Multiplicity dependence of charm production and parton saturation

K.W. in collaboration with

T. Pierog, Iu. Karpenko, B. Guiot, G. Sophys
D multiplicity vs charged multiplicity in pp

Significant deviation from the diagonal (linear increase)
in particular for large p_t

ALICE arXiv:1505.00664v1
PYTHIA 8.157
Already understanding a linear increase is a challenge!

(Only recent Pythia versions can do)

Even much more the deviation from linear (towards higher values)
Trying to understand these data in the EPOS framework

Important issues:

- Multiple scattering, parton saturation
- Collectivity
EPOS: Based on multiple scattering and flow

Several steps (even in pp!):

1) Initial conditions:
 Gribov-Regge multiple scattering approach,
 elementary object = Pomeron = parton ladder,
 Nonlinear effects via saturation scale Q_s

2) Core-corona approach
 to separate fluid and jet hadrons

3) Viscous hydrodynamic expansion, $\eta/s = 0.08$

4) Statistical hadronization, final state hadronic cascade

Initial conditions: **Marriage pQCD+GRT+energy sharing**
(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

For pp, pA, AA:

\[
\sigma^{\text{tot}} = \sum_{\text{cut } P} \int \sum_{\text{uncut } P} \int (\text{squared amplitude})
\]

\[
\text{cut Pom : } G = \frac{1}{2\hat{s}} 2\text{Im } \{\mathcal{F}\mathcal{T}\{T\}\}(\hat{s}, b), \quad T = i\hat{s}\sigma_{\text{hard}}(\hat{s}) \exp(R_{\text{hard}}^2 t)
\]

Nonlinear effects considered via saturation scale \(Q_s \)
\[
\sigma_{\text{tot}} = \int d^2b \int \prod_{i=1}^{A} d^2b_i^A \, dz_i^A \rho_A(\sqrt{(b_i^A)^2 + (z_i^A)^2}) \prod_{j=1}^{B} d^2b_j^B \, dz_j^B \rho_B(\sqrt{(b_j^B)^2 + (z_j^B)^2})
\]

\[
\sum_{m_1 l_1} \ldots \sum_{m_{AB} l_{AB}} (1 - \delta_0 \Sigma m_k) \int \prod_{k=1}^{AB} \left(\prod_{\mu=1}^{m_k} dx_{k,\mu}^+ dx_{k,\mu}^- \prod_{\lambda=1}^{l_k} d\tilde{x}_{k,\lambda}^+ d\tilde{x}_{k,\lambda}^- \right) \left\{ \prod_{k=1}^{AB} \left(\frac{1}{m_k! l_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, |\vec{b} + \vec{b}_\pi^A| - \vec{b}_\tau^B|) \prod_{\lambda=1}^{l_k} -G(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s, |\vec{b} + \vec{b}_\pi^A| - \vec{b}_\tau^B|) \right) \prod_{i=1}^{A} \left(1 - \sum_{\pi(k)=i} x_{k,\mu}^+ - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^+ \right)^\alpha \prod_{j=1}^{B} \left(1 - \sum_{\pi(k)=j} x_{k,\mu}^- - \sum_{\pi(k)=j} \tilde{x}_{k,\lambda}^- \right)^\alpha \right\}
\]
Core-corona procedure (for pp, pA, AA):

Pomeron => parton ladder => flux tube (kinky string)

String segments with high pt escape => **corona**, the others form the **core** = initial condition for hydro depending on the local string density

\[
\begin{align*}
\eta &= -1.00 \\
\text{5.7fm, 5 Pomerons} \\
p_{\text{Pb}} 5\text{TeV, 20-40%} \\
p_{\text{t}} &< 6
\end{align*}
\]
Core => Hydro evolution (Yuri Karpenko)

Israel-Stewart formulation, $\eta - \tau$ coordinates, $\eta/S = 0.08$, $\zeta/S = 0$

\[\partial_\nu T^{\mu\nu} = \partial_\nu T^{\mu\nu} + \Gamma^\mu_{\nu\lambda} T^{\nu\lambda} + \Gamma^\nu_{\nu\lambda} T^{\mu\lambda} = 0 \]

\[\gamma (\partial_t + v_i \partial_i) \pi^{\mu\nu} = -\frac{\pi^{\mu\nu} - \pi^{\mu\nu}_{\text{NS}}}{\tau_{\pi}} + I_{\pi}^{\mu\nu} \]

\[\gamma (\partial_t + v_i \partial_i) \Pi = -\frac{\Pi - \Pi_{\text{NS}}}{\tau_{\Pi}} + I_{\Pi} \]

