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• GR collapse criteria: a brief review.
• Transplanckian energy collisions of particles and strings:  
• The small-angle regime: deflection & tidal forces
• The stringy regime & precocious BH behaviour
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• Transplanckian energy collisions of particles and strings: 
• The large-angle/collapse regime

• High-energy string-brane collisions: an easier problem?
•  Outlook, conclusions.
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Particle-particle scattering as b->R

(ACV, hep/th-0712.1209, MO, VW, CC...’08)

From small to large-angle inelastic 
scattering... all the way to grav.al collapse? 



Power counting for connected trees:

Classical corrections are related to “tree diagrams”

Summing tree diagrams => solving a classical field theory. 
Q: Which is the effective field theory for TP-scattering?

Acl(E, b) ∼ G2n−1sn ∼ Gs R2(n−1) → Gs (R/b)2(n−1)



Next to leading order: the H diagram

One of the produced graviton’s polarizations (“TT”) is IR-safe 
the other (“LT”) is not

∼ G3s2 = Gs G2s = GsR2 → Gs (R/b)2



NNL-order

∼ G5s3 = Gs G4s2 = GsR4 → Gs (R/b)4



Reduced effective action & field equations

 There is a D=4 effective action generating the leading 
diagrams (Lipatov, ACV ‘93). Too hard to solve!
 After (approximately) factoring out the longitudinal 
dynamics: a D=2 effective action containing 4 fields: 
the ++ and -- components of the metric, sourced by the 
EMT of the two fast particles; a complex field φ 
representing physical gravitons. One polarization is 
affected by IR problems and is neglected...
The semiclassical approximation amounts to
solving the eom and to computing the classical action on 
the solution. Still too hard for analytic study... 



Numerical solutions 
 (G. Marchesini & E. Onofri, 0803.0250)

Solved directly PDEs by FFT methods w/ Matlab
Result: real, regular solutions only exist for

Compare with EG’s CTS lower bound on bc

b > bc ∼ 2.28R

bc > 0.80R

bc is a factor ~ 2.85 above CTS’s lower bound 

For analytic study we turn to a simpler problem 



 A simpler case: 

 Axisymmetric beam-beam collisions

(ACV ‘07, J.Wosiek & GV ’08) 

R1(r)=4GE1(r) R2 (r)=4GE2(r)r



 A simpler, yet rich, problem: 

1.The sources contain several parameters & we can 
look for critical surfaces in their multi-dim.al space

2.The CTS criterion is simple (see below)

3. Numerical results are coming in (see CP, 2009) 

4.“Bad” polarization not produced

5. Last but not least: PDEs become ODEs

      

Main Results 



 ACV vs. CTS 
  Criterion for existence of CTS (KV): if there exists an rc s.t.

with initial conditions
ρ(0) = 0 , σ(0) = σ0, , (12)

and to find a σ0 such that σ(Max(L1, L2)) = 1. For sufficiently large Ri/Li one expects
to find that the latter condition cannot be imposed on real-valued solutions.

2.2 MCTS-criteria and critical points in the ACV equations: a

general result

In the general axisymmetric case, one can construct explicitly a MCTS [6] provided that
an rc exists such that (see eq. (4.4) of [6] for D = 4):

R1(rc)R2(rc) = r2
c (13)

We will now argue that such a condition implies the absence of real solutions to eqns.
(8) with ρ(0) = 0. Proof: Let us first note that, because of (11) and the fact that the Ri

are non-decreasing functions of r, the quantity σ, as well as ρ̇, are increasing functions of
t. Therefore, for any t:

σ(t) ≤ σ(∞) = 1 , i.e. ρ̇(t) ≤

√

1 − R1(t)R2(t)

ρ(t)
(14)

Assuming that the KV criterion (13) can be met let us write:

ρ(0) = ρ(tc) −
∫ tc

0

dt′ρ̇(t′) > ρ(tc) − tcρ̇(tc) > ρ(tc) − tc

√

1 − tc
ρ(tc)

(15)

where we have used eqs. (13) and (14). At this point it is easy to check that the rhs of
(15) cannot vanish for any (positive) value of ρ(tc) thus proving that we cannot impose
the condition ρ(0) = 0 when the criterion (13) is satisfied.

