TOTEM

Jan Kašpar on behalf of the TOTEM collaboration

QCD at Cosmic Energies – VII 19 May, 2016

- TOTEM projects and physics programme
- detector apparatus, principle of proton measurement
- physics analyses and results: TOTEM alone
- physics analyses and results: TOTEM + CMS
- upgrades, outlook for 2016

list of TOTEM publications: http://totem.web.cern.ch/Totem/publ_new.html

• TOTEM

• LHC experiment dedicated to measurement of:

total cross-section, elastic scattering and diffractive processes

 $\circ\,$ common features: rapidity gaps, particles in very forward region, surviving protons $\Rightarrow\,$ special detectors

• TOTEM + CMS

- $\circ~$ both experiments at LHC Interaction Point 5 $\,$
- $\circ~$ excellent pseudorapidity coverage: optimal for hard diffraction studies
- $\circ\,$ cooperation mode: independent experiments, exchange of triggers

• CT-PPS (CMS-TOTEM Precision Proton Spectrometer)

- all subdetectors fully integrated under CMS
- dedicated detectors for high-pileup environment (timing, pixels instead of strips)

• Inelastic telescopes T1 and T2: charged particles from inelastic collisions

• Roman Pots (RP): elastic and diffractive protons close to outgoing beam

 $\circ~$ station at 147m in Run I \rightarrow station 210m in Run II

• all detectors: symmetric about IP5, trigger capable, radiation tolerant

Jan Kašpar

Telescope 1 (T1)

- installed inside CMS end-caps
- at 7.5 to 10.5 m from the IP
- one telescope on each side of IP
- each telescope consists of two quarters

- each quarter formed by 5 *planes* equally spaced along beam
- each plane consists of 3 trapezoidal CSC detectors, each covering 60 $^\circ$ in azimuth
- Cathode Strip Chamber: gaseous detector with 3 read-out coordinates (at 60 ° wrt. each other)

Telescope 2 (T2)

- installed inside CMS shielding between HF and Castor calorimeters
- centred about 13.5 m from the IP
- one telescope on each side of IP
- each telescope consists of two quarters

- each quarter formed by 10 semi-circular *planes*, assembled in 5 back-to-back mounted pairs
- each plane equipped with a *Gas Electron Multiplier* detector
 - gaseous detector, electron multiplication by 3 perforated foils (2 mm separation)
 - $\circ~$ radial segmentation: strips (resolution \approx 0.15 mm)
 - coarse radial×azimuthal segmentation: pads (for triggering, azimuthal resolution 0.8 °)

Roman Pots (RPs)

- *stations* installed at \pm 220 m in the outgoing LHC beam-pipe
- each station has two units, separated by $\approx 5~\text{m}$

- each unit contains 3 Roman Pots: top, bottom and horizontal
- Roman Pot = movable beam-pipe insertion
 - beam unstable \Rightarrow RPs retracted to safe position
 - $\circ~$ beam stable \Rightarrow RPs as close to beam as reasonable
- typical approach: 10 $\sigma_{\rm beam}$ (record 3 $\sigma_{\rm beam}$)
- Roman Pot: container for sensors
- + LS1: improved RF shield \Rightarrow possible close approach to high-intensity beam

"Edgeless" silicon sensors

- each RP contains a *package* of 10 silicon sensors
- 5 pairs of back-to-back mounted strip sensors

- custom developed "edgeless" sensors \Rightarrow insensitive edge \approx 50 μ m (standard about 1 mm)
- single-sided p⁺-n
- 512 strips at pitch of 66 μ m, at 45 $^\circ$ wrt. cut edge
- operated at ≈ -20 °C, bias voltage ≈ 100 V

• proton transport: described as in linear optics

- proton reconstruction: inverted transport RPs → IP
 - $\circ~$ optical parameters functions of $\xi \Rightarrow$ reconstruction is non-linear problem
 - good knowledge of optics is crucial

LHC optics

simulation of central diffraction for 2 different optics

low β^* (LHC standard)

 $L_X \approx 1.7$ m, $L_V \approx 14$ m, $D_X \approx 8$ cm $L_X \approx 0$, $L_V \approx 260$ m, $D_X \approx 4$ cm diffractive protons in *horizontal RPs*

$\beta^* = 90 \text{ m}$ (special for TOTEM)

diffractive protons in vertical RPs

• optics typically "labelled" by $\beta^* \equiv betatron function at IP$

- beam width: $\sqrt{\epsilon\beta}$, ϵ : beam emittance
- beam angular divergence: $\sqrt{\epsilon/\beta}$
- \circ luminosity \propto (beam width at IP)⁻² \propto 1/ β^*

