Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part III

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

QCD at Cosmic Energies VII, Chalkida, Greece May the 17th 2016

Outline

Monte-carlo for Cosmic Ray analysis

Sibyll 2.3

Muon Production Depth and hadronic interactions

baryons

Nuclear Interactions

model differences

Hadronic Interaction Models in CORSIKA

Cosmic Ray Hadronic Interaction Models

- Theoretical basis :
 - ➡ pQCD (large p_t)
 - Gribov-Regge (cross section with multiple scattering)
 - energy conservation
- Phenomenology (models) :
 - hadronization
 - string fragmentation
 - EPOS : high density effects (statistical hadronization and flow)
 - diffraction (Good-Walker, ...)
 - higher order effects (multi-Pomeron interactions)
 - remnants
- Comparison with data to fix parameters

Better predictive power than HEP models thanks to link between total cross section and particle production (GRT) tested on a broad energy range (including EAS)

Cross Section and Multiplicity in Models

- Gribov-Regge and optical theorem
 - Basis of all models (multiple scattering) but
 - Classical approach for QGSJET and SIBYLL (no energy conservation for cross section calculation)
 - Parton based Gribov-Regge theory for EPOS (energy conservation at amplitude level)

- pQCD
 - Minijets with cutoff in SIBYLL
 - Same hard Pomeron (DGLAP convoluted with soft part : no cutoff) in QGSJET and EPOS but
 - Generalized enhanced diagram in QGSJET-II
 - Simplified non linear effect in EPOS
 - Phenomenological approach

Model Predictions (1)

MPD and Hadronic Interactions

Nuclear Interactions

Model Predictions (2)

Air Shower Observables

Post-LHC models have very similar energy evolution for X_{max} and N_{mu} and small difference in absolute value but

- Sibyll 2.3 have quite large X_{max} for proton
- different muon spectra between models

MPD and Hadronic Interactions

After LHC still about 20g/cm² (40g/cm²) difference between EPOS LHC (Sibyll 2.3) and QGSJETII-04 while only ~10g/cm² by changing p-Air within LHC uncertainties (see S. Ostapchenko, Phys. Rev. D 89, 074009 (2014))

MPD and Hadronic Interactions

After LHC still about 20g/cm² (40g/cm²) difference between EPOS LHC (Sibyll 2.3) and QGSJETII-04 while only ~10g/cm² by changing p-Air within LHC uncertainties (see S. Ostapchenko, Phys. Rev. D 89, 074009 (2014))

- Different mixing to extract useful information on X_{max}
 - QII only for cross-section and nucleon spectra of 1st int. : dot-dashed
 - QII complete 1st int : dashed
 - QII complete 1st int and all nucleon prod. in the shower: dotted
 - For energy dependence, QII for E>E_{trans}, other model below

From arXiv:1601.06567 by S. Ostapchenko and M. Bleicher

- Different mixing to extract useful information on X^µ_{max}
 - QII complete 1st int. : dashed
 - QII complete 1st int. and all nucleon prod. in the shower: dot-dashed
 - QII complete 1st int. and hadron spectra in pion and kaon int.: dotted
 - For energy dependence, QII for E>E_{trans}, other model below

From arXiv:1601.06567 by S. Ostapchenko and M. Bleicher

Summary of arXiv:1601.06567

Modifications	X _{max}	X^{μ}_{max}
cross-section and nucleon spectra of 1 st interaction	5 g/cm ²	
rest of 1 st interaction	5 g/cm ²	5 g/cm ²
nucleon spectra in all int.	5 g/cm ²	15 g/cm ²
all pion and kaon interactions		15 g/cm ²
Model difference fractions		
1 st interaction	70%	10%
pion interactions	30%	90%

Conclusions on Hadronic Interactions

- Differences in first interaction dominates X_{max} uncertainties
 - ➡ from where ? results at LHC are very similar ...
- Remaining uncertainties in X_{max} due to different results for pionair interactions at high energy
 - Problem : no data for pion interactions at high energy
- X^µ_{max} very sensitive to pion interactions at all energies (incl. high energies) so MPD can be use to probe pion interactions and limit uncertainties on X_{max}
 - Role of baryons
 - pion spectra ?
- Test using EPOS LHC and Sibyll 2.3