2.3 Momentum space formulation

In order to go to momentum space we start from eq. (5.2) of ACV generalized to extended
sources:

πA

Gs
=

∫

d2k

k2
[β1(k)s2(−k) + β2(k)s1(−k) − β1(k)β2(−k)]

− (πR)2

2

∫

d2
k

[

1

2
h(k)h(−k) − h(−k)H(k)

]

(16)

where the FT of the sources are normalized by requiring si(0) = 1 and

β1(k) =
k2a(k)

2
; β2(k) =

k2ā(k)

2
, h(k) = −k2φ(k) (17)

5

we can construct a CTS and therefore a BH must form.

Theorem (VW08):  whenever the KV criterion holds the 
ACV field equations do not admit regular real solutions. 
Thus:

KV criterion ==> ACV criterion
but not necessarily the other way around!
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A sufficient criterion for ACV slns. 
(P.-L. Lions, private comm.)

 the ACV eqns do admit regular, real solutions. 

If, for all r,
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collapse
if touched

dispersion if below

To summarize

clearly, there is room for improvement...



Can be dealt with analytically: 

Examples: 1. Particle-scattering off a ring

b

b2 >
3
√

3
2

R2 ≡ b2
c

=> cubic equation. Has
real solutions iff

(b/R)c ~ 1.61
CTS: (b/R)c > 1 

2. Two homogeneous beams of radius L
�

R

L

�

cr

∼ 0.47
�

R

L

�

cr

< 1.0vs. CTS

 3. Two Gaussian-shaped beams of width L
 Lc is a factor ~ 2.70 above CTS’s lower bound 



In 0908.1780 Choptuik & Pretorius analyzed a “similar” 
situation numerically (relativistic central collision of two 
solitons of fixed mass and transverse size). 
BH formation occurs at a critical γc (i.e. Rc)  which is a 
factor 2-3  below the naive CTS value (but still in the 
relativistic regime)

*************

An amusing coincidence?



Conclusions on string-string collisions
The above results are encouraging but real control over 
the different approximations is lacking, in particular on 
the freezing of longitudinal dynamics.
This is probably at the origin of some puzzles we find in 
connection with gravitational radiation at b >> R.
Another big question is the apparent violation of 
unitarity below bc. A new elastic-unitarity deficit 
appears which, unlike the previous ones (related to the 
opening of inelastic channels), has no simple physical 
interpretation (BH formation? Too good to be true!).
Recent work by Ciafaloni, Colferai & Falcioni (1106.5628) 
suggests abandoning the constraint of regularity of the 
solution at r=0. But then the action blows up below bc ...



HE string-brane collisions:
an even simpler problem?



b

θ

(9-p)-dim. transverse space

stack of N Dp-branes

b=(8-p)-vector

incoming closed string

outgoing closed string

String scattering off a stack of N Dp-branes
G. D’Apollonio, P. Di Vecchia, R. Russo & G.V.

(1008.4773 and in progress)
W. Black and C. Monni, 1107.4321

(M. Bianchi et al, to appear)



•We are not assuming any metric: calculations are done in 
flat spacetime (& in the presence of N-Dp-branes 
introduced via the boundary state formalism)

•The relevant scales are now:
• The (orbital) angular momentum, J = b E, of the incoming 
string with J >> h (justifying a semiclassical treatment);
• The scale Rp of the (expected) emerging geometry;  
• The string length ls. Ratio Rp/ls can be tuned by varying 
gsN (with gs << 1, N >> 1).

• These 3 length scales lead to a phase diagram resembling 
that of ACV (w/ collapse --> capture)

Comments



At very high E, gravity dominates. Yet we can neglect closed-
string loops below an Emax that goes to infinity with N.

forces exerted by an AS metric on extended objects [18]) while others (like the possible

absorption of the elastic channel due to s-channel formation of heavy strings) do not.

On the whole, a picture emerges whereby string-size effects prevent gravitational collapse

when the Schwarzschild radius of the would-be back hole is smaller than the string length

parameter ls while the approach to gravitational collapse is characterized, at the quantum

level, by a rapid increase in multiplicity and by the corresponding softening of the final

quanta [17, 11, 14]. The transition to the black-hole formation regime, which resembles a

phase transition in general relativity, may turn out to be smoother in the quantum case.

