PROCEEDINGS OF THE SECOND MARCEL GROSSMANN
MEETING ON GENERAL RELATIVITY

R. Ruffini (editor)

© North-Holland Publishing Company, 1982

SURFACE EFFECTS IN BLACK HOLE PHYSICS

Thibaut Damour
E.R. 176 du CNRS, Groupe d'Astrophysique Relativiste
Observatoire de Paris, 92190 Meudon (France)

This contribution reviews briefly the various analogies which have
been drawn between black holes and ordinary physical objects. It

is shown how, by concentrating on the properties of the surface of

a black hole, it is possible to set up a sequence of tight analogies
allowing one to conclude that a black hole is, qualitatively and
quantitatively, similar to a fluid bubble possessing a negative sur-
face tension and endowed with finite values of the electrical conduc-
tivity and of the shear and bulk viscosities. These analogies are
valid simultaneously at the levels of electromagnetic, mechanical
and thermodynamical laws. Explicit applications of this framework
are worked out (eddy currents, tidal drag). The thermostatic equi-
1ibrium of a black hole electrically interacting with its surroun-
dings is discussed, as well as the validity of a minimum entropy
production principle in black hole physics.

I.INTRODUCTION.

The 'gravitational field of a point mass" (Schwarzschild 1916)

ds? = -(1- ) qt? + (1- 27 dr? 4 2(d 0% sinZede?) (1)*
seems to be plagued notonly with the (expected) singularity at the "center": r=0
but also with a singularity at the "Schwarzschild radius" : r=2M. The spurious
character of this "Schwarzschild singularity " was first realized by Lemaitre (1933):
the singularity at r=2M is due to a bad choice of coordinates. Using for instance
the transformation (Eddington 1924, Finkelstein 1958):

t=tg+r+2M1In (r - 2M), (2)

the Tine element (1) reads :

2 2 2

ds2=-(1-2M/r) dt? + 2dtdr + r2(d 8 2+ sin® 0 d ¢?), (3)

which is manifestly regular (in fact analytic) near r=2M.

Much later it was realized that the hypersurface r = 2M was endowed with very
special properties : it is a stationary null hypersurface, neither expanding nor
contracting as wave fronts usually do. Moreover, after the discovery by Kerr (1963)
of another exact solution of the (vacuum) Einstein equations similar to egn.(3)
which was rewritten by Boyer and Lindquist (1967) in a form similar to (1), it

was conjectured that the solutions of Schwarzschild and Kerr, as well as the solu-

¥ We use units such that G =c=1
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588 T. Damour

tions of Reissner (1916) and its Kerr-like generalization (Newman et al 1965) were
members of a large family of solutions where some "central singularities" are

hidden behind a stationary null hypersurface (a "Killing horizon" (Carter 1969)).
The discovery of neutron stars(Hewish et al 1968) together with the known existence
of an upper limit to the mass of a neutron star (Chandrasekhar 1931, Landau 1932,
Oppenheimer and Volkoff 1938, Rhoades and Ruffini 1974) strengthened the idea
(Oppenheimer and Snyder 1938) that the Schwarzschild solution (1) was a possible
final state for heavy stars, and prompted a period of intensive studies of the
properties of what was soon known under the name of "black hole" : an asymptotically
flat solution of Einstein equations where singularities are hidden behind a
"horizon". The horizon being a null hypersurface defined as the boundary of the
region from which particles and photons can escape to infinity (Penrose 1969,

Carter 1971 , Hawking 1971). Therefore it became usual to consider a black hole as

a new kind of physical object the properties of which were investigated by letting
it interact with external matter, external fields or other black holes. Remarkably
it was found that some of the properties of a black hole, although deriving ultima-
tely from its very strong gravitational field, were very analogous to the properties
of "ordinary bodies". By "ordinary body" we mean a body described in the frame of
19th century physics, that is before the discovery of quantum and relativistic
concepts.

One of the first examples of such a classical analogy for black holes is found in
the work of Christodoulou(1970) and Christodoulou and Ruffini(1971). They showed
that it was meaningful to use some thermodynamical concepts when describing the
behaviour of black holes perturbed By external influences. The concept of reversi-
ble and irreversible transformations of black holes was introduced and it was
proved that only a certain fraction of the mass-energy of a black hole was "free",
i.e. could be extracted. This thermodynamical analogy was later extended by
Bekenstein (1973) who, using a theorem of Hawking (1971), introduced the concept
of black hole entropy.

On the other hand a mechanical and electrical analogy was introduced by Carter(1972)
(1973) who showed that, 1n 1ts state of equilibrium, the surface of a black hole,
embedded in external gravitational and electromagnetic fields, possesses a uniform
angular velocity of rotation and a constant (comoving) electric potential. In view
of these mechanical and electrical "rigidities" at equilibrium, a black hole
appeared as "analogous to an ordinary body (with finite viscosity and electrical
conductivity)". Moreover all these analogies discovered about global features have
been extended to local characteristics of black holes:

