considerations, we know that
LU (pis g, A/A) = A= /D AT (i g, A). (3.21)
Combining this equation with equation (3.20), we obtain

™ (Apis g, A) e AT (/=2 (45,0 6% A). (3.22)



Vol. 2, 2002 Phase Transitions and Renormalization Group: from Theory to Numbers 65

This equation shows that critical vertex functions have a power law behaviour for small momenta,
independent of the initial value of the ¢* coupling constant g, at least if ¢ initially is small enough
for perturbation theory to be meaningful, or if the g-function has no other zero.

Equation (3.22) yields for n = 2 the small momentum behaviour of the vertex two-point
function, and thus of the two-point correlation function

— -1
W) = [P2@)]  ~ 1/, (3.23)
Ip|—0
The spectral representation of the two-point function implies > 0. A short calculation yields
2
€ 3
= — . .24
=12, +0() (324)

Finally, we note that equation (3.22) can be interpreted by saying that the field ¢(z), which had at
the gaussian fixed point a canonical dimension (d—2)/2, has now acquired an anomalous dimension
(equation (2.13))
dy = 1(d—2+n).

Universality. Within the framework of the e-expansion, all correlation functions have, for d < 4, a
long distance behaviour different from the one predicted by a quasi-gaussian or mean field theory.
In addition, the critical behaviour does not depend on the initial value of the ¢* coupling constant
g- Therefore, the critical behaviour is universal, although less universal than in the quasi-gaussian
theory, in the sense that it depends only on some small number of qualitative properties of the
physical system under study.

4 Calculation of universal quantities

We present here some explicit results obtained within the framework of the O(N) symmetric (¢?)?
statistical field theory. The results of the (¢?)? field theory, or N-vector model do not apply only
to ferromagnetic systems. The superfluid helium transition corresponds to N = 2, the N = 0 limit
is related to the statistical properties of polymers and the Ising-like N = 1 model also describes
the physics of the liquid—vapour transition.

We discuss only critical exponents, although a number of other universal quantities have been
calculated like the scaling equation of state or ratios of critical amplitudes.

4.1 The c-expansion

Critical exponents in the N-vector model are known up to order £°. The higher order calculations
have been done using dimensional regularization and a minimal subtraction scheme. The equation
of state is known up to order £2 for arbitrary N and to order ¢® for N = 1. A number of results
have also been obtained for the two-point correlation function.

4.2 Critical exponents

Although the RG functions of the (¢?)? theory and, therefore, the critical exponents are known up
to five-loop order, we give here only two successive terms in the expansion for illustration purpose,
referring to the literature for higher order results. In terms of the variable

2

g=DNag, Ndzmv (4.1)
the RG functions 3(g) and 12(g) at two-loop order, n(g) at three-loop order are

. . N +38)._ 3N +14) _ .

BG) = —ej+? 5 S 5 )3 +0 (a*) (4.2)
o NED L[ (NS,

ng) = ——7 |1 5r 9|+ 07, (4.3)
. N +2)_ S . 5

mn(g) = —(67)9 [1 - Eg] +0(3%), (4.4)
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~v | 1.000 | 1.1667 | 1.2438 | 1.1948 | 1.3384 | 0.8918

n{0.0...]00...]0.0185 | 0.0372 | 0.0289 | 0.0545

Table 1: Sum of the successive terms of the e-expansion of v and n fore =1and N =1

The zero §*(¢) of the S-function then is §*(¢) = 6¢/(N + 8) + O(e?). The values of the critical
exponents 7, v and the correction exponent w,

=0 1= gt =B,
follow
;?%Vj;g 1+ (_NZ&SiJ\é; 272) +0 (g4, (4.5)
v o= 1+ 2((]j\f++28))6 48\\; i 33 (N? +22N +52) & + O (¢°) , (4.6)
w = &-— %52 +0 (%). (4.7)

Other exponents can be obtained from scaling relations. Note that the results at next order involve
¢(3). At higher orders ((5) and ((7) successively appear. In table 1, we give the values of the
critical exponents v and n obtained by simply adding the successive terms of the e-expansion for
e=1and N =1.

