Impact of Minijet & Heavy-quark Production on the Muon Anomaly in Atmospheric Showers from Ultrahigh Energy Cosmic Rays

QCD at Cosmic energies VII Chalkida, 19th May 2016 Sun Guanhao (HKUST, CERN) David d'Enterria (CERN) Tanguy Pierog (KIT)

Introduction

Cosmic-ray flux as a function of energy: power-law E⁻ⁿ. For E_{lab} >10¹⁵ eV flux too low for satellites/balloons (1 CR per m²-year):

QCD @ Cosmic Energies, Chalkida, May'16

Introduction

Cosmic-ray flux as a function of energy: power-law E⁻ⁿ. For E_{lab} >10¹⁵ eV flux too low for satellites/balloons (1 CR per m²-year):

- Indirect measurements using the atmosphere as a "calorimeter":
- UV fluorescence light in air (N*)
- Cherenkov-light from e^{\pm}, μ^{\pm} at ground

Introduction

Cosmic-ray flux as a function of energy: power-law E⁻ⁿ. For E_{lab} >10¹⁵ eV flux too low for satellites/balloons (1 CR per m²-year):

QCD @ Cosmic Energies, Chalkida, May'16

Sun Guan Hao (HKUST)

Hadronic Monte Carlos for UHECR

Primary hadronic collisions (p-p, p-A) = Complex QCD interactions:

Nature of ultra-high energy cosmic-rays

Mean depth of shower maximum: Fluctuations of shower max: Auger 2010 Proton Auger 2010 70 850 SHOWER MAXIMUM RMS(X_{max}) (g/cm²) 60 el uncertainties odel uncertainties FLUCTUATION (pre-LHC) $\langle X_{\rm max} \rangle$ (g/cm²) 800 50 40750 30 model uncertainties Iron 700 20 uncertainties 10 650 80 proton **850** data $\pm \sigma_{\rm stat}$ 70 $\pm \sigma_{\rm sys}$ 60 800 (post-LHC $\sigma(X_{\rm max}) \, [{ m g/cm}^2]$ $|X_{\text{max}}\rangle [g/\text{cm}^2]$ 5**0 750 40** iron 30 700 20 EPOS-LHC 650 Sibyll2.1 10 Auger 2014 OGSIetII-04 Auger 2014

10¹⁹ 10¹⁸ 10¹⁸ 1019 1020 1020 E [eV]E [eV]Reduced model uncertainties after retuning of MCs with LHC data Data prefer average composition between p and Fe.

0

QCD @ Cosmic Energies, Chalkida, May'16

Sun Guan Hao (HKUST)

Proton

Iron

proton

iron

Muon anomaly in UHECRs

- MCs predict 30% less muons at E_{CR}~19 GeV than measured in data. μ's driven by charged-hadron shower (while π⁰→γγ feed e.m. air-shower).
- Is this due to lack of heavy-quark (c,b) production (+decay) in the CR MCs?
- PYTHIA includes heavy-Q production, but does not run with nuclear targets...
- → Employ a fast-simulation (CONEX) model of Earth atmosphere changing N,O atoms by Hydrogen ("Jupiter"-like atmosphere with air density), so that we can run with PYTHIA p-p collisions (1.000 air-showers per E_{CR}).
- → Compare air-shower features, especially µ[±] production, among PYTHIA6 (different tunes: 350, 371, 372, 380, 381, 382, -350[without heavy quark]) with: EPOS-LHC, QGSJET-II, QGSJET-1, SIBYLL.

Comparison of <u>generic</u> shower features: PYTHIA6 vs. CR Mcs

Altitude (mean X_{max} & width σ_{max}) of shower max

Inclined showers (θ =60°)

PYTHIA6 (all tunes indistinguishably) features largest X_{max} (more penetration in atmosphere) & lowest σ_{xmax} (less fluctuations in altitude).

X_{max} & width are mostly driven by p-p inelastic cross section & inelasticity.
 PYTHIA6 features similar σ_{inel}(pp), but smaller inelasticities than CR MCs. (see next slide).

p-p inelastic x-section & inelasticity

- PYTHIA & CR MCs feature quite similar inelastic x-sections up to √s~100 TeV (E_{CR}~10¹⁹ eV)
- XFirstIn = 1-(fraction of primary energy carried by the leading particle in each collision).
- PYTHIA6 has smaller XFirstIn value, which leads to larger X_{max}.

Ground E(e[±]) vs. zenith angle, Ground N(e[±]) vs. E_{CR}

Fraction of shower energy carried by electrons at ground increases with decreasing CR incident angle in atmosphere: More vertical shower = Ground closer to X_{max}(max. of EM particles)

- PYTHIA6 features more ground energy of electrons for more vertical showers (simply due to higher X_{max}).
- PYTHIA6 generally produces more e[±] vs. zenith angle & at ground

Ground energy for electrons

Inclined showers (θ =60°)

- The electromagnetic part of the shower is the best theoreticallycontrolled one. Relatively small differences among models. PYTHIA6 shows an average behaviour among MCs.
- Beyond 10²⁰ eV the ground is closer to shower maximum: Since PYTHIA has more penetration (shower develops more slowly), its EM component peaks also more strongly than others
- Minimum difference among PYTHIA tunes.