- $T^{\mu\nu} = \epsilon u^\mu u^\nu - (p + \Pi) \delta^{\mu\nu} + \pi^{\mu\nu}$
- ∂_ν denotes a covariant derivative,
- $\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu$ is the projector orthogonal to u^μ,
- $\pi^{\mu\nu}$, Π shear stress tensor, bulk pressure

\[\pi^{\mu\nu}_{\text{NS}} = \eta (\Delta^{\mu\lambda} \partial_{;\lambda} u^\nu + \Delta^{\nu\lambda} \partial_{;\lambda} u^\mu) - \frac{2}{3} \eta \Delta^{\mu\nu} \partial_{;\lambda} u^\lambda \]

\[\Pi_{\text{NS}} = -\zeta \partial_{;\lambda} u^\lambda \]

\[I_{\pi}^{\mu\nu} = -\frac{4}{3} \pi^{\mu\nu} \partial_{;\gamma} u^\gamma - [u^\nu \pi^{\mu\beta} + u^\mu \pi^{\nu\beta}] u^\lambda \partial_{;\lambda} u_\beta \]

\[I_{\Pi} = -\frac{4}{3} \Pi \partial_{;\gamma} u^\gamma \]

Freeze out: at 168 MeV, Cooper-Frye $E \frac{d^3 n}{d^3 p} = \int d\Sigma_{\mu} p^\mu f(up)$, equilibrium distr

Hadronic afterburner: UrQMD

Marcus Bleicher, Jan Steinheimer
A crucial ingredient: The saturation scale Q_s^2

Single Pomeron contribution G (to the amplitude), computed via pQCD, can be (very well) fitted as

$$G \approx G_{\text{fit}} = \alpha (x^+)^{\beta} (x^-)^{\beta'}$$

(x^\pm are light cone momentum fractions)

Extremely useful! Allows analytical calculations of cross sections.

*) (Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)
Consistency requires adding more diagrams (ladder splitting/fusion, triple Pomeron vertices, gluon fusion in CGC ...)

\[\text{(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)} \]
Motivated by model calculations, we treat ladder fusion via adding an exponent 1:

\[G_{\text{fit}} \rightarrow G_{\text{eff}} = \alpha (x^+)^{\beta + \varepsilon_{\text{proj}}} (x^-)^{\beta' + \varepsilon_{\text{targ}}} \]

(“epsilon method”) with

\[\varepsilon = \varepsilon(Z), \]

depending on “the number of participating partons”:

\[Z^{\text{proj}} = \sum_{\text{proj nucleons } i'} f_{\text{part}} \left(|\vec{b} + \vec{b}_{i'} - \vec{b}_j| \right) \]

(j is the target nucleon the Pomeron is connected to)

Advantages

- Cross section calculations perfectly doable
- Energy dependence of σ_{tot}, σ_{el} (and more) correct

Big problems

- Adding ε does not change the internal Pomeron structure
- No binary scaling in pA at high p_t (tails much too low)
Solution

- Introducing a saturation scale

 (K. Werner, B. Guiot, Iu. Karpenko, T. Pierog,

Before: Compute G with fixed soft cutoff Q_0

\rightarrow fit \rightarrow add ε exponents

New: Compute G with saturation scale $Q_s \propto Z \hat{s}^\lambda$

\rightarrow fit ($\hat{s} =$ Pomeron invariant mass)

varying Q_s changes internal structure!
Still something missing ...

- The saturation scale depends on the number of participating nucleons,

- but NOT on the number of Pomerons N_{Pom} (participating parton pairs)

The number of Pomerons represents the event activity in pp, as the number of participating nucleons does in pA.
The final solution

☐ Combining “epsilon method” and saturation scale in a smart way (T. Pierog and K. Werner, procs. EDS 2015, Borgo, France)

Step 1 Compute \(G = G(Q_0) \) with fixed soft cutoff \(Q_0 \) → fit → add \(\varepsilon \) exponents (→ \(G_{\text{eff}} \)) in order to fit cross sections