One immediately observes a striking phenomenon: the sums first seem to settle near some
reasonable value and then begin to diverge with increasing oscillations. This is an indication that
the e-expansion is divergent for all values of . Divergent series can be used for small values of the
argument. However, only a limited number of terms of the series can then be taken into account.
The last term added gives an indication of the size of the irreducible error. For the exponents ~y
and n we roughly conclude from the series

v=1.244+0.050, 5 =0.037+0.008,

where the errors are only indicative.

4.3 The perturbative expansion at fixed dimension

Critical exponents and various universal quantities have also been calculated within the framework
of the massive (¢?)? field theory, as perturbative series at fixed dimension 3. The basic reason
is that in dimension 3 one-loop diagrams have simple analytic expressions that can be used to
simplify most higher order diagrams. It has, therefore, been possible to calculate the RG functions
of the N-vector model up to six- and partially seven-loop order.

Note that this massive ¢* field theory is a somewhat artificial construction: when the correla-
tion length increases, simultaneously the coefficient of the relevant ¢* operator is tuned to decrease
like g oc (A)?*%. Then, all correlation functions have a limit for A — oo, order by order in an
expansion in powers of g at fixed dimension d < 4. However, the usual critical theory corresponds
in this framework to an infinite coupling constant. Therefore, correlation functions renormalized at
zero momentum are introduced, and correspondingly a renormalized coupling constant g, which
is a universal function of g. Within the framework of the s-expansion, one proves that g, has a
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finite limit ¢* when g — co. To the mapping ¢ — ¢, is associated a function 3(g,). For example,
the RG S-function in three dimensions, for NV = 1, has the expansion

B = —-g+3§° — 285 +0.35106959785" — 0.37652682835°
+0.495547513° — 0.7496895" + O (§°) (4.8)

with the normalization
g = 3g:/(16m). (4.9)

To calculate exponents or other universal quantities, one has first to find the IR stable zero g} of
the function 3(g,), which is given by a few terms of a divergent expansion. An obvious problem is
the absence of any small parameter: g* is a number of order 1. Already at this stage a summation
method is required. Estimates of critical exponents are displayed in table 3. In recent years universal
ratios of critical amplitudes as well as the equation of state for Ising-like systems (N = 1) have also
been calculated. Note, however, that in this framework, the calculation of physical quantities in the
ordered phase leads to additional technical problems because the theory is parametrized in terms
of the disordered phase correlation length m~! which is singular at T,. Also, the normalization of
correlation functions is singular at 7,.. This required developing a combination of techniques based
on series summation, parametric representation and a method of order-dependent mapping.

4.4 Series summation

Because all series, e-expansion or perturbative expansions at fixed dimension, are divergent, sum-
mation methods had to be developed. We describe here methods based on generalized Borel trans-
formations. The necessary analytic continuation of the Borel transform outside its circle of conver-
gence is then achieved by a conformal mapping.

The method. Several different variants based on the Borel-Leroy transformation have been imple-
mented and tested. Let R(z) be the function whose expansion has to be summed (z here stands
for ¢ or the coupling constant §):

R(z) =Y Riz". (4.10)
k=0

A plausible assumption is that the Borel transform is analytic in a cut-plane. One thus transforms
the series into

oy
~
™
K3
Il

> Bilp) / et (et dt (4.11)
k=0

V1 -1
wz) = Y_*£er— b (4.12)
V1i+za+1
The coefficients By are calculated by identifying the expansion of the r.h.s. of equation (4.11) in
powers of z with the expansion (4.10). The constant a is known from the large order behaviour
analysis in QFT based on instantons,

a(d = 3) = 0.147774232 x (9/(N +8)), (4.13)

and p is a free parameter, adjusted empirically to improve the convergence of the transformed
series by weakening the singularities of the Borel transform near z = —a. Eventually, the method
has been refined, which involved also introducing two additional free parameters.