MPD and Hadronic Interactions

Muon Number

$$N_{\mu} = \left(\frac{E_0}{E_{dec}}\right)^{\alpha}, \quad \alpha = \frac{\ln N_{had}}{\ln \left(N_{had} + N_{em}\right)}$$

From Heitler

In real shower, not only pions : Kaons, (anti)Baryons and resonances

R depends on the number of (anti)B and ρ^0 in p- or π -Air interactions

More fast (anti)baryons or ρ° or larger N_{tot} = $\alpha \rightarrow 1$ = more muons

T. Pierog et al., Phys. Rev. Lett. 101 (2008) 171101

T. Pierog, KIT - 15/30

Pion Leading Particle Effect

Rho meson production added in QGSJETII (and Sibyll 2.3) to take into account leading particle effect in pion-Air interaction

- same effect as baryon production : forward π^0 replaced by charged pions (reduced leading π^0)
- increase muon production
- higher minimum muon energy (less generations) compared to baryons

Sibyll 2.3

Sibyll 2.1

Epos-LHC

QGSjetll-04

Pion(+)-Carbon Interactions

Different model predictions as a function of energy: Plots from F. Riehn (KIT) 100 10 10 \bar{p} 10⁰ \bar{p} 10⁰ 10⁻¹ \bar{p} 10 Spectrum dN/dx_F 01 0. -01 0 -01 -01 10 Spectrum $\mathrm{d}N/\mathrm{d}x_{\mathrm{F}}$ Spectrum $\mathrm{d}N/\mathrm{d}x_{\mathrm{F}}$ 10 10 10⁻³ 10 10⁻⁴ 10 10⁻⁵ 10-5 $\sqrt{s} = 100 \text{GeV}$ $\sqrt{s} = 10 \text{TeV}$ 10-5 $\sqrt{s} = 100 \text{TeV}$ 10 10 10⁴ Feynman-x Feynman-x Feynman-x 10¹ 10 10^{3} Sibyll 2.3 Sibyll 2.3 10 Sibyll 2.1 10² 10⁰ Sibyll 2.1 π π π Epos-LHC Epos-LHC 10¹ 10 QGSjetll-04 QGSjetll-04 -Spectrum dN/dx_F Spectrum $\mathrm{d}N/\mathrm{d}x_{\mathrm{F}}$ 10 Spectrum dN/dx_F 10 10⁻² 10 10 4 10⁻² 10⁻³

10

10 10 10 10⁻⁶ _____ 10 -0.5 -1.00.0 0.5 1.0 0.5 1.0 -0.5 0.0 0.5 1.0 Feynman-x Feynman-x Feynman-x T. Pierog, KIT - 17/30

10⁻³

-0.5

0.0

10-4

10⁻⁵

10⁻⁶

Baryons in Pion-Carbon

Very few data for baryon production from meson projectile, but for all :

- strong baryon acceleration (probability ~20% per string end)
- proton/antiproton asymmetry (valence quark effect)
- target mass dependence

NA61 Data to check !

<X^µ_{max}> with modified EPOS LHC

Same than in mixed models

- \rightarrow softer meson spectra (lower elasticity) : lower X^{μ}_{max}
- \rightarrow less forward baryons: lower X^{μ}_{max}

Same than in mixed models

- ➡ softer meson spectra: lower X_{max}
- forward baryons: small effect

~0 g/cm² for baryons X_{max} less sensitive to

-10 g/cm² for diff

sensitive to baryon spectra than to pion spectra in pion interactions

In Sergey's model, energy is not conserved (baryons not replaced by mesons)

N_u with Modified EPOS

Number of muons depends on the same parameters

- \rightarrow softer meson spectra: larger N_u
- forward baryons: lower N_{μ} but could be compensated by ρ^{0} (keep energy to produce muons but doesn't change the number of generations: lower MPD)

<X^µ_{max}> with new Sibyll 2.3

- Same than for EPOS LHC
 - \rightarrow low pion-air elasticity: higher X^{μ}_{max}
 - \rightarrow more forward baryons: higher X^{μ}_{max}

QCD Cosmics – May 2016

in pion

interactions

<X^µ_{max}> with new Sibyll 2.3

- Same than for EPOS LHC
 - \rightarrow low pion-air elasticity: higher X^{μ}_{max}
 - \rightarrow more forward baryons: higher X^{μ}_{max}