In this paper we shall apply the approach developed by ACV to the study of a different

process, the scattering of a closed string from a stack of N parallel Dp-branes in Minkowski

spacetime. The D-branes are massive solitons for which a microscopic string description is

available [20]. This important property makes the string-brane system an ideal framework

to understand the way in which string scattering amplitudes evaluated in flat space can

provide information about the dynamics in an effective curved spacetime2. Indeed, from

the point of view of perturbative string theory the presence of a collection of Dp-branes is

entirely taken into account by the addition of an open string sector with suitable boundary

conditions and does not require any modification of the background. On the other hand,

from the point of view of the low-energy effective field theory the Dp-branes are a massive

charged state and their presence will necessarily result in a curved spacetime.

The backreaction of the D-brane system on spacetime is expected to be well-described

by the extremal p-branes [21], which are BPS solutions of the supergravity equations of

motion with a non-trivial metric, dilaton and Ramond-Ramond (p + 1)-form potential.

For p < 7 and in the string frame the extremal p-brane solution is given by

ds
2

=
1�
H(r)

�
ηαβdx

α
dx

β
�

+
�

H(r)(δijdx
i
dx

j
) , (1.1)

e
φ(x)

= g [H(r)]
3−p
4 , C01...p(x) =

1

H(r)
− 1 , (1.2)

where the indices α, β, . . . run along the Dp-brane world-volume, the indices i, j, . . . indi-

cate the transverse directions and r
2 = δijx

i
x

j. Finally

H(r) = 1 +

�
Rp

r

�7−p

, R
7−p
p =

gN(2π
√

α�)7−p

(7− p)Ω8−p
, Ωn =

2π
n+1

2

Γ(
n+1

2 )
, (1.3)

where g is the dimensionless string coupling constant, N the number of Dp-branes and

Ωn the volume of the n-dimensional unit sphere. This effective description should be

reliable as long as the curvature is small in string units. Evidence that N parallel Dp-

branes correspond to the curved spacetime given in Eqs. (1.1) and (1.2) was provided

in [22, 23, 24] where it was shown that the large distance behaviour of the classical

solutions can be recovered from string-brane scattering amplitudes at tree level.

2There is an analogue of this in quantum field theory: as shown long ago by Duff[19], a class of tree
diagrams for the scattering of a test particle from a classical source reproduces the physical effects of the
effective Schwarzshild metric generated by the source. The difference is that, in string theory, we have a
microscopic quantum description of the source itself and of its couplings to the test particles.
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Figure 1: Various qualitative regimes in the scattering of a closed string of fixed high

energy off a stack of Dp-branes as a function, in a log-log plot, of Rp and b, both taken to

be bigger than the effective string scale ls(s). The different regions are discussed in the

text.

Section 2.3, while in the complementary region (above the red but below the black-dashed

line) we have to use an improved eikonal including higher-order classical corrections whose

first term was computed in Section 2.2. Tidal effects, however, should be small in this

region. Clearly, as we go further down in the diagram, we encounter a region in which

both kinds of corrections (string-size and classical) come together. When the impact

parameter is close to Rp, we expect large corrections to the eikonal operator discussed in

this paper and, for this reason, the solid line, signaling the onset of the string-tidal effects,

ends before meeting the b ∼ Rp line.

In this paper we focused on the upper part of the diagram in Figure 1, where the impact

parameter is large compared to Rp and gravity effects dominate the interaction between

the Dp-branes and the string probe. It is in this region that the comparison between

the string dynamics in the extremal p-brane background and the dynamics resulting from

the string scattering amplitudes is most transparent. Having tested our approach in this

case, there are two other interesting but more difficult regions to consider. The first one

is the stringy region Rp < ls(s), where string corrections to the geometry are important

and one expects that the dynamics will be very different from the one predicted by the

effective background in Eq. (1.1, 1.2). The second one is the region b ∼ Rp > ls, where

the dynamics should be dominated by strong gravity effects. As we lower the impact

parameter to study these two new regions, we should also be able to make contact with

the analysis of high-energy amplitudes at fixed angle as discussed in [7] and, in the context

of D-branes, in [37, 38].
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•Easier than 2-particle collisions: closed string acts as a 
probe of the brane-induced geometry (no back-reaction).

•At the disc and annulus level an effective classical  brane 
geometry emerges through the deflection formulae 
satisfied at the saddle point of b-integral. 