Needless to say, with three parameters and short initial series it becomes possible to find oc-
casionally some transformed series whose apparent convergence is deceptively good. It is, therefore,
essential to vary the parameters in some range around the optimal values to examine the sensitivity
of the results upon their variations. Finally, it is useful to sum independently series for exponents
related by scaling relations. An underestimation of the apparent errors leads to inconsistent results.
It is clear from these remarks that the errors quoted in the final results are educated guesses based
on a large number of consistency checks.
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g* | 1.8774 | 1.5135 | 1.4149 | 1.4107 | 1.4103 | 1.4105

v | 0.6338 | 0.6328 | 0.62966 | 0.6302 | 0.6302 | 0.6302

v | 1.2257 | 1.2370 | 1.2386 | 1.2398 | 1.2398 | 1.2398

Table 2: Series summed by the method based on Borel transformation and mapping for the zero
g* of the 3(g) function and the exponents 4 and v in the ¢4 field theory

A few examples of transformed series are displayed in table 2 to illustrate the convergence.
The (¢?)? field theory at fized dimensions. The RG S-function has been determined up to six-loop

order in three dimensions, while the series for the dimensions of the fields ¢ and ¢> have recently
been extended to seven loops. The series of the RG S-function has been first summed and its zero
g* determined (§ = g.(N + 8)/(48w) for d = 3. The series of the other RG functions have then
been summed for § = §*. Examples of convergence are given in table 2.

The e-expansion. The e-expansion has one advantage: it allows connecting the results in three
and two dimensions. In particular, in the cases N = 1 and N = 0, it is possible to compare the
¢* results with exact results coming from lattice models and to test both universality and the
reliability of the summation procedure. Moreover, it is possible to improve the three-dimensional
results by imposing the exact two-dimensional values or the behaviour near two dimensions for
N > 1. However, since the series in ¢ are shorter than the series at fixed dimension 3, the apparent
errors are larger. Finally, as already emphasized, the comparison between the different results is a
check of the consistency of QFT methods combined with the summation procedures.

4.5 Numerical estimates of critical exponents

Fized dimension 3. Table 3 displays the results obtained from summed perturbation series at fixed
dimension 3. The last exponent § = wv characterizes corrections to scaling in the temperature
variable.

Note that shorter series have been generated in dimension 2 (five loops). Because the series
are short and the fixed coupling constant larger, the apparent errors are large, but the results are
consistent with exact N = 1 results.

The e-expansion. In table 4, we give the results coming from the summed e-expansion for ¢ = 2
and compare them with exact results.

We see in this table that the agreement for N = 0 and N = 1 QFT and lattice models
is satisfactory. We feel justified, therefore, in using a summation procedure of the e-expansion
which automatically incorporates the d = 2, ¢ = 2 values. Note, however, that in both cases, the
identification of w remains a problem.

Table 5 then displays the results for ¢ = 1, both for the € series (free) and a modified ¢ series
where the d = 2 results are imposed (bc).

Discussion. One can now compare the two sets of results coming from the perturbation series at
fixed dimension, and the e-expansion. First let us emphasize that the agreement is quite spectacular,
although the apparent errors of the e-expansion are in general larger because the series are shorter.
Moreover, the agreement has improved with longer series.
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N 0 1 2 3
g* 1.413 + 0.006 1.411 + 0.004 1.403 £ 0.003 1.390 + 0.004
g* 26.63 £0.11 23.64 +£0.07 21.16 £0.05 19.06 £ 0.05
vy 1.1596 £ 0.0020 | 1.2396 + 0.0013 | 1.3169 £ 0.0020 | 1.3895 £ 0.0050
v 0.5882 £ 0.0011 | 0.6304 £0.0013 | 0.6703 & 0.0015 | 0.7073 £ 0.0035
n 0.0284 £ 0.0025 | 0.0335 £+ 0.0025 | 0.0354 £ 0.0025 | 0.0355 £ 0.0025
8 0.3024 £ 0.0008 | 0.3258 £0.0014 | 0.3470 £ 0.0016 | 0.3662 £ 0.0025
« 0.235 £ 0.003 0.109 + 0.004 —0.011+0.004 | —0.122+0.010
w 0.812+£0.016 0.799 + 0.011 0.789 + 0.011 0.782+0.0013

f=wv | 0478 £0.010 0.504 £ 0.008 0.529 4+ 0.009 0.553 £0.012

69

Table 3: Estimates of critical exponents in the O(N) symmetric (¢?)3 field theory

