

CERN – Beams Department

- Introduction and key parameters
- The injectors
- Milestones
- Beam commissioning and beam physics
- Ions

Acknowledgements: G. Arduini, R. Assmann, R. Bailey, O. Brüning, L. Evans, W. Herr, J. Jowett, M. Lamont, E. Métral, K.-H. Mess, G. Rumolo, E. Todesco, R. Tomás, J. Wenninger, F. Zimmermann *et al.*

Introduction

- Large Electron Positron (LEP) collider:
 - It was essentially a Z₀ factory.
 - It allowed accurate measurements of standard model features.
 - Unfortunately, it did not find the Higgs!
- The characteristics of the next collider (in the same LEP tunnel):
 - Higher energy then LEP.
 - This imposes to switch to hadrons due to synchrotron radiation.
 - This imposes to use superconducting magnets due to the fixed tunnel radius.
 - High luminosity
 - This imposes to have p-p collisions. The generation of p-bar is very inefficient and it is difficult to produce enough intensity.
 - This, in turn, imposes to have two separate rings.
- In summary:

LHC is a two-ring, high-energy, high-luminosity, p-p collider.

Les Houches - Ecole d'été de Physique Théorique

 Power radiated by an accelerating particle (in our case on a curved trajectory)

$$P_{\perp} = \frac{q^2 c \beta^4 E^4}{6 \pi \varepsilon_0 \rho^2 E_0^4}$$

Energy radiated in one turn

$$U_{0} = \frac{q^{2} \beta^{3} E^{4}}{3 \varepsilon_{0} E_{0}^{4} \rho}$$

Average power radiated over one turn

$$P_{av} = \frac{U_0}{T_0}$$

Les Houches - Ecole d'été de Physique Théorique

 Comparison between the energy radiated per turn in LEP and LHC.

	LEP	LHC	
ho [m]	3096.175	2803.95	
<i>p</i> ₀ [GeV/c]	104	7000	
U_0 [GeV]	3.3	6.7 10 -6	

- In LEP the RF system compensated for an energy loss of ~3% of the total beam energy per turn!
- In LHC the RF should compensate for an energy loss of 10⁻⁷% of the total beam energy per turn!

The total average power radiation (per beam) is 3.9 kW.

Magnetic field

• The magnetic field required to keep a particle of momentum p_0 on a trajectory of radius ρ is given by

	LEP	LHC
ho [m]	3096.175	2803.95
<i>p</i> ₀ [GeV/c]	104	7000
<i>B</i> [T]	0.11	8.33

- The magnetic field chosen is the current technological limit.
- The slightly different *ρ* for LEP and LHC is due to some slight changes in the ring geometry.

Les Houches - Ecole d'été de Physique Théorique Massimo Gi

Luminosity - I

• The Luminosity depends only on beam parameters $N_{h}^{2} M f_{rm} \gamma_{r} =$

$$L = \frac{I v_b I M J_{rev} \gamma_r}{4 \pi \varepsilon_n \beta^*} F$$

 Unfortunately, head-on collisions are not always possible. In this case a geometrical reduction factor F has to be taken into account

$$F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

Les Houches - Ecole d'été de Physique Théorique Mas

Luminosity - II

- Unfortunately, the beam size is changing along the bunch (hourglass effect). This introduces an additional factor of luminosity reduction. This effect is not relevant for the LHC.
- Peak luminosity for ATLAS and CMS in the LHC is 1×10³⁴cm⁻²s⁻¹.

• Expected LHC integrated luminosity per year (~10⁷ s) is 80-120 fb⁻¹. $L_{\text{int}} = \int_{T}^{T} L(t) dt$