Ground energy for charged hadrons

Inclined showers (θ =60°)

EPOS & QGSJET-II ground hadrons have twice more energy than PYTHIA6, SIBYLL, & QGSJET01 predictions.

- When heavy-quark production is turned off in PYTHIA, charged hadron energy does not change evidently.
- The underlying mechanisms need further investigation.

Ground E(h[±]) vs. zenith angle, Ground N(h[±]) vs. E_{cr}

Fraction of shower energy carried by hadrons at ground increases with decreasing CR incident angle in atmosphere: More vertical shower = Ground closer to X_{max}(more HAD particles)

EPOS-LHC & QGSJET-II feature higher hadron energies for all angles though PYTHIA produces similar number of hadrons. Switching off heavy-quarks in PYTHIA leads to higher number of ch. hadrons – in contrast with previous plot (further investigations needed).

QCD @ Cosmic Energies, Chalkida, May'16

Cherenkov light from all part. (1.000m from shower axis)

Cherenkov signal from all particles at 1-km from shower axis (PAO measurable) as a function of cos²(θ_{zenith}):

PYTHIA6 produces ~10-30% more Cherenkov light at 1-km from shower core than all other MCs, except for QGSJET-II-04 at large angle

■ PYTHIA6 produces more particles further away from shower axis than all the other CR models: More production at higher p_T's.

Comparison of <u>muon</u> shower features: PYTHIA6 vs. CR Mcs

Ground energy for muons

- PYTHIA6 predict ~20% less muon energy at ground than QGSJET-II & QGSJET01 (PYTHIA6 E(µ) a bit larger than EPOS).
- Small differences among PYTHIA tunes. (Surprisingly) slightly more muon energy for tune -350 (without heavy quarks). When energy is "spared" not producing charm & bottom, the final muon energy from p,K decays is larger ? Further investigations needed...

Number of muons at Pierre Auger Obs.

Inclined showers (θ =60°)

Bin101 in CONEX corresponds to Pierre Auger Observatory: 1500m.

- PY6 produces more μ's than EPOS,SIBYLL but a bit less than QGSJET. Different tunes shows ±5% more/less muon yields.
- However: EPOS produces more muons than QGSJET for normal air showers. Extra nuclear effects, that are absent in the case of running with hydrogen atmosphere, play a role in muon production.
- For tune -350 (no heavy quarks), muon number is higher: Heavy-quark production surprisingly suppresses final muon number.

Muon density (E_{CR}=10¹⁹ eV) vs. zenith & altitude

MuTr = μ density between 40-200m MuMIA = μ lateral density at 600m with respect to QGSJET-II prediction as a function of zenith angle

PYTHIA6 has less muons than other MCs closer to the core shower (40-200m), but more at a distance of 600 m from shower axis. This is especially evident for PYTHIA without heavy quark.

PYTHIA6 has a much harder muon lateral distribution than CR MCs. Higher transverse momentum muons.

Cherenkov light from µ's (1.000m from shower axis)

Muon Cherenkov signal at 1-km from shower axis (PAO measurement) as a function of zenith angle:

PYTHIA6 produces ~10-30% more Cherenkov light at 1-km from shower core than all other MCs, except for QGSJET-II-04 at large angle. Tune -350 has an even higher value (~40%).

Confirms PYTHIA6 has harder lateral $\mu \pm$ distribution than other MCs

SD' = PAO Surface Detector

Conclusions

- Properties of PYTHIA generic showers (in "Jupiter-like" atmospheres):
 - PYTHIA6 gives quite similar results to showers from standard CR models:
 1st time ever that this has been tested!
 - Lower p-p inelasticity leads to deeper penetration (i.e. higher shower max position X_{max}) & smallest X_{max} fluctuations.
 - Its electromagnetic shower is in between that of other MCs.
 - Its charged-hadron shower is less energetic than EPOS & QGSJET-II, and more similar to SIBYLL & QGSJET01. However, transverse activity (Cherenkov light) at 1-km from axis is 10-30% larger: Higher p_T hadrons
- Properties of PYTHIA <u>muon component</u> (in "Jupiter-like" atmospheres):
 - PYTHIA6 predicts a total muon production in between other MCs: More than EPOS but bit less than QGSJET-II. But,
 - (i) Tune-dependent; heavy quark production seems to suppress (not enhance!?) the energy and number of muons at ground.
 - (ii) For normal air-showers the situation is reversed: EPOS produces more μ than QGSJET-II: Extra nuclear effects important.
 - PYTHIA6 average μ energy at ground is similar to EPOS but ~20% less than for QGSJET-II.
 - PYTHIA6 has a much harder μ lateral distribution: less μ 's close to core, 10-30% more at 600-m and 1-km from core axis.

Thank You!

BACKUP SLIDES

Ground $E(\mu^{\pm})$ for $E_{cR}=10^{19}$ eV at different zenith angles

Ground energy of muons rises slowly with decreasing angle

PYTHIA6 features less muon energies at ground than EPOS-LHC, QGSJET01, QGSJET-II for all angles.