Step 2 Introduce saturation scale via

\[
G_{\text{eff}} = k \, G(Q_s)
\]

affecting the internal structure
(We will see what to take to \(k \))
The saturation scale Q_s^2

pp at 7 TeV

using $G_{\text{eff}} = k G(Q_s)$

with constant k

$(x_{+PE}$ is the LC momentum fraction on the projectile side)
A crucial test:
Multiplicity dependence of spectra at high p_t

preliminary ALICE data
(digitalized from B.A.Hess, talk at MPI@LHC 2015 Trieste November 27, 2015)

multiplicity bins
(top to bottom):
0-1%, 1-5%, 10-15%, 20-30%, 40-50%, 70-100%

lines to guide the eye
Same data - ratio to 70-100%

non-trivial:
spectra get harder
with multiplicity
Comparing ALICE data with EPOS calculations

(preliminary ALICE data digitalized from B.A.Hess, talk at MPI@LHC 2015 Trieste November 27, 2015)

multiplicity bins
(top to bottom):
0-1%, 1-5%, 10-15%, 20-30%, 40-50%, 70-100%

Not too bad for a first shot ... but tails are not correct
Comparing ALICE data with EPOS calculations

Ratio calculation / data

Multiplicities bins: 0-1% (red), 1-5%, 10-15%, 20-30%, 40-50%, 70-100% (grey)

Tails wrong by factors of two (low pt will be modified by hydro)
Make saturation scale Q_s^2 depending on N_{Pom}

pp at 7 TeV

using $G_{\text{eff}} = k \, G(Q_s)$

with

$$k = \left(\frac{N_{Pom}}{\langle N_{Pom} \rangle} \right)^{0.75}$$

higher Q_s^2 with increasing Pomeron number (like N_{part} dependence in pA)
Comparing ALICE data with EPOS calculations

Using

\[k = \left(\frac{N_{\text{Pom}}}{\langle N_{\text{Pom}} \rangle} \right)^{0.75} \]

=> much better
Comparing ALICE data with EPOS calculations

Ratio calculation / data

Using

\[k = \left(\frac{N_{\text{Pom}}}{\langle N_{\text{Pom}} \rangle} \right)^{0.75} \]

Multiplicity bins:
0-1% (red), 1-5%, 10-15%, 20-30%, 40-50%, 70-100% (grey)

Tails reasonable (low pt will be modified by hydro)
Still finetuning and tests needed, but we use

\[G_{\text{eff}} = k \, G(Q_s) \]

with

\[k = \left(\frac{N_{\text{Pom}}}{\langle N_{\text{Pom}} \rangle} \right)^{A_{\text{sat}}} , \quad A_{\text{sat}} = 0.75 \]

to analyse the multiplicity dependence of D-meson production (results depend somewhat on \(A_{\text{sat}} \))

Remark : This new procedure => **EPOS 3.2xx**
Charm – multiplicity correlations

Notations (always at midrapidity) (D-meson = average D^+, D^0, D^{*+})

- N_{ch}: Charged particle multiplicity
- N_{D1}: D-meson multiplicity for $1 < p_t < 2 \text{ GeV}/c$
- N_{D2}: D-meson multiplicity for $2 < p_t < 4 \text{ GeV}/c$
- N_{D4}: D-meson multiplicity for $4 < p_t < 8 \text{ GeV}/c$
- N_{D8}: D-meson multiplicity for $8 < p_t < 12 \text{ GeV}/c$
Heavy quark (Q) production
in EPOS multiple scattering framework

as light quark production
(but non-zero masses: $m_c = 1.3$, $m_b = 4.2$)

In any of the ladders

- during SLC (space-like cascade)
- during TLC (time-like cascade)
- in Born
Multiple scattering (EPOS3, basic):

\[N_{Di} \propto N_{ch} \propto N_{Pom} \]

"Natural" linear behavior
(first approximation)

We use \(n = N/\langle N \rangle \) for \(N_{ch} \) and \(N_{Di} \)
The actual calculations

n_{Di} vs n_{ch}

... even more than linear increase!