For instance Hawking and Hartle (1972) and Hartle (1973) suggested an
analogy between the slowing down of a rotating black hole under the influence of
a satellite and the local dissipation in the tides raised in the "shallow sea of
incompressible viscous fluid" of a rotating planet. Bekenstein (1972) suggested
to interpret the "ringing modes" of a black hole (Press 1971) as vibration modes
of a "soap bubble model" of a black hole. We shall propose a related "bubble"
model of a black hole but, contrarily to Bekenstein's model, our "bubble" will
have a positive surface pressure (i.e. a negative surface tension), moreover it
will be endowed with viscosity in accordance with the suggestion of Hawking and
Hartle. Specially important for the following is the work of Hanni and Ruffini
(1973). Analyzing the adiabatic swallowing of an electric charge by a black hole
they introduced the concept of a "charge induced", on the surface of the black
hole, by the external charge, by analogy with the surface charge density induced
on an electric conductor. This type of approach has been extended to electrodyna-
mical phenomena by Znajek (1978b) and Damour (1978) who introduced the concept
of surface current density of a black hole and the related notion of surface resis-
tivity of a black hole. Then Damour (1979) showed how to encompass all the mecha-
nical and thermodynamical phenomena which can be associated with the surface of a
black hole, by introducing the concepts of surface pressure, surface density of
momentum and surface viscosities. In summary this approach is characterized by
the introduction of a set of (fictitious) surface densities (of charge, electric
current, momentum, entropy) and a corresponding set of Tocal intensive quantities
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(electric potential, surface pressure, temperature). What is remarkable is that

the laws connecting these guantities in the most general non equilibrium state of

a black hole, as deduced from Einstein-Maxwell equations, become identical to

some well known laws of prerelativistic physics : Ohm's law, Joule effect, Navier-
Stokes equation, ... In this sense there is a precise analogy between a black hole
and a fluid bubble endowed with shear and bulk viscosity and electrical conductivity.

This paper is organized as follows: In section II we shall discuss the mathematical
concepts used in describing the " kinematics of horizons" and we shall introduce
the new concept of surface velocity of a black hole. In section III the electro-
magnetic properties of the surface of a black hole will be studied with the con-
clusion that the surface resistivity of a black hole is equal to 377 ohms. In
section IV we shall describe the local mechanics of the surface of a black hole,
introduce the concepts of surface pressure and surface momentum density with the
conclusion that the surface shear (resp. bulk) viscosity of a black hole is equal
to (16m)~l (resp. - (16 w)'l). In section V we shall check that the analogies put
forward in the preceding sections are consistent with the usual ideas about black
hole thermodynamics and we shall briefly discuss the electrical equilibrium of

a black hole. Finally in the appendix, the geometrical tools needed in the rest
of the paper are provided.

IT. KINEMATICS OF HORIZONS.

Before discussing some aspects of the physics of a black hole it is convenient to
present the mathematical tools which are needed to describe the evolution of the "
intrinsic, and extrinsic, geometry of the "horizon" or "surface of the black hole"”.
The result which we shall take as a basis for our derivations is that the horizon
is a null hypersurface admitting compact sections and generated by non terminating
null geodesics (Penrose 1964, Hawking and El11is 1973). In order to study the
evolution of the horizon (see also Carter 1979) we introduce an arbitrary "time"
coordinate t (similar to the regu]a( time coordinate t appearing in I(3), and
two arbitrary "surface" coordinates x* ( A =2,3) on each section S ( t =const.)
of the horizon (similar to 6 and ¢ in I(3)). At this stage "t" is just a label
in a slicing of space-time by spatial hypersurfaces, later in the applications t
will be normalized in function of the Killing vector of time translations (when

it exists). Therefore t can be thought of as the "time at infinity". If £ denotes
the 4-vector normal, and therefore tangent, to the horizon, we can parametrize

the trajectg;ies of £ , the "generators", by t. Hence in a 4-dimensional coordi-
nate system”" x? the equations for the generators will be :

a _ q
x* = MY (1)

Then we can normalize % such that :

Pt = dxd) (2)
ar
In the following we will continuously split the spacetime structure of the horizon
in time (the parameter t) plus space (the twodimensional surface S). In such a
"newtonian" description the horizon appears as a compact 2-surface S (a "bubble")

which moves and changes with time t. We shall consider the generators (1
trajectories of the "particles" constituting the "bupble". gence we ca% %J??aﬂﬂie

(Damour 1978) the concept of surface velocity v = v’ 3/3 of a black hole as

% We shall call indinstinctly "surface of the black hole" the absolute event
horizon or one of its time sections.

%% The coordinates are such that XO = t and 51 _= 0 on the horizon. Spacetime
indices : a,b = 0,1,2,3 ; Horizon indices : A, B = 0,2,3 ; 2-surface indices :
A,B=2,3. See the appendix for details.
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the newtonian velocity of these "particles"

A d2*@)
V" == P (3)

As a direct consequence of this definition the normal vector reads :

-2 49 9 A
_ S 7 .
b= Zrm =55 T g ° (4)

In the axisymmetric case , i.e. when there exists a rotational Killing vector
m o= ma 3/3 x3 = 3/ 3¢ , one can choose the time slices such that the
velocity is :

— A
V“V%AZQ“%’ (5)

*
where @y is the angular velocity of the hole. Moreover we shall use the well
known concept of a 2-dimensional metric v,q induced by the 4-dimensional metric
g,, ©On each section S

JSZJS = 34[, 414(!2,6 /Zozfoﬂjf. = XAg JZAAZB ié)

The coefficients YAB * define a time dependent riemannian metric on each sgﬁt1on

S (see e.gSmarr 1973 for the Kerr-Newman case). Introducing the inverse Y and
the determinant v = det v,5 , we can express the area of a surface element of

S as :

ASH = \67 C}ZZAJZJ . (7)

We can compute the squared magnitude of the surface velocity (3) :

vi = Y vivE (8)

In the case of Kerr-Newman black holes, 3 /3 t being taken as the time Killing
vector, the velocity satisfies :

vi & 1 (9)

the equality being reached only on the equator of an extreme Kerr hole (a = M).
It is tempting to conjecture that the inequality (9) holds for general externally
perturbed stationary holes.