Les Houches - Ecole d'été de Physique Théorique

-	-	-			
		Injection	Collision		
Beam Data					
Proton energy	[GeV]	450	7000		
Relativistic gamma		479. <u>6</u>	<u>74</u> 61		
Number of particles per bunch		1.15×10^{11}			
Number of bunches		2	808		
Longitudinal emittance (4σ)	[eVs]	1.0	2.5^{a}		
Transverse normalized emittance	$[\mu \mathbf{m} \operatorname{rad}]$	3.5^{b}	3.75		
Circulating beam current	[A]	0.582			
Stored energy per beam	[MJ]	23.3	362		
Peak Luminosity Related Data					
RMS bunch length ^c	cm	11.24	7.55		
RMS beam size at the IP1 and IP5 d	μ m	375.2	16.7		
RMS beam size at the IP2 and $IP8^e$	μ m	279.6	70.9		
Geometric luminosity reduction factor F^{f}		-	0.836		
Peak luminosity in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	1.0×10^{34}		
Peak luminosity per bunch crossing in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	3.56×10^{30}		
Les Houches - Ecole d'été de Physique Théorique Massimo Giovannozzi - CERN			8		

Trip of the LHC proton beam along the CERN injectors' chain

Métral

ய்

Courtesy

Some features: PS-Booster

Some features: PS-Booster

Space charge - II

Les Houches - Ecole d'été de Physique Théorique

Space charge - III

Les Houches - Ecole d'été de Physique Théorique

Space charge: summary

- Space charge introduces:
 - Tune shift
 - tune spread
- Interaction with resonances might induce:
 - Emittance growth -> loss of brightness
 - Losses
- LHC beam exceeds brightness limits in injectors. A number of improvements/beam manipulations are needed:
 - Double-batch injection in PS -> alleviates PSB space charge
 - Increase of PSB extraction energy -> alleviates PS space charge
 - Longitudinal bunch splitting in PS-> reduces longitudinal emittance

Nominal LHC beam in PS

Les Houches - Ecole d'été de Physique Théorique

Triple bunch splitting

Double bunch splitting

Courtesy S. Hancock

The stable fixed point bifurcates and two stable ones are generated.

Massimo Giovannozz

Les Houches - Ecole d'été de Physique Théorique

- Gradually increase performance in steps to allow for periods of stable beams where machine performance, reproducibility, and stability is monitored.
- Use bunch trains in the process of increasing performance: once you mastered the physics of one train, the addition of more trains does not bring new physics!

Milestones - I

2008

- Accelerator complete
- Ring cold and under vacuum
- September 10th 2008
 - First beams around
- September 19th 2008
 - The incident

Initial threading: alignment might not be perfect -> aperture issues, magnetic feed down effects, etc. In the end everything went very fast!

Closing the first turn

Les Houcnes - Ecole d'ete de Physique I neorique

RF still OFF

First RF setting up

Les Houches - Ecole (

Optics measurements

With the data cumulated in few hours of run in 2008 it was possible to detect a wrong cabling of a quadrupole! Optics almost in tolerance!

꼬

ma

G

The accident: 19/09/08

Les Houches - Ecole d'été de Physique Théorique

Milestones - II

2008 – 2009

- 14 months of major repairs and consolidation
- New Quench Protection System for online monitoring and protection of all joints.
- However: uncertainties about the splice quality suggested to limit beam energy to 3.5 TeV

Milestones - III

- November 20th 2009
 - First beams around again
- November 29th 2009
 - Both beams accelerated to 1.18 TeV simultaneously
- December 8th 2009
 - 2x2 accelerated to 1.18 TeV
 - First collisions seen before beam lost!
- December 14th 2009
 - Stable 2x2 at 1.18 TeV
 - Collisions in all four experiments with ≈ 10¹⁰ ppb

Back again on 30/11/09

Milestones - IV

- February 27th 2010
 - First injection
- February 29th 2010
 - Both beams circulating
- March 5th 2010
 - Two-beam operation at L 10²⁷ cm⁻² s⁻¹
- March 15th 18th
 - Technical stop to prepare main dipoles for 3.5 TeV operation
- March 30th
 - Collisions in all four experiments at 3.5 TeV

First collisions at 3.5 TeV on 30/03/10

36

- Main goal for 2010: commissioning of peak luminosity of 10³² cm⁻² s⁻¹
 - Not achievable with 2×10¹⁰ bunch intensity
 - Requires several hundred bunches.
 - Implies operation with stored beam energies above 30 MJ
- NB: Tevatron operated at 2 MJ and previous LHC operation was at 170 kJ!