• Unlike in ACV this can be done reliably to next-to-leading 
order in the deflection angle (extension to all orders in 
progress)



gravi-reggeon (closed string) exchanged in t-channel

heavy open string produced in s-channel

Disc(tree)-level scattering



open strings produced in s-channel

Annulus (1-loop) level scattering
Tidal excitation of initial string

another representation of the annulus diagram



b̂ ≡ b

Rp

θ3 = 2
�

1 + k2

� 1

0
dt

1�
(1− k2t2)(1− t2)

− π = 2
�

1 + k2K(k)− π ,

k2 = −1 +
1−

�
1− 4β4

2β4
, β ≡ R/b

Agree to that order with exact classical formula:

3.1 Deflection angle up to next-to-leading order

The first term in (3.2) is simply the Fourier transform of the disk amplitude (2.12)

A1(s, b) ∼ s
√

π
Γ

�
6−p
2

�

Γ
�

7−p
2

�
R7−p

p

b6−p
+

isπ

Γ
�

7−p
2

�
�

πα�s

ln α�s

�
Rp

ls(s)

�7−p

e
− b2

l2s(s) , (3.4)

where ls(s) is the effective string length, the size of a string of energy E =
√

s

ls(s) = ls

√
ln α�s . (3.5)

The previous formula shows that when b � Rp and Rp � ls(s) the eikonal phase is

predominantly real, since the absorption effects due to the imaginary part in (3.4) becomes

relevant only for b ≤ ls(s). In the computation of the deflection angle Θp we can then

approximate A1 with its real part.

The functional relation between the deflection angle and the impact parameter can be

derived evaluating the Fourier transform of Eq. (3.1) back to momentum space

S(s, t) ∼
�

d
8−pb e

−ibq
e

i
2EA1(s,b)

. (3.6)

The integral is dominated by the saddle point

q =
1

2E

1

b

∂A1

∂b
b , (3.7)

and, using the small-angle relation Θp ∼ −q·bb
E , we obtain

Θp = − 1

2s

∂A1

∂b
(s, b) . (3.8)

In our analysis in Section 2, we showed that the annulus amplitude contains a term, A(2)
2 ,

which has the same energy dependence as A1 but is of higher order in Rp/b. To determine

how these additional term enters in the eikonal operator in Eq. (3.1) would require a more

detailed study of the subleading contributions coming from surfaces with more than two

boundaries. It is however plausible, at least if one neglects the effect of string corrections,

that also this term will exponentiate and contribute to the series expansion of the eikonal

phase in powers of Rp/b. If we make this assumption, we can include in the real part of

the eikonal phase in (3.8) the one-loop renormalization of the Regge pole obtaining

Re[A1 +A(2)
2 ] ∼ s
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Our string computation then leads to the following approximation for the deflection angle

of a null geodesic in the background of N Dp-branes

Θp =
√

π

�
Γ

�
8−p
2

�

Γ
�

7−p
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�
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+ O
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Rp

b

�3(7−p)
��

. (3.10)

In the next Section we will show that this result is in perfect agreement with the deflection

angle predicted by classical gravity in the extremal p-brane background, giving direct

evidence in favour of our assumption that also the subleading term exponentiates.
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Since the metric does not depend on the time t and the angle θ there are two conserved
quantities, the energy E and the angular momentum J . From these two conservation laws
and from the invariance of the action under arbitrary reparametrizations of the world-line
coordinate u, one can find a differential equation relating θ and the radial coordinates

dθ

dr
= − b

r2

�
β
α −

b2

r2

⇔ dθ

dρ
=

b̂�
1 + ρ7−p − b̂2ρ2

, (4.2)

where b = J/E, ρ = Rp/r, b̂ = b/Rp. Notice that the previous result depends only on
the ratio α/β and it is therefore invariant under an r-dependent rescaling of the whole
metric. This means that both the string and the Einstein frame metric yield the same
equation (4.2) for the classical trajectory. In the last step of (4.2) we used the actual form
of α/β given in Eq. (1.1).