N=0]|139+004 | 0.76£0.03 | 0.21£0.05 | 0.065£0.015 | 1.7£0.2

Exact 1.34375 0.75 0.2083 - - - 0.0781 - -- ?

N=1]|173£0.06 | 0.99+0.04 | 0.26 £0.05 | 0.120+0.015 | 1.6 £ 0.2

Ising 1.75 1. 0.25 0.125 1.33...7

Table 4: Critical exponents in the ¢3 field theory from the e-expansion
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N 0 1 2 3

7(free) 1.1575 £ 0.0060 | 1.2355+0.0050 | 1.3110 £ 0.0070 | 1.3820 £ 0.0090

v (bc) 1.1571 £ 0.0030 | 1.2380 4+ 0.0050 | 1.317 1.392

v (free) | 0.5875+0.0025 | 0.6290 +0.0025 | 0.6680 £ 0.0035 | 0.7045 + 0.0055

v (be) 0.5878 & 0.0011 | 0.6305 % 0.0025 | 0.671 0.708

n (free) | 0.0300+ 0.0050 | 0.0360 +0.0050 | 0.0380 + 0.0050 | 0.0375 + 0.0045

n (be) 0.0315 4+ 0.0035 | 0.0365 % 0.0050 | 0.0370 0.0355

B (free) | 0.3025=+0.0025 | 0.3257 + 0.0025
w 0.828 +0.023 0.814 +0.018 0.802 +0.018 0.794 £0.018
0 0.486 + 0.016 0.512£0.013 0.536 £ 0.015 0.559 £ 0.017

Table 5: Critical exponents in the (¢?)3 field theory from the s-expansion

N 0 1 2 3

v | 1.1575 £0.0006 | 1.2385% 0.0025 | 1.322+0.005 1.400+0.006
v | 0.587740.0006 0.631+0.002 0.674+0.003 0.710+0.006
a 0.237+0.002 0.103£0.005 | -0.022+0.009 | -0.133+0.018
8 | 0.3028+0.0012 0.329+£0.009 0.350£0.007 | 0.365+0.012
0 0.56+0.03 0.53+£0.04 0.60+ 0.08 0.54 +£0.10

Table 6: Critical exponents in the N-vector model on the lattice

The best agreement is found for the exponents v and 3. On the other hand, the values of n
coming from the s-expansion are systematically larger by about 3 x 103, though the error bars
always overlap. The corresponding effect is observed on .

Comparison with lattice model estimates. The N-vector with nearest-neighbour interactions has
been studied on various lattices. Most of the results for critical exponents come from the analysis of
high temperature (HT) series expansion by different types of ratio methods, Padé approximants or
differential approximants. Some results have also been obtained from low temperature expansions,
computer calculations using stochastic methods, and in low dimensions, transfer matrix methods.
Table 6 tries to give an idea of the agreement between lattice and QFT results. A historical remark
is here in order: the agreement between both types of theoretical results has improved as the HT
series became longer which is of course encouraging. The main reason is that, in the analysis of
longer HT series, it has become possible to take into account the influence of confluent singularities
due to corrections to the leading power law behaviour, as predicted by the RG. The effect of this
improvement has been specially spectacular for the exponents v and v of the 3D Ising model.
The obvious conclusion is that one observes no systematic differences. In particular, the
agreement is extremely good in the case of the Ising model where the HT series are the most
accurate. To the best of our knowledge, the N-vector lattice models and the (4?)? field theory
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) | 1.236 £0.008 | 0.625+0.010 | 0.325+0.005 | 0.112+0.005 | 0.50 &+ 0.03
1.23-1.25 0.625 £ 0.006 | 0.316-0.327 | 0.107 £ 0.006 | 0.50 & 0.03
1.25+£0.01 0.64+0.01 | 0.328+0.009 | 0.112 4+ 0.007