First two periods - I

Event	TeV	OEF	β*	Nb	lb	ltot	MJ	Nc	Peak luminosity	Date
1	3.5	0.2	10	2	1.00E+10	2.0E+10	0.0113	1	8.9E+26	30 March 2010
2	3.5	0.2	10	2	2.00E+10	4.0E+10	0.0226	1	3.6E+27	02 April 2010
3	3.5	0.2	2	2	2.00E+10	4.0E+10	0.0226	1	1.8E+28	10 April 2010
4	3.5	0.2	2	4	2.00E+10	8.0E+10	0.0452	2	3.6E+28	19 April 2010
5	3.5	0.2	2	6	2.00E+10	1.2E+11	0.0678	4	7.1E+28	15 May 2010
6	3.5	0.2	2	13	2.60E+10	3.4E+11	0.1910	8	2.4E+29	22 May 2010
7	3.5	0.2	3.5	3	1.10E+11	3.3E+11	0.1865	2	6.1E+29	26 June 2010
8	3.5	0.2	3.5	6	1.00E+11	6.0E+11	0.3391	4	1.0E+30	02 July 2010
9	3.5	0.2	3.5	8	9.00E+10	7.2E+11	0.4069	6	1.2E+30	12 July 2010
10	3.5	0.2	3.5	13	9.00E+10	1.2E+12	0.6612	8	1.6E+30	15 July 2010
11	3.5	0.2	3.5	25	1.00E+11	2.5E+12	1.4129	16	4.1E+30	30 July 2010
12	3.5	0.2	3.5	48	1.00E+11	4.8E+12	2.7127	36	9.1E+30	19 August 2010

Les Houches - Ecole d'été de Physique Théorique

Bunch trains - I

Parameters and Conditions

- Nominal bunch intensity 1.1 10¹¹
- smaller than nominal emittances: 2.5-3 μm
- Stick to $\beta^* = 3.5$ m in all IPs with crossing angle
- Go to 150 ns bunch spacing
- Commission faster ramp (thus reducing ramp time from 46 min to 16 min).

Bunch trains - II

Vb	lb	MJ	Nc	Peak luminosity (design parameters)	Maximum luminosity (measured)	Beam-beam shift from measured Lumi	Date
56	1.10E+11	3.5	47	1.203E+31	2.000E+31	0.0157	23/09/2010
104	1.10E+11	6.5	93	2.381E+31	3.500E+31	0.0139	25/09/2010
152	1.10E+11	9.4	140	3.584E+31	5.000E+31	0.0132	29/09/2010
204	1.10E+11	12.7	186	4.762E+31	7.000E+31	0.0139	04/10/2010
248	1.10E+11	15.4	233	5.965E+31	1.030E+32	0.0164	14/10/2010
312	1.10E+11	19.4	295	7.552E+31	1.500E+32	0.0188	16/10/2010
		Lj					

Bunch trains - III

Intermezzo

Injectors:

- Outstanding performance: delivered lowerthan-nominal (about 2.5 µm) emittance and larger than nominal bunch intensity!
- LHC

Thanks (also) to sorting of

quadrupoles

and

- Mechanical aperture: better than anticipated main dipoles
- Optics: in good control
- Beam-beam: operated with a factor of two larger beam-beam parameter!
- Collimation performance: up to spec.

M. Aiba, R. Calaga, R. Miyamoto, F. Schmidt, R. Tomás, G. Vanbavinckhove

Superconducting magnets' model

Systematic field errors in dipoles yers -> unavoidable

45

Setting generation

- A good magnetic model is needed
- The large set of magnetic measurements made during production is analysed and fits are computed
- Example: FiDeL decay component, three parameters

Beam-beam – I

In case the collisions would occur head-on, plenty of parasitic collisions would take place in the common vacuum pipe.

A crossing angle is used to separate bunches after the first wanted collision.

Even in this case, the various bunches are coupled together via Coulomb 285 μ rad interaction. The crossing angle should provide enough separation for making the parasitic collisions harmless.

Beam-beam - II

- Unfortunately, the crossing angle cannot cope with additional effects, the so-called PACMAN bunches.
- The LHC filling pattern is not continuous, but gaps have to be included.
- Hence three types of collisions can occur:
 - Bunch-bunch
 - Bunch-hole
 - Hole-hole

Alternating the Lor crossing plane mitigates the PACMAN effect!