From (4.2) we see that the value of the angle θ at the turning point r∗ is

θ(r∗) =

� r∗

∞

dθ

dr
dr =

� ρ∗

0

dρ
b̂�

1 + ρ7−p − b̂2ρ2

, (4.3)

where ρ∗ = Rp/r∗ is the smallest root of the equation 1 + ρ7−p − b̂2ρ2 = 0. Since the
trajectory of a probe particle in the metric in Eq. (4.1) is symmetric around r∗, the
deflection angle Θp is given by

Θp = 2θ(r∗)− π ⇒ Θp = 2

� ρ∗

0

dρ
b̂�

1 + ρ7−p − b̂2ρ2

− π . (4.4)

The integral can be performed explicitly in terms of elementary functions for the cases
p = 5, 6 yielding

tan
Θ6

2
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1

2b̂
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π�
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�
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− π . (4.5)

For the case p = 3 we get instead

Θ3 = 2
�

1 + k2
3K(k3)− π , K(k3) =

� 1
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dv�
(1− v2)(1− k2

3v
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, (4.6)

where K is the complete elliptic integral of first kind and

k3 = −1 +
b̂

2

�
b̂−

�
b̂2 − 4

�
. (4.7)
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Example of p =3

A non trivial calculation of a subleading term in the 
annulus diagram gives:



 
•Tidal effects can also be computed and come out in 
complete agreement with what one would obtain (to leading 
order in Rp/b and ls/b) by quantizing the string in the D-
brane metric (see next slide). 
•Indeed one can justify, at least at leading order and at high 
energy, a “Penrose pp-wave limit” for the metric
•These effects become relevant below a critical b=bD:

 
•Tidal excitation spectrum has been double checked even 
for an initial massive string by W. Black and C. Monni.

the role of the affine parameter along the geodesic

dv = −dt + bdθ + Cdr , dz = d(θ + θ̄(u)) , (4.10)

du = ±βdr

C
, C(r) =

�
β(r)

α(r)
− b2

r2
. (4.11)

Here θ̄(u) is the angular coordinate θ, evaluated along the null geodesic as in (4.2) and

expressed in terms of u via Eq. (4.11). The physical meaning of the 7 coordinates xa, yj
is

that they represent fluctuations orthogonal to the null geodesic and, respectively, parallel

to the directions of the brane world-volume (xa
) or along the (7−p) directions (yi

) which

are orthogonal both to the brane and to the plane of the geodesic. The z coordinate is
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0 + G(u, x̂a, ŷj, y0
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ŷ2
j

≡ Gx x̂2
i + G0 ŷ2
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j . (4.14)

The bosonic part of the string sigma model then reads

S = S0 −
1

4πα�

�
dτ

� 2π

0

dσ ηαβ ∂αU∂βUG(U,Xa, Y j, Y 0
) , (4.15)

22

the role of the affine parameter along the geodesic

dv = −dt + bdθ + Cdr , dz = d(θ + θ̄(u)) , (4.10)

du = ±βdr

C
, C(r) =

�
β(r)

α(r)
− b2

r2
. (4.11)

Here θ̄(u) is the angular coordinate θ, evaluated along the null geodesic as in (4.2) and

expressed in terms of u via Eq. (4.11). The physical meaning of the 7 coordinates xa, yj
is

that they represent fluctuations orthogonal to the null geodesic and, respectively, parallel

to the directions of the brane world-volume (xa
) or along the (7−p) directions (yi

) which

are orthogonal both to the brane and to the plane of the geodesic. The z coordinate is

orthogonal to the brane, but lies in the plane of the geodesic. In our conventions the

point u = 0 corresponds to the turning point r∗ and the choice of sign in the equation

for u depends on the point of the geodesic we are considering: we choose the minus sign

in the approaching region and so parametrize the part of the geodesic from infinity to r∗
with the interval −∞ < u ≤ 0; for the remaining part from r∗ to infinity we choose the

plus sign and so it corresponds to the interval 0 ≤ u < ∞. In these adapted coordinates

the metric takes the form

ds2
= 2dudv − αdv2

+ 2bαdvdz + r2αC2dz2
+ αdxadxa

+ βr2
sin

2
(z − θ̄)dΩ2

7−p.(4.12)

At this point we can take the Penrose limit of the above metric (corresponding to the high-

energy limit for the probe) and focus on a small neighborhood around the null geodesic

by expanding to the quadratic order the dependence on all coordinates transverse to the

light-cone and keeping only the linear terms in v. This clearly eliminates the dv2
and

dvdz terms, then by the following change of coordinates

z =
ŷ0
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Original metric in adapted (Fermi)coordinates (near a null geodesic): 

Similar expressions involving elliptic integrals can be given for p = 1 and p = 4 while

for the cases p = 0 and p = 2 we do not have an expression in terms of special func-

tions. Nonetheless, the leading and next-to-leading terms in the large impact parameter

expansion for arbitrary p can be computed and read
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in perfect agreement with the string calculations in Eq. (3.10).

