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Motivations

• Progress in fundamental physics has often been based on 
stepping up in energy, either experimentally or through 
theoretical (gedanken) experiments.
• When dealing with theories of gravity the need for very 
(unrealistically?) high energies is even more obvious.
• While classical gravity has no intrinsic energy scale, quantum 
& string gravity do: MPl & Mst respectively.
•  Both are presumably too high for real experiments (except 
for those that occurred naturally in the early Universe?)
• Combining GR and QM poses deep conceptual problems (Cf. 
Hawking’s information paradox).
•String theory claims to be a consistent framework for 
addressing such questions: what’s its answer?



Outline

• GR collapse criteria: a brief review.
• Transplanckian energy collisions of particles and strings:  
• The small-angle regime: deflection & tidal forces
• The stringy regime & precocious BH behaviour

Lecture I

• Transplanckian energy collisions of particles and strings: 
• The large-angle/collapse regime

• High-energy string-brane collisions: an easier problem?
•  Outlook, conclusions.

Lecture II



 There are many analytic as well as numerical GR results 
on whether some given initial data should lead to gravit.al 
collapse or to a completely dispersed final state

 The two phases would be typically separated by a critical 
hypersurface  in the parameter space  of the initial states
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Figure 1: Phase space picture of the critical gravitational collapse.

Space-times with CSS are very interesting from various points of view (see [11] for a com-

prehensive rewiew). Although DSS is a remarkable phenomenon in gravity, it seems to be a

disadvantage when trying to establish a holographic correspondence with the Regge region in

QCD, where no echo behavior is to be found. However, the so-called leading (log s)-behavior

of the amplitudes does indeed show scale invariance (see Section 4). This is a fundamental

reason to abandon the construction of the holographic map using collapsing massless scalar

fields and to use instead a system where the critical solution exhibits scale invariance. The

archetypical system of this kind is the spherical collapse of a perfect fluid.

One of the main (technical) difficulties in the original computation of the Choptuik exponent

[9] is that it requires a very involved numerical solution of the Einstein equations. In [10, 12]

an alternative procedure to compute γ was proposed based on a renormalization group analysis

of critical gravitational collapse. In this picture, the surface p = p∗ represents a critical surface

in the space of solutions separating the basins of attraction of two fixed points, corresponding

respectively to Minkowski and the black hole space-times (see Fig. 1). The critical solution

with DSS or CSS has a single unstable direction normal to the critical surface.

In this approach, the critical solution is characterized by having a single growing mode for

perturbations around it. We can characterize it by the corresponding Lyapunov exponent. If
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from C. Gundlach’s review (’02) 

The approach to criticality 
resembles that of phase 
transitions (order, crit. exp. ...)

 Brief review of GR collapse criteria



For pure gravity Christodoulou & Klainerman (’93) have found a 
region on the dispersion side of the critical surface;  

Regions on the collapse side have been found for spherical 
symmetry by Christodoulou (’91, ...) and, numerically, by Choptuik and 
collaborators (’93, ...’09);

 In 0805.3880,  Christodoulou  identified another such region in 
which a lower bound on (incoming energy)/(unit adv. time) holds 
uniformly over the full solid angle; not useful for two-body 
collisions, the energy being concentrated in two narrow cones (see 
however Klainerman & Rodnianski, 0912.5097, 1002.2656).

 In 0908.1780 Choptuik and Pretorius  have obtained new 
numerical results for a highly-relativistic axisymmetric situation 
(see below).

A useful (sufficiency) criterion for collapse is the 
identification of a Closed Trapped Surface (CTS) at a certain 
point in the system’s evolution.
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 Point-particle collisions:
1. b=0: Penrose (‘74) :
2. b≠0: Eardley & Giddings (’02), one example:

 Extended sources: 
• Kohlprath & GV (’02), one example: central collision of 2 

homogeneous null discs of radius L
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Small sample of results

(Work in progress with Ph. LeFloch on singularity inside horizon) 



We can prepare pure initial states that correspond, 
roughly, to the classical data (J ~ bE).   
• Does a unitary S-matrix (evolution operator) always 

describe the evolution of the system?
• If yes, does such an S-matrix develop singularities as 

one approaches a critical (parameter-space) surface?
• If yes, what happens in its vicinity? Does the nature of 

the final state change as one goes through it? 
• Is there a relation between the classical and quantum 

critical surfaces? 
• What happens to the final state deep inside the collapse 

region? Does it resemble at all Hawking’s thermal 
spectrum for each initial pure state?

• Qs related to information paradox/puzzle. 

What about the quantum problem?



A more phenomenological motivation for 
studying TPE collisions?

Finding signatures of string/quantum gravity @ LHC:
 In KK models with large extra dimensions;
 In brane-world scenarios; in general:
 If the true Quantum Gravity scale is O(few TeV)

NB: In the most optimistic situation the LHC will be quite 
marginal for producing BH, let alone semiclassical ones

Q: Can there be some precursors of BH behaviour even below 
the expected BH-production threshold? 



   Trans-Planckian-Energy (TPE => E >> MPc2, or Gs/c5h >> 1) 
string collisions represent a perfect theoretical laboratory 
for studying these questions within a framework that claims 
to be a fully consistent quantum theory of gravity. 
We can hardly imagine a simpler pure initial state that could 
lead to BH formation and whose unitary evolution we would 
like to understand/follow.
As it turns out TPE also simplifies the theoretical analysis

Transplanckian-energy collisions of 
particles and strings

 (Amati, Ciafaloni & GV 1987-....)
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➡ 3 broad-band regimes in transplanckian 
string collisions

1) Small angle scattering (b >> R, ls)
2) Stringy (ls  > R, b) 
3) Large angle scattering (b ~ R > ls), collapse (b, ls < R)

ls plays the role of the beam size!