Now we notice that we have normalized % in such a way that it transports, in
the sense of Lie, the sections S

Therefore we can define the Lie derivative, with respect to'? , of any tensorial
quantity defined on the sections S . By analogy with the mechanics of continuous

% for a clear discussion of the. physical meaning of this concept see Ruffini(1973)

% numerically Yap= 8z (A,B = 2,3) in the chosen coordinate system but it is
convenient to use a new notation for this induced metric.
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media we call this Lie derivative the "convective derivative" and we denote it by
the symbol D/dt (see the appendix for the general expression of the convective
derivativeof a tensor or of a tensor density). In particular half the Lie deriva-
tive of the metric Ypg Measures how much the distances between "particles"
(i.e. between generator@) change during a time interval dt. As usual (Sachs 1964)
we decompose this deformation rate : 1/2 D YAB/dt in its irreductible parts.
The trace :

AB
6 Eix D Yas (10)
At
is the expansion rate and the trace free part:
= .!.Db/AB = =h 11
OZB— 2 I%— 293/48 ( )

is the shear tensor. The expansion © measures the rate of change of the area
of a surface element (7) under a Lie transport ; indeed we have :

DSy _ DT dndz? 18 Dl lfdeada’ =045y )

This completes our account of the intrinsic geometry of the horizon, the elements
of its extrinsic geometry which are needed in the following are to be found in
the appendix.

I1T1. ELECTRICAL CONDUCTIVITY OF BLACK HOLES.

A well known electrical characteristic of a black hole is its total charge Q, .
It is defined in the following way : The total charge Q of the system gonsis%ing
of the black hole and the external matter is well defined by the " Q r/r3 "
asymptotic behaviour ( at spatial infinity) of the electric field. This behaviour
allow us to express Q as a flux integral on a surface at infinity S_

ab
Q = I + F dsaé (1)

m 2
4 S,
where
' B BAk o (2)
is the electromagnetic tensor and where d S, = 1/2 eabed dx® A di is the

surface element of S« . Let * be a spatial 3-surface (of volume element dZ_ )
extending from S, down to a section S of the horizons using Gauss'theorem

one can transform the 2-integral over Se into a 3-integral over I and a
2-integral over the inner boundary

ab b
Q:‘j’/z]: 92 ’Lér}gflr SO

But Maxwell equations :

Fab.b — 4T g% (4)

]
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where J%  is the 4-current density, imply that the volume integral in (3) :
22 4 z, is nothing but the usual electric charge QM of the matter outside

the horizon. This leads to the definition of the charge of the section S of
the hole as :

ab
Ru= @ — @n =4'7,,_}éz'/'_”/5a5. (5)

Here Q, is given a meaning only as a global characteristic of the hole. This is
for instance the charge parameter appearing in the solutions of Reissner (1916)
and Newman et al (1965). But Hanni and Ruffini (1973) introduced the concept of
a " charge induced " on the surface of the black hole which amounts to interpret
Q, as being smeared over the surface S with a density given precisely by the
differential element in (5) (that is the flux of the electric field). If n
denotes the null vector orthogonal to S and normalized by :

’anq:+j (6)

the tensorial surface element of S reads :

Jsab = (’na& — Ny fa> C{\SH (7)

where dSy s the usual area element of S (see II(7)). This leads to the
definition of the surface charge density of the black hole :

b
Oy = Fo 4, (8)

U
i

which implies :

@y :jé%dsH . (9)

It is posiiblehto go\further and to introduce the concept of a surface current
density K = K" a/ox’ . This concept has been introduced by Znajek (1978b)
(for the azimuthal component k° in the restricted case of axial symmetry) and by
Damour (1978, 1979) in the general case. In fact the 4-vector oy /3t + KA3/ax
(4-current density of the hole) can be introduced at once, but here we wish to
remark how, oy being given, it is natural to introduce X : Indeed, in a non-
stationary situation and/or if some external current is injected into the hole,
the Tocal charge content oyV'¥ dx® A dx® of a surface element will vary with
time, and a straight forward use of Maxwell equations (see appendix) yields for
its time derivative an equation of the type :

?LY 3(9@07;) g {}L Q(Z.KA): injected current = -Jaza(m)

The existence of such a "Tocal law of coniervation of electricity" (of the type

dp/oc + div ¥ ) allow us to call K (an explicit function of the elec-
tromagnetic field (see appendix)) the surface current density of the section S
Moreover by restraining the electromagnetic 2-form (i.e. the magnetic flux) to
the horizon ( x! = 0) we get :
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(& Foy dutndd), = (Eyde¥ladt + BLdSy - »

This formula gives a natural definition for the tangential electric field Ep
and the normal magnetic induction B_ on a section S of the hole. These
fields satisfy the Faraday law :

el E = — = 2 (W 8.) (12)

as a consequence of the existence of the potential Az (see(2)). A remarkable
result is that the quantities so introduced are linked by an equation wich reads :

Ea + Epg B_LVB = 4’”&5 (KE- gy VB) (13a)

where v is the surface velocity of the black hole (see II(3)) and where €ap
is the antisymmetric Levi Civita tensor on S (i.e. egp =% Vy according to the
parity of the permutation (2,3) —> (A,B)). Raising the index A and using self
explanatory 2-dimensional vectorial notations we can rewrite (13a) as :

-

E +vxB, =47 (K —ouv ) -

Equations (13) asserts that the "comoving" electric field E+ V,X'gL is pro-
portional to the surface conduction current (the total current K minus the
convection current o,V ). This reads exactly as the usual (non-relativistic)
Ohm's Tlaw. In other words the simultaneous validity of equations (10-13)
allows us to say that the horizon of a black hole is endowed with a surface elec-
trical resistivity equal to 47 (i.e. 377 ohm, the impedance of the vacuum).

