Very forward particle production at colliders LHCf and RHICf

Takashi SAKO

(ISEE/KMI, Nagoya University) for the LHCf and RHICf collaborations

Outline

- Forward detectors and LHCf/RHICf
- LHCf results (mainly from 7TeV p-p collisions)
 - π⁰
 - Neutron
 - (preliminary) photon result at 13 TeV
- Origin of LHCf measured particles in models, and prospect for LHCf-ATLAS joint analysis
- Vs scaling
- Single-spin asymmetry at RHIC
- Future O-O collision at LHC

2^{ry} particle flow at colliders multiplicity and energy flux at LHC 14TeV p-p collisions

- LHCf covers the peak of energy flow
- Vs=14 TeV pp collision corresponds to $E_{CR}=10^{17}eV$

Forward detectors @ Colliders

• ZDCs (including LHCf/RHICf) are sensitive to neutral particles including zero degree

ZDC XISI LHCf/RHICf

	ZDC	LHCf/RHICf
Original purpose	determination of centrality in A-A collisions => number of spectator neutrons	measurements of π^0 cross section => position sensitive EM calorimeter
Aperture	large	small
Thickness	thick	thin
Energy resolution	good	good in EM showers poor in hadronic showers
Position resolution	poor	good
Single particle identification	poor	good

The LHC forward experiment

 Neutral particles (photons and neutrons) emitted around 0 degree arrive at LHCf

From the LHC forward (LHCf) to the RHIC forward (RHICf)

Zero degree detector and acceptance

LHCf/RHICf Detectors

- Imaging sampling shower calorimeters
- Two calorimeter towers in each of Arm1 (RHICf) and Arm2
- Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Event category of LHCf LHCf calorimeters Leading baryon (neutron) Single hadron event Multi meson production photon Single photon event photon π⁰ Pi-zero event (photon pair)

Detector performance

Cosmic-ray spectrum and collider energy (D'Enterria et al., APP, 35,98-113, 2011)

Publications

	Photon (EM shower)	Neutron (hadron shower)	π ⁰ (limited acceptance)	π ⁰ (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129- 136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298- 303				IJMPA, 28
7TeV p-p	PLB, 703 (2011) 128- 134	PLB, 750 (2015) 360- 366	PRD, 86, (2012) 092001	PRD submitted	(2013) 1330036
2.76TeV p-p			PRC, 89 (2014)	(arXiv:1507.08764)	
5.02TeV p-Pb			065209		
13TeV p-p	Analysis in progress				

physics results

performance results

Publications

	Photon (EM shower)	Neutron (hadron shower)	π ⁰ (limited acceptance)	π ⁰ (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129- 136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298- 303				IJMPA, 28
7TeV p-p	PLB, 703 (2011) 128- 134	PLB, 750 (2015) 360- 366	PRD, 86, (2012) 092001	PRD submitted	(2013) 1330036
2.76TeV p-p			PRC, 89 (2014)	(arXiv:1507.08764)	
5.02TeV p-Pb			065209		
13TeV p-p preliminary Analysis in progress					
				physics results	
			ſ	performance res	sults 14

π⁰ p_z spectra in 7TeV p-p collisions (PRD submitted,arXiv:1507.08764 [hep-ex])

• DPMJET3 and PYTHIA8 overestimate over all E-p_T range 15

π^0 in 7TeV p-p collision LHCf and models

π^0 in 7TeV p-p collision LHCf and models (ratio to data)

EPOS-LHC

π^0 SIBYLL 2.1

- Underestimate in low p_T , overestimate in high p_T
- Totally overestimate because of larger phase space in high p_T

• Not bad, slightly overestimate in high energy

- Perfect in shape, slightly underestimate in higher p_T
- Totally slightly underestimate

Neutron (vs=7TeV p-p; PLB 750 (2015) 360-366)

- **DPM** and **PYTHIA** under production at zero degree
- DPM and PYTHIA not bad at off-zero degree. DPM is best.