(in particular for large p_t)

(less for $A_{sat} = 0$)

(much less in EPOS 3.1xx)

Why this p_t dependence?
Crucial: Fluctuations

N_{ch} and N_{Pom} are correlated, but not one-to-one

(=> two-dimensional probability distribution)

In the following, we consider fixed values N_{ch}^*

\rightarrow fixed n_{ch}^*
To understand the implications of “fixed n_{ch}”
Strings in multiple scattering event (Schematic view):

basic EPOS

Strings of different lengths, different rapidity coverage, different hardness length
\sim mass $(\sqrt{x^+x^-s})$
To understand the implications of "fixed

Strings in multiple scattering event (Schematic view):

full EPOS (with hydro) string segments => fluid

but
string properties
- number,
- masses,
- hardnesses
determine initial energy density and final multiplicity
Consider n_{D1} for some given n_{ch^*}

$$n_{D1} = \sum_{N_{Pom}} \text{prob}(N_{Pom}, n_{ch^*}) \times n_{D1}(N_{Pom}, n_{ch^*})$$

$(60\%) > n_{ch^*}$ having used

$$n_{D1}(N_{Pom}, n_{ch^*})$$

$(60\%) > n_{ch^*}$
The precise calculation (red point)

\[n_{D1}(n_{ch}) \]

- diagonal

\[n_{D1}(n_{ch}^*) \]
\[n_{D8} \text{ for given } n_{ch}^* \]

\[n_{D8} = \sum_{N_{Pom}} \text{prob}(N_{Pom}, n_{ch}^*) \times n_{D8}(N_{Pom}, n_{ch}^*) \]

\[> > n_{ch}^* \]

because

\[n_{D8} > n_{ch}^* \text{ at high } N_{Pom} \]

and

increases strongly towards small \(N_{Pom} \)
The precise calculation \textit{(red point)}

\[n_{D8} \geq n_{ch} \]

- **significantly above the diagonal!**
- **strongly non-linear!**

How to understand \(n_{D8} \gg n_{ch} \) and why increasing towards small \(N_{Pom} \)?
We compute in addition

- The average invariant Pomeron mass for given N_{Pom} and n_{ch}^*

- The average Pomeron hardness

$$\left(\langle p_t^2 \rangle / \langle p_t^2 \rangle_{\text{ref}} - 1 \right) \times 100$$

for given N_{Pom} and n_{ch}^*

(based on string segments)
Pomeron mass and hardness

both increase significantly with decreasing N_{Pom}

red line: n_{D8}
blue dashed-dotted: $N_{\text{Pom distr}}$

correspondence hardness - n_{D8} !!
Strong non-linear increase (of $n_{D8}(n_{ch})$)
since

- Pomerons harder with increasing multiplicity (more screening, higher Q_s^2)

- The number of Pomerons fluctuates for given multiplicity and smaller Pomeron numbers imply harder Pomerons

- note: n_{D8} is nothing but a “Pomeron hardness” measure (even a very sensitive one)
EPOS 3.204 compared to data
Hydo helps somewhat
(for basic EPOS the increase is somewhat less)

No change for n_{Di}

But some reduction of n_{ch}

$\Rightarrow n_{D8}(n_{ch})$ with hydro is somewhat steeper compared to basic EPOS
Why multiplicity reduction?

Basic EPOS:

Pomerons > Strings > String fragmentation

(independent of event activity)

Full model:

Pomerons > Strings > Fluid, collectivity

(collective energy increases with event activity)
Taking charged-particle multiplicity at forward/backward rapidity

$2.8 < \eta < 5.1 \quad \text{and} \quad -3.7 < \eta < -1.7$

(V_{zero} multiplicity, N_{vz}, n_{vz})
Vzero multiplicity: Smaller increase

as in the data
n_{D8} for given n_{vz}^*

whereas

$n_{D8}(N_{Pom}, n_{ch}^*)$ increases strongly towards small N_{Pom}

$n_{D8}(N_{Pom}, n_{vz}^*)$ decreases slightly

=> Pomerons do not get harder
Why do Pomerons get harder at small N_{Pom} for fixed n_{ch} but not for fixed n_{vz}?
In case of n_{ch}, almost all Pomerons cover the corresponding central rapidity range
In case of n_{ch}, almost all Pomerons cover the corresponding central rapidity range, so to keep n_{ch} fixed for smaller N_{Pom} requires harder Pomerons (no other way)
In case of n_{vz}, only some Pomerons cover the corresponding forward rapidity range,
In case of n_{vz}, only some Pomerons cover the corresponding forward rapidity range, so to keep n_{vz} fixed for smaller N_{Pom} can be accommodated with more Pomerons covering that rapidity range.
Summary

- New (and final?) major improvement of the multiple scattering scheme in EPOS: Pomeron number dependence of the saturation scale (and the corresponding technical improvements which make it possible)

- Provides increasing Pomeron hardness with increasing multiplicity (ALICE multipl dependence of spectra)

- Explains strong increase of high pt charm production vs multiplicity, and the modest increase in case of forward multiplicity.