Moreover we shall see in section V that the analogy with the ordinary laws of
conductors can even be extended to dissipative effects : that is the presence of
a "conduction current" at_the surface of the black hole is associated with a
Joule effect : ( K = onv )2% 47 . Therefore an exact equilibrium is possible
only in absence of conduction current, hence :

E + VxB, = O at equilibrium. (14)

-
In particular for non rotating black holes, ( V = 0 ) this yields the constancy
of the electric potential @ (such that E =-V @ ) on the horizon. This result
was first noticed by Whittaker (1927). In the case of rotating black holes
V.= Q. 9 /3¢ ) the equilibrium condition (14) was found by Carter (1973)

and shownlBy him to imply the constancy of the comoving electric potential 7

2:¢—Z.7: é—'QHAqa (15)

¥ But eq.(13) is general-relativistically exact!
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~
on the horizon. We shall discuss in section V the role of @ in the thermostatic
equilibrium of a black hole electrically interacting with its surroundings. As an
example of how the concept of black hole conductivity works quantitatively, we
shall deduce from eqns (10-13) the "eddy currents" (Damour 1978) gener%ted by the
slow rotation of a black hole in a weak tilted uniform magnetic field B. This is
an instance of a non-equilibrium state of a black hole (eqn (14) is not satisfied)
but the deviation from equilibrium is of second order in , therefore the
system can still be in a quasi-stationary state which means that we can neglect
the partial time derivatives in (10) and (12). Hence we find the system of equa-
tions :

Definition of the potential : EA = e g"“f‘ (16a)
i ici o o o ALY e

Conservation of electricity : ~ azA(VE‘K’) = 10 (16b)

Ohm's law : EA + €ap veB, :47FXAB(K8—0AVB) . (16c)

If we neglect the gravitational inflyence of the magnetic field and if we work
in the first order in the velocity V we can take for Y the metric on the
horizon of a Schwarzschild solution (i.e. the metric on a Sphere or radius 2M
see I(3)) :

XA(;) da? dy 8 = (2M)° (6% + sin’6 d@?) (17)

_a
we can neglect o (no zeroth order electricfield), and we can take V = @u3/3¢
where OQH  is tﬁe angular velocity of the hole. Taking the divergence of Ohm's
law we get an equation for @ :

(0) ) -2
A'd = ?#7(5;5%(5‘“98.1.) (18)

H 2 o L]
where AUD is the laplacian on the sphere (17) :g;mz(smaiﬁﬁ"%% + ﬁ#9?¢‘>
If B. (0, ¢ ) is known, the equation (18) determines § ( 6, ¢ ) uniquely
(modulo an additive constant). In particular taking for B a uniform magnetic
field around a Schwarzschild black hole making an angle y with the axis & = 0 (see
e.g. Hanni and Ruffini 1976) it is easy to compute the component of B normal to
the horizon in function of the field at infinity :

B, = Bo (ws¥ cos® + sind sin @ cos <,D) (19)
Inserting (19) into (18) we get :

B =} (2M)°S2yy By [ s & 5in8 — sin¥ cos® as¢ ] (20)

-

Knowing @ the problem is solved, we can compute the current K (by Ohm's law),
the Joule dissipation and the negative torque acting on the hole and due to the

electrodynamic forces K x e (see Damour 1978 for details).

We can conclude this section by saying that from an electromagnetic point of view
the surface of a black hole behaves as a "thin shell" or a "bubble" endowed with

a surface resistivity equal to 4 r .
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IV. SURFACE STRESSES OF A BLACK HOLE.

We shall now extend the approach of the preceding section to mechanical properties
of black holes. TQ start with it is well known that the total mass M and the total
angular momentum J of the system consisting of a black hole and some external
matter and fields can be defined by the asymptotic behaviour at spatial infinity
of the components of the metric tensor (see e.g. Papapetrou 1948). As in the case
of the total electric charge Q it is possible to express M and J as surface
integrals at infinity but contrarily to the electromagnetic case it does not seem
meaningful in general to transform these integrals into volume integrals because
the energy and the momentum are not localizable in General Relativity. Yet there is
one situation where some components of the angular momentum are certainly locali-
zable, this is when there exists a rotational Killing vector :

m = mid = (1)

2.
x4 2¢

In this case the total angular momentum J(=Jy ) is given by a Komar-type expres-
sion (for a review of these properties see Carter 1973, 1979) :

;b
J= - §'jr'[ : 2’—’ma’ JSM (2)

As in section III, equation (2) can be transformed in,a volume integral on the
(axially symmetric) hypersurface I , and, a surface integral on the axially
symmetric 2-surface S (the intersection of & with the horizon) :

3_ = 75 + J’H (3)

where

J; = —E'?rfzma;b;b dig = 55 jRa" m*d3, (@

3m

represents, by Einstein equations :

—

I —_—
Rap -3 Ry = 87 Ju (5)
the angular momentum L Tabmbdx of the external matter and fields contri-
buting to the stress enhergy tensor T » and where :
[ a; b
o e B b 6
Jn sr Jo 2z ™ d Sy e

can be meaningfully defined as the angular momentum of the black hole itself.

Using the expression III(7) for d S p » and the fact that the section S | is
axially sgmmetgic (and therefore that” £ can be taken as commuting with m
(22 ; pm = m" bzb ) we obtain :

2 b
J—H:—‘_'— ﬂa!/.b'm CISH (7)

8T JS
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Going beyond this global definition we wish to introduce now the concept of x
surface density of momentum of a black hole (Damour 1979) : a covector ma (A=2,3)
defined on the section S by :

| 1 8
WA:—ﬁﬂaf;A . ()
By definition the toroidal component mg = Tx n* fullfills :
To= 6 ™ dSy (9)
S
The covector ma is proportional to some components of the "Weingarten map"

of the horizon (see appendix) which is a kind of extrinsic curvature for a null
hypersurface (of normal £2 ). In the particular case of a totally geodesic
horizon, i.e. when oag = 0 =86, my is proportional to the " gravitoma-
gnetic field " of Hajicek (1975, 1977) but here we are precisely interested in
the general case of shearing and expanding horizons.