We should make a remark at this point about the order at which we expect to find

agreement between the string calculation and the external metric one. In matching the

two results we have identified the impact parameter b of the string calculation, defined

by the Fourier transform (3.6), with the impact parameter of the geodesic calculation,

defined as b = J/E. We expect such an identification to fail at order Θ3
p, when, for

instance, sin Θp starts to differ from Θp.

4.2 Tidal excitation of the closed string at leading order

We shall now compare the results of the previous Section concerning the possible excitation

of the probe closed strings with what one obtains by quantizing a closed string in the non-

trivial metric (1.1). A similar exercise in the case of string-string collisions leads, to leading

order, to agreement with expectations for quantizing a closed string in an Aichelburg-Sexl

metric [35].

In the case at hand the end result of the string calculation is the eikonal-operator

formula (3.1). Such a formula refers to the leading contribution in Rp/b but is supposed

to hold at all orders in α�
/b

2. On the other hand, the curved-spacetime calculation we

shall present below is limited to small string fluctuations around the point-particle null

geodesic while, in principle, it can be extended to higher orders in Rp/b. Our comparison

will be made in the overlap of the domains of validity of the two calculations, namely at

leading order both in α�
/b

2 and in Rp/b. In spite of this the perfect agreement between

the two calculations appears to be almost miraculous, given the very different techniques

being used, and represents in our opinion a highly non trivial check of the validity of our

approach.

In order to set up the curved space calculation we shall follow [36] and rewrite the full

metric as

ds
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−dt
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+
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(dx
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dr
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+ r
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, (4.9)

where in our case β(r) = 1/α(r) =
�

H(r). This reduces to (4.1) on the plane of the

null geodesic considered in Sect. 4.1 and we are now interested in describing the metric

around such a geodesic. This is done by first going to a system of adapted coordinates

u, v, z, x
a
, y

j in which the geodesic corresponds to constant v, z, x
a
, y

j and u = u(r) plays
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ŷ2
j

≡ Gx x̂2
i + G0 ŷ2
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where from now on we will drop the hats on the coordinates. In the previous equation S0

is the free Minkowski string action, ηαβ the flat worldsheet metric and G is as in Eq. (4.14)

but now considered as a function of the string coordinates (denoted by capital letters).

In these coordinates string quantization is quite easy if we choose (within the class of

orthonormal gauges) the light-cone gauge
6

U(σ, τ) = α�puτ → α�Eτ . (4.16)

This choice drastically simplifies the non-trivial part of the sigma model action to give
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where in the second step we have used the high-energy limit. In this way the integrals

over u decouple from the string coordinates and just provide c-number coefficients G to

the quadratic action of the fluctuations. Because of the change of sign in du/dr at u = 0

the integrals under consideration are twice the same integrals between 0 and ∞.

At first sight all the fluctuations of the closed strings, both in the Neumann and in

the Dirichlet directions, appear to be excited. It turns out, however, that the former are

not excited to the leading order in Rp/b to which we are working. This is because we can

write
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In the second integral the first term is proportional to

�
Rp

b

�2(7−p)
and so it yields a

contribution of higher order in Rp/b, while the second term, being the total derivative of

a function that vanishes on the integration boundaries, gives zero (see Appendix B for

more details). Hence, to this order, cx = 0.

This is not true for the other two fluctuations. The coefficient of the Yi fluctuations

is quite simple to evaluate by writing, using the same trick as just used,
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As in the previous case, the first term does not contribute at the order

�
Rp

b

�7−p
we are

interested in, but, as shown in Appendix B, this time the u = 0 boundary provides a

non-vanishing contribution for the second term and we obtain cy = −Θp/b.

6The factor 2 usually present in the r.h.s of Eq. (4.16) is absent here because we take 0 ≤ σ ≤ 2π.
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 We have definite hopes to be able to resum classical 
corrections and to study the S-matrix in the strong gravity 
regime b ~ bc ~ R (diverging tidal effects?), or even in the 
classical capture regime b << R for which a precise unitary 
description of the system’s evolution is quite non-trivial.
•Absorption of the string by the brane can be studied in 
some regimes (typically ls > b, Rp)  where it becomes 
important (in analogy with ACV). A crucial difference: the 
incoming energy now goes into open-string excitations of the 
D-brane system (described by a gauge theory?).