MPD and Hadronic Interactions

Nuclear Interactions

- Sibyll
 - Glauber for pA
 - with inelastic screening for diffraction in new Sibyll 2.3 (only nuclear effect)
 - superposition model for AA (A x pA)
- QGSJETII
 - Pomeron configuration based on A projectiles and A targets
 - Nuclear effect due to multi-leg Pomerons
- EPOS
 - Pomeron configuration based on A projectiles and A targets
 - screening corrections depend on nuclei
 - final state interactions (core-corona approach and collective hadronization with flow for core)

Nuclear Interactions

Light Ion Data

Very few data to compare with all CR models :

- strong limitations in Sibyll (projectile up to Fe only and target up to O !)
- no final state interactions exclude heavy nuclei for QGSJETII
- no light ion at high energy

Nuclear Interactions

Light Ion Data

Very few data to compare with all CR models :

- strong limitations in Sibyll (projectile up to Fe only and target up to O !)
- no final state interactions exclude heavy nuclei for QGSJETII
- no light ion at high energy

pO@LHC to check models at high energy

QCD Cosmics – May 2016

Model Comparison (1)

Model Comparison (2)

QCD Cosmics – May 2016

T. Pierog, KIT - 28/30

Model Comparison (2)

Summary

- Very strong sensitivity of MPD on pion interactions which is badly measured
 - MPD can be used to constrain models
 - then MPD can not be used for mass composition (X_{max} less sensitive to details) unless more accelerator data can constrain the models

• Better MPD = better
$$X_{max}$$
?

YES

 \bullet meson spectra influence both MPD and X_{max}

- NO

- \bullet forward baryons change MPD but X_{max} only if meson spectra is not changed
- in EPOS LHC if forward baryons are suppressed, we get harder meson spectra and X_{max} do not change
- Remaining main source of uncertainty in X_{max} probably related to extrapolations due to nuclear interactions (lack of data at high energy and forward). See David D'enterria talk for more hint on that.

MPD and EPOS

- 2 independent mass composition measurements
 - both results should be between p and Fe
 - both results should give the same mean logarithmic mass for the same model
 - problem with EPOS appears after corrections motivated by LHC data

Difference EPOS 1.99/EPOS LHC

- EPOS 1.99 to EPOS LHC
 - tune cross section to TOTEM value
 - change old flow calculation to a more realistic one
 - introduce central diffraction and improve rapidity gap distributions

(In)elasticity

Pion Diffraction and MPD

- Rapidity gap measurement fixed by LHC
 should not change proton interactions
- MPD driven by long chain of pion-Air interaction
 - Modify in EPOS pion diffraction only
 - Test cross-section and diffractive mass distribution
 - first check existing pion data to tune parameter to REDUCE pion diffraction and INCREASE diffractive mass
- 2 "tunes"
 - EPOS (LHC) σ_{diff}:
 diffractive cross section reduced
 - EPOS (LHC) σ_{diff} + M_{diff}:
 diffractive cross-section reduced and mass increased

Extrapolation to CR interactions

Test with accelerator data

Test with accelerator data

Rapidity Gap and (In)elasticity

T. Pierog, KIT - 38/30

- Different mixing to extract useful information on X_{max}
 - QII only for cross-section and nucleon spectra of 1st int. : dot-dashed

- Different mixing to extract useful information on X_{max}
 - QII only for cross-section and nucleon spectra of 1st int. : dot-dashed
 - QII complete 1st int : dashed

- Different mixing to extract useful information on X_{max}
 - QII only for cross-section and nucleon spectra of 1st int. : dot-dashed
 - QII complete 1st int : dashed
 - QII complete 1st int and all nucleon prod. in the shower: dotted

- Different mixing to extract useful information on X^µ_{max}
 - ➡ QII complete 1st int. : dashed

- Different mixing to extract useful information on X^µ_{max}
 - QII complete 1st int. : dashed
 - QII complete 1st int. and all nucleon prod. in the shower: dot-dashed

- Different mixing to extract useful information on X^µ_{max}
 - QII complete 1st int. : dashed
 - QII complete 1st int. and all nucleon prod. in the shower: dot-dashed
 - → QII complete 1st int. and hadron spectra in pion and kaon int.: dotted