Encouraged by the success of the approach we took in the electromagnetic case,
we now look for a local “"conservation law of momentum" that is for an equation
relating the time derivative of m, to the divergence of a "stress tensor" and
to an external flux of momentum through the horizon. This aim is achieved by
contracting Einstein equations(5) with 233xDb/3xh and by using the contracted
Codazzi equation whose demonstration., in the case of a null hypersurface, will
be found in the appendix. We get :

D B _ 1920 _P'T
d.tA = —%A(%) + 2 1—6’;7.0; 187 [¢m 9zA p alA (10)

where g9 1is the sgrface gravity ( Vgia =g 2% see appendix) and where the
vertical bar (in 0,3 ) denotes the riemannian covariant derivative associated
with ¥,p . Equation (10) has precisely the form of a Navier-Stokes equation
relating the time derivative of the impulsion density of a viscous fluid to the
negative gradient of the pressure, to the divergence of the viscous stresses and
to the external force. Therefore the surface of a black hole appears analogous to
a "viscous fluid bubble" of surface pressure p.

p=+9/(6m) (11)
acted upon by the external force density ﬁA

= ~ P e

(which is, as expected, the flux of external impulsion through the horizon per
unit area and per unit time "t") and endowed with a surface shear viscosity :

7, = + |/4sm) (13)

% Discarding here the zero component linked to the surface gravity. see appendix.
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and a surface bulk viscosity :

gz, = - 1/usm) (14)
The total stress tensor whose divergence appears in (10) is :
B 3
_..PSA +2’7507\8+{595A

If the external flux of impulsion entering the hole is due to the stress energy
tensor of an electromagnetic field we find the usual electrodynamic force
= oy E + K x s acting tangentially on the surface charge and current

densities introduced in section III.

The mechanical equation (10) strengthens the thermodynamical considerations of
Hawking and Hartle (1972) who compared the slowing down of a distorted rotating
black hole to the "tidal drag" in a shallow sea of a planet. On the other hand
a word is in order to discuss the fact that we find a positive surface pressure
p=+ g /8n in contradiction with Bekenstein (1972) who, in his "soap
bubble" model of a black hole, introduced the notion of a surface tension g /8w
which means a negative surface pressure -g /8wx . We interpret the positive
surface pressure (11) as necessary for sustaining the gravitational self-attraction
of the " bubble " modelling the black hole, in the same way as Poincaré introduced
negative pressures (tensions) for counteracting the electric self-repulsion of
an extended model of the electron.

Moreover we shall see in section V that the analogy with viscous fluids can be
consistently extended to dissipative effects in the sense that the presence of
viscous stresses imply a heat dissipation given by the usual formula :

2 s opp o"® + gge? . Therefore a state of exact equilibrium can exist
only in absence of any viscous stresses. From this condition and equation (10) it
is possible to deduce that the surface pressure p = g / 8w must be uniform
on the horizon at equilibrium. This is the famous zeroth law of black hole dyna-
mics (Bardeen, Carter and Hawking 1973) but here it is interpreted as a consequen-
ce of the mechanical equilibrium and not of the thermal equilibrium (uniformity
of g /8n _thought of as a pressure not as a temperature). Let us describe an
example of a non equilibrium, but quasi-stationary, state where the gradient of
the non uniform pressure is opposed by the viscous stresses. This example consists
of a slowly rotating black hole, tidally distorted by a weak stationary external
gravitational field : such a system has been studied by Hartle (1973) using very
different methods; we shall show here how the consideration of equation (10)A
together with the definition of o,; and 0 as functions of the velocity V
will suffice to find the quasistationary solution of this problem.

Firstly we suppose that we know the "tide" K raised by the stationary external
gravitational field on a Schwarzschild black hole. We can choose the coordinates
on the horizon such that the distorted metric reads :

(0)

Y5 = (1-K) &, (15)

where Y(O) is the metric on a sphere of radius 2M (see III(17)). Then we notice

that, as we are looking for a quasistationary state, the expansion of the horizon:
6 will (contrarily to oug ) be of second order in the perturbation K (see

Hawking and Hartle 1972). From the appendix we have the following expression

for @
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. i I 1 A
6=f¥ 2+ iz 2 0V (16)

Therefore, working at the first order in K , and neglecting the partial time
derivative (again because of the quasistationary character) we find the following
condition of "incompressibility" :

= ',—;;;%A(ﬁv‘) = vha (17)

The other equations we need are : equation (10) where we neglect the partial time
derivative as well as the convective terms contained in Dm, / dt (because
they are second order in V ) :

5 Oalis = 2,(9/sn) (18)

m

and the expression of TaR in function of the velocity (see appendix) :

Tp = 2" ( Vaig +Vaia — Ve b/,qg ) (19)

The three equations (17-19) are sufficient to solve the problem at the approxima-
tion considered : we can, for instance, deduce from (17) that V  (or rather the
perturbation of V away from the Kerr velocity II (5)) can be written as the
curl of a (pseudo) scalar N ; then taking the curl of (18) to eliminate § we
get a fourth order partial differential equation for N . It happens that

this equation can be factorized and thereby reduced to a second order equation
linking N to "perturbing tide" K . Remarkably this last equation is identical
to eqn III(18) linking the electric potential @ to the "perturbing magnetic
induction" B, (see Damour 1979 for the details).

As a conclusion to this section we can say that the mechanical behaviour of the
surface of a black hole is closely analogous to the behaviour of a fluid bubble
of surface pressure p = g/ 8r and endowed with shear and bulk viscosity.