—~ N~
o T
~ —

Table 7: Critical exponents in fluids and antiferromagnets

1.40 £0.03 | 0.700-0.725 | 0.35+0.03 | —0.09— —0.012 | 0.54 +£0.10

Table 8: Ferromagnetic systems

belong to the same universality class.

Critical exponents from experiments. We have discussed the N-vector model in the ferromagnetic
language, even though most of our experimental knowledge comes from physical systems that are
non-magnetic, but belong to the universality class of the N-vector model. The case N = 0 describes
the statistical properties of long polymers, that is, long non-intersecting chains or self-avoiding
walks. The case N = 1 (Ising-like systems) describes liquid—vapour transitions in classical fluids,
critical binary fluids and uniaxial antiferromagnets. The helium superfluid transition corresponds
to N = 2. Finally, for N = 3, the experimental information comes from ferromagnetic systems.

Critical exponents and polymers. In the case of polymers, only the exponent v is easily accessible.
The best results are
v = 0.586 + 0.004 ,

in excellent agreement with the RG result.

Ising-like systems N = 1. Table 7 gives a survey of the experimental situation for critical binary
fluids (a), liquid—vapour transition in classical fluids (), and antiferromagnets (c). For binary
mixtures, we quote a weighted world average. In the case of the liquid—vapour transition, we quote
a range of experimental results rather than statistical errors for all exponents but v, the reason
being that the values depend much on the method of analysis of the experimental data. The
agreement with RG results is clearly impressive.

Helium superfluid transition, N = 2. The helium transition allows measurements very close to
T. and this explains the remarkably precise determination of the critical exponents o and v. The
order parameter, however, is not directly accessible in helium. Most recent reported values are

v =0.6705£0.0006, v =0.6708=+0.0004 and o = —0.01285 =+ 0.00038.

The agreement with RG values is quite remarkable but the precision of v is now a challenge to
field theory.

Ferromagnetic systems, N = 3. Finally, table 8 displays some results concerning magnetic systems.

Conclusion and prospects. If one takes into account all data (critical exponents, equation of state,
amplitude ratios,...) one is forced to conclude that the RG predictions are remarkably consistent
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Figure 2: A few seven-loop diagrams.

with the whole experimental and lattice information available. Considering the variety of experi-
mental situations, this is a spectacular confirmation of the RG ideas and the concept of universality.

The current effort goes in several directions. First, improve the precision of critical exponents,
in particular trying to complete the seven loop calculation in three dimensions, which is a very
demanding problem from the point of view of computer algebra and numerical integration: it
involves calculating about 3500 Feynman diagrams, each of them being given a priori by a 21-
dimensional integral (a few Feynman diagrams are displayed in figure 2). After a large number of
tricks have been used the number of integrations can be reduced (figure 3).

Critical exponents are only the simplest universal quantities, but many other universal quan-
tities are worth calculating, like the equation of state, in particular for N > 1 in 3 dimensions,
N =1 at higher orders in the ¢ expansion, or the two-point correlation function.

Then, other models with more than one coupling are also of interest, like the model with
cubic anisotropy, which has been investigated.

These efforts are paralleled by similar efforts using HT series and simulations.

Much interesting work has been done in recent years using the functional RG equations
expanded in the form of a derivative expansion. The main problem there is that it is difficult to go
beyond the simplest approximation, and thus difficult to assess the reliability of the results which
are obtained. In the future efforts to improve the approximation should be undertaken.
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Figure 3: Number of remaining integrations after many tricks have been used (B.G. Nickel,
R. Guida, P. Ribeca).