Typical run scenarios

 $t \approx -p^2 \theta^2$: four-momentum transfer squared $\xi = \Delta p/p$: fractional momentum loss

QCD at Cosmic Energies - VII

19 May, 2016

- selection: two anti-collinear protons from the same vertex
- (almost) purely data-driven analysis
- data overview (selection), gray = preliminary

 different |t| probe different physics regimes – from lowest to highest |t|: Coulomb interference, diffractive cone, dip-bump, transition to pQCD

Jan Kašpar

QCD at Cosmic Energies - VII

19 May, 2016

Elastic scattering : Trends

(gray = preliminary)

• dip position

- $\sqrt{s} = 8$ TeV: limited statistics
- $\circ \sqrt{s}$ = 7 ightarrow 13 TeV: dip moves to lower |t|
 - 13 TeV results preliminary! (the yet missing unfolding correction likely to move the dip to lower |t|)
- forward slope $B = \frac{d}{dt} \ln \frac{d\sigma}{dt}\Big|_{t=0}$
 - increase wrt. previous experiments

Elastic scattering : Non-exponentiality at low |t|

- diffraction cone: "looks almost exponential" • magnify deviations \Rightarrow plot (d σ /dt - ref. exp.)/ref. exp.
- $\beta^* = 90$ m measurements at different energies (stat. unc. only):

non-exponentiality observed at 8 and 13 TeV!

- 8 TeV: 7 σ significance
- 13 TeV: preliminary results
- \circ non-exponentiality of observed cross-section:

 $d\sigma/dt = nuclear + Coulomb + interference$

- 8 TeV data with $\beta^* = 1000$ m optics
 - $\,\circ\,$ RPs very close to the beam: pprox 3 $\sigma_{
 m beam}$
 - $\circ |t|_{min} pprox 6 \cdot 10^{-4} \text{ GeV}^2$

observed cross-section

2 meanings of "interference": sum of amplitudes, additional terms

- interference formula = summation for practical applications
 - **simplified West-Yennie (SWY): QFT framework, traditional but** *heavy simplifications (constant hadronic phase, constant slope)*
 - Cahn or Kundrát-Lokajíček (KL): eikonal framework, no explicit simplifications
- interference \Rightarrow phase of hadronic amplitude exposed in cross-section
 - phase t-dependence needs to be considered in analysis
 - constraints from data \Rightarrow determination of ρ parameter

$$\rho = \left. \Re \mathcal{A}^{\mathsf{N}} / \Im \mathcal{A}^{\mathsf{N}} \right|_{t=0}$$

central question:

observed non-exponentiality - due to hadronic, Coulomb or both?

- fits with 2 different assumptions on hadronic component
 - *purely-exponential* non-exponentiality due to Coulomb (+interference) $\rightarrow |A^{N}| = a \exp(b_{1}t)$
 - flexible enough to describe non-exponentiality even without Coulomb $\rightarrow |\mathcal{A}^{N}| = a \exp(b_{1}t + b_{2}t^{2} + b_{3}t^{3})$
- role of hadronic phase t-dependence?
 - \circ largest impact: rate of change at low |t|
 - same quantity controls behaviour in impact-parameter space
 - $\circ~$ considered two families: central (black \downarrow), peripheral (blue \downarrow)

Elastic scattering : Coulomb interference - Fits

e purely-exponential hadronic amplitude

- constant phase excluded (with both SWY and KL formulae) \Rightarrow application of SWY formula excluded too
- peripheral phase not excluded by data, but disfavoured
 - ρ value outside a consistent pattern of other fits and theoretical predictions
 - number of theoretical reasons for non-exponential hadronic amplitude

e non-exponential hadronic amplitude

• both constant and peripheral phases compatible with data \Rightarrow centrality not necessity Elastic scattering : Coulomb interference – p parameter

• $\sqrt{s} = 8$ TeV: first LHC determination from Coulomb-hadronic interference

- leading uncertainty: statistics
- plans for \sqrt{s} = 13 TeV: ρ measurement with higher statistics

• model predictions (prior to Run I) vs. TOTEM data at $\sqrt{s} = 7$ TeV:

no model compatible with data!

- surprisingly?: little reaction after Run I (statement from 2015)
 - most often: no change at all or simple parameter refit
 - \circ only Islam abandoned one mechanism of large |t| scattering
 - exclusion of physics mechanisms (model independent)?

Elastic scattering : Structures at high |t| ?