V. THERMODYNAMICS OF BLACK HOLES.

The topic of black hole thermodynamics was initiated by the work of Christodoulou
(1970), and of Christodoulou and Ruffini (1971), who showed that a black hole

could undergo two kinds of transformations : the irreversible ones where the
"irreducible mass" increases and the reversible ones which are the Tlimiting case

of constant irreducible mass. This result was extended by a theorem of Hawking
(1971) proving in general that the sum of the total areas of a time section of
several interacting black holes, that is 16m times the sum of their squared
irreducible mass, could only increase in the course of time. Then Bekenstein
(1972,1973) conjectured that a certain multiple of the total area SH of a section
of a black hole :

S:dSH:déASH (1)

could be conceived as the "entropy" of the blak hole in the precise sense that
the sum of the "entropy" of the black hole and of the usual entropy of the external
matter would never decrease (Generalized Second Law). This conjecture has been
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proved to be consistent with the phenomenon of quantum evaporation of a black hole1
(Hawking 1975) thereby fixing the proportionality constant o« to the value (41r)
(For reviews of the quantum evaporation process see e.g.Gibbons 1977, 1979 and
Damour 1977a ; For studies of its thermodynamical implications see e.g. Bekenstein
1975, Hawking 1976 and Wilkins 1977). We shall check Tater in this section the
consistency of a local generalization of Bekenstein proposal (1) with the electro-
magnetic and mechanical analogies introduced in the preceding sections.

By analogy with usual thermodynamics, black hole thermodynamics can be divided
into two categories :

A. black hole thermostatics : that is the study of equilibrium states
of black holes and of the global changes between two neighbouring equilibrium
states (for reviews see Carter 1973,1979).

B. black hole irreversible thermodynamics : that is the study of states
of black holes where a continuous irreversible transformation takes place. This
last category concerns necessarily non equilibrium states although they can
sometimes be described as quasi-stationary. (These states could, in ordinary
physics, be stationary by removal of the created entropy, but in black hole physics
there is no way to remove the "entropy"(1)).

A. BLACK HOLE THERMOSTATICS.

As an instance of black hole thermostatics, and in order to complete the results
of section III, let us show the role of the comoving electric potential in the
equilibrium of a rotating black hole surrounded by circularly symmetric matter
and electric currents. It was shown by Carter (1973) that the change of the total
mass M of the system (including the matter, the electromagnetic field and the
gravitational field) between two neighbouring circularly symmetric equilibrium
states was equal to :

SM='(2H(SJ‘H+5 \+¢H§Q“+(37‘)355H+
+[ 525 (43 Tw) _Jen s@@) + [T s@sm) +

+J)75H’N) +j(:rb£"‘_ T80 54,42,

(2)

The notations of eqn(2) are as follows : the central black hole is characterized
by its angular velocity au (II.5), its proper angular momentum J, = £n¢ dSy(1V.6)
its comoving electric potential ¢y (III.15), its charge qy = TUHdS (I11.9),
its surface gravity g(IV.10), its total area Sy and its normal vector :

7 _ %2 _ - ]
?..jﬁ‘.-k-!-QHm +QH?? (3)

k being the time translations Killing vector and m the rotational Killing
vector, eqn(3) allow to define % in the whole spacetime. The external matter
is described as a perfect fluid in circular motion possessing a local angular
velocity @ , a stress- energy tensor Ty@ giving rise to a local angular momen-

tum element d3 Jy P2 dzI, -, a_local Fharge distribution da3Q = J%dz,

a renormalized 1oca1m%emperature T= (k+nm)2] T , a local entropy distribu-
tion d3 sy , a local renormalized chemical potent1a1 W=u T/T corresponding

to a 1oca¥ distribution of a conserved chemical species d3N . Finally the
electromagnetic field is described by Maxwell equations with a 4 potential Ay

a field Fgp = dahy -3 A a c1rcular current J3=F30;b/4n , a Maxwell stress ener-
gy tensor Tgdb = 3 _1/4dab 2)/(4n) entai]ing a total electromagnetic

angular momentum :

5= m T, @)
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integrated over the whole space outside the hole i.e. on a spatial hypersurface I
extending from the section S of the hole to spatial infinity.

What is striking in the formula(2), and what seems to destroy the analogy with
anelectrically conducting rotating shell in interaction with external matter and
currents (consisting for instance of other conducting rotating shells, or rings)
is the fact that @y appears multiplied, not only by, the variation of the
"Jocal mechanical angular momentum of the hole" Jy =gﬁﬂn¢d Sy , but also by
the variation of the total angular momentum Jp (4) of the electromagnetic field
outside the hole. Moreover the interpretation of the last term of (2) is unclear.
We wish to point out here that these two difficulties compensate each other after
a suitable rewriting of(4). Using the identity valid for axisymmetric fields :

mb Foc F° = (mbA,) F“/'c - (mb A, Fa‘),-c (5)

we can redistribute the total angular momentum of the electromagnetic field J
on its sources J®= F2%5. /4mn) , including the surface charge distribution ofF

the black hole Qy = $ 0y dS,
Jr =]£4¢ @ + fs Ag i 45w (6)

where A  denotes the invariant : Abmb . Then after some transformations we
can rewrite (2) as :

sM = Ly (Tt [ApudSn) + B, 8@y +(87rl_1g Su +
[ 5(B3,+AedQ) +] B 56%0) +[T3(825w) +[F SN, 5

where ﬁ'= - (At + 2 Ag) is thgccomoving potential of the matter and where
the mechanical angular momentum J™ - ° is everywhere replaced by the "conserved"
angular momentum J€O"S- :

geons- _ gMeC- 4 ay X (electric charge).

It is well known that J%°NS- 4s conserved when a piece of charged matter is
transferred from one point to another.