Neutron SIBYLL 2.1

• Lowest neutron yield, especially at zero degree

Neutron QGSJET II-03

- Qualitatively nice agreement, only model, at zero degree
- Lower yield at non-zero angle

Neutron EPOS 1.99

• Generally low yield

Energy flow

- Post-LHC models (EPOS-LHC and QGSJET II-04) well explain the π^0 results, but not for neutrons
- DPMJET3 explains the neutron results, but it is not recently used for CR simulations

Energy share between π^0 (photon) and neutron

Neutron/photon "number" ratio in the same angular ranges

N_n/N_γ	Small (η>10.76)	Large A (9.22>η>8.99)	Large B (8.99>η>8.81)
Data	$\textbf{3.05} \pm \textbf{0.19}$	1.26 ± 0.08	1.10 ± 0.07
DPMJET 3.04	1.05	0.76	0.74
EPOS 1.99	1.80	0.69	0.63
PYTHIA 8.145	1.27	0.82	0.79
QGSJET II-03	2.34	0.65	0.56
SYBILL 2.1	0.88	0.57	0.53 26

Photon spectra, √s=13TeV

Photon 7TeV vs. 13TeV

Diffraction/non diffraction tagging by ATLAS (prospect for 13TeV analysis)

Diffraction or Non-diffraction ? -0

30

Diffraction or Non-diffraction ? neutron

31

Tagging by ATLAS (no track=diffraction-like)

32

Technical feasibility

Classification of Events in the Combined ATLAS-LHCf Data Recorded During the *p*+Pb Collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

The ATLAS and the LHCf Collaborations

 Common Event ID was already tested using 5TeV p-Pb collision data in 2013

vs scaling

Vs scaling ; π^0

 (630GeV –) 2.76TeV – 7TeV good scaling within uncertainties

10

10⁻²

10⁻³

104

10⁻⁵

10⁻⁶

0.2

0.4

0.6

XF

0.8

0.2

0.4

1/σ_{inel} dσ/dx_F

- Wider coverage in y and p_T with 13TeV data
- Wider √s coverage with RHICf experiment in 2017 at √s=510GeV

0.8

35

0.6

X_F

Vs scaling in EPOS-LHC, π^0

Vs scaling; Neutron

- PHENIX explains the result by 1 pion exchange
- More complicated exchanges at >TeV?

RHICf takes data at 510GeV p+p in RUN17

η **> 10.76**

2000

1500

2500

3000 3500

Energy [GeV]

DPMJET 3.04

PYTHIA 8.145

SYBILL 2.1

Single-Spin Asymmetry at RHIC

Single spin asymmetry by PHENIX (PRD, 88, 032006, 2013)

- ✓ strong asymmetry in forward neutrons was discovered at RHIC
- ✓ scaled with pT at \sqrt{s} = 62, 200, 500 GeV?
- ✓ position resolution ≈1cm

Single spin asymmetry by RHICf

- Excellent position resolution allows to cover wide p_T in a single Vs condition
- With horizontal polarization, covering $p_T < 1 GeV/c$

Very Future

LHC O-O collisions (vs_{NN}=7TeV)

- LHC is TECHNICALLY able to accelerate and collide Oxygen beams
- Is nuclear effect in light ion collisions well understood?
- In A-A collisions, high multiplicity in the very forward region => new detector is required.

All pixelarized "Super ZDC"

• Perfect electronics (no BG, perfect linearity, no saturation) are assumed

2 photon separation power

Summary

- LHCf/RHICf measure neutral particles at very characteristic phase space zero degree where a large fraction of collision energy is carried
- LHCf tests interaction models at LHC
 - EPOS-LHC and QGSJET II-04 are two best models to describe π^0 production
 - All models under produce neutrons
- Vs scaling
 - Marginally scaling in π^0 between 2.76 and 7TeV is observed
 - Indication of scaling violation in neutron between 0.2 and 7TeV is observed
 - LHCf continues analysis of 0.9, 2.76, 7, and 13 TeV p-p collision data
 - RHICf will take data at 0.51TeV in 2017
- RCHIf is expected to test p_T scaling of single-spin asymmetry
- Detector design for future LHC O-O collision is on going

[not mentioned today: we have 5TeV p-Pb data and will have 8.2TeV p-Pb]