• $\sqrt{s} = 13$ TeV: very preliminary, but already very strong results

- *high-*|*t*|: *no structures*!
 - rules out many models
 - rules out physics mechanism: "optical" models
 - \circ physics interpretation: transition between diffraction and pQCD? ⇒ e.g. Donnachie-Landshoff ⇒

• *inelastic cross-section*: event counting with T2 (and T1)

 \circ 95 % of inelastic events have at least 1 track in the T2 region

- $\circ\,$ only one significant MC correction: contribution from low mass diffraction
- 3 methods to determine *total cross-section*

elastic observables only:

Cross-section results

• $\sqrt{s} = 7$ TeV: all 3 methods consistent

- \sqrt{s} = 8 TeV: results from CNI study superior
 - Coulomb component explicitly separated
 determined in the same analysis as p
- $\sqrt{s} = 2.76$ and 13 TeV analyses ongoing

Single diffraction: $p + p \rightarrow p + X$

- double determination of $\xi pprox {
 m e}^{-\Delta\eta}$
 - from RPs
 - from rapidity gap $\Delta \eta$ (T1/T2)
- mass of diffractive system: $M_X = \sqrt{s\xi}$
- available data
 - 7 TeV: TOTEM-standalone analysis in progress
 - $\circ\,$ 8 and 13 TeV: common data with CMS
- ξ resolution from RPs: \approx 0.9 % \Rightarrow mass bins given by arms where T1/T2 active

Single diffraction : Preliminary results at 7 TeV

Corrections included:

- Trigger efficiency
- Proton acceptance & reconstruction efficiency
- Background subtraction
- Extrapolation to t = 0

<u>Missing corrections:</u> - Class migration - ξ resolution & beam divergence effects

 $\frac{\text{Estimated uncertainties:}}{\text{B} \sim 15\%}; \sigma \sim 20\%$

TOTEM preliminary:

σ_{SD} = 6.5 ± 1.3 mb

 $3.4 \text{ GeV} < M_{diff} < 1.1 \text{ TeV}$

Analysis of very high mass SD events ongoing

courtesy of H. Saarikko

Double diffraction: $p + p \rightarrow X + Y$

- experimental challenge: background (non-diffractive, SD pile-up)
 - \circ sub-sample with signal \gg background: 2 \times T2 and T1 veto
 - \circ non-diffractive background: control sample 2×T2 + 2×T1
 - SD background: control sample $1 \times T2 + 0 \times T1$
- cross-section as function of η_{min} on both sides
 - \circ challenge: reconstructed $\eta_{\min} \longrightarrow$ true/generator η_{\min} \Rightarrow 2 η_{min} bins only
- available data
 - 7 TeV: results published
 - 8 and 13 TeV: common data with CMS (improvement expected)

measurement

Measurement

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 120 \pm 25 \mu b$$

	$-4.7 > \eta_{min} > -5.9$	$-5.9 > \eta_{min} > -6.5$
$4.7 < \eta_{min} < 5.9$	66±19 μb	27±4 µb
$5.9 < \eta_{min} < 6.5$	28±5 µb	12±4 µb

• comparison to Monte Carlos

Central diffraction: $p + p \rightarrow p + X + p$

- available data
 - 7 TeV: TOTEM only, analysis started
 - 8 TeV: common data with CMS, analysis started
 - $\circ~$ 13 TeV: common data with CMS
- $\beta^* = 90$ m: all ξ visible, but resolution ≈ 0.9 %
- experimental challenge: background (pileup ES/beam halo + inelastic)
 o anti-elastic cuts: anti-collinearity
 - \circ anti-beam-halo cuts: |y| > 11 mm

Central diffraction : First results at 7 TeV

• $|t_{y}|$ distribution: all ξ values, only acceptance correction

- $dN_{ch}/d\eta$: mean number of charged particles per event and per unit of pseudorapidity
- probes (non-)perturbative strong interactions and hadronisation
- measurement based on T2
 - $\circ~\approx$ 95 % of inelastic events seen
 - o almost all non-diffractive events visible
 - diffraction with $M_{\chi} \gtrsim 3.4 \text{ GeV}$ detected
 - selection of primary particles: lifetime > 30 ps (LHC convention)

• available data

- $\sqrt{s} = 7$ TeV: TOTEM only, published
- $\circ \sqrt{s}$ = 8 TeV: TOTEM + CMS, TOTEM + shifted vertex, published
- $\circ \sqrt{s} = 13 \text{ TeV}$

Forward charged-particle multiplicities : $\sqrt{s} = 7$ TeV

 \uparrow NB: each experiment has different event selection!