E Long-range Courtesy W. Herr

Les Houches - Ecole d'été de Physique Théorique

Beam-beam - III

Current situation - I

- Goal for 2011: 1 fb⁻¹ (conservative). It requires:
 - moving to 50 ns bunch spacing
 - reducing β^*
 - further reducing emittance to about 2 μ m
 - Increasing intensity
 - fighting against:
 - Electron-cloud
 - UFO
 - Single Event Upset

Increasing intensity	Energy [TeV]	3.5	
fighting against:	beta* [m]	1.5, 10.0, 1.5, 3.0 m	
Electron-cloudUFO	Emittance [µm]	~2.5 – 2.8	
	Bunch intensity	1.2e11	
 Single Event Upset 	Number of bunches	1380 1317 collisions/IP	
	Stored energy [MJ]	up to 90	
	Peak luminosity [cm ⁻² s ⁻¹]	up to 2×10 ³³	
Les Houches - Ecole d'été de Physique Thé	Beam-beam tune shift	0.015 - 0.02 52	

Current situation - II

Electron-cloud - I

 Schematic of electron-cloud build up in the LHC beam pipe during multiple bunch passages, via photo-emission (due to synchrotron radiation) and secondary emission.

Electron-cloud - II

Electron density due to two batch of 72 bunches (25 ns spacing)

Electron-cloud - III

Schematic of the singlebunch (coherent) instability induced by an electron cloud.

How can we cure such phenomenon?

The phenomenon depends strongly on the bunch spacing.

25 ns is the worst case,50 ns is much better!

Electron-cloud - IV

- Four approaches are used to suppress/alleviate electron-cloud build-up:
 - A saw tooth chamber in the arcs (a series of 30-μm high steps spaced at a distance of 500 μm in the longitudinal direction) to reduce the photon reflectivity.
 - Shielding the pumping holes inside the arc beam screen so as to prevent multipacting electrons from reaching the cold bore of the dipole magnet.
 - Coating the warm regions by a special Non Evaporable Getter (NEG) material, TiZrV, with low secondary emission yield.
 - Conditioning of the arc chamber surface by the cloud itself (beam scrubbing), which will ultimately provide a low secondary emission yield.

Electron-cloud - V

A fifth method to alleviate electron-cloud: install solenoids in the transition regions.

10.411

Courtesy V. Baglin

Electron-cloud - VI

Les Houches - Ecole d'été de Physique Théorique

Massimo Giovannozzi -

Electron-cloud - VIII

Les Houches - Ecole d'été de Physique Théorique

UFO: unidentified falling objects - I

- **18 beam dumps** due to UFOs in 2010.
- UFOs are fast beam losses (loss duration some 10 turns)
- UFOs occur often at unconventional loss locations (e.g. in the arc)
- 11 beam dumps due to UFOs in 2011 (on 14/06/11)
 - 8 in injection region
 - 1 dump at 450 GeV.

Les Houches - Ecole d'été de Physique Théorique

UFO: unidentified falling objects - II

UFO rate in 2011: on average 10 UFOs/h!

Les Houches - Ecole d'été de Physique Théorique

The UFOs are distributed all around the machine.

Mainly UFOs around injection kickers

Candidates: Dust particles falling onto the beam could explain the observations.

The particle would charge up when falling.

Depending on the mass it could move through the beam or be repelled. Simulations are in progress...

Les Houches - Ecole d'été de Physique Théorique

UFO: unidentified falling objects - IV

LHC Ion Injector Chain

- ECR ion source (2005)
 - Provide highest intensity of Pb²⁹⁺
- RFQ + Linac 3
 - Adapt to LEIR injection energy
 - strip to Pb⁵⁴⁺
- LEIR (2005)
 - Accumulate and cool Linac3 beam
 - Prepare bunch structure for PS
- PS (2006)
 - Define LHC bunch structure
 - Strip to Pb⁸²⁺
- SPS (2007)
 - Define filling scheme of LHC

Les Houches - Ecole d'été de Physique Théorique

LEIR (Low-Energy Ion Ring)