 For p=3 we would like to have a new handle on the 
celebrated AdS/CFT correspondence which is usually limited 
to situations in which the system lives near the horizon. In 
our case the initial state is prepared in an asymptotically flat 
spacetime and the hope is to establish a connection between 
a CFT on the boundary of AdS and a bona-fide S-matrix.



Conclusions, Outlook
• TPE string-string collisions in flat spacetime are an 
ideal theoretical lab. for studying several conceptual 
issues (Cf. inf. paradox) arising from interplay of QM 
and gravity within a fully consistent framework

•We have been able to reproduce classical expectations 
(grav. deflection, tidal effects) and extend them within 
a unitarity-preserving semiclassical description

•When string-size effects dominate we found no 
evidence for BH formation but, instead, a softening of 
the final state resembling Hawking radiation



•In the regime of strong gravitational fields our successes 
are still limited. Amusingly, a drastic approximation of the 
dynamics appears to reproduce at the semiquantitative 
level expectations based on CTS collapse criteria. 
•No solid conclusion can be drawn without more work. Some 
features of the present approach may not survive a more 
complete treatment (e.g. on long.al dynamics)
•A general pattern seems to emerge where, at the quantum 
level, the transition between the dispersive and the 
collapse phase is smoothed out by QM 
• As some critical value of the impact parameter is 
approached the nature of the final state smoothly changes 
from that characteristic of a dispersive state to one 
reminiscent of Hawking’s radiation (very high multiplicity 
and energies O(h/R))
•Many issues remain unsettled (in particular the saturation 
of unitarity) possibly due to our drastic approximations.

•



•TPE string collisions off D-branes seem to offer a new 
tool to study all these issues within an easier set up.
•We have already seen how classical expectations from 
an effective metric are reproduced both through 
deflection formulae and from tidal excitations at 
leading and next to leading order
•Generalization to higher (all) orders within reach
•Extension to classical-capture regime should be 
possible and will allow to understand how quantum 
coherence is preserved through the production of a 
coherent multi-open-string state.
•In the case of 3-branes we hope that this gedanken 
experiment will shed some new light on the AdS/CFT 
correspondence within an S-matrix framework.



THANK YOU!
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∇2a + 2δ(x) = 2(πR)2(∇2a ∇2φ−∇i∇ja ∇i∇jφ), ā(x) = a(b− x)

and the corresponding eom

The semiclassical approximation corresponds to
solving the eom and computing the classical action on 
the solution. This is why we took Gs/h >> 1! 

out a possible connection with Choptuik’s scaling [10] near critical collapse. Section 6
presents some conclusions and an outlook.

2 The axisymmetric case: general considerations

Our starting point is the effective two-dimensional action of [1] (see their equation (2.22)):

A
2πGs

= a(b) + ā(0) − 1

2

∫

d2
x∇ā∇a +

(πR)2

2

∫

d2
x(−(∇2φ)2 + 2H∇2φ)

−∇2H ≡ ∇2a ∇2ā −∇i∇ja ∇i∇j ā , (1)

where a, ā and φ are three real fields representing the two longitudinal and the (IR-safe)
transverse component of the gravitational field, respectively. Equation (1) can be easily
generalized in order to deal with two extended sources:

A
2πGs

=

∫

d2x

[

a(x)s̄(x) + ā(x)s(x) − 1

2
∇iā∇ia

]

+
(πR)2

2

∫

d2x
(

−(∇2φ)2 + 2φ∇2H
)

, (2)

where the center of mass energy
√

s provides the overall normalization factor 2πGs =
π

2GR2, while the two sources s(x), s̄(x) are normalized by
∫

d2x s(x) =
∫

d2x s̄(x) = 1.
Let us now specialize to the case of two extended axisymmetric sources moving in

opposite direction with the speed of light and undergoing a central collision. Using the
conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

2.1 Simplifications

One advantage of considering the axisymmetric case is that there is simply no dependence
of the physics upon the azimuthal angle, hence no need to take averages over it. This is
a useful technical simplification that allows us to reduce the problem to solving ODE.