- main contributions to systematic uncertainty (pprox 10 %)
 - $\circ\,$ subtraction of a large fraction of secondaries (about 80 % of all T2 tracks)
 - track efficiency and misalignment uncertainties

• TOTEM + CMS

non-single-diffractive enhanced: requiring both hemispheres of T2 on

single-diffractive enhanced: requiring only one hemisphere of T2 on

- $\sqrt{s} = 8$ TeV: analysis in review
 - classes considered: non-diffractive (ND), single diffractive (SD) with proton left/right, double diffractive (DD)
 - central diffraction not take into account: low cross-section not worth added complexity
 - \circ experimental definition of diffraction: rapidity gap $\Delta \eta \geq 3$
 - boosted decision tree
 - ordered binarisation: ND \rightarrow SD (left) \rightarrow SD (right) \rightarrow DD
 - training sample: Pythia 8-4C
 - control samples: Pythia 8-4C+MBR, QGSJET-II-04, Pythia 8-Monash
 - discriminators: $\Delta \eta$, η_{min} , η_{max} , N_{CMS} , N_{T2+} , N_{T2-} , ξ_L , ξ_R , ...
- possible improvement: use of CMS FSC (6 < $|\eta|$ < 8) \Rightarrow better distinction between low-mass DD (more forward than T2) and SD with undetected proton
- other available data
 - $\circ \sqrt{s} = 13 \text{ TeV}$

(Exclusive) central diffraction with CMS

- exchange of colour singlets with vacuum quantum numbers \Rightarrow selection rules for system X: $J^{PC} = 0^{++}, 2^{++}, ...$
- double-arm proton tagging: mass reach and luminosity depending on optics
- event selection via comparison CMS to RP protons:

M(pp) vs. M(CMS), $p_T(pp)$ vs. $p_T(CMS)$, vertex(pp) vs. vertex(CMS)

- prediction of rapidity gap from proton ξ : $\Delta \eta_{1,2} = -\ln \xi_{1,2}$
- analysis examples:
 - studies of glueball candidates
 - \circ exclusive dijets: mainly gg (p_T > 30GeV: $\sigma_{gg} \approx 100 pb$)
 - exclusive χ_c and J/Ψ production: $\mathcal{O}(10pb 10nb)$
 - $\circ\,$ search for missing mass signals of $\mathcal{O}(\textit{pb}) \Rightarrow$ SUSY searches

- CD production at LHC
 - \circ *M*_X = 1 to 4 GeV ⇒ *x* \sim 10⁻⁴ ⇒ pure gluon content
 - $\circ~$ Pomeron \sim colour-less gluon ladder \Rightarrow fusion likely to produce glueballs
- 0⁺⁺ glueball candidates: $f_0(1500)$, $f_0(1710)$, $f_0(1370)$ • lattice QCD: m(0++) glueball ~ 1700(±100) MeV
- CMS + TOTEM:
 - $\circ~$ both protons measured and tagged by TOTEM
 - effective selection with high purity (p_T balance + x-vertexing) in required ξ -range.
 - $\circ\,$ CMS tracker: charged particle invariant mass with $\sigma(M)\sim 20-30\,$ MeV

• available data

- $\circ\,$ 8 TeV, eta^* = 90 m, Jul 2012: $\mathcal{L} pprox 1$ nb $^{-1}$: proof of principle
- $\circ~$ 13 TeV, β^* = 90 m, Oct 2015: $\mathcal{L}\approx0.4~\text{pb}^{-1}$ for (CMS + TOTEM): should allow full production and decay characterisation

- CMS + TOTEM: trigger exchange, independent DAQ, offline data merging
- trigger: RP double arm & T2 veto & at least one track in CMS:

- analysis strategy verify the following glueball conditions
 - resonance enhancement with increasing collision energy (increasingly pure gluon contribution to CEP)
 - final states *branching ratio to* $\pi\pi$, *KK*, ..., with equi-flavour partitioning selection rules (or with proportionality of gluon coupling to quarks)
 - suppression of photon-photon channel (in production and final state)

- upgrade projects: interest in lower cross-section processes
 ⇒ higher luminosity needed ⇒ higher pile-up
 - $\circ\,$ need timing: association of RP proton vertex with CMS vertex
 - need *pixels*: more tracks in RPs

project	CT-PPS	timing in vertical RP
optics	low (standard) $meta^*$	high lumi $\beta^* = 90$ m
RPs used	horizontal	vertical
tracking	3D pixel (10 μ m)	current Si strip (20 μ m/RP)
timing	L-bar cherenkov (30 ps/module)	diamond (100 ps/plane)
	or ultrafast silicon or diamond	

priorities for 2016

- glueball searches (2015 data)
- \circ odderon searches: TOTEM only, special run with $be^* = 2500$ m
- *di-photon* searches with "accelerated" CT-PPS: standard low β^* runs
 - motivated by "the 750 GeV may-be-resonance", start CT-PPS programme with current detectors now