15

0.0

3500

2500

3000

EL MT10

EI.0FN0

DH5721

Ouadrupole

triplet

Ejection

- Prepares beams for LHC using electron cooling
- circumference 25 π m (1/8 PS)
- Multiturn injection into horizontal+vertical+longitudinal phase planes

3500

3000

2500

2000

1500

1000

500

0

500

1000

1500

2000

Z

injection

LHC Pb Injector Chain

Design Parameters for luminosity 10²⁷ cm⁻² s⁻¹

	ECR Source-	→Linac 3	4 LEIR	→ PS <u>13.12.8</u>	SPS 12	
Output energy	2.5 KeV/n	4.2 MeV/n	72.2 MeV/n	5.9 GeV/n	177 GeV/n	2.76 TeV/n
²⁰⁸ Pb charge state	27+	27+ → 54+	54+	54+ → 82+	82+	82+
Output Bp [Tm]		2.28 → 1.14	4.80	86.7 →57.1	1500	23350
bunches/ring		-	2 (1/8 of PS)	$4 (or 4x2)^4$	52,48,32	592
ions/pulse	9 10 ⁹	1.15 10 ⁹ ¹)	9 10 ⁸	4.8 10 ⁸	\leq 4.7 10 ⁹	4.1 10 ¹⁰
ions/LHC bunch	9 10 ⁹	1.15 109	2.25 10 ⁸	1.2 10 ⁸	9 10 ⁷	7 107
bunch spacing [ns]				100 (or 95/5) ⁴	100	100
ϵ^* (nor. rms) [µm] ²	~0.10	0.25	0.7	1.0	1.2	1.5
Repetition time [s]	0.2-0.4	0.2-0.4	3.6	3.6	~50	~10'fill/ring
$\boldsymbol{\epsilon}_{long}$ per LHC bunch ³			0.025 eVs/n	0.05	0.4	1 eVs/n
total bunch length [ns]			200	3.9	1.65	1

 $^{1}50 \text{ e}\mu\text{A}_{e} \ge 200 \text{ }\mu\text{s}$ Linac3 output after stripping

² Same physical emittance as protons. The normalised emittance is a relativistic invariant

Stripping foil

Nominal Ion Bunch Pattern in the LHC

LHC (1-RING) = 88.924 µs

Le

Design Parameters for Pb-Pb

Parameter	Units	Early Beam	Nominal			
Energy per nucleon	TeV	2.76	2.76			
Initial ion-ion Luminosity L ₀	cm ⁻² s ⁻¹	~ 5 ×10 ²⁵	1 ×10 27			
No. bunches, $k_{\rm b}$		62	592			
Minimum bunch spacing	ns	1350	99.8			
β*	m	1.0	0.5 /0.55			
Number of Pb ions/bunch		7 ×10 ⁷	7 ×10 ⁷			
Transv. norm. RMS emittance	μm	1.5	1.5			
Longitudinal emittance	eV s/charge	2.5	2.5			
Luminosity half-life (1,2,3 expts.)	h	14, 7.5, 5.5	8, 4.5, 3			
At full energy, luminosity lifetim is determined mainly by collisio ("burn-off" from ultraperipheral electromagnetic interactions)	Do something like this at reduced energy in 2010	Probably unattainable without "cryo- collimators" at				

Les Houches - Ecole d'été de Physique Théorique

Pair Production in Heavy Ion Collisions

Racah formula (1937) for free pair production in heavy-ion collisions

$$Z_1 + Z_2 \rightarrow Z_1 + e^- + e^+ + Z_2$$

$$\sigma_{\rm PP} = \frac{Z_1^2 Z_2^2 \alpha^2 r_e^2}{\pi} \left[\frac{224}{27} \log \left(2\gamma_{CM} \right)^3 + \cdots \right] \approx \begin{cases} 1.7 \times 10^4 \,\text{b for Au-Au RHIC} \\ 2. \times 10^4 \,\text{b for Pb-Pb LHC} \end{cases}$$