Now the mass variation (7) is exactly analogous to what one could expect in_the
case of an electrically conducting material shell (with comoving potential @y
mechanical angular momentum J, , surface charge distribution oy , entropy
« Sy (1) and temperature(g/(8me) ) in equilibrium with circularly symmetric
external matter and currents(Damour 1979). Moreover, if me suppose the validity
of Bekenstein's Generalized Second Law i.e. that the total entropy :

Sfof.:jJZSM + O‘SH

can only increase, the system will be in equilibrium against the transfer of
particles, charge and entropy between its different parts only if the intensive
quantities ( Qaofes T, u) associated to the "conserved" extensive
quantities ( J ", Q, S, N ) are equal on the parts which admit the correspon-
ding transfer. In particular we find that @y must be equal to the (necessarily
uniform) comoving electric potential of the bodies (rings or shells) with which
the black hole can exchange some charge. This is the condition which was used by
several authors (Wald 1974, Petterson 1975, Damour 1977b, 1979, Linet 1977,

Znajek 1978a) in the case of equilibrium with infinity (where § = 0), but we

must notice that such a condition neglects the corresponding condition of mechani-
cal equilibrium ( oy = @ ) on the intuitive ground that it takes place on
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a much longer time scale.
B. BLACK HOLE IRREVERSIBLE THERMODYNAMICS.

If we wish to extend the preceding electromagnetic mechanical and thermostatic
analogies to a full thermodynamical analogy we must take into account the heat
dissipated by the electrical conductivity (Joule effect) and by the shear and
bulk viscosities. According to the usual laws of dissipative thermodynamics
(see e.q.Landau and Lifshitz 1959) we expect a "heat" production rate in each

surface element dSy; equal to : ;

Z s -
—_— L 0 O’AB_—’—9+4W(K~<7H")]
§ = 5 [ 2747 %o tém (8)
Then if we consider, in keeping with Bekenstein's suggestion (1), that each sur-
face element dSH possesses an entropy :

s = xdSy (9)
we would expect a relation between heat and entropy of the type :
? .
Ds — T
% = Y (10)
with a local temperature :
T = 3/(87(0‘) (11)
Actually we get by rewriting the generalized Raychauduri equation (see appendix) :
z .
Be~gm =97 (1)

A few words are in order to comment egqn(12) :

Firstly in the case of an "adiabatic_transformation" (slow evolutioT as compared
to the characteristic time scale g~ of the hole) the term : -g~ D2 S/ dt2

is negligible compared to DS/dt . Therefore (12) reduces to the usual Taw (10)
in what anyway would be its classical domain of validity. In this sense it is
ascertained that the shear viscosity and the electrical resistivity of a black
hole are analogous to their classical counterparts both at the level of dynamical
phenomena and at the level of thermodynamical (dissipative) phenomena where

in fact they were first hinted at (Hawking and Hartle 1972, Znajek 1978b) .

We exclude here the bulk viscosity because a black hole is quasi "incompressible"
in a slow transformation see (IV 17).

Secondly we can give arguments to justify and interpret (12) in the most general
case. Let us recall Dirac (1938) interpretation of the equation of motion of a
radiating electron :

d & ez ]
H_;f—fr %?Vz .,;I-F'{f) -

written for simplicity in the one-dimensional non-relativistic case, where V is
the velocity and m the mass of the electron, F being the external force

and 1t the quantity 2 @2/ 3mc 3.

Adding to (13) the final boundary condition :

g{—?o when t » + = (14)
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One can write the solution of (13-14) :

0 t-t
- YT ) dY
dve) = M]{ e T Fi)

i

(15)

which is interpreted by saying that the electron "feels" the force F(t) with a
negative response time -T ( pre-acceleration). In the same way the future boun-
dary condition :

Ds_@0.s —0  whent+> +w= (16)

js satisfied by the very definition of a black hole. We can therefore interpret
(12) by saying that the "entropy" of a black hole responds to the "heat" dissipa-
tion, caused by the electrical conductivity, the shear and the bulk viscosities,
not instantaneously but on a negative time scale™:

o s

In this approach the "thermal conductivity" of a black hole is equal to zero, We
consider too as thermodynamically justified the negative value 5 = - (161:)'1

of the bulk viscoiity in contradistinction with recent proposals’of a positive
value ' =+(16w)~"(Carter 1979). Indeed such a negative value, which classically
means an instability against spontaneous contraction or expansion, is perfectly

in keeping with the natural tendency of a null hypersurface to continually contract
or expand, the horizon being precisely defined as the only null hypersurface which
reach a stationary state in the far future.

Finally we wish to point out that the very general connection found by Prigogine
(1968) between the dissipative phenomena and the dynamical equations of a classical
stationary thermodynamical system are valid in the case of a weakly perturbed,
slowly rotating, quasistationary black hole. In other words we have the remarkable
result :

Consider the total "dissipation function" :

D= jé (heat production rate) = jé q (17)

as a funct%ona] of the velocity field vA ( x2 5 x3 ). and of the electric poten-
tial @ ( x¢ , x3 ) . Then the condition that D Lva, QJ is a minimum with respect
to functional variations of VA and @ 1leads precisely to the dynamical equations
satisfied by VA and @ in a quasi-stationary state.

For instance in the case of the "eddy currents" generated by a slow rotation of
the black hole in an external magnetic field (section III) minimizing :

DIp) =i (-7% +7E) 4,

with respect to @ leads to eqn(III.18), and in the case of the shearing velocity
field generated by a slow rotation in an external gravitational field (section 1V)
minimizing :

Div4] = L jé(v‘”“ +Va1a)(Vats! +Vaha!) XM’XB;;GISH

227

¥ This type of "a causal" behaviour of a black hole is well known and shows itself
in various phenomena.
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with the "incompressibility" constraint Vveic = 0 Jeads to (IV.18). Hence the
entropy production rate is minimum in the actual quasistationary state.