Outlook : CT-PPS plan for 2016

- motivation: di-photon excess at 750 GeV observed by ATLAS and CMS
 - CT-PPS: can see exclusive and complete events
- background suppressible even without timing detectors
 - $\circ\,$ large mass: low background from inelastic photon pair + pileup
 - $\circ\,$ strong correlation between proton pair (RP) and photon pair (CMS ECal)
 - \circ nevertheless: install 2 RPs with 4 diamond planes (originally for vertical RPs)
 - can also be used for (coarse) tracking
- tracking: use current Si strip detectors in station 210m
 - $\circ~$ functional at least for 10/fb, then replaceable with detectors from 220m $\circ~$ detector/beam shift: irradiation distributed
- CMS-TOTEM integration successfully ongoing
 - trigger, DAQ, offline SW, DQM, ...
 - $\circ\,$ DQM snapshot: from Monday, beam with 900 bunches, RPs inserted in physics positions, RPs included in global CMS DAQ, data processed with CMSSW 8.1.X (next release) $\rightarrow\,$

- Odderon = (hypothetical) cross-odd partner of Pomeron
- overview of past Odderon searches
 - comparison pp vs. anti-pp (dip): not applicable at LHC
 - spin analyses: not applicable at LHC
 - structures in do/dt: where Pomeron contribution small
 - high-|t|: disfavoured by 13 TeV measurements
 - low-|t|: shifts of ho value \Rightarrow within reach of TOTEM
- Coulomb-nuclear interference at $\sqrt{s} = 13$ TeV
 - needs special optics: $\beta^* = 2500 \text{ m}$
 - $\circ |t| = 6 \cdot 10^{-4} \text{ GeV}^2$ reachable
 - $\circ \ \sim$ 1 week data-taking time approved in 2016

Summary

• performance in Run II

- all detectors functional
- $\circ~$ RPs equipped with RF shields \Rightarrow less impedance \Rightarrow close approach possible
- $\circ~$ DAQ throughput increased 50 $\times~$ wrt. Run I

many analyses ongoing

- Run I and Run II
- TOTEM standalone, TOTEM + CMS

• upgrade projects

- timing in vertical RPs (diamonds)
- CT-PPS (pixel tracking, timing with fast silicon, diamond or Cherenkov)

• priorities for 2016

- glueball analysis of 2015 data
- $\circ\,$ TOTEM special run: eta^* = 2500 m \Rightarrow Odderon searches via CNI
- $\circ\,$ CT-PPS runs with LHC standard optics: di-photon searches with existing RPs,

• • •

 $\downarrow \mathsf{Backup}$

Vertex reconstruction by time measurement

Pileup problem:

TOTEM

High luminosity \rightarrow multiple events in 1 bunch collision !

- CMS tracker can separate multiple vertices longitudinally
- leading proton tracks have angles in μrad range \rightarrow insufficient vertex precision
- for double-arm events (CD) reconstruct vertex from time-of-flight difference

Position of Collision ~ $\Delta t_{collision\#1,Stopwatch\#1} - \Delta t_{collision\#1,Stopwatch\#2}$

11

Jan Kašpar

QCD at Cosmic Energies - VII

19 May, 2016

CT-PPS detectors

Tracking: 3D silicon sensors

- PSI46dig ROC, with same readout Phase I CMS pixel upgrade
- · 6 detector planes per station
- 10 μm (position) & 1-2 μrad (angle)

Timing baseline: Quartic detector

- 20 (4 x 5) quartz bars, 3 x 3mm², SiPM for light detection.
- 2 modules/RP unit
- In beam tests: σ(t) = 30 ps/module
- (~ 20 ps/RP unit)
- · Currently modules tested in RPs with MIPs

To be completed & installed in spring 2016

Diamond timing detectors

geometry adjusted to track occupancy in β* = 90m runs
 vertex z-position reconstruction resolution ~few cm

Vimost constant occupancy 0.5%-1% per BX, µ=0.5 TOP 102 HORIZ BOTTOM x [mm]

currently 2 completed planes being tested inside RPs with MIPs total 12 planes (each with 4 diamonds) to be completed & installed spring 2016

15