The second more important advantage comes from the observation that the IR-singular
“LT” graviton polarization is not produced in that case. Thus the problem is completely
IR-finite even in D = 4. In order to see this, let us recall from [1] that the LT polarization
is produced with an amplitude proportional to sin θ12 cos θ12. In the notations of [1]:

ALT = Aµνε
µν
LT ∼ k

−2 sin θ12 cos θ12 , (3)

where θ12 is the angle between the two transverse momenta k1, k2 that combine to give a
physical graviton of momentum k. The angular factor can be expressed in terms of the
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∇4φ = −(∇2a ∇2ā−∇i∇ja ∇i∇j ā)

Still too hard for analytic study!

Reduced effective action & field equations



Axisymmetric action and eqns 
(t=r2)

conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

It is straightforward to rewrite the action (4) for the axisymmetric case as a one
dimensional integral over the variable r2 = x2 ≡ t. Using

∫

d2x = π
∫

dt we find:

A
2π2Gs

=

∫

dt [a(t)s̄(t) + ā(t)s(t) − 2ρ ˙̄aȧ]

− 2

(2πR)2

∫

dt(1 − ρ̇)2 (5)

where a dot means d/dt and, as in [1], we have introduced the field:

ρ = t
(

1 − (2πR)2φ̇
)

(6)

Integrating by parts and using π
∫ t

dt′si(t′) = Ri(t)/R we arrive at the following
convenient form of the action:

A
!

= − 1

4l2P

∫

dt

[

(1 − ρ̇)2 − 1

ρ
R1(t)R2(t) + (2πR)2ρ

(

ȧ1 +
R1(t)

2πRρ

) (

ȧ2 +
R2(t)

2πRρ

)]

(7)

The equations of motion that follow from (7) read:

ȧi = − 1

2πρ

Ri(r)

R

ρ̈ =
1

2
(2πR)2ȧ1ȧ2 =

1

2

R1(r)R2(r)

ρ2
(8)

and therefore reduce to a closed 2nd order equation for ρ. We want to look for solutions
of that equation with the following boundary conditions [1]:

ρ(0) = 0 , ρ(r2) → r2 as r → ∞ (9)

Given the finite support of the sources the latter condition can be replaced by the
requirement:

ρ̇ =
√

1 − R2/ρ for r > Max(L1, L2). (10)

For given source profiles Ri(r2) a possible strategy for solving the problem is to reduce
it to a first order system:

ρ̇ =

√

σ − R1(r2)R2(r2)

ρ
i.e. σ ≡ ρ̇2 +

R1(r2)R2(r2)

ρ

σ̇ =
(R1R2).

ρ
, (11)
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2nd order ODE w/ Sturm-Liouville-like b. conditions 



dEgr

d2k dω
= Gs R2 exp

�
−|k||b|− ω

R3

b2

�
;

Gs

�
R2

b2
>> 1

  Particle Spectra: an “energy crisis”? 
(ACV07, VW08/2, M. Ciafaloni & GV in progress)

Within our approximations the spectrum of the produced 
gravitons gives the following result for GW emission:

Accordingly, the fraction of energy emitted in GWs is O(1) 
already for b=b*>>R (Gs/h (R/b*)2 =O(1)). Is this puzzling 
from a GR perspective? Answer related to:
 Q: What is the frequency cutoff on the GWs emitted in an 
ultra-relativistic small angle (b>>R) 2-body scattering?
 The CGR answer to this problem seems to be unknown..
Possible answers: 1/b, 1/R (my present), b/R2, b2/R3 (ACV),
γ/b (singular m=0 limit?),  E/h (singular classical limit?)



dEgr

d2k dω
= Gs R2 exp(−|k||b|− ωR)⇒ Egr√

s
∼ R2

b2

My guess (1/R) would rather give:

In both cases, while for b >> R gravitons are produced at 
small angles, as b -> bc ~ R their distribution becomes 
more and more spherical w/ <n> ~ Gs/h and (again!) 
characteristic energy O(h/R ~TH)

Recent work by B. Kol (1103.57410 hep-th) on “weak ultra-
relativistic” gravitational scattering could be relevant for 
this issue.



For  for θ < 1/γ(b > γR) it agrees with GKST. 
What’s the answer for θ > 1/γ? 