Cross section for Bound-Free Pair Production (BFPP) (several authors)

$$Z_1 + Z_2 \rightarrow \left(Z_1 + e^{-}\right)_{1s_{1/2},\dots} + e^{+} + Z_2$$

has very different dependence on ion charges (and energy)

$$\sigma_{\rm PP} \propto Z_1^{5} Z_2^{2} [A \log \gamma_{CM} + B]$$

$$\propto Z^7 [A \log \gamma_{CM} + B] \text{ for } Z_1 = Z_2$$

$$\approx \begin{cases} 0.2 \text{ b for Cu-Cu RHIC} \\ 114 \text{ b for Au-Au RHIC} \end{cases}$$

Les Houches
Luminosity Limit from bound-free pair production

 $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \xrightarrow{\gamma} ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + e^{+}$

Secondary Pb⁸¹⁺ beam (25 W at design luminosity) emerging from IP and impinging on beam screen. Hadronic shower into superconducting coils can quench

Distinct EMD process (similar rates) does not form spot on beam pipe

208
 Pb⁸²⁺ + 208 Pb⁸²⁺ $\xrightarrow{\text{GDR}}$ \rightarrow^{208} Pb⁸²⁺ + 207 Pb⁸²⁺ + n

Les Houches - Ecole d'été de Physique Théorique

LHC proton collimation principle:

- Halo protons encounter primary collimator and are diffractively scattered to larger betatron oscillation amplitude, cleaned by secondary collimators
- Collimation of heavy ions is very different!
 - Nuclear interactions (hadronic fragmentation, EM dissociation) in primary collimator material.
 - Staged collimation principle does not work.
 - Single stage system, reduced collimation efficiency

Other limits on performance

- Total bunch charge is near lower limits of visibility on beam instrumentation, particularly the beam position monitors
- Intra-beam scattering (IBS)
 - Multiple Coulomb scattering within bunches is significant
- Vacuum effects (losses, emittance growth, electron cloud ...) should not be significant

Commissioning strategy for Pb

- Use the working p-p configuration
 - Magnetically identical : Transfer, injection, ramp, orbits, optics, tunes, chromaticity...
 - Same beam sizes : aperture, collimators, …
 - Collimation and machine protection to be checked
 - Reduce crossing angle to zero in CMS and ATLAS.
 - Real zero crossing angle in ALICE
- Differences in basic setup
 - RF frequency (Pb mass), energy matching to SPS

Ion Commissioning

Courtesy J. Jowett

& Capture

Les Houches - Ecole d'été de Physique Théorique

& Capture **Collimation Checks**

Les Houches - Ecole d'été de Physique Théorique

Massimo Giasaburzen SEBUing).

78

Beam envelopes around ALICE experiment

Collision conditions for Pb- $(7\sigma_x, 7\sigma_y, 5\sigma_t)$ envelope for $\epsilon_x = 1.00529 \times 10^{-9}$ m, $\epsilon_y = 1.00529 \times 10^{-9}$ m, $\sigma_y = 0.0001137$ x±m Pb in 2010. 0.01 0.00 -0.01How sizes of beam bunches are squeezed by focusing magnets. 0.01 100 y/m 0.00 50 **Courtesy J. Jowett** 0 -0.01 Zero crossing angle at IP (external crossing - 50 angle compensates ALICE spectrometer magnet bump). - 100 Beam pipe is about twice transverse size of Massimo Giovannozzi - CERN 79 Les Houches - Ecole d'été de Physique Théorique 79

Bound-free pair production

Perfect correlation of Beam Loss Monitor at Q11 with Iuminosity

Les Houches - Ecole d'été de Physique T

Spectacular collisions

82

Next steps for Pb-Pb physics run

- 2011: continue at beam energy 1.38 A TeV
 - increase number of bunches
 - Reduce β* (the commissioning of the squeeze will be done at the beginning of the Pb run)
 - Perform tests in view of p-Pb collisions in 2012.

Spare slides

Les Houches - Ecole d'été de Physique Théorique

Massimo Giovannozzi - CERN

84

LHC layout - I

- The LHC machine has an height-fold symmetry.
- Eight arcs (arc is the curved periodic part of the machine).
- Sixteen dispersion suppressors to match the arc with the straight sections (geometry and optics).
- Eight long straight sections (also called insertion regions).