3 length scales: b, R and ls 

If we collide strings, instead of point particles, there is 
another length scale,ls ,the characteristic size of strings 
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Various regimes in string-string collisions

b >> R>> ls b >> R, ls

ls >> b, R R ~ b >> ls

axisymmetric beam/beam coll.



R(E)

b

ls 

ls 

lP

2

3

1

BH

lP

Critical line?

E= Eth ~ Ms/gs2 >> MP E = MP

expected phase diagram
in string collisions

lP
ls

= gs � 1



S(E, b) ∼ exp
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A semiclassical S-matrix @ TPE
General arguments as well as explicit calculations suggest 

the following form for the elastic S-matrix:

NB: For Im A some terms may be more than just corrections...

Leading eikonal diagrams (crossed ladders included)
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Particle-particle scattering @ large b

The integral is dominated by a saddle point at:

 Generalization of Einstein’s deflection formula for ultra-
relativistic collisions. Also easily extended to arbitrary D. It 
corresponds precisely to the relation between impact parameter 
and deflection angle in the (Aichelburg-Sexl) metric generated by 
a relativistic point-particle of energy E. This effective metric is 
not put in: it’s “emergent”
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At fixed θ, larger E probe larger b
The reason is simple: because of eikonal exponentiation, Gs/h 

also gives the average loop-number. The total momentum 
transfer q = θ E is thus shared among O(s~E2) exchanged  
gravitons to give:

meaning that the process is soft at large s...
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High-pT is not necessarily short distance!



String-string scattering @ large b
(new effects because of imaginary part)

Graviton exchanges can excite one or both strings. 
Reason (Giddings ’06): a string moving in a non-trivial 
metric feels tidal forces as a result of its finite size. A 
simple argument gives the critical impact parameter bD  
below which the phenomenon kicks-in (as found by direct 
calculation by ACV). It is parametrically larger than ls.

S(E, b) ∼ exp

�
i
A

�

�
∼ exp

�
−i

Gs

� (logb
2 + O(R2

/b
2) + O(l2s/b

2) + O(l2P /b
2) + . . . )

�



exchanged gravi-reggeons

Tidal-force excitation of initial string



String-string scattering @ b,R < ls

Because of (good old DHS) duality even single graviton 
exchange does not give a real scattering amplitude. The 
imaginary part is due to formation of closed-strings in 
the s-channel.
It is exponentially damped at large impact parameter 
(=> irrelevant in region 1, important in region 2)
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Gravi-reggeon exchanged in t-channel

Heavy closed strings produced in s-channel

Im A is due to closed strings in s-channel (DHS duality)



s-channel heavy strings

Turning the previous diagram by 90o
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As one goes to impact parameters below the string scale one 
starts producing more and more strings. The average number 
of produced strings grows (once more!) like Gs ~ E2 so that, 
above MPl, the average energy of each final string starts 
decreasing as the incoming energy is increased

Similar to what we expect in BH physics! 

An interesting signature even below the actual threshold of 
BH production!



THANK YOU!



Additional slides



(Generalized) AS metrics
The Aichelbourg-Sexl (AS) metric is the shock-wave 

metric  generated by a point-like massless source carrying an 
energy E. Its generalization (GAS) refers to a massless 
source whose total energy E is spread on the plane 
orthogonal to the motion and is δ-function-like in the 
direction of the motion (a pancake). Also the metric of a 
beam of massless particles moving in the same direction with 
the same x± =(v,u). In a convenient set of coordinates: 

ds2 = −dudv + φ(x)δ(u)du2 + dx2 ∆φ(x) = −16πGρ(x)with 

while in another convenient set it becomes: 

ds
2 = −dUdV + HikHjkdX

i
dX

j ; Hij = δij +
1
2
∇i∇jφ(X)UΘ(U)



Geodesics in GAS metrics
Modulo some subtlelties in dealing with δ and θ-functions, 

it is quite straighforward to compute the trajectories of 
massless test particles in a GAS metric. The main features 
of these geodesics are:
1. A deflection making initially parallel geodesics converge 

(lensing!). Deflection angles are related to gradients of φ
2. A shift (jump) in v (with no shift in u) controlled by φ 

itself.
3. Amusing result: for a homogeneous beam of size L all 

parallel geodesics with a fixed v and b < L converge at the 
same space-time point after hitting the SW (FPV, GRG 1988)
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CTS criteria for the collision of two GAS shock waves

Consider two such shock waves colliding head on. In a 
suitable frame is at u=t-z=0 (moving to the right) and the 
other at v=t+z=0 (moving to the left). At t<0 they have not 
collided yet. They do at t=z=0. At t<0 the metric is given by 
a superposition of the two GAS metrics:

while at t>0 the problem becomes very difficult (only the 
infinite, homogeneous wavefront case can be reduced to 
quadratures). However, we can use the above expression to find 
out whether a CTS can be constructed at t = 0- .
This is the method followed by Eardley-Giddings (AS) and by 
Kohlprath and GV (for GAS) with the results given above.