CONCLUSION. We have shown that, with respect to both kinematical, dynamical and
thermodynamical phenomena, the surface of a black hole behaves in close analogy
with a "fluid bubble" endowed with electrical resistivity and with shear and
bulk viscosities.
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APPENDIX

For a full demonstration of the properties described here cf Damour (1979). We
use a signature -+++ and units such that G = ¢ = 1. Let x® (a,b = 0,1,2,3) be
a coordinate system for the space time V, endowed with a Lorentzian metric

ds2 = ggpdxTdx . We denote the covariant derivative by V, or ; a, and the
ordinary derivative by a/3 x?, 3, or ,. a. We consider in V4 g null hyper-
surface H ("horizon") with normal vector £ = 233, satisfying ¢2 =g,,280° =0,

For the sake of simplicity 1&; us_use a coordinate system adapted to H n the sense
that on H : x' =0 . Then x ( A,B =0,2,3) are arbitrary coordinates on H,
e, = 9/oxh being the natural basis tangent to H.

The first fondamental form of H is just the metric as? restricted to H :
dst|, = g,y datdab |y, = Gz 47" d2° (1)
In order to define the analogue of the second fondamental form of a spatial hyper-

surface we notice that taking the derivative of the equality :
~2

/! =0 (2)
along a vector tangent to H, say a/axA , yields :
?V,’TE =0. (3)

Hence the vector Vx 2 is tangent to H and can therefore be expanded on the
tangent basis € = g

b B —
Gl = X; e . (4)

By analogy with the case of spatial hypersurfaces (Hicks 1965), we call the mixed

tensor XAP defined on H the Weingarten map (The second fundamental form being
giz Xa° ). Expressing the Ricci tensor ( Rap =8cTap ---- ) in the

coordinate system x! , x one can check the "contracted Codazzi equation” :

0%es Rap =Rpz = V—,;st - % 1/25 (5)

where 7 is any projection of the connection v onto H (in the sense thatXx
and Y being two vectors tangent to ﬂ,ix Y is the projection onto H of v,Y
along any transverse vector n ( 2,40 )). The result (5) is independent
of the choice of 1w ( if W = a/ayl  the coefficients of ¥V arel:&

In the following, as in the text, it is convenient to use a more specialized

coordinate system ( x¥ = ¢, x!, x4; A =2, 3 ) where T =30 + V3, . Hence

denoting by Yan the riemannian metric on a section S ( x =0 ,x"=const.,
Tap =g Jthe first fondamental form (1) reads

Il = Yy (A-vAR) (BB v8 ) (g

As the sections S of H are Lie transported by ¥ , one can define the Lie

derivative along ¢ of any tensor QB"' defined in the riemannian sections S

Denoting by D/ dt ("convective"derivative) this Lie derivative (which is by

defupition the ordinary derivative 3p = 3/3 t in a coordinate system where
VP =0 ) we find :

Ly Q7 = DQa = @0 +V%% @ —ave QL

—— (7)
- e +aAV Qr_ + -
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For instance applying this definition to the metric v, we get :

Yas — S c
TD f“ =3, Usg + AV Xca—f- oV b:,{( (8)
which can be rewritten as :
DY
£2 = % Ypg + Vas + Vaia (9)
where a vertical bar denotes the riemannian covariant derivative associated to
Yop and where the indices are moved by and its inverse YAB . The

decompos1t1on of 1/2 DYAB/dt in trace and %race free parts defines the ex-
pansion :

AB AB
R R Dd{/w = 2879 % + Vi (10)
and the shear
— 2z,
o;a_;%%’zu RS (11)
A
Now if QR s cons1dered as a density (1ike Uu , K75 my ) we add to the
expression def1n1ng DQB /dc the term o QR-: so that :
Biiss
;%(QA... dSn) & (DQA )JSH : (12)
Using as tangent basis T and ZA N the Weingarten map (4) reads :
= -a
Vil = g/ (13a)
- =2 8 -
qé‘ ::Qg +(%6+595A)95 (13b)

where g is the surface gravity and @ the generalization, to non totally
geodesic H, of the "gravitomagnetic f1é1d" of Hajicek (1975, 1977) Contracting
(13b) with a vector ® orthogonal to S and such that T.n =+l yields :

QA: ﬂVAP (14)

Hence the impulsion density m, (IV-8) is equal to - 924/8 m . The explicit
form of (5) is :

RM = qubﬁob :-(90+VA94)9 + 39 -—0250"48 _ 292
o)

B 'QA (g*zf'a)

(15a)

R“ = é‘ef Rep = (3,,4—9) QA + VC-QAK* V&Qc +037
(15b)

Equation (15b) yields (IV.10) (with D/dt appropriate to a density). Equation
(15a) is the generalized Raychauduri equat1on and yields eqn (V. 12) if one notices
that in a Lie transport D(dS, )/dt = 084Sy and therefore D2(dSy) /dt2 =

[ (ag+V™ 34) 0 + 82 ] aSy .
Maxweil equations can be treated by noting that in our coordinate system :

gqub = 24 = (S/X)Vz Qx5 24 (16)

where g=- detg, . Hence Maxwell equations

(T qu)/b =—4nly T (17)
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imply : p =
a — o 1 % = A
ST =)t T = G lT) (FFN)
But it is easy to check that by definition of oy :
- Y2 o

fw o =(%) F'= F?%¢, (19)

Hence the quantity K2 defined by :
A — V244 FALp

m K" =(3/3) F¥ = b (20)

satisfies t}'g_- conservation law (III.10). Lowering the indices A and b in pAP and
K

replacing ¢ by its expression (II.4) we check easily that , defined by
eqn(20), satisfies Ohm's law (III.13) (because FAO= E, and FAB= B, 45 -
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