LHC layout - II

Les Houches - Ecole d'été de Physique Théorique

- ATLAS: High luminosity experiment. Search for the Higgs boson(s).
- A Large Ion Collider Experiment (ALICE): Ions. New phase of matter expected (Quark-Gluon Plasma).
 - Compact Muon Solenoid (CMS): High luminosity experiment. Search for the Higgs boson(s). In this insertion is also located TOTEM for the measurement of the total protonproton cross-section and study elastic scattering and diffractive physics.
 - LHCb:Beautyquarkphysicsfor precise measurementsof CP violation and rare decays.

beam

waist

LHC layout - III

silver Six dipoles are located in each cell. Each dipole comprises correctors: D, T

MBB

MBA

mid-cell silver

Sextupoles

MBB

ISCB

Octupoles and decapoles

MCDO

Two quadrupoles are located in each cell. Each quadrupole is equipped with:

- **Beam Position Monitor**
- Dipole corrector (for closed orbit)
- Sextupoles (for chromaticity)

LHC layout - IV

Separation/ricombination dipole

Low-beta quadrupoles

Interaction point

High luminosity insertions

Les Houches - Ecole d'été de Physique Théorique

LHC layout - V

Les Houches - Ecole d'été de Physique Théorique

β (m), β, (m)

Les Houches - Ecole d'été de Physique Théorique

Massimo Giovannozzi - CERN

at

LHC layout - VII

In case the collisions would occur head-on, plenty of parasitic collisions would take place in the common vacuum pipe.

A crossing angle is used to separate bunches after the first wanted collision.

Even in this case, the various bunches are coupled together via Coulomb 285 μrad interaction. The crossing angle should provide enough separation for making the parasitic collisions harmless.

LHC layout - VIII

- Unfortunately, the crossing angle cannot cope with additional effects, the so-called PACMAN bunches.
- The LHC filling pattern is not continuous, but gaps have to be included.
- Hence three types of collisions can occur:
 - Bunch-bunch
 - Bunch-hole
 - Hole-hole

Alternating the Long-range crossing plane mitigates the PACMAN effect!

Les Houches - Ecole d'été de Physique Théorique

Courtesy W. Herr - CERN Massimo Giovannozzi - CERN

Head-on

LHC layout - IX

3D view of the crossing in IP1.

Les Houches - Ecole d'été de Physique Théorique

IR4: RF and instrumentation

f: 400 MHz

Harmonic number: 35640

Voltage: 8/16 MV

Energy gain/turn: 485 keV

Synchrotron freq.: 63.7/23 Hz

Superconducting cavities

Les Houches - Ecole d'été de Physique Théorique

IR6: Beam dumping system[®]

- The beam dumping system will fast-extract the beam in a loss-free way from each ring of the collider and transport it to an external absorber.
- Given the destructive power of the LHC beam, the dumping system must meet extremely high reliability criteria, which condition the overall and detailed design.

Les Houches - Ecole d'été de Physique Théorique

- The transverse energy density of the nominal beam is 1000 times higher than previously achieved in proton storage rings (1 GJ/mm²).
- Tiny fractions of the stored beam suffice to quench a superconducting LHC magnet or even to destroy parts of the accelerator.
- Note that a 10⁻⁵ fraction of the nominal LHC beam will damage copper.
- The energy in the two LHC beams is sufficient to melt almost 1 ton of copper!
- The tolerable inefficiencies of the collimation system are about 10⁻³ at collision.

Courtesy R. Assmann - CERN

Courtesy R. Assmann - CERN

IR3/7: Collimation system -

- There is tradeoff between robustness and impedance (interaction with the electromagnetic fields generated by the bunches) of the collimators, namely:
 - Low Z materials: high robustness, but low conductivity. Hence they feature high impedance. They will limit the value of the beam size at the interaction region.
 - High Z materials: low impedance, but low robustness. They will limit the total current in the ring.
- In both cases the luminosity will be limited to a smaller value than nominal.
- Staged approach is applied.
 - Stage 1 collimation system will be implemented with low Z materials.
 - Stage 2 aim at removing the limitations. It requires heavy R&D programme.

Les Houches - Ecole d'été de Physique Théorique